code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _A : Tuple = logging.get_logger(__name__) _A : Tuple = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : int = "longformer" def __init__( self : Optional[Any] , A : Union[List[int], int] = 5_1_2 , A : int = 2 , A : int = 1 , A : int = 0 , A : int = 2 , A : int = 3_0_5_2_2 , A : int = 7_6_8 , A : int = 1_2 , A : int = 1_2 , A : int = 3_0_7_2 , A : str = "gelu" , A : float = 0.1 , A : float = 0.1 , A : int = 5_1_2 , A : int = 2 , A : float = 0.02 , A : float = 1e-12 , A : bool = False , **A : List[str] , ) ->int: super().__init__(pad_token_id=A , **A ) lowerCamelCase__ : Dict = attention_window lowerCamelCase__ : int = sep_token_id lowerCamelCase__ : Union[str, Any] = bos_token_id lowerCamelCase__ : List[Any] = eos_token_id lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Optional[int] = hidden_act lowerCamelCase__ : List[Any] = intermediate_size lowerCamelCase__ : Dict = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : List[Any] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = type_vocab_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Union[str, Any] = layer_norm_eps lowerCamelCase__ : str = onnx_export class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __init__( self : List[Any] , A : "PretrainedConfig" , A : str = "default" , A : "List[PatchingSpec]" = None ) ->int: super().__init__(A , A , A ) lowerCamelCase__ : Union[str, Any] = True @property def __lowerCamelCase ( self : Tuple ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase__ : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def __lowerCamelCase ( self : Dict ) ->Mapping[str, Mapping[int, str]]: lowerCamelCase__ : List[Any] = super().outputs if self.task == "default": lowerCamelCase__ : str = {0: '''batch'''} return outputs @property def __lowerCamelCase ( self : str ) ->float: return 1e-4 @property def __lowerCamelCase ( self : List[str] ) ->int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 1_4 ) def __lowerCamelCase ( self : int , A : "PreTrainedTokenizerBase" , A : int = -1 , A : int = -1 , A : bool = False , A : Optional[TensorType] = None , ) ->Mapping[str, Any]: lowerCamelCase__ : str = super().generate_dummy_inputs( preprocessor=A , batch_size=A , seq_length=A , is_pair=A , framework=A ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCamelCase__ : Any = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global lowerCamelCase__ : Optional[int] = 1 return inputs
142
import datasets from .evaluate import evaluate _A : Optional[int] = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _A : int = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _A : int = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def __lowerCamelCase ( self : Optional[Any] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __lowerCamelCase ( self : Dict , A : Tuple , A : Tuple ) ->int: lowerCamelCase__ : Optional[Any] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} lowerCamelCase__ : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] lowerCamelCase__ : Tuple = evaluate(dataset=A , predictions=A ) return score
142
1
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
370
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
0
from __future__ import annotations import math def __A ( __lowerCAmelCase )-> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __A ( __lowerCAmelCase )-> list[int]: """simple docstring""" _UpperCAmelCase = str(__lowerCAmelCase ) _UpperCAmelCase = [n] for i in range(1 , len(__lowerCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __A ( __lowerCAmelCase )-> bool: """simple docstring""" if len(str(__lowerCAmelCase ) ) > 3: if not is_prime(int(str(__lowerCAmelCase )[-3:] ) ) or not is_prime(int(str(__lowerCAmelCase )[:3] ) ): return False return True def __A ( __lowerCAmelCase = 11 )-> list[int]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = 13 while len(__lowerCAmelCase ) != count: if validate(__lowerCAmelCase ): _UpperCAmelCase = list_truncated_nums(__lowerCAmelCase ) if all(is_prime(__lowerCAmelCase ) for i in list_nums ): list_truncated_primes.append(__lowerCAmelCase ) num += 2 return list_truncated_primes def __A ( )-> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
39
import numpy class UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __lowercase : numpy.ndarray , __lowercase : numpy.ndarray ): """simple docstring""" snake_case_ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. snake_case_ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. snake_case_ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. snake_case_ = numpy.random.rand(3 , 1 ) # Real output values provided. snake_case_ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. snake_case_ = numpy.zeros(output_array.shape ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. snake_case_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. snake_case_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) snake_case_ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) snake_case_ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case__ ( self : Optional[Any] , __lowercase : numpy.ndarray , __lowercase : int , __lowercase : bool ): """simple docstring""" for iteration in range(1 , iterations + 1 ): snake_case_ = self.feedforward() self.back_propagation() if give_loss: snake_case_ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"Iteration {iteration} Loss: {loss}" ) def snake_case__ ( self : Union[str, Any] , __lowercase : numpy.ndarray ): """simple docstring""" snake_case_ = input_arr snake_case_ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) snake_case_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) snake_case_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCamelCase__ ( _A ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowerCamelCase__ ( _A ): '''simple docstring''' return (value) * (1 - (value)) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. snake_case_ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. snake_case_ = TwoHiddenLayerNeuralNetwork( input_array=_A , output_array=_A ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_A , iterations=10 , give_loss=_A ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
187
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase ( unittest.TestCase ): @property def a ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def a ( self ): torch.manual_seed(0 ) snake_case_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def a ( self ): torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case ) def a ( self ): snake_case_ = self.dummy_uncond_unet snake_case_ = DDIMScheduler() snake_case_ = self.dummy_vq_model snake_case_ = LDMPipeline(unet=snake_case , vqvae=snake_case , scheduler=snake_case ) ldm.to(snake_case ) ldm.set_progress_bar_config(disable=snake_case ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=snake_case , num_inference_steps=2 , output_type='numpy' ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=snake_case , num_inference_steps=2 , output_type='numpy' , return_dict=snake_case )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) snake_case_ = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowercase ( unittest.TestCase ): def a ( self ): snake_case_ = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(snake_case ) ldm.set_progress_bar_config(disable=snake_case ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=snake_case , num_inference_steps=5 , output_type='numpy' ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) snake_case_ = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) snake_case_ = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
200
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
200
1
"""simple docstring""" import argparse import json import subprocess def _A ( lowercase , lowercase ): """simple docstring""" a =[] a =( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) a =subprocess.run(_A , shell=_A , stdout=subprocess.PIPE ) a =output.stdout.decode('''utf-8''' ) a =json.loads(_A ) a =status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_A ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(_A ) ) if len(_A ) > 0: a ='''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def _A ( lowercase ): """simple docstring""" return values.split(''',''' ) lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowerCamelCase_ : Dict = parser.parse_args() get_runner_status(args.target_runners, args.token)
81
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["pixel_values"] def __init__( self: List[Any] , UpperCamelCase: bool = True , UpperCamelCase: Optional[Dict[str, int]] = None , UpperCamelCase: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase: bool = True , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[int, float] = 1 / 2_55 , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , **UpperCamelCase: Optional[int] , ) -> None: super().__init__(**UpperCamelCase ) snake_case__ = size if size is not None else {'shortest_edge': 2_56} snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case__ = get_resize_output_image_size(UpperCamelCase , size=size['shortest_edge'] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[Any] , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size['height'], size['width']) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: np.ndarray , UpperCamelCase: float , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict ) -> np.ndarray: return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Any , ) -> np.ndarray: return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: ImageInput , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: PILImageResampling = None , UpperCamelCase: bool = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[float] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[str, TensorType]] = None , UpperCamelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase: Any , ) -> Optional[Any]: snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] snake_case__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] snake_case__ = {'pixel_values': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
307
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCAmelCase : List[Any] =logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( _lowerCAmelCase ): def __init__( self : Optional[Any] , lowercase : AutoencoderKL , lowercase : CLIPTextModel , lowercase : CLIPTokenizer , lowercase : UNetaDConditionModel , lowercase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase : StableDiffusionSafetyChecker , lowercase : CLIPImageProcessor , ): """simple docstring""" super().__init__() self.register_modules( vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def lowercase__ ( self : Tuple , lowercase : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase_ :Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def lowercase__ ( self : int ): """simple docstring""" self.enable_attention_slicing(lowercase ) @torch.no_grad() def __call__( self : Union[str, Any] , lowercase : Union[str, List[str]] , lowercase : int = 512 , lowercase : int = 512 , lowercase : int = 50 , lowercase : float = 7.5 , lowercase : Optional[Union[str, List[str]]] = None , lowercase : Optional[int] = 1 , lowercase : float = 0.0 , lowercase : Optional[torch.Generator] = None , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[str] = "pil" , lowercase : bool = True , lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase : int = 1 , lowercase : Optional[torch.FloatTensor] = None , **lowercase : int , ): """simple docstring""" if isinstance(lowercase , lowercase ): lowercase_ :Tuple = 1 elif isinstance(lowercase , lowercase ): lowercase_ :str = len(lowercase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowercase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase , lowercase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowercase )}.' ) # get prompt text embeddings lowercase_ :int = self.tokenizer( lowercase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) lowercase_ :Optional[int] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase_ :Dict = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowercase_ :List[Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase_ :Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase_ :Optional[int] = text_embeddings.shape lowercase_ :str = text_embeddings.repeat(1 , lowercase , 1 ) lowercase_ :Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase_ :int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase_ :List[str] if negative_prompt is None: lowercase_ :Tuple = [""] elif type(lowercase ) is not type(lowercase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowercase )} !=' F' {type(lowercase )}.' ) elif isinstance(lowercase , lowercase ): lowercase_ :Optional[Any] = [negative_prompt] elif batch_size != len(lowercase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowercase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' " the batch size of `prompt`." ) else: lowercase_ :Union[str, Any] = negative_prompt lowercase_ :Optional[int] = text_input_ids.shape[-1] lowercase_ :Any = self.tokenizer( lowercase , padding="max_length" , max_length=lowercase , truncation=lowercase , return_tensors="pt" , ) lowercase_ :Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase_ :List[Any] = uncond_embeddings.shape[1] lowercase_ :str = uncond_embeddings.repeat(lowercase , lowercase , 1 ) lowercase_ :Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ :Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase_ :Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase_ :Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase_ :int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase_ :Optional[Any] = torch.randn( lowercase , generator=lowercase , device="cpu" , dtype=lowercase ).to(self.device ) lowercase_ :Union[str, Any] = torch.randn(lowercase , generator=lowercase , device="cpu" , dtype=lowercase ).to( self.device ) else: lowercase_ :Any = torch.randn( lowercase , generator=lowercase , device=self.device , dtype=lowercase ) lowercase_ :int = torch.randn(lowercase , generator=lowercase , device=self.device , dtype=lowercase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowercase_ :Optional[int] = latents_reference.to(self.device ) lowercase_ :int = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase_ :List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase_ :List[Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase_ :str = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase_ :str = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase_ :Dict = 0 if dx < 0 else dx lowercase_ :str = 0 if dy < 0 else dy lowercase_ :Optional[Any] = max(-dx , 0 ) lowercase_ :Tuple = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase_ :List[str] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase_ :List[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase_ :Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase_ :Tuple = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase_ :Optional[int] = {} if accepts_eta: lowercase_ :Tuple = eta for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase_ :int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ :Any = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual lowercase_ :Tuple = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample # perform guidance if do_classifier_free_guidance: lowercase_ :Union[str, Any] = noise_pred.chunk(2 ) lowercase_ :List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase_ :Tuple = self.scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase , lowercase , lowercase ) lowercase_ :str = 1 / 0.1_82_15 * latents lowercase_ :Dict = self.vae.decode(lowercase ).sample lowercase_ :Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase_ :Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase_ :int = self.feature_extractor(self.numpy_to_pil(lowercase ) , return_tensors="pt" ).to( self.device ) lowercase_ :Union[str, Any] = self.safety_checker( images=lowercase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase_ :Tuple = None if output_type == "pil": lowercase_ :List[Any] = self.numpy_to_pil(lowercase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase , nsfw_content_detected=lowercase )
350
'''simple docstring''' import sys lowerCAmelCase : List[Any] =( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( __lowerCamelCase : str ): lowercase_ :List[str] = 1 for digit in s: product *= int(__lowerCamelCase ) return product def UpperCAmelCase_ ( __lowerCamelCase : str = N ): lowercase_ :Any = -sys.maxsize - 1 lowercase_ :int = n[:13] lowercase_ :Optional[int] = 13 while cur_index < len(__lowerCamelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): lowercase_ :str = substr[1:] + n[cur_index] cur_index += 1 else: lowercase_ :List[str] = max(__lowerCamelCase ,str_eval(__lowerCamelCase ) ) lowercase_ :Any = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
147
0
import string import numpy def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> int: return b if a == 0 else greatest_common_divisor(b % a , __UpperCAmelCase ) class lowercase__ : '''simple docstring''' a : List[Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) a : Optional[int] = numpy.vectorize(lambda __lowerCamelCase : x % 36 ) a : Union[str, Any] = numpy.vectorize(__lowerCamelCase ) def __init__( self, __magic_name__ ) -> None: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.modulus(__magic_name__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key UpperCamelCase__ : Optional[Any] = encrypt_key.shape[0] def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" return self.key_string.index(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" return self.key_string[round(__magic_name__ )] def UpperCamelCase__ ( self ) -> None: """simple docstring""" UpperCamelCase__ : Any = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCamelCase__ : str = det % len(self.key_string ) UpperCamelCase__ : List[Any] = len(self.key_string ) if greatest_common_divisor(__magic_name__, len(self.key_string ) ) != 1: UpperCamelCase__ : Dict = ( f"determinant modular {req_l} of encryption key({det}) " f"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : Any = [char for char in text.upper() if char in self.key_string] UpperCamelCase__ : Tuple = chars[-1] while len(__magic_name__ ) % self.break_key != 0: chars.append(__magic_name__ ) return "".join(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : int = self.process_text(text.upper() ) UpperCamelCase__ : List[Any] = '''''' for i in range(0, len(__magic_name__ ) - self.break_key + 1, self.break_key ): UpperCamelCase__ : Tuple = text[i : i + self.break_key] UpperCamelCase__ : str = [self.replace_letters(__magic_name__ ) for char in batch] UpperCamelCase__ : Dict = numpy.array([vec] ).T UpperCamelCase__ : Tuple = self.modulus(self.encrypt_key.dot(__magic_name__ ) ).T.tolist()[ 0 ] UpperCamelCase__ : Dict = ''''''.join( self.replace_digits(__magic_name__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase__ ( self ) -> numpy.ndarray: """simple docstring""" UpperCamelCase__ : int = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: UpperCamelCase__ : List[Any] = det % len(self.key_string ) UpperCamelCase__ : Any = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: UpperCamelCase__ : Any = i break UpperCamelCase__ : Optional[Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__magic_name__ ) ) def UpperCamelCase__ ( self, __magic_name__ ) -> str: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.make_decrypt_key() UpperCamelCase__ : Tuple = self.process_text(text.upper() ) UpperCamelCase__ : Dict = '''''' for i in range(0, len(__magic_name__ ) - self.break_key + 1, self.break_key ): UpperCamelCase__ : Optional[Any] = text[i : i + self.break_key] UpperCamelCase__ : Tuple = [self.replace_letters(__magic_name__ ) for char in batch] UpperCamelCase__ : List[Any] = numpy.array([vec] ).T UpperCamelCase__ : int = self.modulus(decrypt_key.dot(__magic_name__ ) ).T.tolist()[0] UpperCamelCase__ : Any = ''''''.join( self.replace_digits(__magic_name__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCAmelCase_ ( ) -> None: UpperCamelCase__ : Dict = int(input('''Enter the order of the encryption key: ''' ) ) UpperCamelCase__ : List[Any] = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(__UpperCAmelCase ): UpperCamelCase__ : List[Any] = [int(__UpperCAmelCase ) for x in input().split()] hill_matrix.append(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = HillCipher(numpy.array(__UpperCAmelCase ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) UpperCamelCase__ : Union[str, Any] = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": UpperCamelCase__ : List[str] = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(__UpperCAmelCase ) ) elif option == "2": UpperCamelCase__ : List[Any] = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(__UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
201
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> list[list[int]]: UpperCamelCase__ : list[list[int]] = [] create_all_state(1 , __UpperCAmelCase , __UpperCAmelCase , [] , __UpperCAmelCase ) return result def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: list[int] , __UpperCAmelCase: list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(__UpperCAmelCase , total_number - level + 2 ): current_list.append(__UpperCAmelCase ) create_all_state(i + 1 , __UpperCAmelCase , level - 1 , __UpperCAmelCase , __UpperCAmelCase ) current_list.pop() def lowerCAmelCase_ ( __UpperCAmelCase: list[list[int]] ) -> None: for i in total_list: print(*__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = 4 UpperCAmelCase_ = 2 UpperCAmelCase_ = generate_all_combinations(n, k) print_all_state(total_list)
201
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Dict = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : int = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : List[str] = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
157
0
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE_ = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } SCREAMING_SNAKE_CASE_ = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def __lowercase ( _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' with open(_A , """r""" ) as f: SCREAMING_SNAKE_CASE = f.read().splitlines() return [l.strip() for l in lines] class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP __snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[int]="<unk>" ,lowerCamelCase__ : int="<cls>" ,lowerCamelCase__ : Dict="<pad>" ,lowerCamelCase__ : str="<mask>" ,lowerCamelCase__ : str="<eos>" ,**lowerCamelCase__ : List[str] ,) -> str: '''simple docstring''' super().__init__(**__snake_case ) SCREAMING_SNAKE_CASE = load_vocab_file(__snake_case ) SCREAMING_SNAKE_CASE = dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE = {tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE = unk_token SCREAMING_SNAKE_CASE = cls_token SCREAMING_SNAKE_CASE = pad_token SCREAMING_SNAKE_CASE = mask_token SCREAMING_SNAKE_CASE = eos_token SCREAMING_SNAKE_CASE = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : int ) -> int: '''simple docstring''' return self._id_to_token.get(__snake_case ,self.unk_token ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : str ) -> str: '''simple docstring''' return self._token_to_id.get(__snake_case ,self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : str ,**lowerCamelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' return text.split() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Any=False ) -> Optional[Any]: '''simple docstring''' return len(self._id_to_token ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : str ) -> Optional[int]: '''simple docstring''' return self._token_to_id.get(__snake_case ,self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : int ) -> Any: '''simple docstring''' return self._id_to_token.get(__snake_case ,self.unk_token ) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : List ,lowerCamelCase__ : Optional[List] = None ,lowerCamelCase__ : bool = False ) -> Optional[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE = [1] + ([0] * len(__snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(__snake_case ) + [1] return mask def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = os.path.join(__snake_case ,(filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(__snake_case ,"""w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: '''simple docstring''' return self.get_vocab_size(with_added_tokens=__snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Union[List[str], List[AddedToken]] ,lowerCamelCase__ : bool = False ) -> List[Any]: '''simple docstring''' return super()._add_tokens(__snake_case ,special_tokens=__snake_case )
296
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a__( nn.Module ): def __init__( self : Any , __snake_case : int = 16 , __snake_case : int = 88 , __snake_case : Optional[int] = None , __snake_case : int = 1 , __snake_case : float = 0.0 , __snake_case : int = 32 , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "geglu" , __snake_case : Optional[int] = None , ): super().__init__() a : Optional[int] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__snake_case , attention_head_dim=__snake_case , in_channels=__snake_case , num_layers=__snake_case , dropout=__snake_case , norm_num_groups=__snake_case , cross_attention_dim=__snake_case , attention_bias=__snake_case , sample_size=__snake_case , num_vector_embeds=__snake_case , activation_fn=__snake_case , num_embeds_ada_norm=__snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference a : Union[str, Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` a : Tuple = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` a : Any = [1, 0] def lowercase_ ( self : str , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Dict=None , __snake_case : bool = True , ): a : Dict = hidden_states a : Tuple = [] a : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens a : Union[str, Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] a : Tuple = self.transformer_index_for_condition[i] a : Union[str, Any] = self.transformers[transformer_index]( __snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case , cross_attention_kwargs=__snake_case , return_dict=__snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] a : Optional[Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) a : int = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__snake_case )
297
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = inspect.getfile(accelerate.test_utils ) __lowerCamelCase : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) __lowerCamelCase : Optional[int] = ['''accelerate''', '''launch'''] __lowerCamelCase : Optional[int] = Path.home() / '''.cache/huggingface/accelerate''' __lowerCamelCase : List[str] = '''default_config.yaml''' __lowerCamelCase : List[Any] = config_folder / config_file __lowerCamelCase : List[Any] = config_folder / '''_default_config.yaml''' __lowerCamelCase : Optional[int] = Path('''tests/test_configs''' ) @classmethod def a_ ( cls : Optional[Any] ) -> Dict: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def a_ ( cls : Dict ) -> List[str]: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def a_ ( self : Union[str, Any] ) -> str: """simple docstring""" A__ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=__lowerCAmelCase ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(__lowerCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def a_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() ) class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = '''test-tpu''' __lowerCamelCase : List[str] = '''us-central1-a''' __lowerCamelCase : List[str] = '''ls''' __lowerCamelCase : List[str] = ['''accelerate''', '''tpu-config'''] __lowerCamelCase : Tuple = '''cd /usr/share''' __lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' __lowerCamelCase : Optional[int] = '''Running gcloud compute tpus tpu-vm ssh''' def a_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A__ = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=__lowerCAmelCase , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __lowerCAmelCase , ) def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" A__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=__lowerCAmelCase , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __lowerCAmelCase , ) def a_ ( self : Union[str, Any] ) -> int: """simple docstring""" A__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=__lowerCAmelCase ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __lowerCAmelCase , ) def a_ ( self : List[str] ) -> str: """simple docstring""" A__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=__lowerCAmelCase , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __lowerCAmelCase , ) def a_ ( self : List[str] ) -> int: """simple docstring""" A__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=__lowerCAmelCase , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , __lowerCAmelCase , ) def a_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" A__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=__lowerCAmelCase , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __lowerCAmelCase , ) def a_ ( self : str ) -> str: """simple docstring""" A__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=__lowerCAmelCase , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __lowerCAmelCase , ) def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" A__ = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=__lowerCAmelCase , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , __lowerCAmelCase , ) def a_ ( self : Tuple ) -> List[Any]: """simple docstring""" A__ = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=__lowerCAmelCase , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , __lowerCAmelCase , )
358
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class A : '''simple docstring''' __lowerCamelCase : Optional[Any] = BlenderbotSmallConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : List[Any] = '''gelu''' def __init__( self : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str]=13 , __lowerCAmelCase : List[Any]=7 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Union[str, Any]=99 , __lowerCAmelCase : Union[str, Any]=32 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : Tuple=37 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : List[str]=20 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : int=0 , ) -> Any: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id def a_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ = prepare_blenderbot_small_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def a_ ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" A__ = TFBlenderbotSmallModel(config=__lowerCAmelCase ).get_decoder() A__ = inputs_dict["""input_ids"""] A__ = input_ids[:1, :] A__ = inputs_dict["""attention_mask"""][:1, :] A__ = inputs_dict["""head_mask"""] A__ = 1 # first forward pass A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , head_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , rtol=1e-3 ) def __lowerCamelCase ( __a :Dict , __a :Tuple , __a :List[Any] , __a :List[str]=None , __a :List[Any]=None , __a :Optional[Any]=None , __a :List[str]=None , __a :int=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: A__ = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __lowerCamelCase : List[Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Tuple = ( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Dict = True __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Tuple = False def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" A__ = TFBlenderbotSmallModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase ) def a_ ( self : List[str] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str] ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCAmelCase ) @require_tokenizers @require_tf class A (unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = [ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] __lowerCamelCase : Optional[int] = '''facebook/blenderbot_small-90M''' @cached_property def a_ ( self : Optional[int] ) -> List[str]: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def a_ ( self : List[str] ) -> List[str]: """simple docstring""" A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a_ ( self : int ) -> Optional[Any]: """simple docstring""" A__ = self.tokenizer(self.src_text , return_tensors="""tf""" ) A__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCAmelCase , ) A__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
276
0
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ = 200_0000 ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = [0 for i in range(n + 1 )] _SCREAMING_SNAKE_CASE : Tuple = 1 _SCREAMING_SNAKE_CASE : List[str] = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Any = 1 _SCREAMING_SNAKE_CASE : List[Any] = 0 for i in range(SCREAMING_SNAKE_CASE__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"{solution() = }")
200
'''simple docstring''' import argparse import struct import unittest class lowercase__ : '''simple docstring''' def __init__( self , __snake_case ): _SCREAMING_SNAKE_CASE : Dict = data # Initialize hash values _SCREAMING_SNAKE_CASE : Tuple = [ 0X6A09_E667, 0XBB67_AE85, 0X3C6E_F372, 0XA54F_F53A, 0X510E_527F, 0X9B05_688C, 0X1F83_D9AB, 0X5BE0_CD19, ] # Initialize round constants _SCREAMING_SNAKE_CASE : int = [ 0X428A_2F98, 0X7137_4491, 0XB5C0_FBCF, 0XE9B5_DBA5, 0X3956_C25B, 0X59F1_11F1, 0X923F_82A4, 0XAB1C_5ED5, 0XD807_AA98, 0X1283_5B01, 0X2431_85BE, 0X550C_7DC3, 0X72BE_5D74, 0X80DE_B1FE, 0X9BDC_06A7, 0XC19B_F174, 0XE49B_69C1, 0XEFBE_4786, 0X0FC1_9DC6, 0X240C_A1CC, 0X2DE9_2C6F, 0X4A74_84AA, 0X5CB0_A9DC, 0X76F9_88DA, 0X983E_5152, 0XA831_C66D, 0XB003_27C8, 0XBF59_7FC7, 0XC6E0_0BF3, 0XD5A7_9147, 0X06CA_6351, 0X1429_2967, 0X27B7_0A85, 0X2E1B_2138, 0X4D2C_6DFC, 0X5338_0D13, 0X650A_7354, 0X766A_0ABB, 0X81C2_C92E, 0X9272_2C85, 0XA2BF_E8A1, 0XA81A_664B, 0XC24B_8B70, 0XC76C_51A3, 0XD192_E819, 0XD699_0624, 0XF40E_3585, 0X106A_A070, 0X19A4_C116, 0X1E37_6C08, 0X2748_774C, 0X34B0_BCB5, 0X391C_0CB3, 0X4ED8_AA4A, 0X5B9C_CA4F, 0X682E_6FF3, 0X748F_82EE, 0X78A5_636F, 0X84C8_7814, 0X8CC7_0208, 0X90BE_FFFA, 0XA450_6CEB, 0XBEF9_A3F7, 0XC671_78F2, ] _SCREAMING_SNAKE_CASE : Optional[int] = self.preprocessing(self.data ) self.final_hash() @staticmethod def UpperCAmelCase_ ( __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = B"""\x80""" + (B"""\x00""" * (63 - (len(__snake_case ) + 8) % 64)) _SCREAMING_SNAKE_CASE : List[str] = struct.pack(""">Q""" , (len(__snake_case ) * 8) ) return data + padding + big_endian_integer def UpperCAmelCase_ ( self ): # Convert into blocks of 64 bytes _SCREAMING_SNAKE_CASE : Any = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _SCREAMING_SNAKE_CASE : List[Any] = list(struct.unpack(""">16L""" , __snake_case ) ) # add 48 0-ed integers words += [0] * 48 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _SCREAMING_SNAKE_CASE : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _SCREAMING_SNAKE_CASE : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _SCREAMING_SNAKE_CASE : Tuple = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0000_0000 # Compression _SCREAMING_SNAKE_CASE : Any = self.ror(__snake_case , 6 ) ^ self.ror(__snake_case , 11 ) ^ self.ror(__snake_case , 25 ) _SCREAMING_SNAKE_CASE : str = (e & f) ^ ((~e & 0XFFFF_FFFF) & g) _SCREAMING_SNAKE_CASE : str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0000_0000 _SCREAMING_SNAKE_CASE : Dict = self.ror(__snake_case , 2 ) ^ self.ror(__snake_case , 13 ) ^ self.ror(__snake_case , 22 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (a & b) ^ (a & c) ^ (b & c) _SCREAMING_SNAKE_CASE : Dict = (sa + maj) % 0X1_0000_0000 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = ( g, f, e, ((d + tempa) % 0X1_0000_0000), c, b, a, ((tempa + tempa) % 0X1_0000_0000), ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [a, b, c, d, e, f, g, h] # Modify final values _SCREAMING_SNAKE_CASE : Tuple = [ ((element + mutated_hash_values[index]) % 0X1_0000_0000) for index, element in enumerate(self.hashes ) ] _SCREAMING_SNAKE_CASE : Dict = """""".join([hex(__snake_case )[2:].zfill(8 ) for value in self.hashes] ) def UpperCAmelCase_ ( self , __snake_case , __snake_case ): return 0XFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): import hashlib _SCREAMING_SNAKE_CASE : Tuple = bytes("""Test String""" , """utf-8""" ) self.assertEqual(SHAaaa(__snake_case ).hash , hashlib.shaaaa(__snake_case ).hexdigest() ) def snake_case_ ( ): """simple docstring""" import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() _SCREAMING_SNAKE_CASE : Tuple = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: _SCREAMING_SNAKE_CASE : str = f.read() else: _SCREAMING_SNAKE_CASE : List[Any] = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
200
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
363
'''simple docstring''' def _snake_case ( A = 10 ) -> str: if not isinstance(A , A ) or n < 0: raise ValueError('''Invalid input''' ) lowerCAmelCase__ = 10**n lowerCAmelCase__ = 28433 * (pow(2 , 7830457 , A )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
228
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :str ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self :Dict ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCAmelCase__ ( self :List[str] ) -> List[Any]: torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCAmelCase__ ( self :Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) UpperCAmelCase = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCAmelCase__ ( self :str ) -> Optional[Any]: UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCAmelCase = DDPMScheduler() UpperCAmelCase = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 ) UpperCAmelCase = output.audios[0] UpperCAmelCase = output.images[0] UpperCAmelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] UpperCAmelCase = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] UpperCAmelCase = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCAmelCase = DDIMScheduler() UpperCAmelCase = self.dummy_vqvae_and_unet UpperCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) UpperCAmelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCAmelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 ) UpperCAmelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] UpperCAmelCase = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase = self.dummy_unet_condition UpperCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) UpperCAmelCase = torch.rand((1, 1, 10) ) UpperCAmelCase = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = output.images[0] UpperCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] UpperCAmelCase = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self :str ) -> Optional[Any]: UpperCAmelCase = torch_device UpperCAmelCase = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) UpperCAmelCase = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) UpperCAmelCase = pipe(generator=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = output.audios[0] UpperCAmelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] UpperCAmelCase = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
78
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a : List[str] = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
147
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = get_activation('swish' ) self.assertIsInstance(__a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = get_activation('silu' ) self.assertIsInstance(__a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = get_activation('mish' ) self.assertIsInstance(__a , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = get_activation('gelu' ) self.assertIsInstance(__a , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
335
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__(self , *, __a = 4 , __a = 768 , __a , __a , ) -> str: """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.zeros(__a ) ) # parameters for additional clip time embeddings UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.Linear(__a , __a ) # parameters for encoder hidden states UpperCAmelCase__ = clip_extra_context_tokens UpperCAmelCase__ = nn.Linear( __a , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__ = nn.Linear(__a , __a ) UpperCAmelCase__ = nn.LayerNorm(__a ) def UpperCamelCase__ (self , *, __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__ = image_embeddings.shape[0] UpperCAmelCase__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__ = classifier_free_guidance_embeddings.expand( __a , -1 ) UpperCAmelCase__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__ = self.embedding_proj(__a ) UpperCAmelCase__ = self.clip_image_embeddings_project_to_time_embeddings(__a ) UpperCAmelCase__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__ = self.clip_extra_context_tokens_proj(__a ) UpperCAmelCase__ = clip_extra_context_tokens.reshape(__a , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__ = self.encoder_hidden_states_proj(__a ) UpperCAmelCase__ = self.text_encoder_hidden_states_norm(__a ) UpperCAmelCase__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
335
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =KandinskyInpaintPipeline a : List[str] =["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] a : Union[str, Any] =[ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] a : str =[ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a : Optional[int] =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 100 @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) lowerCAmelCase : List[str] = MultilingualCLIP(__lowerCamelCase ) lowerCAmelCase : Union[str, Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase : Optional[Any] = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowercase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.dummy_text_encoder lowerCAmelCase : Optional[Any] = self.dummy_tokenizer lowerCAmelCase : List[Any] = self.dummy_unet lowerCAmelCase : str = self.dummy_movq lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=__lowerCamelCase , ) lowerCAmelCase : str = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__lowerCamelCase ) # create init_image lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) ) # create mask lowerCAmelCase : Optional[Any] = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase : Union[str, Any] = 0 if str(__lowerCamelCase ).startswith("mps" ): lowerCAmelCase : Union[str, Any] = torch.manual_seed(__lowerCamelCase ) else: lowerCAmelCase : Union[str, Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCAmelCase : List[Any] = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = "cpu" lowerCAmelCase : Dict = self.get_dummy_components() lowerCAmelCase : Union[str, Any] = self.pipeline_class(**__lowerCamelCase ) lowerCAmelCase : Union[str, Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase : Tuple = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) lowerCAmelCase : str = output.images lowerCAmelCase : Optional[int] = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] lowerCAmelCase : Any = image[0, -3:, -3:, -1] lowerCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Any = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Tuple = "a hat" lowerCAmelCase : Tuple = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) lowerCAmelCase : Optional[int] = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) lowerCAmelCase : Tuple = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) lowerCAmelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase : Dict = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase : Optional[int] = pipeline( __lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) lowerCAmelCase : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
108
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__: Optional[Any] = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str]=False ) -> Dict: __UpperCAmelCase : Dict = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): __UpperCAmelCase : List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _snake_case ( _lowercase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: str=13 , __lowerCamelCase: Any=7 , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: str=32 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: Dict=2 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[int]=37 , __lowerCamelCase: Optional[int]="gelu" , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: int=5_12 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: Dict=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: Union[str, Any]=None , ) -> Optional[int]: __UpperCAmelCase : str = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : str = use_input_mask __UpperCAmelCase : Optional[int] = use_token_type_ids __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : str = initializer_range __UpperCAmelCase : int = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : List[str] = embedding_size def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Tuple = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = TFMobileBertModel(config=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [input_ids, input_mask] __UpperCAmelCase : List[str] = model(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict ) -> Optional[int]: __UpperCAmelCase : List[str] = TFMobileBertForMaskedLM(config=__lowerCamelCase ) __UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] ) -> Any: __UpperCAmelCase : Optional[int] = TFMobileBertForNextSentencePrediction(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : List[str] = model(__lowerCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Tuple = TFMobileBertForSequenceClassification(config=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = self.num_choices __UpperCAmelCase : Tuple = TFMobileBertForMultipleChoice(config=__lowerCamelCase ) __UpperCAmelCase : Dict = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : str = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Optional[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCAmelCase : Any = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[int] ) -> Dict: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Optional[int] = TFMobileBertForTokenClassification(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> Tuple: __UpperCAmelCase : Tuple = TFMobileBertForQuestionAnswering(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCAmelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : List[str] = TFMobileBertModelTest.TFMobileBertModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Any ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: int ) -> int: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCamelCase ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __UpperCAmelCase : Dict = TFMobileBertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Any = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) __UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase : str = model(__lowerCamelCase )[0] __UpperCAmelCase : Any = [1, 6, 3_05_22] self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : str = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 )
157
0
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> str: '''simple docstring''' lowercase = [] for line in lines: lowercase = re.sub(R"""#.*""" , """""" , lowerCAmelCase__ ) # remove comments if line: filtered_lines.append(lowerCAmelCase__ ) lowercase = """\n""".join(lowerCAmelCase__ ) # Make a hash from all this code lowercase = full_str.encode("""utf-8""" ) return shaaaa(lowerCAmelCase__ ).hexdigest() # get importable module names and hash for caching __lowerCAmelCase : Any ={ """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __lowerCAmelCase : Union[str, Any] ={ """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __lowerCAmelCase : List[Any] ={"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __lowerCAmelCase : Dict[str, List[str]] ={} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
359
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> Dict: '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase , lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(lowerCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :int="groupvit-gcc-yfcc" , lowerCAmelCase__ :List[Any]=False ) -> str: '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(lowerCAmelCase__ ).eval() lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" )["""model"""] lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCAmelCase__ ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase = prepare_img() lowercase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print("""Successfully saved processor and model to""" , lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) __lowerCAmelCase : int =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
32
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) UpperCamelCase__ = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
'''simple docstring''' from math import isqrt def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2 ,isqrt(_UpperCAmelCase ) + 1 ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10**6 ) -> int: _a : List[Any] =0 _a : str =1 _a : Optional[Any] =7 while prime_candidate < max_prime: primes_count += is_prime(_UpperCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
276
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument SCREAMING_SNAKE_CASE_:int = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def __UpperCamelCase ( _lowerCAmelCase ) -> Optional[Any]: """simple docstring""" A : Optional[int] = list(s_dict.keys() ) for key in keys: A : List[Any] = R""".*/layers_(\d+)""" A : str = key if re.match(_lowerCAmelCase , _lowerCAmelCase ): A : Any = re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , _lowerCAmelCase ) A : Optional[Any] = R"""(encoder|decoder)\/""" if re.match(_lowerCAmelCase , _lowerCAmelCase ): A : Optional[int] = re.match(_lowerCAmelCase , _lowerCAmelCase ).groups() if groups[0] == "encoder": A : Optional[Any] = re.sub(R"""/mlp/""" , R"""/1/mlp/""" , _lowerCAmelCase ) A : List[str] = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , _lowerCAmelCase ) elif groups[0] == "decoder": A : Any = re.sub(R"""/mlp/""" , R"""/2/mlp/""" , _lowerCAmelCase ) A : Tuple = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , _lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A : Optional[int] = new_key.replace(_lowerCAmelCase , _lowerCAmelCase ) print(f'''{key} -> {new_key}''' ) A : Union[str, Any] = s_dict.pop(_lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A : List[str] = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A : List[Any] = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A : Dict = s_dict[key].shape[0] A : Dict = s_dict[key] for idx in range(_lowerCAmelCase ): A : Optional[Any] = expert_weihts[idx] print(f'''{key} -> {key.replace("expert/" , "nested fstring" )}''' ) s_dict.pop(_lowerCAmelCase ) return s_dict SCREAMING_SNAKE_CASE_:Optional[Any] = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: """simple docstring""" import regex as re with open(_lowerCAmelCase , """r""" ) as f: A : Optional[int] = f.read() A : Union[str, Any] = re.findall(R"""(.*) = ([0-9.]*)""" , _lowerCAmelCase ) A : int = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A : Union[str, Any] = float(_lowerCAmelCase ) if """.""" in value else int(_lowerCAmelCase ) A : List[str] = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , _lowerCAmelCase )[0] A : Optional[int] = str(activation[1] ) A : Dict = num_experts A : int = SwitchTransformersConfig(**_lowerCAmelCase ) return config def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="./" , _lowerCAmelCase=8 ) -> Optional[int]: """simple docstring""" print(f'''Loading flax weights from : {flax_checkpoint_path}''' ) A : str = checkpoints.load_tax_checkpoint(_lowerCAmelCase ) if gin_file is not None: A : Union[str, Any] = convert_gin_to_config(_lowerCAmelCase , _lowerCAmelCase ) else: A : Tuple = SwitchTransformersConfig.from_pretrained(_lowerCAmelCase ) A : Optional[int] = SwitchTransformersForConditionalGeneration(_lowerCAmelCase ) A : str = flax_params["""target"""] A : Dict = flatten_dict(_lowerCAmelCase , sep="""/""" ) A : Dict = rename_keys(_lowerCAmelCase ) A : str = unflatten_dict(_lowerCAmelCase , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_lowerCAmelCase , _lowerCAmelCase ) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") SCREAMING_SNAKE_CASE_:Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
356
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __UpperCamelCase ( _lowerCAmelCase ) -> str: """simple docstring""" A : int = [] for line in lines: A : int = re.sub(R"""#.*""" , """""" , _lowerCAmelCase ) # remove comments if line: filtered_lines.append(_lowerCAmelCase ) A : Tuple = """\n""".join(_lowerCAmelCase ) # Make a hash from all this code A : Union[str, Any] = full_str.encode("""utf-8""" ) return shaaaa(_lowerCAmelCase ).hexdigest() # get importable module names and hash for caching SCREAMING_SNAKE_CASE_:List[Any] = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions SCREAMING_SNAKE_CASE_:Optional[Any] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) SCREAMING_SNAKE_CASE_:Optional[int] = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name SCREAMING_SNAKE_CASE_:Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
115
0
__lowerCamelCase : Optional[Any] = tuple[float, float, float] __lowerCamelCase : int = tuple[float, float, float] def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Vectorad: UpperCamelCase : Optional[Any] = end_pointa[0] - end_pointa[0] UpperCamelCase : Optional[int] = end_pointa[1] - end_pointa[1] UpperCamelCase : Tuple = end_pointa[2] - end_pointa[2] return (x, y, z) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Vectorad: UpperCamelCase : Union[str, Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCamelCase : Tuple = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCamelCase : Any = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> bool: return tuple(round(_lowerCAmelCase , _lowerCAmelCase ) for x in vector ) == (0, 0, 0) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 10 ) -> bool: UpperCamelCase : Tuple = create_vector(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : List[str] = create_vector(_lowerCAmelCase , _lowerCAmelCase ) return is_zero_vector(get_ad_vectors_cross(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
52
def __A ( __lowerCamelCase ) -> int: a = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) a = hex_num[0] == """-""" if is_negative: a = hex_num[1:] try: a = int(__lowerCamelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) a = """""" while int_num > 0: a = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
228
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : int = KandinskyVaaControlnetImgaImgPipeline _lowercase : List[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowercase : Optional[int] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowercase : List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase : str = False @property def _lowercase ( self ): """simple docstring""" return 32 @property def _lowercase ( self ): """simple docstring""" return 32 @property def _lowercase ( self ): """simple docstring""" return self.time_input_dim @property def _lowercase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def _lowercase ( self ): """simple docstring""" return 100 @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase = UNetaDConditionModel(**_lowercase ) return model @property def _lowercase ( self ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase = DDIMScheduler(**_lowercase ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowercase ( self , _lowercase , _lowercase=0 ): """simple docstring""" _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((256, 256) ) # create hint _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) if str(_lowercase ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_lowercase ) else: _lowerCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowercase ) _lowerCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(_lowercase ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase = init_image.resize((512, 512) ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) _lowerCAmelCase = torch.from_numpy(np.array(_lowercase ) ).float() / 255.0 _lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _lowerCAmelCase = """A robot, 4k photo""" _lowerCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) _lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( _lowercase , image=_lowercase , strength=0.85 , generator=_lowercase , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , hint=_lowercase , generator=_lowercase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
359
'''simple docstring''' from __future__ import annotations class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = order # a_{0} ... a_{k} _lowerCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} _lowerCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _lowerCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] _lowerCAmelCase = [0.0] * self.order def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" if len(_lowercase ) < self.order: _lowerCAmelCase = [1.0, *a_coeffs] if len(_lowercase ) != self.order + 1: _lowerCAmelCase = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(_lowercase )}' ) raise ValueError(_lowercase ) if len(_lowercase ) != self.order + 1: _lowerCAmelCase = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(_lowercase )}' ) raise ValueError(_lowercase ) _lowerCAmelCase = a_coeffs _lowerCAmelCase = b_coeffs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _lowerCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _lowerCAmelCase = self.input_history[:-1] _lowerCAmelCase = self.output_history[:-1] _lowerCAmelCase = sample _lowerCAmelCase = result return result
229
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowercase ( A__ ): """simple docstring""" _a = 'poolformer' def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=16 , UpperCamelCase_=16 , UpperCamelCase_=3 , UpperCamelCase_=4.0 , UpperCamelCase_=[2, 2, 6, 2] , UpperCamelCase_=[64, 128, 320, 512] , UpperCamelCase_=[7, 3, 3, 3] , UpperCamelCase_=[4, 2, 2, 2] , UpperCamelCase_=[2, 1, 1, 1] , UpperCamelCase_=4 , UpperCamelCase_=0.0 , UpperCamelCase_="gelu" , UpperCamelCase_=True , UpperCamelCase_=1e-5 , UpperCamelCase_=0.02 , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = num_channels UpperCamelCase__ :Optional[Any] = patch_size UpperCamelCase__ :List[Any] = stride UpperCamelCase__ :Any = padding UpperCamelCase__ :List[str] = pool_size UpperCamelCase__ :str = hidden_sizes UpperCamelCase__ :Union[str, Any] = mlp_ratio UpperCamelCase__ :int = depths UpperCamelCase__ :str = patch_sizes UpperCamelCase__ :Tuple = strides UpperCamelCase__ :Dict = num_encoder_blocks UpperCamelCase__ :int = drop_path_rate UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :str = use_layer_scale UpperCamelCase__ :List[str] = layer_scale_init_value UpperCamelCase__ :int = initializer_range super().__init__(**_SCREAMING_SNAKE_CASE ) class lowercase ( A__ ): """simple docstring""" _a = version.parse('1.11' ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return 2e-3
97
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase , 2 ) + pow(__UpperCamelCase , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
321
0
"""simple docstring""" from __future__ import annotations def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> int: if len(__UpperCamelCase ) < k or k < 0: raise ValueError("""Invalid Input""" ) _lowerCAmelCase =_lowerCAmelCase =sum(array[:k] ) for i in range(len(__UpperCamelCase ) - k ): _lowerCAmelCase =current_sum - array[i] + array[i + k] _lowerCAmelCase =max(__UpperCamelCase , __UpperCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __A = [randint(-1000, 1000) for i in range(100)] __A = randint(0, 110) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
341
"""simple docstring""" import warnings from .generation import TFGenerationMixin class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' # warning at import time warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , __magic_name__ , )
341
1
"""simple docstring""" def __A ( ) -> list[list[int]]: return [list(range(10_00 - i , -10_00 - i , -1)) for i in range(10_00)] A = generate_large_matrix() A = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __A ( a_ :list[list[int]]) -> None: assert all(row == sorted(__A , reverse=__A) for row in grid) assert all(list(__A) == sorted(__A , reverse=__A) for col in zip(*__A)) def __A ( a_ :list[int]) -> int: __a : str = 0 __a : Any = len(__A) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __a : Any = (left + right) // 2 __a : Optional[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __a : Optional[Any] = mid + 1 else: __a : int = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__A) def __A ( a_ :list[list[int]]) -> int: __a : int = 0 __a : Optional[int] = len(grid[0]) for i in range(len(__A)): __a : int = find_negative_index(grid[i][:bound]) total += bound return (len(__A) * len(grid[0])) - total def __A ( a_ :list[list[int]]) -> int: return len([number for row in grid for number in row if number < 0]) def __A ( a_ :list[list[int]]) -> int: __a : Tuple = 0 for row in grid: for i, number in enumerate(__A): if number < 0: total += len(__A) - i break return total def __A ( ) -> None: from timeit import timeit print('''Running benchmarks''') __a : str = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __a : Any = timeit(F"""{func}(grid=grid)""" , setup=__A , number=5_00) print(F"""{func}() took {time:0.4f} seconds""") if __name__ == "__main__": import doctest doctest.testmod() benchmark()
160
import math import flax.linen as nn import jax.numpy as jnp def SCREAMING_SNAKE_CASE_ ( __A : jnp.ndarray , __A : int , __A : float = 1 , __A : float = 1 , __A : float = 1.0e4 , __A : bool = False , __A : float = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" a_ : int = float(embedding_dim // 2 ) a_ : str = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) a_ : Optional[int] = min_timescale * jnp.exp(jnp.arange(__A , dtype=jnp.floataa ) * -log_timescale_increment ) a_ : Optional[int] = jnp.expand_dims(__A , 1 ) * jnp.expand_dims(__A , 0 ) # scale embeddings a_ : str = scale * emb if flip_sin_to_cos: a_ : str = jnp.concatenate([jnp.cos(__A ), jnp.sin(__A )] , axis=1 ) else: a_ : Any = jnp.concatenate([jnp.sin(__A ), jnp.cos(__A )] , axis=1 ) a_ : Optional[int] = jnp.reshape(__A , [jnp.shape(__A )[0], embedding_dim] ) return signal class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int = 32 snake_case__ : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: a_ : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = nn.silu(SCREAMING_SNAKE_CASE__ ) a_ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(SCREAMING_SNAKE_CASE__ ) return temb class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int = 32 snake_case__ : bool = False snake_case__ : float = 1 @nn.compact def __call__( self : str , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: return get_sinusoidal_embeddings( SCREAMING_SNAKE_CASE__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
32
0
# flake8: noqa # Lint as: python3 __A : List[str] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
323
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __A : def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[Any]=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=None , ): lowerCAmelCase : int = parent lowerCAmelCase : Any = 13 lowerCAmelCase : Union[str, Any] = 7 lowerCAmelCase : List[Any] = True lowerCAmelCase : List[str] = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Tuple = 99 lowerCAmelCase : Optional[Any] = 32 lowerCAmelCase : List[str] = 2 lowerCAmelCase : str = 4 lowerCAmelCase : Optional[Any] = 37 lowerCAmelCase : List[Any] = 'gelu' lowerCAmelCase : Any = 0.1 lowerCAmelCase : Any = 0.1 lowerCAmelCase : Optional[Any] = 512 lowerCAmelCase : Dict = 16 lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Union[str, Any] = 0.02 lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = 4 lowerCAmelCase : Any = None def lowercase__ ( self : List[str] ): lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Any = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : List[str] = None lowerCAmelCase : Any = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ): lowerCAmelCase : List[Any] = TFRoFormerModel(config=UpperCAmelCase_ ) lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase : str = [input_ids, input_mask] lowerCAmelCase : Any = model(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ): lowerCAmelCase : str = True lowerCAmelCase : List[str] = TFRoFormerForCausalLM(config=UpperCAmelCase_ ) lowerCAmelCase : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : List[str] = model(UpperCAmelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): lowerCAmelCase : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : str = self.num_labels lowerCAmelCase : Optional[Any] = TFRoFormerForSequenceClassification(config=UpperCAmelCase_ ) lowerCAmelCase : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : str = TFRoFormerForMultipleChoice(config=UpperCAmelCase_ ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : int = tf.tile(tf.expand_dims(UpperCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[Any] = self.num_labels lowerCAmelCase : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[int] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase_ ) lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowerCAmelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : List[str] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[Any] = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = False def lowercase__ ( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : int ): lowerCAmelCase : List[Any] = TFRoFormerModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : int ): self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowercase__ ( self : str ): lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowercase__ ( self : Dict ): lowerCAmelCase : str = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class __A ( unittest.TestCase ): @slow def lowercase__ ( self : Any ): lowerCAmelCase : Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase : Optional[Any] = model(UpperCAmelCase_ )[0] # TODO Replace vocab size lowerCAmelCase : Any = 50000 lowerCAmelCase : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowerCAmelCase : Union[str, Any] = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : Any ): lowerCAmelCase : Optional[int] = tf.constant([[4, 10]] ) lowerCAmelCase : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowerCAmelCase : int = emba(input_ids.shape ) lowerCAmelCase : str = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) def lowercase__ ( self : int ): lowerCAmelCase : Dict = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) lowerCAmelCase : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowerCAmelCase : List[Any] = emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , atol=self.tolerance ) @require_tf class __A ( unittest.TestCase ): lowerCAmelCase_ : Optional[int] = 1E-4 def lowercase__ ( self : List[Any] ): # 2,12,16,64 lowerCAmelCase : Optional[int] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowerCAmelCase : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowerCAmelCase : List[Any] = embed_positions([2, 16, 768] )[None, None, :, :] lowerCAmelCase , lowerCAmelCase : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) lowerCAmelCase : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase_ , atol=self.tolerance )
323
1
'''simple docstring''' class A__ : def __init__( self ) -> Any: '''simple docstring''' A_ = {} def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(UpperCamelCase__ , """ -> """ , """ -> """.join([str(UpperCamelCase__ ) for j in self.vertex[i]] ) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCamelCase__ ) else: # else make a new vertex A_ = [to_vertex] def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = True print(UpperCamelCase__ , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
162
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""note_seq"""] def __init__( self : List[Any] , *UpperCamelCase : List[Any] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : List[str] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["""note_seq"""] )
115
0
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=None ) -> Optional[Any]: # Initialise PyTorch model __UpperCAmelCase : Any = XLNetConfig.from_json_file(snake_case__ ) __UpperCAmelCase : Any = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) __UpperCAmelCase : Dict = finetuning_task __UpperCAmelCase : Dict = GLUE_TASKS_NUM_LABELS[finetuning_task] __UpperCAmelCase : Optional[Any] = XLNetForSequenceClassification(snake_case__ ) elif "squad" in finetuning_task: __UpperCAmelCase : Union[str, Any] = finetuning_task __UpperCAmelCase : List[str] = XLNetForQuestionAnswering(snake_case__ ) else: __UpperCAmelCase : Union[str, Any] = XLNetLMHeadModel(snake_case__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(snake_case__, snake_case__, snake_case__ ) # Save pytorch-model __UpperCAmelCase : Optional[Any] = os.path.join(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = os.path.join(snake_case__, snake_case__ ) print(f'''Save PyTorch model to {os.path.abspath(snake_case__ )}''' ) torch.save(model.state_dict(), snake_case__ ) print(f'''Save configuration file to {os.path.abspath(snake_case__ )}''' ) with open(snake_case__, "w", encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
342
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
1
from __future__ import annotations SCREAMING_SNAKE_CASE__ = list[tuple[int, int]] SCREAMING_SNAKE_CASE__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class A__ : def __init__( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : Node | None , ) -> List[str]: """simple docstring""" __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() def a__ ( self : List[str] ) -> float: """simple docstring""" __lowercase = abs(self.pos_x - self.goal_x ) __lowercase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : List[str] , _UpperCAmelCase : Dict ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A__ : def __init__( self : Tuple , _UpperCAmelCase : tuple[int, int] , _UpperCAmelCase : tuple[int, int] ) -> Tuple: """simple docstring""" __lowercase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE__ ) __lowercase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , SCREAMING_SNAKE_CASE__ ) __lowercase = [self.start] __lowercase = [] __lowercase = False def a__ ( self : List[Any] ) -> Path | None: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __lowercase = True return self.retrace_path(SCREAMING_SNAKE_CASE__ ) self.closed_nodes.append(SCREAMING_SNAKE_CASE__ ) __lowercase = self.get_successors(SCREAMING_SNAKE_CASE__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE__ ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE__ ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE__ ) if not self.reached: return [self.start.pos] return None def a__ ( self : Any , _UpperCAmelCase : Node ) -> list[Node]: """simple docstring""" __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE__ , ) ) return successors def a__ ( self : List[str] , _UpperCAmelCase : Node | None ) -> Path: """simple docstring""" __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = (0, 0) SCREAMING_SNAKE_CASE__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") SCREAMING_SNAKE_CASE__ = GreedyBestFirst(init, goal) SCREAMING_SNAKE_CASE__ = greedy_bf.search() if path: for pos_x, pos_y in path: SCREAMING_SNAKE_CASE__ = 2 for elem in grid: print(elem)
325
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def UpperCamelCase_ ( snake_case_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = 3_84 __lowerCAmelCase = 7 if "tiny" in model_name: __lowerCAmelCase = 96 __lowerCAmelCase = (2, 2, 6, 2) __lowerCAmelCase = (3, 6, 12, 24) elif "small" in model_name: __lowerCAmelCase = 96 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (3, 6, 12, 24) elif "base" in model_name: __lowerCAmelCase = 1_28 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (4, 8, 16, 32) __lowerCAmelCase = 12 __lowerCAmelCase = 5_12 elif "large" in model_name: __lowerCAmelCase = 1_92 __lowerCAmelCase = (2, 2, 18, 2) __lowerCAmelCase = (6, 12, 24, 48) __lowerCAmelCase = 12 __lowerCAmelCase = 7_68 # set label information __lowerCAmelCase = 1_50 __lowerCAmelCase = """huggingface/label-files""" __lowerCAmelCase = """ade20k-id2label.json""" __lowerCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = SwinConfig( embed_dim=snake_case_ , depths=snake_case_ , num_heads=snake_case_ , window_size=snake_case_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) __lowerCAmelCase = UperNetConfig( backbone_config=snake_case_ , auxiliary_in_channels=snake_case_ , num_labels=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ , ) return config def UpperCamelCase_ ( snake_case_ : Dict ) -> int: '''simple docstring''' __lowerCAmelCase = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase_ ( snake_case_ : int , snake_case_ : List[str] , snake_case_ : Any ) -> Tuple: '''simple docstring''' __lowerCAmelCase = dct.pop(snake_case_ ) __lowerCAmelCase = val def UpperCamelCase_ ( snake_case_ : str , snake_case_ : str ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def UpperCamelCase_ ( snake_case_ : str ) -> int: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = x.shape __lowerCAmelCase = x.reshape(snake_case_ , 4 , in_channel // 4 ) __lowerCAmelCase = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(snake_case_ , snake_case_ ) return x def UpperCamelCase_ ( snake_case_ : List[str] ) -> Union[str, Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = x.shape __lowerCAmelCase = x.reshape(snake_case_ , in_channel // 4 , 4 ) __lowerCAmelCase = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(snake_case_ , snake_case_ ) return x def UpperCamelCase_ ( snake_case_ : Tuple ) -> int: '''simple docstring''' __lowerCAmelCase = x.shape[0] __lowerCAmelCase = x.reshape(4 , in_channel // 4 ) __lowerCAmelCase = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(snake_case_ ) return x def UpperCamelCase_ ( snake_case_ : Dict ) -> List[str]: '''simple docstring''' __lowerCAmelCase = x.shape[0] __lowerCAmelCase = x.reshape(in_channel // 4 , 4 ) __lowerCAmelCase = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(snake_case_ ) return x def UpperCamelCase_ ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : Dict ) -> List[str]: '''simple docstring''' __lowerCAmelCase = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } __lowerCAmelCase = model_name_to_url[model_name] __lowerCAmelCase = torch.hub.load_state_dict_from_url(snake_case_ , map_location="""cpu""" , file_name=snake_case_ )[ """state_dict""" ] for name, param in state_dict.items(): print(snake_case_ , param.shape ) __lowerCAmelCase = get_upernet_config(snake_case_ ) __lowerCAmelCase = UperNetForSemanticSegmentation(snake_case_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowerCAmelCase = state_dict.pop(snake_case_ ) if "bn" in key: __lowerCAmelCase = key.replace("""bn""" , """batch_norm""" ) __lowerCAmelCase = val # rename keys __lowerCAmelCase = create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_q_k_v(snake_case_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowerCAmelCase = reverse_correct_unfold_reduction_order(snake_case_ ) if "norm" in key: __lowerCAmelCase = reverse_correct_unfold_norm_order(snake_case_ ) model.load_state_dict(snake_case_ ) # verify on image __lowerCAmelCase = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" __lowerCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert("""RGB""" ) __lowerCAmelCase = SegformerImageProcessor() __lowerCAmelCase = processor(snake_case_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): __lowerCAmelCase = model(snake_case_ ) __lowerCAmelCase = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __lowerCAmelCase = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": __lowerCAmelCase = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": __lowerCAmelCase = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": __lowerCAmelCase = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case_ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(snake_case_ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[f'upernet-swin-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _A : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
229
0
from collections.abc import Callable import numpy as np def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' _A = int(np.ceil((x_end - xa) / step_size ) ) _A = np.zeros((n + 1,) ) _A = ya _A = xa for k in range(_lowercase ): _A = y[k] + step_size * ode_func(_lowercase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
75
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __A = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
75
1
from math import factorial def SCREAMING_SNAKE_CASE_ ( __A : int = 20 ) -> int: """simple docstring""" a_ : str = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... a_ : Dict = n // 2 return int(factorial(__A ) / (factorial(__A ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCAmelCase_ : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
32
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "transfo-xl" lowerCAmelCase__ : int = ["mems"] lowerCAmelCase__ : Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple: """simple docstring""" __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
325
0
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int = 1_0_0_0_0_0_0 ): '''simple docstring''' __snake_case : Any = 1 __snake_case : Optional[int] = 1 __snake_case : List[Any] = {1: 1} for inputa in range(2 , __SCREAMING_SNAKE_CASE ): __snake_case : str = 0 __snake_case : Dict = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __snake_case : Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __snake_case : List[Any] = counter if counter > pre_counter: __snake_case : Tuple = inputa __snake_case : Union[str, Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
20
import random def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Tuple = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None __snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] __snake_case : Tuple = 0 __snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) __snake_case : int = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
20
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a__ : Union[str, Any] = logging.get_logger(__name__) class lowercase_ ( a__ ): __UpperCAmelCase = ['pixel_values'] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = True , a = 1 / 2_55 , a = True , a = None , a = True , **a , ): super().__init__(**a ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 2_24} UpperCamelCase__ = get_size_dict(a , default_to_square=a ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} UpperCamelCase__ = get_size_dict(a , param_name="crop_size" ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_flip_channel_order def __a ( self , a , a , a = PIL.Image.BILINEAR , a = None , **a , ): UpperCamelCase__ = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase__ = get_resize_output_image_size(a , size=size["shortest_edge"] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): UpperCamelCase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): return rescale(a , scale=a , data_format=a , **a ) def __a ( self , a , a = None ): return flip_channel_order(a , data_format=a ) def __a ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a , default_to_square=a ) UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(a , param_name="crop_size" ) UpperCamelCase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a , scale=a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase__ = [self.flip_channel_order(image=a ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a , a ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a ) def __a ( self , a , a = None ): UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a ) != len(a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(a ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=a ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
80
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowerCamelCase__ = '\nHuman: <<task>>\n\nAssistant: ' lowerCamelCase__ = 'huggingface-tools/default-prompts' lowerCamelCase__ = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="run" ): if prompt_or_repo_id is None: _UpperCAmelCase : List[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , __lowerCAmelCase ) is not None: return prompt_or_repo_id _UpperCAmelCase : Union[str, Any] = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(__lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
322
'''simple docstring''' from collections.abc import Sequence def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Dict = 0.0 for coeff in reversed(__lowerCAmelCase ): _UpperCAmelCase : int = result * x + coeff return result if __name__ == "__main__": lowerCamelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCamelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
322
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __magic_name__: str = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A, _A=None ): """simple docstring""" __magic_name__ : Optional[Any] = XLNetConfig.from_json_file(_A ) __magic_name__ : str = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) __magic_name__ : List[Any] = finetuning_task __magic_name__ : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] __magic_name__ : Optional[Any] = XLNetForSequenceClassification(_A ) elif "squad" in finetuning_task: __magic_name__ : Optional[Any] = finetuning_task __magic_name__ : Union[str, Any] = XLNetForQuestionAnswering(_A ) else: __magic_name__ : List[str] = XLNetLMHeadModel(_A ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_A, _A, _A ) # Save pytorch-model __magic_name__ : Tuple = os.path.join(_A, _A ) __magic_name__ : List[Any] = os.path.join(_A, _A ) print(f'Save PyTorch model to {os.path.abspath(_A )}' ) torch.save(model.state_dict(), _A ) print(f'Save configuration file to {os.path.abspath(_A )}' ) with open(_A, """w""", encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) __magic_name__: str = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
342
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[Any] = logging.get_logger(__name__) snake_case : Union[str, Any] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = '''lxmert''' UpperCAmelCase__ : str = {} def __init__( self :int ,__snake_case :Union[str, Any]=3_05_22 ,__snake_case :Tuple=7_68 ,__snake_case :int=12 ,__snake_case :Optional[Any]=95_00 ,__snake_case :Union[str, Any]=16_00 ,__snake_case :List[str]=4_00 ,__snake_case :Optional[Any]=30_72 ,__snake_case :List[Any]="gelu" ,__snake_case :str=0.1 ,__snake_case :Tuple=0.1 ,__snake_case :Optional[Any]=5_12 ,__snake_case :List[str]=2 ,__snake_case :List[Any]=0.02 ,__snake_case :int=1E-12 ,__snake_case :Union[str, Any]=9 ,__snake_case :Tuple=5 ,__snake_case :List[Any]=5 ,__snake_case :Tuple=20_48 ,__snake_case :Optional[int]=4 ,__snake_case :Union[str, Any]=6.67 ,__snake_case :Dict=True ,__snake_case :Tuple=True ,__snake_case :str=True ,__snake_case :Dict=True ,__snake_case :str=True ,__snake_case :Union[str, Any]=True ,__snake_case :Tuple=True ,**__snake_case :List[Any] ,) -> str: a__ = vocab_size a__ = hidden_size a__ = num_attention_heads a__ = hidden_act a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = initializer_range a__ = layer_norm_eps a__ = num_qa_labels a__ = num_object_labels a__ = num_attr_labels a__ = l_layers a__ = x_layers a__ = r_layers a__ = visual_feat_dim a__ = visual_pos_dim a__ = visual_loss_normalizer a__ = task_matched a__ = task_mask_lm a__ = task_obj_predict a__ = task_qa a__ = visual_obj_loss a__ = visual_attr_loss a__ = visual_feat_loss a__ = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**__snake_case )
109
def __lowercase ( __lowerCAmelCase : Optional[Any] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowercase ( __lowerCAmelCase : dict[int, list[int]] ): a__ = 0 a__ = len(__lowerCAmelCase ) # No of vertices in graph a__ = [0] * n a__ = [False] * n def dfs(__lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): a__ = True a__ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) a__ = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge a__ = min(low[at] , low[to] ) a__ = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
109
1
'''simple docstring''' def a_ ( __snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ =[[0 for _ in range(__snake_case )] for _ in range(m + 1 )] for i in range(m + 1 ): lowerCamelCase_ =1 for n in range(m + 1 ): for k in range(1 , __snake_case ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: a_ : str = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: a_ : Any = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
75
'''simple docstring''' from __future__ import annotations def a_ ( __snake_case : str , __snake_case : list[str] | None = None , __snake_case : dict[str, float] | None = None , __snake_case : bool = False , ) -> tuple[int, float, str]: """simple docstring""" lowerCamelCase_ =cipher_alphabet or [chr(__snake_case ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase_ ={ '''a''': 0.0_8_4_9_7, '''b''': 0.0_1_4_9_2, '''c''': 0.0_2_2_0_2, '''d''': 0.0_4_2_5_3, '''e''': 0.1_1_1_6_2, '''f''': 0.0_2_2_2_8, '''g''': 0.0_2_0_1_5, '''h''': 0.0_6_0_9_4, '''i''': 0.0_7_5_4_6, '''j''': 0.0_0_1_5_3, '''k''': 0.0_1_2_9_2, '''l''': 0.0_4_0_2_5, '''m''': 0.0_2_4_0_6, '''n''': 0.0_6_7_4_9, '''o''': 0.0_7_5_0_7, '''p''': 0.0_1_9_2_9, '''q''': 0.0_0_0_9_5, '''r''': 0.0_7_5_8_7, '''s''': 0.0_6_3_2_7, '''t''': 0.0_9_3_5_6, '''u''': 0.0_2_7_5_8, '''v''': 0.0_0_9_7_8, '''w''': 0.0_2_5_6_0, '''x''': 0.0_0_1_5_0, '''y''': 0.0_1_9_9_4, '''z''': 0.0_0_0_7_7, } else: # Custom frequencies dictionary lowerCamelCase_ =frequencies_dict if not case_sensitive: lowerCamelCase_ =ciphertext.lower() # Chi squared statistic values lowerCamelCase_ ={} # cycle through all of the shifts for shift in range(len(__snake_case ) ): lowerCamelCase_ ='''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase_ =(alphabet_letters.index(letter.lower() ) - shift) % len( __snake_case ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase_ =0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase_ =letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase_ =decrypted_with_shift.lower().count(__snake_case ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase_ =frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase_ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase_ =decrypted_with_shift.count(__snake_case ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase_ =frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase_ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase_ =( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__snake_case : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase_ =min( __snake_case , key=__snake_case , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
75
1
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a__ : int = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = AlbertTokenizer __SCREAMING_SNAKE_CASE = AlbertTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def __lowerCamelCase ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase = AlbertTokenizer(lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self , lowercase ) -> Tuple: __UpperCamelCase = """this is a test""" __UpperCamelCase = """this is a test""" return input_text, output_text def __lowerCamelCase ( self ) -> str: __UpperCamelCase = """<pad>""" __UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(lowercase ) , 3_0_0_0_0 ) def __lowerCamelCase ( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def __lowerCamelCase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = self.get_rust_tokenizer() __UpperCamelCase = """I was born in 92000, and this is falsé.""" __UpperCamelCase = tokenizer.tokenize(lowercase ) __UpperCamelCase = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) __UpperCamelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) __UpperCamelCase = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) __UpperCamelCase = self.get_rust_tokenizer() __UpperCamelCase = tokenizer.encode(lowercase ) __UpperCamelCase = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = AlbertTokenizer(lowercase , keep_accents=lowercase ) __UpperCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [4_8, 2_5, 2_1, 1_2_8_9] ) __UpperCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowercase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual(lowercase , [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = AlbertTokenizer(lowercase ) __UpperCamelCase = tokenizer.encode("""sequence builders""" ) __UpperCamelCase = tokenizer.encode("""multi-sequence build""" ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __lowerCamelCase ( self ) -> List[str]: # fmt: off __UpperCamelCase = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
243
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = filter(lambda __A : p.requires_grad ,model.parameters() ) __UpperCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Optional[Any] = logging.getLogger(__name__) def _lowercase ( __A ,__A ): '''simple docstring''' if metric == "rouge2": __UpperCamelCase = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": __UpperCamelCase = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": __UpperCamelCase = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" """ function.""" ) __UpperCamelCase = ModelCheckpoint( dirpath=__A ,filename=__A ,monitor=f"val_{metric}" ,mode="""max""" ,save_top_k=3 ,every_n_epochs=1 ,) return checkpoint_callback def _lowercase ( __A ,__A ): '''simple docstring''' return EarlyStopping( monitor=f"val_{metric}" ,mode="""min""" if """loss""" in metric else """max""" ,patience=__A ,verbose=__A ,) class UpperCAmelCase__ ( pl.Callback): def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase = {f"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase=True ) -> None: logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) __UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results __UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase = od / """test_results.txt""" __UpperCamelCase = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase = od / f"{type_path}_results/{trainer.global_step:05d}.txt" __UpperCamelCase = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=lowercase ) generations_file.parent.mkdir(exist_ok=lowercase ) with open(lowercase , """a+""" ) as writer: for key in sorted(lowercase ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase = metrics[key] if isinstance(lowercase , torch.Tensor ): __UpperCamelCase = val.item() __UpperCamelCase = f"{key}: {val:.6f}\n" writer.write(lowercase ) if not save_generations: return if "preds" in metrics: __UpperCamelCase = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(lowercase ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> str: try: __UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase = pl_module.model.num_parameters() __UpperCamelCase = count_trainable_parameters(lowercase ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowercase , lowercase , """test""" ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
243
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __snake_case ( lowerCAmelCase , lowerCAmelCase ): _a : int= "pixel_values" _a : List[str]= False _a : Union[str, Any]= TimmBackboneConfig def __init__( self ,snake_case ,**snake_case ): '''simple docstring''' requires_backends(self ,"""timm""" ) super().__init__(snake_case ) lowercase : int = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(f"backbone {config.backbone} is not supported by timm." ) if hasattr(snake_case ,"""out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowercase : str = getattr(snake_case ,"""use_pretrained_backbone""" ,snake_case ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowercase : Optional[int] = config.out_indices if getattr(snake_case ,"""out_indices""" ,snake_case ) is not None else (-1,) lowercase : List[Any] = timm.create_model( config.backbone ,pretrained=snake_case ,features_only=config.features_only ,in_chans=config.num_channels ,out_indices=snake_case ,**snake_case ,) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowercase : Optional[int] = self._backbone.return_layers lowercase : Tuple = {layer["""module"""]: str(snake_case ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(snake_case ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,snake_case ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowercase : Tuple = kwargs.pop("""config""" ,TimmBackboneConfig() ) lowercase : int = kwargs.pop("""use_timm_backbone""" ,snake_case ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowercase : Any = kwargs.pop("""num_channels""" ,config.num_channels ) lowercase : List[Any] = kwargs.pop("""features_only""" ,config.features_only ) lowercase : Any = kwargs.pop("""use_pretrained_backbone""" ,config.use_pretrained_backbone ) lowercase : Dict = kwargs.pop("""out_indices""" ,config.out_indices ) lowercase : Any = TimmBackboneConfig( backbone=snake_case ,num_channels=snake_case ,features_only=snake_case ,use_pretrained_backbone=snake_case ,out_indices=snake_case ,) return super()._from_config(snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=None ,snake_case=None ,snake_case=None ,**snake_case ): '''simple docstring''' lowercase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowercase : str = self._all_layers lowercase : Any = self._backbone(snake_case ,**snake_case ) lowercase : List[str] = self._return_layers lowercase : List[Any] = tuple(hidden_states[i] for i in self.out_indices ) else: lowercase : List[Any] = self._backbone(snake_case ,**snake_case ) lowercase : Tuple = None lowercase : Any = tuple(snake_case ) lowercase : Dict = tuple(snake_case ) if hidden_states is not None else None if not return_dict: lowercase : Union[str, Any] = (feature_maps,) if output_hidden_states: lowercase : Optional[Any] = output + (hidden_states,) return output return BackboneOutput(feature_maps=snake_case ,hidden_states=snake_case ,attentions=snake_case )
20
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : str = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ lowercase : Dict = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ lowercase : int = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return float((preds == labels).mean() ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Any = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Union[str, Any] = float(pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) lowercase : Dict = float(spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case ,snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case ,snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case ,snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case ,snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
20
1
'''simple docstring''' def lowercase (_A = 2_0_0 ): """simple docstring""" _lowerCAmelCase : Tuple = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] _lowerCAmelCase : List[str] = [0] * (pence + 1) _lowerCAmelCase : Tuple = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_A , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
363
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _a = ''' Human: <<task>> Assistant: ''' _a = '''huggingface-tools/default-prompts''' _a = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any="run" ) -> List[Any]: """simple docstring""" if prompt_or_repo_id is None: __lowerCAmelCase: Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , SCREAMING_SNAKE_CASE ) is not None: return prompt_or_repo_id __lowerCAmelCase: Optional[Any] = cached_file( SCREAMING_SNAKE_CASE , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: return f.read()
322
def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase: Union[str, Any] = update_area_of_max_square(SCREAMING_SNAKE_CASE , col + 1 ) __lowerCAmelCase: Tuple = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase: int = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: List[str] = 1 + min([right, diagonal, down] ) __lowerCAmelCase: List[str] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) return sub_problem_sol else: return 0 __lowerCAmelCase: List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase: List[Any] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if mat[row][col]: __lowerCAmelCase: int = 1 + min([right, diagonal, down] ) __lowerCAmelCase: Union[str, Any] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase: int = [0] __lowerCAmelCase: int = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: int = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase: Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: Union[str, Any] = dp_array[row][col + 1] __lowerCAmelCase: str = dp_array[row + 1][col + 1] __lowerCAmelCase: Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase: Optional[Any] = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(dp_array[row][col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Dict = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: """simple docstring""" __lowerCAmelCase: Tuple = [0] * (cols + 1) __lowerCAmelCase: Optional[int] = [0] * (cols + 1) __lowerCAmelCase: str = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase: int = current_row[col + 1] __lowerCAmelCase: Union[str, Any] = next_row[col + 1] __lowerCAmelCase: Any = next_row[col] if mat[row][col] == 1: __lowerCAmelCase: str = 1 + min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = max(current_row[col] , SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: Optional[Any] = 0 __lowerCAmelCase: int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
322
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( snake_case__ , unittest.TestCase): """simple docstring""" a__ : Union[str, Any] = BlenderbotSmallTokenizer a__ : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : int ) -> int: super().setUp() UpperCAmelCase_= ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] UpperCAmelCase_= dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) UpperCAmelCase_= ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] UpperCAmelCase_= {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} UpperCAmelCase_= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ) -> str: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Any ) -> Union[str, Any]: UpperCAmelCase_= """adapt act apte""" UpperCAmelCase_= """adapt act apte""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_= BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_= """adapt act apte""" UpperCAmelCase_= ["""adapt""", """act""", """ap@@""", """te"""] UpperCAmelCase_= tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_= [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase_= [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_= BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1_384] UpperCAmelCase_= """I am a small frog.""" UpperCAmelCase_= tok([src_text] , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )["""input_ids"""] UpperCAmelCase_= tok.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: UpperCAmelCase_= BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) UpperCAmelCase_= """I am a small frog .""" UpperCAmelCase_= """.""" UpperCAmelCase_= tok(__UpperCAmelCase )["""input_ids"""] UpperCAmelCase_= tok(__UpperCAmelCase )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
352
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class lowercase : """simple docstring""" def __init__( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : List[Any]=13 , __UpperCAmelCase : Dict=7 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Dict=99 , __UpperCAmelCase : Union[str, Any]=64 , __UpperCAmelCase : Dict=5 , __UpperCAmelCase : int=4 , __UpperCAmelCase : int=37 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Union[str, Any]=512 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : str=None , ) -> str: UpperCAmelCase_= parent UpperCAmelCase_= batch_size UpperCAmelCase_= seq_length UpperCAmelCase_= is_training UpperCAmelCase_= use_input_mask UpperCAmelCase_= use_token_type_ids UpperCAmelCase_= use_labels UpperCAmelCase_= vocab_size UpperCAmelCase_= hidden_size UpperCAmelCase_= num_hidden_layers UpperCAmelCase_= num_attention_heads UpperCAmelCase_= intermediate_size UpperCAmelCase_= hidden_act UpperCAmelCase_= hidden_dropout_prob UpperCAmelCase_= attention_probs_dropout_prob UpperCAmelCase_= max_position_embeddings UpperCAmelCase_= type_vocab_size UpperCAmelCase_= type_sequence_label_size UpperCAmelCase_= initializer_range UpperCAmelCase_= num_labels UpperCAmelCase_= num_choices UpperCAmelCase_= scope UpperCAmelCase_= vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_= None if self.use_input_mask: UpperCAmelCase_= random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_= None if self.use_labels: UpperCAmelCase_= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_= self.get_config() return config, input_ids, input_mask, token_labels def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.prepare_config_and_inputs() UpperCAmelCase_= True return config, input_ids, input_mask, token_labels def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_= GPTNeoXModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) UpperCAmelCase_= model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ) -> Dict: UpperCAmelCase_= True UpperCAmelCase_= GPTNeoXModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ) -> int: UpperCAmelCase_= GPTNeoXForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: UpperCAmelCase_= self.num_labels UpperCAmelCase_= GPTNeoXForQuestionAnswering(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ) -> Union[str, Any]: UpperCAmelCase_= self.num_labels UpperCAmelCase_= GPTNeoXForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Dict ) -> Dict: UpperCAmelCase_= self.num_labels UpperCAmelCase_= GPTNeoXForTokenClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) -> Optional[int]: UpperCAmelCase_= True UpperCAmelCase_= GPTNeoXForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) UpperCAmelCase_= outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_= ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_= ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_= torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_= torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_= model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) UpperCAmelCase_= output_from_no_past["""hidden_states"""][0] UpperCAmelCase_= model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice UpperCAmelCase_= ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_= output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_= output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: UpperCAmelCase_= self.prepare_config_and_inputs() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= config_and_inputs UpperCAmelCase_= {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" a__ : Union[str, Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) a__ : Any = (GPTNeoXForCausalLM,) if is_torch_available() else () a__ : str = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) a__ : Optional[int] = False a__ : Tuple = False a__ : int = False a__ : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: UpperCAmelCase_= GPTNeoXModelTester(self ) UpperCAmelCase_= ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=64 , num_attention_heads=8 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: # This regression test was failing with PyTorch < 1.3 UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase_= None self.model_tester.create_and_check_model_as_decoder(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : Any ) -> Dict: UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_= ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase_= ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_= GPTNeoXModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() UpperCAmelCase_= original_model(__UpperCAmelCase ).last_hidden_state UpperCAmelCase_= original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_= {"""type""": scaling_type, """factor""": 10.0} UpperCAmelCase_= GPTNeoXModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() UpperCAmelCase_= scaled_model(__UpperCAmelCase ).last_hidden_state UpperCAmelCase_= scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class lowercase ( unittest.TestCase): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_= AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: UpperCAmelCase_= GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(__UpperCAmelCase ) UpperCAmelCase_= tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase_= """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" UpperCAmelCase_= model.generate(**__UpperCAmelCase , do_sample=__UpperCAmelCase , max_new_tokens=20 ) UpperCAmelCase_= tokenizer.batch_decode(__UpperCAmelCase )[0] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
277
0
"""simple docstring""" A: Optional[int] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A: List[str] = [{"type": "code", "content": INSTALL_CONTENT}] A: Any = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
109
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A: Optional[int] = logging.get_logger(__name__) A: Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } A: List[str] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Any ): for attribute in key.split(""".""" ): UpperCAmelCase : Optional[Any] = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: UpperCAmelCase : List[Any] = getattr(UpperCamelCase , UpperCamelCase ).shape else: UpperCAmelCase : str = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Union[str, Any] = value elif weight_type == "bias": UpperCAmelCase : str = value else: UpperCAmelCase : Union[str, Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] ): UpperCAmelCase : Tuple = [] UpperCAmelCase : Any = fairseq_model.state_dict() UpperCAmelCase : Tuple = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : str = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase : Dict = True if "*" in mapped_key: UpperCAmelCase : str = name.split(UpperCamelCase )[0].split(""".""" )[-2] UpperCAmelCase : Tuple = mapped_key.replace("""*""" , UpperCamelCase ) if "weight_g" in name: UpperCAmelCase : Any = """weight_g""" elif "weight_v" in name: UpperCAmelCase : Optional[Any] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCAmelCase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : str = """weight""" else: UpperCAmelCase : Optional[Any] = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Any ): UpperCAmelCase : str = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase : Dict = name.split(""".""" ) UpperCAmelCase : List[str] = int(items[0] ) UpperCAmelCase : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase : Optional[Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCAmelCase : str = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(UpperCamelCase ) @torch.no_grad() def _snake_case ( UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : List[Any]=None ): # load the pre-trained checkpoints UpperCAmelCase : List[Any] = torch.load(UpperCamelCase ) UpperCAmelCase : List[str] = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCAmelCase : Optional[int] = WavLMOrig(UpperCamelCase ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCAmelCase : List[str] = WavLMConfig.from_pretrained(UpperCamelCase ) else: UpperCAmelCase : List[Any] = WavLMConfig() UpperCAmelCase : Any = WavLMModel(UpperCamelCase ) recursively_load_weights(UpperCamelCase , UpperCamelCase ) hf_wavlm.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A: Tuple = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
109
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowercase : np.ndarray , __lowercase : Union[int, Iterable[int]] , __lowercase : bool , __lowercase : int ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(__lowercase : Dict , __lowercase : str , __lowercase : Optional[int]=0 , __lowercase : Dict=None ): _UpperCAmelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCAmelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCAmelCase = math.ceil(val / multiple ) * multiple return x _UpperCAmelCase = (output_size, output_size) if isinstance(__lowercase , __lowercase ) else output_size _UpperCAmelCase , _UpperCAmelCase = get_image_size(__lowercase ) _UpperCAmelCase , _UpperCAmelCase = output_size # determine new height and width _UpperCAmelCase = output_height / input_height _UpperCAmelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCAmelCase = scale_width else: # fit height _UpperCAmelCase = scale_height _UpperCAmelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__lowercase ) _UpperCAmelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__lowercase ) return (new_height, new_width) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Any = ["""pixel_values"""] def __init__( self : str , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = False , snake_case_ : int = 1 , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 2_5_5 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , **snake_case_ : List[str] , ): super().__init__(**snake_case_ ) _UpperCAmelCase = size if size is not None else {"height": 3_8_4, "width": 3_8_4} _UpperCAmelCase = get_size_dict(snake_case_ ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = keep_aspect_ratio _UpperCAmelCase = ensure_multiple_of _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : List[str] , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : bool = False , snake_case_ : int = 1 , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : str , ): _UpperCAmelCase = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size( snake_case_ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=snake_case_ , multiple=snake_case_ , ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Any , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : str , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(snake_case_ ) _UpperCAmelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCAmelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) def lowercase ( self : int , snake_case_ : str , snake_case_ : List[Tuple] = None ): _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case_ ) != len(snake_case_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(snake_case_ ): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(snake_case_ ) ): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=snake_case_ ) _UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case_ ) else: _UpperCAmelCase = logits.argmax(dim=1 ) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
156
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowercase : np.ndarray , __lowercase : Union[int, Iterable[int]] , __lowercase : bool , __lowercase : int ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(__lowercase : Dict , __lowercase : str , __lowercase : Optional[int]=0 , __lowercase : Dict=None ): _UpperCAmelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: _UpperCAmelCase = math.floor(val / multiple ) * multiple if x < min_val: _UpperCAmelCase = math.ceil(val / multiple ) * multiple return x _UpperCAmelCase = (output_size, output_size) if isinstance(__lowercase , __lowercase ) else output_size _UpperCAmelCase , _UpperCAmelCase = get_image_size(__lowercase ) _UpperCAmelCase , _UpperCAmelCase = output_size # determine new height and width _UpperCAmelCase = output_height / input_height _UpperCAmelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _UpperCAmelCase = scale_width else: # fit height _UpperCAmelCase = scale_height _UpperCAmelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__lowercase ) _UpperCAmelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__lowercase ) return (new_height, new_width) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Any = ["""pixel_values"""] def __init__( self : str , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = False , snake_case_ : int = 1 , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 2_5_5 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , **snake_case_ : List[str] , ): super().__init__(**snake_case_ ) _UpperCAmelCase = size if size is not None else {"height": 3_8_4, "width": 3_8_4} _UpperCAmelCase = get_size_dict(snake_case_ ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = keep_aspect_ratio _UpperCAmelCase = ensure_multiple_of _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase ( self : List[str] , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : bool = False , snake_case_ : int = 1 , snake_case_ : PILImageResampling = PILImageResampling.BICUBIC , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : str , ): _UpperCAmelCase = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size( snake_case_ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=snake_case_ , multiple=snake_case_ , ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Any , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : Tuple , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : bool = None , snake_case_ : int = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : str , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(snake_case_ ) _UpperCAmelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _UpperCAmelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(snake_case_ ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] _UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) def lowercase ( self : int , snake_case_ : str , snake_case_ : List[Tuple] = None ): _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case_ ) != len(snake_case_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(snake_case_ ): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(snake_case_ ) ): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=snake_case_ ) _UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case_ ) else: _UpperCAmelCase = logits.argmax(dim=1 ) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
156
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin UpperCamelCase_ = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class snake_case ( unittest.TestCase , SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = load_tool("text-question-answering") self.tool.setup() a_ = load_tool("text-question-answering" , remote=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.tool(__UpperCAmelCase , "What did Hugging Face do in April 2021?") self.assertEqual(__UpperCAmelCase , "launched the BigScience Research Workshop") def UpperCAmelCase__ ( self) ->str: a_ = self.remote_tool(__UpperCAmelCase , "What did Hugging Face do in April 2021?") self.assertEqual(__UpperCAmelCase , "launched the BigScience Research Workshop") def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.tool(text=__UpperCAmelCase , question="What did Hugging Face do in April 2021?") self.assertEqual(__UpperCAmelCase , "launched the BigScience Research Workshop") def UpperCAmelCase__ ( self) ->List[str]: a_ = self.remote_tool(text=__UpperCAmelCase , question="What did Hugging Face do in April 2021?") self.assertEqual(__UpperCAmelCase , "launched the BigScience Research Workshop")
243
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = """""" a_ : Dict = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) ->Optional[int]: super().__init__(self , **__UpperCAmelCase) a_ = repo_info a_ = token a_ = None def UpperCAmelCase__ ( self) ->Tuple: if self.dir_cache is None: a_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a_ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCAmelCase): {"name": str(__UpperCAmelCase), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] }) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = "rb" , **__UpperCAmelCase , ) ->List[Any]: if not isinstance(self.repo_info , __UpperCAmelCase): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''') a_ = hf_hub_url(self.repo_info.id , __UpperCAmelCase , revision=self.repo_info.sha) return fsspec.open( __UpperCAmelCase , mode=__UpperCAmelCase , headers=get_authentication_headers_for_url(__UpperCAmelCase , use_auth_token=self.token) , client_kwargs={"trust_env": True} , ).open() def UpperCAmelCase__ ( self , __UpperCAmelCase , **__UpperCAmelCase) ->int: self._get_dirs() a_ = self._strip_protocol(__UpperCAmelCase) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase) ->List[Any]: self._get_dirs() a_ = PurePosixPath(path.strip("/")) a_ = {} for p, f in self.dir_cache.items(): a_ = PurePosixPath(p.strip("/")) a_ = p.parent if root == path: a_ = f a_ = list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
243
1
from __future__ import annotations import math import random from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self): lowercase__ : list[Any] = [] lowercase__ : int = 0 lowercase__ : int = 0 def snake_case_ ( self): return self.head == self.tail def snake_case_ ( self , a): self.data.append(a) lowercase__ : int = self.tail + 1 def snake_case_ ( self): lowercase__ : str = self.data[self.head] lowercase__ : Tuple = self.head + 1 return ret def snake_case_ ( self): return self.tail - self.head def snake_case_ ( self): print(self.data) print('**************') print(self.data[self.head : self.tail]) class SCREAMING_SNAKE_CASE__ : def __init__( self , a): lowercase__ : Union[str, Any] = data lowercase__ : MyNode | None = None lowercase__ : MyNode | None = None lowercase__ : int = 1 def snake_case_ ( self): return self.data def snake_case_ ( self): return self.left def snake_case_ ( self): return self.right def snake_case_ ( self): return self.height def snake_case_ ( self , a): lowercase__ : Dict = data def snake_case_ ( self , a): lowercase__ : Tuple = node def snake_case_ ( self , a): lowercase__ : List[str] = node def snake_case_ ( self , a): lowercase__ : Optional[int] = height def snake_case__ ( SCREAMING_SNAKE_CASE_ : MyNode | None ): '''simple docstring''' if node is None: return 0 return node.get_height() def snake_case__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if a > b: return a return b def snake_case__ ( SCREAMING_SNAKE_CASE_ : MyNode ): '''simple docstring''' print('left rotation node:' , node.get_data() ) lowercase__ : List[str] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(SCREAMING_SNAKE_CASE_ ) return ret def snake_case__ ( SCREAMING_SNAKE_CASE_ : MyNode ): '''simple docstring''' print('right rotation node:' , node.get_data() ) lowercase__ : Optional[int] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(SCREAMING_SNAKE_CASE_ ) return ret def snake_case__ ( SCREAMING_SNAKE_CASE_ : MyNode ): '''simple docstring''' lowercase__ : Any = node.get_left() assert left_child is not None node.set_left(left_rotation(SCREAMING_SNAKE_CASE_ ) ) return right_rotation(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : MyNode ): '''simple docstring''' lowercase__ : Any = node.get_right() assert right_child is not None node.set_right(right_rotation(SCREAMING_SNAKE_CASE_ ) ) return left_rotation(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : MyNode | None , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' if node is None: return MyNode(SCREAMING_SNAKE_CASE_ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , SCREAMING_SNAKE_CASE_ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowercase__ : Optional[Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowercase__ : str = right_rotation(SCREAMING_SNAKE_CASE_ ) else: lowercase__ : Any = lr_rotation(SCREAMING_SNAKE_CASE_ ) else: node.set_right(insert_node(node.get_right() , SCREAMING_SNAKE_CASE_ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowercase__ : str = node.get_right() assert right_child is not None if data < right_child.get_data(): lowercase__ : List[str] = rl_rotation(SCREAMING_SNAKE_CASE_ ) else: lowercase__ : Optional[int] = left_rotation(SCREAMING_SNAKE_CASE_ ) lowercase__ : Dict = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(SCREAMING_SNAKE_CASE_ ) return node def snake_case__ ( SCREAMING_SNAKE_CASE_ : MyNode ): '''simple docstring''' while True: lowercase__ : int = root.get_right() if right_child is None: break lowercase__ : List[str] = right_child return root.get_data() def snake_case__ ( SCREAMING_SNAKE_CASE_ : MyNode ): '''simple docstring''' while True: lowercase__ : Any = root.get_left() if left_child is None: break lowercase__ : List[Any] = left_child return root.get_data() def snake_case__ ( SCREAMING_SNAKE_CASE_ : MyNode , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' lowercase__ : Union[str, Any] = root.get_left() lowercase__ : Any = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowercase__ : str = get_left_most(SCREAMING_SNAKE_CASE_ ) root.set_data(SCREAMING_SNAKE_CASE_ ) root.set_right(del_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) elif left_child is not None: lowercase__ : List[Any] = left_child elif right_child is not None: lowercase__ : int = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if get_height(SCREAMING_SNAKE_CASE_ ) - get_height(SCREAMING_SNAKE_CASE_ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowercase__ : Any = left_rotation(SCREAMING_SNAKE_CASE_ ) else: lowercase__ : Union[str, Any] = rl_rotation(SCREAMING_SNAKE_CASE_ ) elif get_height(SCREAMING_SNAKE_CASE_ ) - get_height(SCREAMING_SNAKE_CASE_ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowercase__ : Any = right_rotation(SCREAMING_SNAKE_CASE_ ) else: lowercase__ : int = lr_rotation(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(SCREAMING_SNAKE_CASE_ ) return root class SCREAMING_SNAKE_CASE__ : def __init__( self): lowercase__ : MyNode | None = None def snake_case_ ( self): return get_height(self.root) def snake_case_ ( self , a): print('insert:' + str(a)) lowercase__ : str = insert_node(self.root , a) def snake_case_ ( self , a): print('delete:' + str(a)) if self.root is None: print('Tree is empty!') return lowercase__ : Optional[Any] = del_node(self.root , a) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree lowercase__ : str = '' lowercase__ : Union[str, Any] = MyQueue() q.push(self.root) lowercase__ : int = self.get_height() if layer == 0: return output lowercase__ : str = 0 while not q.is_empty(): lowercase__ : List[Any] = q.pop() lowercase__ : int = ' ' * int(math.pow(2 , layer - 1)) output += space if node is None: output += "*" q.push(a) q.push(a) else: output += str(node.get_data()) q.push(node.get_left()) q.push(node.get_right()) output += space lowercase__ : List[Any] = cnt + 1 for i in range(100): if cnt == math.pow(2 , a) - 1: lowercase__ : str = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def snake_case__ ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() snake_case_ = AVLtree() snake_case_ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
357
from __future__ import annotations from collections.abc import Callable def snake_case__ ( SCREAMING_SNAKE_CASE_ : Callable[[int | float], int | float] , SCREAMING_SNAKE_CASE_ : int | float , SCREAMING_SNAKE_CASE_ : int | float , SCREAMING_SNAKE_CASE_ : int = 100 , ): '''simple docstring''' lowercase__ : Tuple = x_start lowercase__ : Tuple = fnc(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = 0.0 for _ in range(SCREAMING_SNAKE_CASE_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowercase__ : Any = (x_end - x_start) / steps + xa lowercase__ : Optional[Any] = fnc(SCREAMING_SNAKE_CASE_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowercase__ : Any = xa lowercase__ : str = fxa return area if __name__ == "__main__": def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') snake_case_ = 10 while i <= 100_000: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 10
216
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A : str = 'http://www.mocksite.com/file1.txt' A : List[str] = '"text": ["foo", "foo"]' A : List[Any] = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class _lowercase : """simple docstring""" A__ = 2_00 A__ = {'''Content-Length''': '''100'''} A__ = {} def lowerCAmelCase ( self : Dict , **__lowerCamelCase : List[Any] ): '''simple docstring''' return [bytes(SCREAMING_SNAKE_CASE__ , "utf-8" )] def lowercase_ ( *_A : Dict , **_A : Optional[Any] ): """simple docstring""" return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def lowercase_ ( _A : Union[str, Any] , _A : int , _A : str ): """simple docstring""" import requests monkeypatch.setattr(_snake_case , "request" , _snake_case ) lowerCamelCase__ : str = URL if issubclass(_snake_case , _snake_case ): lowerCamelCase__ : Optional[int] = url elif issubclass(_snake_case , _snake_case ): lowerCamelCase__ : Union[str, Any] = [url] elif issubclass(_snake_case , _snake_case ): lowerCamelCase__ : int = {"""train""": url} lowerCamelCase__ : Tuple = """dummy""" lowerCamelCase__ : Dict = """downloads""" lowerCamelCase__ : List[Any] = tmp_path lowerCamelCase__ : Tuple = DownloadConfig( cache_dir=os.path.join(_snake_case , _snake_case ) , use_etag=_snake_case , ) lowerCamelCase__ : Any = DownloadManager(dataset_name=_snake_case , download_config=_snake_case ) lowerCamelCase__ : Tuple = dl_manager.download(_snake_case ) lowerCamelCase__ : Optional[Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(_snake_case , _snake_case ): lowerCamelCase__ : Optional[int] = [downloaded_paths] lowerCamelCase__ : Union[str, Any] = [urls] elif isinstance(_snake_case , _snake_case ): assert "train" in downloaded_paths.keys() lowerCamelCase__ : Dict = downloaded_paths.values() lowerCamelCase__ : Optional[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_snake_case , _snake_case ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCamelCase__ : Dict = Path(_snake_case ) lowerCamelCase__ : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCamelCase__ : List[str] = downloaded_path.read_text() assert content == CONTENT lowerCamelCase__ : Optional[int] = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() lowerCamelCase__ : Any = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def lowercase_ ( _A : Optional[int] , _A : int , _A : Dict ): """simple docstring""" lowerCamelCase__ : Dict = str(_snake_case ) if issubclass(_snake_case , _snake_case ): lowerCamelCase__ : Optional[int] = filename elif issubclass(_snake_case , _snake_case ): lowerCamelCase__ : int = [filename] elif issubclass(_snake_case , _snake_case ): lowerCamelCase__ : Union[str, Any] = {"""train""": filename} lowerCamelCase__ : List[Any] = """dummy""" lowerCamelCase__ : List[str] = xz_file.parent lowerCamelCase__ : Dict = """extracted""" lowerCamelCase__ : Optional[int] = DownloadConfig( cache_dir=_snake_case , use_etag=_snake_case , ) lowerCamelCase__ : Tuple = DownloadManager(dataset_name=_snake_case , download_config=_snake_case ) lowerCamelCase__ : Dict = dl_manager.extract(_snake_case ) lowerCamelCase__ : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(_snake_case , _snake_case ): lowerCamelCase__ : int = [extracted_paths] lowerCamelCase__ : Optional[Any] = [paths] elif isinstance(_snake_case , _snake_case ): assert "train" in extracted_paths.keys() lowerCamelCase__ : str = extracted_paths.values() lowerCamelCase__ : Union[str, Any] = paths.values() assert extracted_paths for extracted_path, input_path in zip(_snake_case , _snake_case ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCamelCase__ : Tuple = Path(_snake_case ) lowerCamelCase__ : List[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(_snake_case , etag=_snake_case ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCamelCase__ : Union[str, Any] = extracted_path.read_text() lowerCamelCase__ : Union[str, Any] = text_file.read_text() assert extracted_file_content == expected_file_content def lowercase_ ( _A : Union[str, Any] , _A : int ): """simple docstring""" assert path.endswith(".jsonl" ) for num_items, line in enumerate(_snake_case , start=1 ): lowerCamelCase__ : List[str] = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def lowercase_ ( _A : List[str] , _A : Any ): """simple docstring""" lowerCamelCase__ : str = request.getfixturevalue(_snake_case ) lowerCamelCase__ : Union[str, Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_snake_case ) , start=1 ): _test_jsonl(_snake_case , _snake_case ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def lowercase_ ( _A : Tuple , _A : str ): """simple docstring""" lowerCamelCase__ : Dict = request.getfixturevalue(_snake_case ) lowerCamelCase__ : Optional[Any] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_snake_case ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_snake_case ) , start=1 ): _test_jsonl(_snake_case , _snake_case ) assert num_tar == 1 assert num_jsonl == 2 def lowercase_ ( _A : Optional[int] ): """simple docstring""" lowerCamelCase__ : List[str] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_snake_case ) , start=1 ): assert os.path.basename(_snake_case ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
184
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=_snake_case ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=_snake_case ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=_snake_case ) return parser.parse_args() def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : int = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE__ : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE__ : int = script_fpath.stem SCREAMING_SNAKE_CASE__ : Optional[Any] = importlib.import_module(_snake_case ) # Patch sys.argv SCREAMING_SNAKE_CASE__ : str = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
25
0
"""simple docstring""" import pytest lowercase__ : Optional[Any] = """__dummy_dataset1__""" lowercase__ : Any = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def UpperCamelCase_ ( ) -> Tuple: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase_ ( ) -> int: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ : Tuple = dataset_loading_script_name lowerCAmelCase_ : List[Any] = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = script_dir / f"{script_name}.py" with open(lowerCAmelCase__ , 'w' ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ )
289
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> int: """simple docstring""" if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError('String lengths must match!' ) lowerCAmelCase_ : List[Any] = 0 for chara, chara in zip(lowerCAmelCase__ , lowerCAmelCase__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
289
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCamelCase_ : '''simple docstring''' def __init__( self , a , a , a = True , a = False ) -> int: snake_case_ = scheduler snake_case_ = optimizers if isinstance(_snake_case , (list, tuple) ) else [optimizers] snake_case_ = split_batches snake_case_ = step_with_optimizer snake_case_ = GradientState() def _UpperCamelCase ( self , *a , **a ) -> Tuple: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_snake_case , **_snake_case ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_snake_case , **_snake_case ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step snake_case_ = AcceleratorState().num_processes for _ in range(_snake_case ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_snake_case , **_snake_case ) else: self.scheduler.step(*_snake_case , **_snake_case ) def _UpperCamelCase ( self ) -> List[str]: return self.scheduler.get_last_lr() def _UpperCamelCase ( self ) -> int: return self.scheduler.state_dict() def _UpperCamelCase ( self , a ) -> Optional[int]: self.scheduler.load_state_dict(_snake_case ) def _UpperCamelCase ( self ) -> Union[str, Any]: return self.scheduler.get_lr() def _UpperCamelCase ( self , *a , **a ) -> Optional[Any]: return self.scheduler.print_lr(*_snake_case , **_snake_case )
178
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ (A : str , A : List[Any] , A : Any ): # Initialise PyTorch model snake_case__ : List[Any] = LxmertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case__ : List[str] = LxmertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": a_ :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ :Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
277
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowercase : Tuple = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowercase : str = [0, 25, 50] lowercase : List[str] = [25, 50, 75] lowercase : Any = fuzz.membership.trimf(X, abca) lowercase : Union[str, Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowercase : Optional[Any] = np.ones(75) lowercase : List[str] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) lowercase : List[str] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowercase : Optional[Any] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowercase : Union[str, Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowercase : Optional[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowercase : Optional[Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowercase : int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowercase : Tuple = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowercase : List[str] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
352
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Tuple = '▁' lowercase : str = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } lowercase : Optional[int] = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } lowercase : List[Any] = { 'facebook/m2m100_418M': 1024, } # fmt: off lowercase : Optional[int] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = PRETRAINED_VOCAB_FILES_MAP _A = ['input_ids', 'attention_mask'] _A = [] _A = [] def __init__( self :Tuple , a :List[str] , a :int , a :Dict=None , a :List[Any]=None , a :List[str]="<s>" , a :str="</s>" , a :Dict="</s>" , a :Optional[Any]="<pad>" , a :Union[str, Any]="<unk>" , a :List[Any]="m2m100" , a :Optional[Dict[str, Any]] = None , a :List[str]=8 , **a :Tuple , ) -> None: __UpperCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase : List[str] = language_codes __UpperCamelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase : Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(a ) for lang_code in fairseq_language_code if self.get_lang_token(a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a , tgt_lang=a , bos_token=a , eos_token=a , sep_token=a , unk_token=a , pad_token=a , language_codes=a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=a , **a , ) __UpperCamelCase : Optional[Any] = vocab_file __UpperCamelCase : List[str] = load_json(a ) __UpperCamelCase : Dict = {v: k for k, v in self.encoder.items()} __UpperCamelCase : int = spm_file __UpperCamelCase : List[Any] = load_spm(a , self.sp_model_kwargs ) __UpperCamelCase : int = len(self.encoder ) __UpperCamelCase : Tuple = { self.get_lang_token(a ): self.encoder_size + i for i, lang_code in enumerate(a ) } __UpperCamelCase : int = {lang_code: self.encoder_size + i for i, lang_code in enumerate(a )} __UpperCamelCase : Dict = {v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase : int = src_lang if src_lang is not None else "en" __UpperCamelCase : int = tgt_lang __UpperCamelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase : Union[str, Any] = num_madeup_words @property def _lowerCamelCase ( self :int ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _lowerCamelCase ( self :List[str] ) -> str: return self._src_lang @src_lang.setter def _lowerCamelCase ( self :Any , a :str ) -> None: __UpperCamelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self :int , a :str ) -> List[str]: return self.sp_model.encode(a , out_type=a ) def _lowerCamelCase ( self :List[str] , a :str ) -> str: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(a , self.encoder[self.unk_token] ) def _lowerCamelCase ( self :List[Any] , a :int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(a , self.unk_token ) def _lowerCamelCase ( self :List[str] , a :Optional[Any] ) -> Tuple: __UpperCamelCase : List[Any] = [] __UpperCamelCase : Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token __UpperCamelCase : List[Any] = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def _lowerCamelCase ( self :Optional[int] , a :List[int] , a :Optional[List[int]] = None , a :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) __UpperCamelCase : Optional[Any] = [1] * len(self.prefix_tokens ) __UpperCamelCase : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a )) + suffix_ones return prefix_ones + ([0] * len(a )) + ([0] * len(a )) + suffix_ones def _lowerCamelCase ( self :List[Any] , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self :Dict ) -> Dict: __UpperCamelCase : int = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :str ) -> Dict: __UpperCamelCase : Union[str, Any] = self.__dict__.copy() __UpperCamelCase : int = None return state def __setstate__( self :List[Any] , a :Dict ) -> None: __UpperCamelCase : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Optional[Any] = {} __UpperCamelCase : Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def _lowerCamelCase ( self :List[Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: __UpperCamelCase : str = Path(a ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase : List[Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) __UpperCamelCase : List[Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , a ) if os.path.abspath(self.spm_file ) != os.path.abspath(a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a ) elif not os.path.isfile(self.spm_file ): with open(a , "wb" ) as fi: __UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(a ) return (str(a ), str(a )) def _lowerCamelCase ( self :Dict , a :List[str] , a :str = "en" , a :Optional[List[str]] = None , a :str = "ro" , **a :Union[str, Any] , ) -> BatchEncoding: __UpperCamelCase : List[str] = src_lang __UpperCamelCase : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(a , a , **a ) def _lowerCamelCase ( self :Union[str, Any] , a :int , a :Optional[str] , a :Optional[str] , **a :List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) __UpperCamelCase : int = src_lang __UpperCamelCase : Tuple = self(a , add_special_tokens=a , **a ) __UpperCamelCase : Optional[int] = self.get_lang_id(a ) __UpperCamelCase : Any = tgt_lang_id return inputs def _lowerCamelCase ( self :Any ) -> str: self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self :Optional[int] ) -> Any: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self :Union[str, Any] , a :str ) -> None: __UpperCamelCase : str = self.get_lang_token(a ) __UpperCamelCase : Union[str, Any] = self.lang_token_to_id[lang_token] __UpperCamelCase : Optional[int] = [self.cur_lang_id] __UpperCamelCase : str = [self.eos_token_id] def _lowerCamelCase ( self :int , a :str ) -> None: __UpperCamelCase : Any = self.get_lang_token(a ) __UpperCamelCase : Dict = self.lang_token_to_id[lang_token] __UpperCamelCase : List[Any] = [self.cur_lang_id] __UpperCamelCase : Tuple = [self.eos_token_id] def _lowerCamelCase ( self :Optional[Any] , a :str ) -> str: return self.lang_code_to_token[lang] def _lowerCamelCase ( self :Optional[Any] , a :str ) -> int: __UpperCamelCase : Dict = self.get_lang_token(a ) return self.lang_token_to_id[lang_token] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' __UpperCamelCase : str = sentencepiece.SentencePieceProcessor(**_lowerCamelCase) spm.Load(str(_lowerCamelCase)) return spm def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> Union[Dict, List]: '''simple docstring''' with open(_lowerCamelCase , "r") as f: return json.load(_lowerCamelCase) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : str) -> None: '''simple docstring''' with open(_lowerCamelCase , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2)
151
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: __lowercase : Optional[int] = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __lowercase : Optional[int] = MaskFormerConfig(backbone_config=__lowerCAmelCase ) __lowercase : Union[str, Any] = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __lowercase : Any = 847 __lowercase : Optional[Any] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __lowercase : Optional[int] = 150 __lowercase : Dict = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __lowercase : str = 171 __lowercase : Tuple = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __lowercase : Optional[int] = 133 __lowercase : Any = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __lowercase : Optional[Any] = 19 __lowercase : str = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __lowercase : Tuple = 65 __lowercase : Any = '''mapillary-vistas-id2label.json''' __lowercase : Tuple = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase : int = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} return config def UpperCAmelCase_ ( __lowerCAmelCase ) -> List[str]: __lowercase : Optional[int] = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: __lowercase : Dict = dct.pop(__lowerCAmelCase ) __lowercase : Optional[Any] = val def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: __lowercase : Optional[int] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase : str = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase : Dict = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase : Tuple = in_proj_weight[:dim, :] __lowercase : List[str] = in_proj_bias[: dim] __lowercase : List[Any] = in_proj_weight[ dim : dim * 2, : ] __lowercase : str = in_proj_bias[ dim : dim * 2 ] __lowercase : Tuple = in_proj_weight[ -dim :, : ] __lowercase : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: # fmt: off __lowercase : Tuple = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase : List[str] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase : Dict = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase : Optional[Any] = in_proj_weight[: hidden_size, :] __lowercase : int = in_proj_bias[:config.hidden_size] __lowercase : int = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase : str = in_proj_bias[hidden_size : hidden_size * 2] __lowercase : Optional[int] = in_proj_weight[-hidden_size :, :] __lowercase : Optional[int] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase : Optional[int] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase : List[str] = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase : Optional[Any] = in_proj_weight[: hidden_size, :] __lowercase : Dict = in_proj_bias[:config.hidden_size] __lowercase : Optional[int] = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __lowercase : Union[str, Any] = in_proj_weight[-hidden_size :, :] __lowercase : Any = in_proj_bias[-hidden_size :] # fmt: on def UpperCAmelCase_ ( ) -> torch.Tensor: __lowercase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase : Tuple = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> Optional[int]: __lowercase : List[str] = get_maskformer_config(__lowerCAmelCase ) # load original state_dict with open(__lowerCAmelCase , '''rb''' ) as f: __lowercase : List[Any] = pickle.load(__lowerCAmelCase ) __lowercase : Tuple = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase : List[Any] = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase : Union[str, Any] = torch.from_numpy(__lowerCAmelCase ) # load 🤗 model __lowercase : Optional[Any] = MaskFormerForInstanceSegmentation(__lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCAmelCase , param.shape ) __lowercase , __lowercase : Union[str, Any] = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCAmelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase : Dict = prepare_img() if "vistas" in model_name: __lowercase : List[Any] = 65 elif "cityscapes" in model_name: __lowercase : Dict = 65_535 else: __lowercase : int = 255 __lowercase : Union[str, Any] = True if '''ade''' in model_name else False __lowercase : Dict = MaskFormerImageProcessor(ignore_index=__lowerCAmelCase , reduce_labels=__lowerCAmelCase ) __lowercase : Dict = image_processor(__lowerCAmelCase , return_tensors='''pt''' ) __lowercase : Union[str, Any] = model(**__lowerCAmelCase ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase : str = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
156
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : torch.FloatTensor A__ : Optional[torch.FloatTensor] = None def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=0.999 , __lowerCAmelCase="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowercase : Dict = [] for i in range(__lowerCAmelCase ): __lowercase : Optional[Any] = i / num_diffusion_timesteps __lowercase : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" A__ : Tuple = 1 @register_to_config def __init__( self : str , _snake_case : int = 1000 , _snake_case : float = 0.00_01 , _snake_case : float = 0.02 , _snake_case : str = "linear" , _snake_case : Optional[Union[np.ndarray, List[float]]] = None , _snake_case : bool = True , _snake_case : bool = True , _snake_case : int = 0 , _snake_case : str = "epsilon" , _snake_case : float = 1.0 , **_snake_case : Tuple , ): if kwargs.get('''set_alpha_to_one''' , _snake_case ) is not None: __lowercase : str = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _snake_case , standard_warn=_snake_case ) __lowercase : Dict = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __lowercase : Optional[int] = torch.tensor(_snake_case , dtype=torch.floataa ) elif beta_schedule == "linear": __lowercase : Any = torch.linspace(_snake_case , _snake_case , _snake_case , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _snake_case , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase : Optional[Any] = betas_for_alpha_bar(_snake_case ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowercase : str = 1.0 - self.betas __lowercase : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __lowercase : str = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __lowercase : Any = 1.0 # setable values __lowercase : Tuple = None __lowercase : Tuple = torch.from_numpy(np.arange(0 , _snake_case ).copy().astype(np.intaa ) ) def snake_case_ ( self : List[str] , _snake_case : torch.FloatTensor , _snake_case : Optional[int] = None ): return sample def snake_case_ ( self : int , _snake_case : int , _snake_case : Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) __lowercase : Optional[Any] = num_inference_steps __lowercase : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase : List[Any] = (np.arange(0 , _snake_case ) * step_ratio).round().copy().astype(np.intaa ) __lowercase : str = torch.from_numpy(_snake_case ).to(_snake_case ) self.timesteps += self.config.steps_offset def snake_case_ ( self : int , _snake_case : torch.FloatTensor , _snake_case : int , _snake_case : torch.FloatTensor , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : bool = True , ): # 1. get previous step value (=t+1) __lowercase : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __lowercase : Any = self.alphas_cumprod[timestep] __lowercase : Any = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __lowercase : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __lowercase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __lowercase : str = model_output elif self.config.prediction_type == "sample": __lowercase : Any = model_output __lowercase : Optional[int] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __lowercase : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __lowercase : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __lowercase : Optional[int] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case ) def __len__( self : Any ): return self.config.num_train_timesteps
156
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : int =logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): __A = ["pixel_values"] def __init__( self : List[Any] , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : bool = True , **lowercase : List[str] , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :List[str] = size if size is not None else {"height": 384, "width": 384} lowercase_ :int = get_size_dict(lowercase , default_to_square=lowercase ) lowercase_ :Tuple = do_resize lowercase_ :str = size lowercase_ :Any = resample lowercase_ :List[str] = do_rescale lowercase_ :Optional[Any] = rescale_factor lowercase_ :Optional[int] = do_normalize lowercase_ :Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase_ :Tuple = image_std if image_std is not None else OPENAI_CLIP_STD lowercase_ :str = do_convert_rgb def lowercase__ ( self : int , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BICUBIC , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : int , ): """simple docstring""" lowercase_ :Union[str, Any] = get_size_dict(lowercase , default_to_square=lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) lowercase_ :List[Any] = (size["height"], size["width"]) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Optional[int] , ): """simple docstring""" return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : Tuple , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): """simple docstring""" return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def lowercase__ ( self : Tuple , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Optional[Dict[str, int]] = None , lowercase : PILImageResampling = None , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : bool = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : Optional[int] , ): """simple docstring""" lowercase_ :Tuple = do_resize if do_resize is not None else self.do_resize lowercase_ :Tuple = resample if resample is not None else self.resample lowercase_ :Tuple = do_rescale if do_rescale is not None else self.do_rescale lowercase_ :int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ :str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ :Optional[Any] = image_mean if image_mean is not None else self.image_mean lowercase_ :List[str] = image_std if image_std is not None else self.image_std lowercase_ :Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ :Optional[int] = size if size is not None else self.size lowercase_ :Dict = get_size_dict(lowercase , default_to_square=lowercase ) lowercase_ :int = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ :Optional[Any] = [convert_to_rgb(lowercase ) for image in images] # All transformations expect numpy arrays. lowercase_ :int = [to_numpy_array(lowercase ) for image in images] if do_resize: lowercase_ :Any = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_rescale: lowercase_ :List[str] = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: lowercase_ :Optional[Any] = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] lowercase_ :str = [to_channel_dimension_format(lowercase , lowercase ) for image in images] lowercase_ :Any = BatchFeature(data={"pixel_values": images} , tensor_type=lowercase ) return encoded_outputs
147
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging lowerCAmelCase : Tuple =logging.get_logger(__name__) def UpperCAmelCase_ ( __lowerCamelCase : Union[tf.Tensor, np.ndarray] ): if isinstance(__lowerCamelCase ,np.ndarray ): return list(tensor.shape ) lowercase_ :Optional[int] = tf.shape(__lowerCamelCase ) if tensor.shape == tf.TensorShape(__lowerCamelCase ): return dynamic lowercase_ :Union[str, Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCamelCase )] def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[str] = None ): return tf.nn.softmax(logits=logits + 1e-9 ,axis=__lowerCamelCase ,name=__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : List[str]=1e-5 ,__lowerCamelCase : List[str]=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCamelCase ,__lowerCamelCase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ :List[str] = tf.nn.moments(__lowerCamelCase ,axes=[axis] ,keepdims=__lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ :Union[str, Any] = [1] * inputs.shape.rank lowercase_ :Optional[Any] = shape_list(__lowerCamelCase )[axis] lowercase_ :List[str] = tf.reshape(__lowerCamelCase ,__lowerCamelCase ) lowercase_ :Dict = tf.reshape(__lowerCamelCase ,__lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. lowercase_ :Union[str, Any] = tf.nn.batch_normalization( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,offset=__lowerCamelCase ,scale=__lowerCamelCase ,variance_epsilon=__lowerCamelCase ,) return outputs def UpperCAmelCase_ ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Union[str, Any]=0 ,__lowerCamelCase : Dict=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ :Optional[int] = tf.shape(__lowerCamelCase ) lowercase_ :Optional[int] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ :List[str] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] ,axis=0 ) return tf.reshape(__lowerCamelCase ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ): if not isinstance(__lowerCamelCase ,tf.Tensor ): lowercase_ :str = tf.convert_to_tensor(__lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ :List[Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ :Optional[int] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ :str = ( tf.cast(1 ,encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase_ ( __lowerCamelCase : tf.Tensor ,__lowerCamelCase : int ,__lowerCamelCase : str = "input_ids" ): tf.debugging.assert_less( __lowerCamelCase ,tf.cast(__lowerCamelCase ,dtype=tensor.dtype ) ,message=( F'The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCamelCase )}) must be smaller than the embedding ' F'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) ,) def UpperCAmelCase_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict ): lowercase_ :int = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ :Union[str, Any] = [x for x in data if len(__lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' F'bytes: {bad_attributes}' ) lowercase_ :Union[str, Any] = np.asarray(__lowerCamelCase ) lowercase_ :Optional[int] = 1 lowercase_ :int = np.array_split(__lowerCamelCase ,__lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ :List[Any] = np.array_split(__lowerCamelCase ,__lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCamelCase ): lowercase_ :int = chunk_data else: lowercase_ :Tuple = data def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Tuple ): if name in group.attrs: lowercase_ :Optional[Any] = [n.decode("utf8" ) if hasattr(__lowerCamelCase ,"decode" ) else n for n in group.attrs[name]] else: lowercase_ :List[str] = [] lowercase_ :str = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(__lowerCamelCase ,"decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCAmelCase_ ( __lowerCamelCase : str ): def _expand_single_ad_tensor(__lowerCamelCase : Tuple ): if isinstance(__lowerCamelCase ,tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCamelCase ,axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor ,__lowerCamelCase )
147
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowercase__ : Optional[Any] = None lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Tuple = "▁" lowercase__ : Dict = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowercase__ : List[str] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } lowercase__ : List[str] = { "google/pegasus-xsum": 512, } class UpperCAmelCase ( __lowercase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PegasusTokenizer lowerCAmelCase_ = ["input_ids", "attention_mask"] def __init__( self : str , __lowercase : Dict=None , __lowercase : List[Any]=None , __lowercase : List[Any]="<pad>" , __lowercase : Tuple="</s>" , __lowercase : Any="<unk>" , __lowercase : Dict="<mask_2>" , __lowercase : List[Any]="<mask_1>" , __lowercase : str=None , __lowercase : str=1_03 , **__lowercase : Optional[int] , ): """simple docstring""" snake_case_ = offset if additional_special_tokens is not None: if not isinstance(snake_case_ , snake_case_ ): raise TypeError( f"additional_special_tokens should be of type {type(snake_case_ )}, but is" f" {type(snake_case_ )}" ) snake_case_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(snake_case_ ) , self.offset - 1 ) ] if len(set(snake_case_ ) ) != len(snake_case_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) snake_case_ = additional_special_tokens_extended else: snake_case_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( snake_case_ , tokenizer_file=snake_case_ , pad_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , mask_token=snake_case_ , mask_token_sent=snake_case_ , offset=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def snake_case__ ( self : List[str] , __lowercase : Any ): """simple docstring""" snake_case_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def snake_case__ ( self : List[str] , __lowercase : List , __lowercase : Optional[List] = None , __lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(snake_case_ ) elif token_ids_a is None: return self._special_token_mask(snake_case_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def snake_case__ ( self : Any , __lowercase : Tuple , __lowercase : Optional[int]=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def snake_case__ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
187
from __future__ import annotations import math import random from typing import Any class UpperCamelCase__ : def __init__(self : Optional[Any] ): __a : list[Any] = [] __a : int = 0 __a : int = 0 def lowerCAmelCase (self : Optional[int] ): return self.head == self.tail def lowerCAmelCase (self : List[Any] , snake_case_ : Any ): self.data.append(snake_case_ ) __a : str = self.tail + 1 def lowerCAmelCase (self : Optional[int] ): __a : int = self.data[self.head] __a : Union[str, Any] = self.head + 1 return ret def lowerCAmelCase (self : Union[str, Any] ): return self.tail - self.head def lowerCAmelCase (self : Union[str, Any] ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCamelCase__ : def __init__(self : List[str] , snake_case_ : Any ): __a : List[str] = data __a : MyNode | None = None __a : MyNode | None = None __a : int = 1 def lowerCAmelCase (self : int ): return self.data def lowerCAmelCase (self : Dict ): return self.left def lowerCAmelCase (self : int ): return self.right def lowerCAmelCase (self : int ): return self.height def lowerCAmelCase (self : Optional[Any] , snake_case_ : Any ): __a : Tuple = data def lowerCAmelCase (self : Any , snake_case_ : MyNode | None ): __a : Any = node def lowerCAmelCase (self : Union[str, Any] , snake_case_ : MyNode | None ): __a : List[str] = node def lowerCAmelCase (self : Optional[int] , snake_case_ : int ): __a : Union[str, Any] = height def __UpperCamelCase ( lowerCAmelCase__ : MyNode | None ): if node is None: return 0 return node.get_height() def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): if a > b: return a return b def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): print('''left rotation node:''' , node.get_data() ) __a : str = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCAmelCase__ ) __a : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) __a : Union[str, Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): print('''right rotation node:''' , node.get_data() ) __a : List[Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCAmelCase__ ) __a : Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) __a : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): __a : Union[str, Any] = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCAmelCase__ ) ) return right_rotation(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): __a : Optional[int] = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCAmelCase__ ) ) return left_rotation(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : MyNode | None , lowerCAmelCase__ : Any ): if node is None: return MyNode(lowerCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __a : Tuple = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __a : str = right_rotation(lowerCAmelCase__ ) else: __a : Dict = lr_rotation(lowerCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , lowerCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __a : Dict = node.get_right() assert right_child is not None if data < right_child.get_data(): __a : str = rl_rotation(lowerCAmelCase__ ) else: __a : Tuple = left_rotation(lowerCAmelCase__ ) __a : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) return node def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): while True: __a : Union[str, Any] = root.get_right() if right_child is None: break __a : str = right_child return root.get_data() def __UpperCamelCase ( lowerCAmelCase__ : MyNode ): while True: __a : Optional[int] = root.get_left() if left_child is None: break __a : int = left_child return root.get_data() def __UpperCamelCase ( lowerCAmelCase__ : MyNode , lowerCAmelCase__ : Any ): __a : Optional[Any] = root.get_left() __a : List[str] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __a : str = get_left_most(lowerCAmelCase__ ) root.set_data(lowerCAmelCase__ ) root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) elif left_child is not None: __a : int = left_child elif right_child is not None: __a : List[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) if get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __a : List[Any] = left_rotation(lowerCAmelCase__ ) else: __a : Union[str, Any] = rl_rotation(lowerCAmelCase__ ) elif get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __a : int = right_rotation(lowerCAmelCase__ ) else: __a : Tuple = lr_rotation(lowerCAmelCase__ ) __a : str = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCAmelCase__ ) return root class UpperCamelCase__ : def __init__(self : Optional[Any] ): __a : MyNode | None = None def lowerCAmelCase (self : List[Any] ): return get_height(self.root ) def lowerCAmelCase (self : Any , snake_case_ : Any ): print('''insert:''' + str(snake_case_ ) ) __a : List[Any] = insert_node(self.root , snake_case_ ) def lowerCAmelCase (self : Dict , snake_case_ : Any ): print('''delete:''' + str(snake_case_ ) ) if self.root is None: print('''Tree is empty!''' ) return __a : Union[str, Any] = del_node(self.root , snake_case_ ) def __str__(self : List[str] , ): # a level traversale, gives a more intuitive look on the tree __a : Union[str, Any] = '''''' __a : int = MyQueue() q.push(self.root ) __a : List[str] = self.get_height() if layer == 0: return output __a : List[Any] = 0 while not q.is_empty(): __a : List[str] = q.pop() __a : Optional[int] = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(snake_case_ ) q.push(snake_case_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __a : int = cnt + 1 for i in range(1_0_0 ): if cnt == math.pow(2 , snake_case_ ) - 1: __a : str = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __UpperCamelCase ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() lowercase__ =AVLtree() lowercase__ =list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
216
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : int , _lowerCamelCase : Dict , _lowerCamelCase : Any=13 , _lowerCamelCase : Optional[int]=7 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Any=True , _lowerCamelCase : Tuple=True , _lowerCamelCase : Tuple=99 , _lowerCamelCase : Tuple=32 , _lowerCamelCase : Tuple=5 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Tuple=37 , _lowerCamelCase : Union[str, Any]="gelu" , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=512 , _lowerCamelCase : str=16 , _lowerCamelCase : int=2 , _lowerCamelCase : str=0.0_2 , _lowerCamelCase : int=4 , ): _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_attention_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_choices def lowercase ( self : Union[str, Any] ): _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_attention_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase ( self : Tuple ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( A_ , unittest.TestCase ): __a = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowercase ( self : Dict ): _snake_case = FlaxAlbertModelTester(self ) @slow def lowercase ( self : List[Any] ): for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained('''albert-base-v2''' ) _snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowercase ( self : Optional[int] ): _snake_case = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _snake_case = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _snake_case = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _snake_case = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] _snake_case = (1, 11, 768) self.assertEqual(output.shape , _lowerCamelCase ) _snake_case = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) )
352
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=13 , _lowerCamelCase : int=32 , _lowerCamelCase : List[str]=3 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Optional[int]=[10, 20, 30, 40] , _lowerCamelCase : Dict=[2, 2, 3, 2] , _lowerCamelCase : Dict=True , _lowerCamelCase : Tuple=True , _lowerCamelCase : Tuple=37 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Any=0.0_2 , _lowerCamelCase : Optional[Any]=["stage2", "stage3", "stage4"] , _lowerCamelCase : Any=[2, 3, 4] , _lowerCamelCase : Any=None , ): _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = num_labels _snake_case = initializer_range _snake_case = out_features _snake_case = out_indices _snake_case = scope def lowercase ( self : Dict ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase ( self : str ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[str] ): _snake_case = ConvNextVaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] ): _snake_case = ConvNextVaForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple ): _snake_case = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case = None _snake_case = ConvNextVaBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase ( self : str ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict def lowercase ( self : int ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __a = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowercase ( self : str ): _snake_case = ConvNextVaModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def lowercase ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Dict ): return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def lowercase ( self : Dict ): pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def lowercase ( self : int ): pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def lowercase ( self : int ): pass def lowercase ( self : Union[str, Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case = True if model_class.__name__ in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ]: continue _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ).loss loss.backward() def lowercase ( self : Dict ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_with_labels() _snake_case = False _snake_case = True if ( model_class.__name__ in [*get_values(_lowerCamelCase ), *get_values(_lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.gradient_checkpointing_enable() model.train() _snake_case = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ).loss loss.backward() def lowercase ( self : Optional[Any] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowercase ( self : Optional[Any] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowercase ( self : Optional[int] ): def check_hidden_states_output(_lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] ): _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def lowercase ( self : str ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = ConvNextVaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _UpperCAmelCase ( ) -> Optional[Any]: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : List[Any] ): return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ): _snake_case = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = preprocessor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # verify the logits _snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) _snake_case = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) )
40
0
"""simple docstring""" import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
289
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" def run_func(lowercase ): @wraps(lowercase ) def run_in_eager_mode(*lowercase ,**lowercase ): return func(*lowercase ,**lowercase ) @wraps(lowercase ) @tf.function(experimental_compile=lowercase ) def run_in_graph_mode(*lowercase ,**lowercase ): return func(*lowercase ,**lowercase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = random.Random() _UpperCAmelCase = [rng.randint(0 ,vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowercase ,shape=(batch_size, sequence_length) ,dtype=tf.intaa ) class a ( lowerCAmelCase_ ): _snake_case : TensorFlowBenchmarkArguments _snake_case : PretrainedConfig _snake_case : str = "TensorFlow" @property def lowerCAmelCase_ ( self : Union[str, Any] ): return tf.__version__ def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): # initialize GPU on separate process _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_inference_func(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return self._measure_speed(_inference ) def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_train_func(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return self._measure_speed(_train ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __lowerCAmelCase ) _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_inference_func(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return self._measure_memory(_inference ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __lowerCAmelCase ) _UpperCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) _UpperCAmelCase = self._prepare_train_func(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return self._measure_memory(_train ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _UpperCAmelCase = ( hasattr(__lowerCAmelCase , """architectures""" ) and isinstance(config.architectures , __lowerCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _UpperCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _UpperCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _UpperCAmelCase = getattr(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = model_cls(__lowerCAmelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _UpperCAmelCase = TF_MODEL_MAPPING[config.__class__](__lowerCAmelCase ) # encoder-decoder has vocab size saved differently _UpperCAmelCase = config.vocab_size if hasattr(__lowerCAmelCase , """vocab_size""" ) else config.encoder.vocab_size _UpperCAmelCase = random_input_ids(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase , training=__lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__lowerCAmelCase , training=__lowerCAmelCase ) _UpperCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : int , __lowerCAmelCase : int ): _UpperCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) _UpperCAmelCase = ( hasattr(__lowerCAmelCase , """architectures""" ) and isinstance(config.architectures , __lowerCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _UpperCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model _UpperCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) _UpperCAmelCase = getattr(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = model_cls(__lowerCAmelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: _UpperCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__lowerCAmelCase ) # encoder-decoder has vocab size saved differently _UpperCAmelCase = config.vocab_size if hasattr(__lowerCAmelCase , """vocab_size""" ) else config.encoder.vocab_size _UpperCAmelCase = random_input_ids(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _UpperCAmelCase = model(__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase , labels=__lowerCAmelCase , training=__lowerCAmelCase )[0] _UpperCAmelCase = tf.gradients(__lowerCAmelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _UpperCAmelCase = model(__lowerCAmelCase , labels=__lowerCAmelCase , training=__lowerCAmelCase )[0] _UpperCAmelCase = tf.gradients(__lowerCAmelCase , model.trainable_variables ) return gradients _UpperCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : Any ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(__lowerCAmelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _UpperCAmelCase = timeit.repeat( __lowerCAmelCase , repeat=self.args.repeat , number=10 , ) return min(__lowerCAmelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Callable[[], None] ): logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) _UpperCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) _UpperCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() _UpperCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _UpperCAmelCase = nvml.nvmlDeviceGetMemoryInfo(__lowerCAmelCase ) _UpperCAmelCase = meminfo.used _UpperCAmelCase = Memory(__lowerCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) _UpperCAmelCase = None else: _UpperCAmelCase = measure_peak_memory_cpu(__lowerCAmelCase ) _UpperCAmelCase = Memory(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _UpperCAmelCase = stop_memory_tracing(__lowerCAmelCase ) if memory is None: _UpperCAmelCase = summary.total else: _UpperCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
289
1
from collections.abc import Callable def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE__ = a SCREAMING_SNAKE_CASE__ = b if function(UpperCamelCase_ ) == 0: # one of the a or b is a root for the function return a elif function(UpperCamelCase_ ) == 0: return b elif ( function(UpperCamelCase_ ) * function(UpperCamelCase_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: SCREAMING_SNAKE_CASE__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(UpperCamelCase_ ) == 0: return mid elif function(UpperCamelCase_ ) * function(UpperCamelCase_ ) < 0: SCREAMING_SNAKE_CASE__ = mid else: SCREAMING_SNAKE_CASE__ = mid SCREAMING_SNAKE_CASE__ = start + (end - start) / 2.0 return mid def _lowercase ( UpperCamelCase_ ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
350
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( _UpperCAmelCase ): A__ : Any =(CMStochasticIterativeScheduler,) A__ : Optional[int] =1_0 def A_ ( self : Dict , **UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**UpperCAmelCase_ ) return config def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0](**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps[0] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[1] SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ ( self : List[str] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def A_ ( self : Any ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 1 scheduler.set_timesteps(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCAmelCase_ ): # 1. scale model input SCREAMING_SNAKE_CASE__ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [106, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE__ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [39, 30, 12, 15, 0] with self.assertRaises(UpperCAmelCase_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) with self.assertRaises(UpperCAmelCase_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ )
169
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): lowercase = LongformerTokenizer lowercase = True lowercase = LongformerTokenizerFast lowercase = True def A__ ( self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCamelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase_ ) ) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = 'lower newer' UpperCamelCase = 'lower newer' return input_text, output_text def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = 'lower newer' UpperCamelCase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase = tokenizer.tokenize(lowercase_ ) # , add_prefix_space=True) self.assertListEqual(lowercase_ , lowercase_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=lowercase_ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=lowercase_ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) UpperCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) UpperCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) UpperCamelCase = tokenizer.encode( """sequence builders""" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCamelCase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = 'Encode this sequence.' UpperCamelCase = tokenizer.byte_encoder[' '.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCamelCase = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) UpperCamelCase = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase_ , lowercase_ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCamelCase = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) # Testing spaces after special tokens UpperCamelCase = '<mask>' tokenizer.add_special_tokens( {"""mask_token""": AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ )} ) # mask token has a left space UpperCamelCase = tokenizer.convert_tokens_to_ids(lowercase_ ) UpperCamelCase = 'Encode <mask> sequence' UpperCamelCase = 'Encode <mask>sequence' UpperCamelCase = tokenizer.encode(lowercase_ ) UpperCamelCase = encoded.index(lowercase_ ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase_ , lowercase_ ) UpperCamelCase = tokenizer.encode(lowercase_ ) UpperCamelCase = encoded.index(lowercase_ ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) def A__ ( self ) -> Tuple: """simple docstring""" pass def A__ ( self ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCamelCase = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) UpperCamelCase = 'A, <mask> AllenNLP sentence.' UpperCamelCase = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) UpperCamelCase = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowercase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def A__ ( self ) -> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , lowercase_ ) self.assertEqual(post_processor_state["""add_prefix_space"""] , lowercase_ ) self.assertEqual(post_processor_state["""trim_offsets"""] , lowercase_ ) def A__ ( self ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase = F"{text_of_1_token} {text_of_1_token}" UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCamelCase = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCamelCase = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCamelCase = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCamelCase = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCamelCase = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCamelCase = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCamelCase = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) UpperCamelCase = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , )
321
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCamelCase( ): UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=UpperCAmelCase_ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=UpperCAmelCase_ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=UpperCAmelCase_ , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=UpperCAmelCase_ , default=0 , help='cuda_id.' , ) UpperCAmelCase : str = parser.parse_args() return args def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if not len(UpperCAmelCase_ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) UpperCAmelCase , UpperCAmelCase : List[Any] = imgs[0].size UpperCAmelCase : str = Image.new('RGB' , size=(cols * w, rows * h) ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = grid.size for i, img in enumerate(UpperCAmelCase_ ): grid.paste(UpperCAmelCase_ , box=(i % cols * w, i // cols * h) ) return grid def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_="robotic cat with wings" , UpperCAmelCase_=7.5 , UpperCAmelCase_=50 , UpperCAmelCase_=1 , UpperCAmelCase_=42 , ): UpperCAmelCase : Optional[int] = torch.Generator(pipeline.device ).manual_seed(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = pipeline( UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , ).images UpperCAmelCase : Dict = int(math.sqrt(UpperCAmelCase_ ) ) UpperCAmelCase : Optional[int] = image_grid(UpperCAmelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowercase__ = parse_args() # Load models and create wrapper for stable diffusion lowercase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") lowercase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") lowercase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") lowercase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") lowercase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowercase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): lowercase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: lowercase__ = unet.to(torch.device("cuda", args.cuda_id)) lowercase__ = pipeline.to(unet.device) lowercase__ , lowercase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) lowercase__ = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
151
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _lowerCAmelCase ( __UpperCAmelCase ): def _a (self , lowercase=None , lowercase=None , lowercase=None , **lowercase ): if tokenize_kwargs is None: A_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) A_ : str = truncation A_ : List[str] = tokenize_kwargs A_ : Dict = {} if return_tensors is not None: A_ : List[Any] = return_tensors return preprocess_params, {}, postprocess_params def _a (self , lowercase , **lowercase ): A_ : Optional[int] = self.framework A_ : str = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) return model_inputs def _a (self , lowercase ): A_ : str = self.model(**lowercase ) return model_outputs def _a (self , lowercase , lowercase=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__(self , *lowercase , **lowercase ): return super().__call__(*lowercase , **lowercase )
135
'''simple docstring''' def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
135
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a : List[str] = 'src/diffusers' a : Optional[Any] = '.' # This is to make sure the diffusers module imported is the one in the repo. a : Dict = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) a : str = spec.loader.load_module() def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] , lowerCAmelCase__: List[str] ): """simple docstring""" return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , lowerCAmelCase__ ) is not None def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: Optional[Any] = object_name.split(""".""" ) UpperCAmelCase_: Tuple = 0 # First let's find the module where our object lives. UpperCAmelCase_: Union[str, Any] = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , F'{module}.py' ) ): i += 1 if i < len(lowerCAmelCase__ ): UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowerCAmelCase__ , F'{module}.py' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase_: List[Any] = f.readlines() # Now let's find the class / func in the code! UpperCAmelCase_: Any = """""" UpperCAmelCase_: Tuple = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCAmelCase_: Dict = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_: Optional[int] = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) a : List[str] = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') a : Optional[int] = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') a : List[Any] = re.compile(r'<FILL\s+[^>]*>') def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: Dict = code.split("""\n""" ) UpperCAmelCase_: Any = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ): """simple docstring""" UpperCAmelCase_: str = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: UpperCAmelCase_: Union[str, Any] = F'class Bla:\n{code}' UpperCAmelCase_: int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=lowerCAmelCase__ ) UpperCAmelCase_: int = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_: List[Any] = style_docstrings_in_code(lowerCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: int=False ): """simple docstring""" with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase_: List[str] = f.readlines() UpperCAmelCase_: List[str] = [] UpperCAmelCase_: Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): UpperCAmelCase_: Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = search.groups() UpperCAmelCase_: str = find_code_in_diffusers(lowerCAmelCase__ ) UpperCAmelCase_: int = get_indent(lowerCAmelCase__ ) UpperCAmelCase_: Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCAmelCase_: Tuple = theoretical_indent UpperCAmelCase_: Dict = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCAmelCase_: Tuple = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break UpperCAmelCase_: Any = lines[line_index] UpperCAmelCase_: Tuple = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(F'^{indent}# End copy' , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_: int = lines[start_index:line_index] UpperCAmelCase_: Union[str, Any] = """""".join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies UpperCAmelCase_: int = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] UpperCAmelCase_: Union[str, Any] = """\n""".join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: UpperCAmelCase_: Any = replace_pattern.replace("""with""" , """""" ).split(""",""" ) UpperCAmelCase_: int = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: str = pattern.groups() UpperCAmelCase_: int = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": UpperCAmelCase_: List[Any] = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) UpperCAmelCase_: Optional[int] = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCAmelCase_: Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) UpperCAmelCase_: Dict = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCAmelCase_: str = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCAmelCase_: Optional[int] = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase__ ) return diffs def lowerCAmelCase_ (lowerCAmelCase__: bool = False ): """simple docstring""" UpperCAmelCase_: Dict = glob.glob(os.path.join(lowerCAmelCase__ , """**/*.py""" ) , recursive=lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = [] for filename in all_files: UpperCAmelCase_: str = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: UpperCAmelCase_: Dict = """\n""".join(lowerCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a : List[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
147
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a : List[str] = 'src/diffusers' a : Optional[Any] = '.' # This is to make sure the diffusers module imported is the one in the repo. a : Dict = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) a : str = spec.loader.load_module() def lowerCAmelCase_ (lowerCAmelCase__: Optional[int] , lowerCAmelCase__: List[str] ): """simple docstring""" return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , lowerCAmelCase__ ) is not None def lowerCAmelCase_ (lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: Optional[Any] = object_name.split(""".""" ) UpperCAmelCase_: Tuple = 0 # First let's find the module where our object lives. UpperCAmelCase_: Union[str, Any] = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , F'{module}.py' ) ): i += 1 if i < len(lowerCAmelCase__ ): UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowerCAmelCase__ , F'{module}.py' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase_: List[Any] = f.readlines() # Now let's find the class / func in the code! UpperCAmelCase_: Any = """""" UpperCAmelCase_: Tuple = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(rF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCAmelCase_: Dict = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_: Optional[int] = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) a : List[str] = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') a : Optional[int] = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') a : List[Any] = re.compile(r'<FILL\s+[^>]*>') def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" UpperCAmelCase_: Dict = code.split("""\n""" ) UpperCAmelCase_: Any = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] ): """simple docstring""" UpperCAmelCase_: str = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: UpperCAmelCase_: Union[str, Any] = F'class Bla:\n{code}' UpperCAmelCase_: int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=lowerCAmelCase__ ) UpperCAmelCase_: int = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_: List[Any] = style_docstrings_in_code(lowerCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def lowerCAmelCase_ (lowerCAmelCase__: Tuple , lowerCAmelCase__: int=False ): """simple docstring""" with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase_: List[str] = f.readlines() UpperCAmelCase_: List[str] = [] UpperCAmelCase_: Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): UpperCAmelCase_: Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = search.groups() UpperCAmelCase_: str = find_code_in_diffusers(lowerCAmelCase__ ) UpperCAmelCase_: int = get_indent(lowerCAmelCase__ ) UpperCAmelCase_: Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCAmelCase_: Tuple = theoretical_indent UpperCAmelCase_: Dict = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCAmelCase_: Tuple = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break UpperCAmelCase_: Any = lines[line_index] UpperCAmelCase_: Tuple = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(F'^{indent}# End copy' , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase_: int = lines[start_index:line_index] UpperCAmelCase_: Union[str, Any] = """""".join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies UpperCAmelCase_: int = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] UpperCAmelCase_: Union[str, Any] = """\n""".join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: UpperCAmelCase_: Any = replace_pattern.replace("""with""" , """""" ).split(""",""" ) UpperCAmelCase_: int = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: str = pattern.groups() UpperCAmelCase_: int = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": UpperCAmelCase_: List[Any] = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) UpperCAmelCase_: Optional[int] = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCAmelCase_: Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) UpperCAmelCase_: Dict = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCAmelCase_: str = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCAmelCase_: Optional[int] = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase__ ) return diffs def lowerCAmelCase_ (lowerCAmelCase__: bool = False ): """simple docstring""" UpperCAmelCase_: Dict = glob.glob(os.path.join(lowerCAmelCase__ , """**/*.py""" ) , recursive=lowerCAmelCase__ ) UpperCAmelCase_: Optional[Any] = [] for filename in all_files: UpperCAmelCase_: str = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: UpperCAmelCase_: Dict = """\n""".join(lowerCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a : List[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
147
1
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCamelCase__ = 'src/diffusers' # Matches is_xxx_available() lowerCamelCase__ = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla lowerCamelCase__ = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') lowerCamelCase__ = '\n{0} = None\n' lowerCamelCase__ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' lowerCamelCase__ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[Any] = _re_backend.findall(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None return "_and_".join(__lowerCAmelCase ) def __lowerCAmelCase (): with open(os.path.join(__lowerCAmelCase , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase : Optional[int] = f.readlines() # Get to the point we do the actual imports for type checking _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Any = {} # Go through the end of the file while line_index < len(__lowerCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _UpperCAmelCase : List[Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 _UpperCAmelCase : Optional[int] = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCAmelCase ) and len(lines[line_index] ) > 1: _UpperCAmelCase : Any = lines[line_index] _UpperCAmelCase : int = _re_single_line_import.search(__lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCAmelCase ) > 0: _UpperCAmelCase : Optional[Any] = objects else: line_index += 1 return backend_specific_objects def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCAmelCase , __lowerCAmelCase ) else: return DUMMY_CLASS.format(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCAmelCase (__lowerCAmelCase=None ): if backend_specific_objects is None: _UpperCAmelCase : int = read_init() # For special correspondence backend to module name as used in the function requires_modulename _UpperCAmelCase : Union[str, Any] = {} for backend, objects in backend_specific_objects.items(): _UpperCAmelCase : Optional[int] = "[" + ", ".join(F"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" _UpperCAmelCase : Dict = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCAmelCase , __lowerCAmelCase ) for o in objects] ) _UpperCAmelCase : Optional[Any] = dummy_file return dummy_files def __lowerCAmelCase (__lowerCAmelCase=False ): _UpperCAmelCase : List[str] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _UpperCAmelCase : Union[str, Any] = {"torch": "pt"} # Locate actual dummy modules and read their content. _UpperCAmelCase : List[str] = os.path.join(__lowerCAmelCase , "utils" ) _UpperCAmelCase : List[Any] = { backend: os.path.join(__lowerCAmelCase , F"""dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py""" ) for backend in dummy_files.keys() } _UpperCAmelCase : Union[str, Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase : List[str] = f.read() else: _UpperCAmelCase : List[str] = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"""diffusers.utils.dummy_{short_names.get(__lowerCAmelCase , __lowerCAmelCase )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCamelCase__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
322
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float for row in range(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = matrix[row][col] _UpperCAmelCase : Optional[int] = vector[row][0] _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 0 while row < size and col < size: # pivoting _UpperCAmelCase : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowerCAmelCase , __lowerCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase : str = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowerCAmelCase ): for row in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = augmented[row][col] / augmented[col][col] for cola in range(__lowerCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowerCAmelCase ) ] def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : int = len(__lowerCAmelCase ) _UpperCAmelCase : Matrix = [[0 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix = [[0] for _ in range(__lowerCAmelCase )] _UpperCAmelCase : Matrix _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int for x_val, y_val in enumerate(__lowerCAmelCase ): for col in range(__lowerCAmelCase ): _UpperCAmelCase : Dict = (x_val + 1) ** (size - col - 1) _UpperCAmelCase : int = y_val _UpperCAmelCase : List[str] = solve(__lowerCAmelCase , __lowerCAmelCase ) def interpolated_func(__lowerCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowerCAmelCase ) ) return interpolated_func def __lowerCAmelCase (__lowerCAmelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (__lowerCAmelCase = question_function , __lowerCAmelCase = 10 ): _UpperCAmelCase : list[int] = [func(__lowerCAmelCase ) for x_val in range(1 , order + 1 )] _UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase : int = 0 _UpperCAmelCase : Callable[[int], int] _UpperCAmelCase : int for poly in polynomials: _UpperCAmelCase : int = 1 while func(__lowerCAmelCase ) == poly(__lowerCAmelCase ): x_val += 1 ret += poly(__lowerCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
322
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A : List[Any] = 1_2_8_0_2_2 A : Any = 1_2_8_0_2_8 @require_sentencepiece class _UpperCamelCase ( _a ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =MaMaaaTokenizer __UpperCAmelCase : List[str] =False __UpperCAmelCase : Tuple =False __UpperCAmelCase : str =True def snake_case ( self ): super().setUp() __lowerCAmelCase = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __lowerCAmelCase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __lowerCAmelCase = Path(self.tmpdirname ) save_json(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __lowerCAmelCase = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self , **__a ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def snake_case ( self , __a ): return ( "This is a test", "This is a test", ) def snake_case ( self ): __lowerCAmelCase = "</s>" __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(__UpperCAmelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def snake_case ( self ): pass def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [2, 3, 4, 5, 6] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) __lowerCAmelCase = tokenizer.convert_tokens_to_string(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , "This is a test" ) @slow def snake_case ( self ): # fmt: off __lowerCAmelCase = {"input_ids": [[12_80_22, 11_01_08, 3_97, 11, 3_82_72, 22_47, 12_48_11, 2_85, 1_81_05, 15_86, 2_07, 7, 3_95_34, 44_28, 3_97, 10_19, 1_81_05, 15_86, 2_07, 7, 4_13_37, 1_67_86, 2_41, 7, 2_02_14, 17, 12_56_90, 1_03_98, 7, 4_43_78, 5_80_69, 6_83_42, 77_98, 73_43, 11, 2_99, 3_33_10, 4, 1_58, 3_73_50, 9_40_77, 45_69, 2_99, 3_33_10, 90, 4, 5_28_40, 2_90, 4, 3_12_70, 1_12, 2_99, 6_82, 4, 5_28_40, 3_99_53, 1_40_79, 1_93, 5_25_19, 9_08_94, 1_78_94, 12_06_97, 11, 4_04_45, 5_51, 17, 10_19, 5_25_19, 9_08_94, 1_77_56, 9_63, 11, 4_04_45, 4_80, 17, 97_92, 11_20, 51_73, 13_93, 62_40, 1_67_86, 2_41, 12_09_96, 28, 12_45, 13_93, 11_82_40, 1_11_23, 10_19, 9_36_12, 26_91, 1_06_18, 9_80_58, 12_04_09, 19_28, 2_79, 4, 4_06_83, 3_67, 1_78, 2_07, 10_19, 1_03, 10_31_21, 5_06, 6_52_96, 5, 2], [12_80_22, 2_12_17, 3_67, 1_17, 12_54_50, 1_28, 7_19, 7, 73_08, 40, 9_36_12, 1_26_69, 11_16, 1_67_04, 71, 1_77_85, 36_99, 1_55_92, 35, 1_44, 95_84, 2_41, 1_19_43, 7_13, 9_50, 7_99, 22_47, 8_84_27, 1_50, 1_49, 11_88_13, 12_07_06, 10_19, 10_69_06, 8_15_18, 28, 12_24, 2_27_99, 3_97, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_80_22, 16_58, 12_33_11, 51_55, 55_78, 47_22, 2_79, 1_49_47, 23_66, 11_20, 11_97, 14, 13_48, 92_32, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] ="""facebook/m2m100_418M""" __UpperCAmelCase : Union[str, Any] =[ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Dict =[ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : List[str] =[EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def snake_case ( cls ): __lowerCAmelCase = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) __lowerCAmelCase = 1 return cls def snake_case ( self ): self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 12_80_06 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 12_80_22 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 12_80_76 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 12_80_63 ) def snake_case ( self ): __lowerCAmelCase = self.tokenizer.get_vocab() self.assertEqual(len(__UpperCAmelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , __UpperCAmelCase ) def snake_case ( self ): __lowerCAmelCase = "en" __lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCAmelCase ) def snake_case ( self ): self.assertIn(__UpperCAmelCase , self.tokenizer.all_special_ids ) # fmt: off __lowerCAmelCase = [FR_CODE, 53_64, 82, 86_42, 4, 2_94, 47, 8, 1_40_28, 1_36, 32_86, 97_06, 6, 9_07_97, 6, 14_40_12, 1_62, 8_81_28, 3_00_61, 5, 2] # fmt: on __lowerCAmelCase = self.tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCAmelCase ) def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__UpperCAmelCase ) __lowerCAmelCase = MaMaaaTokenizer.from_pretrained(__UpperCAmelCase ) self.assertDictEqual(new_tok.lang_token_to_id , __UpperCAmelCase ) @require_torch def snake_case ( self ): __lowerCAmelCase = "en" __lowerCAmelCase = "fr" __lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCAmelCase , return_tensors="pt" ) __lowerCAmelCase = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __lowerCAmelCase = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def snake_case ( self ): __lowerCAmelCase = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __lowerCAmelCase = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def snake_case ( self ): __lowerCAmelCase = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __lowerCAmelCase = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def snake_case ( self ): __lowerCAmelCase = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , { # en_XX, A, test, EOS "input_ids": [[12_80_22, 58, 41_83, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 12_80_06, } , )
57
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
"""simple docstring""" def lowerCAmelCase (__UpperCamelCase : int = 3 , __UpperCamelCase : int = 7 , __UpperCamelCase : int = 1_0_0_0_0_0_0 ): """simple docstring""" __UpperCamelCase =0 __UpperCamelCase =1 for current_denominator in range(1 , limit + 1 ): __UpperCamelCase =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __UpperCamelCase =current_numerator __UpperCamelCase =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
85
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( lowerCAmelCase__ ) -> Any: return x + 2 class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : int = '''x = 3''' UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Union[str, Any] = evaluate(_A , {} , state=_A ) assert result == 3 self.assertDictEqual(_A , {'''x''': 3} ) UpperCAmelCase__ : Union[str, Any] = '''x = y''' UpperCAmelCase__ : List[Any] = {'''y''': 5} UpperCAmelCase__ : Optional[int] = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_A , {'''x''': 5, '''y''': 5} ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = '''y = add_two(x)''' UpperCAmelCase__ : Dict = {'''x''': 3} UpperCAmelCase__ : int = evaluate(_A , {'''add_two''': add_two} , state=_A ) assert result == 5 self.assertDictEqual(_A , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase__ : Dict = evaluate(_A , {} , state=_A ) assert result is None assert "tried to execute add_two" in out.out def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = '''x = 3''' UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : str = evaluate(_A , {} , state=_A ) assert result == 3 self.assertDictEqual(_A , {'''x''': 3} ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' UpperCAmelCase__ : Optional[Any] = {'''x''': 3} UpperCAmelCase__ : List[Any] = evaluate(_A , {'''add_two''': add_two} , state=_A ) self.assertDictEqual(_A , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_A , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = '''x = 3\ny = 5''' UpperCAmelCase__ : int = {} UpperCAmelCase__ : Optional[Any] = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_A , {'''x''': 3, '''y''': 5} ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''text = f\'This is x: {x}.\'''' UpperCAmelCase__ : Any = {'''x''': 3} UpperCAmelCase__ : Optional[Any] = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_A , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = '''if x <= 3:\n y = 2\nelse:\n y = 5''' UpperCAmelCase__ : Dict = {'''x''': 3} UpperCAmelCase__ : Any = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_A , {'''x''': 3, '''y''': 2} ) UpperCAmelCase__ : Optional[Any] = {'''x''': 8} UpperCAmelCase__ : str = evaluate(_A , {} , state=_A ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_A , {'''x''': 8, '''y''': 5} ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = '''test_list = [x, add_two(x)]''' UpperCAmelCase__ : Union[str, Any] = {'''x''': 3} UpperCAmelCase__ : List[Any] = evaluate(_A , {'''add_two''': add_two} , state=_A ) self.assertListEqual(_A , [3, 5] ) self.assertDictEqual(_A , {'''x''': 3, '''test_list''': [3, 5]} ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = '''y = x''' UpperCAmelCase__ : Optional[int] = {'''x''': 3} UpperCAmelCase__ : str = evaluate(_A , {} , state=_A ) assert result == 3 self.assertDictEqual(_A , {'''x''': 3, '''y''': 3} ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = '''test_list = [x, add_two(x)]\ntest_list[1]''' UpperCAmelCase__ : List[Any] = {'''x''': 3} UpperCAmelCase__ : str = evaluate(_A , {'''add_two''': add_two} , state=_A ) assert result == 5 self.assertDictEqual(_A , {'''x''': 3, '''test_list''': [3, 5]} ) UpperCAmelCase__ : Dict = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' UpperCAmelCase__ : int = {'''x''': 3} UpperCAmelCase__ : Tuple = evaluate(_A , {'''add_two''': add_two} , state=_A ) assert result == 5 self.assertDictEqual(_A , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = '''x = 0\nfor i in range(3):\n x = i''' UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : str = evaluate(_A , {'''range''': range} , state=_A ) assert result == 2 self.assertDictEqual(_A , {'''x''': 2, '''i''': 2} )
181
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def __init__( self :int , lowerCamelCase :UNetaDModel , lowerCamelCase :ScoreSdeVeScheduler ) -> Any: super().__init__() self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self :Optional[Any] , lowerCamelCase :int = 1 , lowerCamelCase :int = 2000 , lowerCamelCase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase :Optional[str] = "pil" , lowerCamelCase :bool = True , **lowerCamelCase :Any , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase__ = self.unet.config.sample_size UpperCAmelCase__ = (batch_size, 3, img_size, img_size) UpperCAmelCase__ = self.unet UpperCAmelCase__ = randn_tensor(lowerCamelCase , generator=lowerCamelCase ) * self.scheduler.init_noise_sigma UpperCAmelCase__ = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase ) self.scheduler.set_sigmas(lowerCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase__ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase__ = self.unet(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_correct(lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ).prev_sample # prediction step UpperCAmelCase__ = model(lowerCamelCase , lowerCamelCase ).sample UpperCAmelCase__ = self.scheduler.step_pred(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = output.prev_sample, output.prev_sample_mean UpperCAmelCase__ = sample_mean.clamp(0 , 1 ) UpperCAmelCase__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase )
169
0
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _A ( ) -> int: '''simple docstring''' __lowercase = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]") __lowercase = parser.add_subparsers(help="diffusers-cli command helpers") # Register commands EnvironmentCommand.register_subcommand(UpperCamelCase_) # Let's go __lowercase = parser.parse_args() if not hasattr(UpperCamelCase_, "func"): parser.print_help() exit(1) # Run __lowercase = args.func(UpperCamelCase_) service.run() if __name__ == "__main__": main()
144
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : List[Any] = "swin2sr" __UpperCAmelCase : List[Any] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any, UpperCAmelCase__ : Dict=6_4, UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : Dict=3, UpperCAmelCase__ : Optional[Any]=1_8_0, UpperCAmelCase__ : Any=[6, 6, 6, 6, 6, 6], UpperCAmelCase__ : Dict=[6, 6, 6, 6, 6, 6], UpperCAmelCase__ : Tuple=8, UpperCAmelCase__ : Optional[int]=2.0, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Tuple=0.0, UpperCAmelCase__ : Optional[Any]=0.0, UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Dict="gelu", UpperCAmelCase__ : Dict=False, UpperCAmelCase__ : Dict=0.02, UpperCAmelCase__ : Tuple=1E-5, UpperCAmelCase__ : str=2, UpperCAmelCase__ : str=1.0, UpperCAmelCase__ : Optional[int]="1conv", UpperCAmelCase__ : Dict="pixelshuffle", **UpperCAmelCase__ : List[Any], ): super().__init__(**UpperCAmelCase__ ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(UpperCAmelCase__ ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = upscale __lowercase = img_range __lowercase = resi_connection __lowercase = upsampler
144
1
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = '''Hello world! cécé herlolip''' def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: bool ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase : Dict = FairseqRobertaModel.from_pretrained(_lowerCamelCase ) roberta.eval() # disable dropout __lowerCamelCase : str = roberta.model.encoder.sentence_encoder __lowerCamelCase : int = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: __lowerCamelCase : Dict = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" , _lowerCamelCase ) __lowerCamelCase : int = XLMRobertaXLForSequenceClassification(_lowerCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(_lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase : Optional[Any] = roberta_sent_encoder.embed_tokens.weight __lowerCamelCase : List[str] = roberta_sent_encoder.embed_positions.weight __lowerCamelCase : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __lowerCamelCase : Tuple = roberta_sent_encoder.layer_norm.weight __lowerCamelCase : Union[str, Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase : BertLayer = model.roberta.encoder.layer[i] __lowerCamelCase : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] __lowerCamelCase : RobertaAttention = layer.attention __lowerCamelCase : Optional[Any] = roberta_layer.self_attn_layer_norm.weight __lowerCamelCase : List[str] = roberta_layer.self_attn_layer_norm.bias # self attention __lowerCamelCase : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __lowerCamelCase : Dict = roberta_layer.self_attn.q_proj.weight __lowerCamelCase : Optional[int] = roberta_layer.self_attn.q_proj.bias __lowerCamelCase : List[str] = roberta_layer.self_attn.k_proj.weight __lowerCamelCase : Optional[int] = roberta_layer.self_attn.k_proj.bias __lowerCamelCase : Tuple = roberta_layer.self_attn.v_proj.weight __lowerCamelCase : str = roberta_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __lowerCamelCase : int = roberta_layer.self_attn.out_proj.weight __lowerCamelCase : Any = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __lowerCamelCase : Tuple = roberta_layer.final_layer_norm.weight __lowerCamelCase : Any = roberta_layer.final_layer_norm.bias # intermediate __lowerCamelCase : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCamelCase : Any = roberta_layer.fca.weight __lowerCamelCase : Tuple = roberta_layer.fca.bias # output __lowerCamelCase : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCamelCase : Dict = roberta_layer.fca.weight __lowerCamelCase : Optional[Any] = roberta_layer.fca.bias # end of layer if classification_head: __lowerCamelCase : Any = roberta.model.classification_heads["mnli"].dense.weight __lowerCamelCase : List[str] = roberta.model.classification_heads["mnli"].dense.bias __lowerCamelCase : Tuple = roberta.model.classification_heads["mnli"].out_proj.weight __lowerCamelCase : Optional[int] = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head __lowerCamelCase : List[str] = roberta.model.encoder.lm_head.dense.weight __lowerCamelCase : Optional[Any] = roberta.model.encoder.lm_head.dense.bias __lowerCamelCase : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight __lowerCamelCase : List[str] = roberta.model.encoder.lm_head.layer_norm.bias __lowerCamelCase : Union[str, Any] = roberta.model.encoder.lm_head.weight __lowerCamelCase : Dict = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase : torch.Tensor = roberta.encode(_lowerCamelCase ).unsqueeze(0 ) # batch of size 1 __lowerCamelCase : List[str] = model(_lowerCamelCase )[0] if classification_head: __lowerCamelCase : List[Any] = roberta.model.classification_heads["mnli"](roberta.extract_features(_lowerCamelCase ) ) else: __lowerCamelCase : Dict = roberta.model(_lowerCamelCase )[0] print(our_output.shape , their_output.shape ) __lowerCamelCase : Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowerCamelCase : Any = torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(_lowerCamelCase ).mkdir(parents=_lowerCamelCase , exist_ok=_lowerCamelCase ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __A = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
135
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A = logging.get_logger(__name__) class _snake_case ( a__ ): snake_case__ = ["input_features", "attention_mask"] def __init__( self : Union[str, Any] , UpperCAmelCase : Tuple=80 , UpperCAmelCase : Tuple=16000 , UpperCAmelCase : Any=80 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=True , **UpperCAmelCase : Optional[int] , ): super().__init__(feature_size=UpperCAmelCase , sampling_rate=UpperCAmelCase , padding_value=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : str = num_mel_bins __lowerCamelCase : Tuple = do_ceptral_normalize __lowerCamelCase : Dict = normalize_means __lowerCamelCase : str = normalize_vars __lowerCamelCase : Optional[int] = True def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : np.ndarray , ): __lowerCamelCase : Any = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __lowerCamelCase : Optional[int] = torch.from_numpy(UpperCAmelCase ).unsqueeze(0 ) __lowerCamelCase : str = ta_kaldi.fbank(UpperCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCamelCase__ ( UpperCAmelCase : np.ndarray , UpperCAmelCase : int , UpperCAmelCase : Optional[bool] = True , UpperCAmelCase : Optional[bool] = True , UpperCAmelCase : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: __lowerCamelCase : Any = x[:input_length].mean(axis=0 ) __lowerCamelCase : Optional[int] = np.subtract(UpperCAmelCase , UpperCAmelCase ) if normalize_vars: __lowerCamelCase : int = x[:input_length].std(axis=0 ) __lowerCamelCase : Union[str, Any] = np.divide(UpperCAmelCase , UpperCAmelCase ) if input_length < x.shape[0]: __lowerCamelCase : Any = padding_value # make sure array is in float32 __lowerCamelCase : List[str] = x.astype(np.floataa ) return x def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : List[np.ndarray] , UpperCAmelCase : Optional[np.ndarray] = None ): __lowerCamelCase : Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCAmelCase , UpperCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCAmelCase , UpperCAmelCase ) ] def __call__( self : Optional[Any] , UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , **UpperCAmelCase : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __lowerCamelCase : Optional[int] = isinstance(UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) __lowerCamelCase : Tuple = is_batched_numpy or ( isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase : Dict = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase , np.ndarray ): __lowerCamelCase : Optional[int] = np.asarray(UpperCAmelCase , dtype=np.floataa ) elif isinstance(UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCamelCase : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase : Optional[int] = [raw_speech] # extract fbank features __lowerCamelCase : Optional[Any] = [self._extract_fbank_features(UpperCAmelCase ) for waveform in raw_speech] # convert into correct format for padding __lowerCamelCase : Dict = BatchFeature({"input_features": features} ) __lowerCamelCase : Optional[Any] = self.pad( UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , ) # make sure list is in array format __lowerCamelCase : Tuple = padded_inputs.get("input_features" ) if isinstance(input_features[0] , UpperCAmelCase ): __lowerCamelCase : List[str] = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for feature in input_features] __lowerCamelCase : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: __lowerCamelCase : Union[str, Any] = [np.asarray(UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __lowerCamelCase : Optional[int] = ( np.array(UpperCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(UpperCAmelCase , max_length=UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __lowerCamelCase : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=UpperCAmelCase ) if return_tensors is not None: __lowerCamelCase : Optional[Any] = padded_inputs.convert_to_tensors(UpperCAmelCase ) return padded_inputs
135
1
"""simple docstring""" from typing import Any def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: '''simple docstring''' if not input_list: return [] _UpperCAmelCase : Dict = [input_list.count(_A ) for value in input_list] _UpperCAmelCase : Union[str, Any] = max(_A ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_A ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
358
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Any = "\nHuman: <<task>>\n\nAssistant: " _lowerCAmelCase : str = "huggingface-tools/default-prompts" _lowerCAmelCase : Union[str, Any] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int="run" ) -> int: '''simple docstring''' if prompt_or_repo_id is None: _UpperCAmelCase : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , SCREAMING_SNAKE_CASE__ ) is not None: return prompt_or_repo_id _UpperCAmelCase : Dict = cached_file( SCREAMING_SNAKE_CASE__ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f: return f.read()
202
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _a = '''src/diffusers''' # Matches is_xxx_available() _a = re.compile(R'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla _a = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') _a = ''' {0} = None ''' _a = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' _a = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def _a ( SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase: Union[str, Any] = _re_backend.findall(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(SCREAMING_SNAKE_CASE ) def _a ( ) -> Optional[int]: """simple docstring""" with open(os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCAmelCase: str = f.readlines() # Get to the point we do the actual imports for type checking __lowerCAmelCase: Tuple = 0 __lowerCAmelCase: int = {} # Go through the end of the file while line_index < len(SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __lowerCAmelCase: List[Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 __lowerCAmelCase: Tuple = [] # Until we unindent, add backend objects to the list while line_index < len(SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: __lowerCAmelCase: Optional[Any] = lines[line_index] __lowerCAmelCase: Tuple = _re_single_line_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(SCREAMING_SNAKE_CASE ) > 0: __lowerCAmelCase: Union[str, Any] = objects else: line_index += 1 return backend_specific_objects def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : str=None ) -> Union[str, Any]: """simple docstring""" if backend_specific_objects is None: __lowerCAmelCase: List[Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename __lowerCAmelCase: List[Any] = {} for backend, objects in backend_specific_objects.items(): __lowerCAmelCase: int = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']' __lowerCAmelCase: List[str] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for o in objects] ) __lowerCAmelCase: Union[str, Any] = dummy_file return dummy_files def _a ( SCREAMING_SNAKE_CASE : Union[str, Any]=False ) -> int: """simple docstring""" __lowerCAmelCase: Union[str, Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __lowerCAmelCase: List[Any] = {'torch': 'pt'} # Locate actual dummy modules and read their content. __lowerCAmelCase: int = os.path.join(SCREAMING_SNAKE_CASE , 'utils' ) __lowerCAmelCase: List[Any] = { backend: os.path.join(SCREAMING_SNAKE_CASE , f'''dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py''' ) for backend in dummy_files.keys() } __lowerCAmelCase: Union[str, Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCAmelCase: str = f.read() else: __lowerCAmelCase: List[str] = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'''diffusers.utils.dummy_{short_names.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _a = parser.parse_args() check_dummies(args.fix_and_overwrite)
322
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : List[str] = ['''input_features''', '''attention_mask'''] def __init__( self : str ,_a : Optional[Any]=80 ,_a : Tuple=1_6000 ,_a : Tuple=80 ,_a : Optional[Any]=0.0 ,_a : Optional[int]=True ,_a : Optional[int]=True ,_a : str=True ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__(feature_size=_a ,sampling_rate=_a ,padding_value=_a ,**_a ) _a : str = num_mel_bins _a : Dict = do_ceptral_normalize _a : Dict = normalize_means _a : List[Any] = normalize_vars _a : Optional[Any] = True def __lowercase ( self : Dict ,_a : np.ndarray ,): '''simple docstring''' _a : int = waveform * (2**15) # Kaldi compliance: 16-bit signed integers _a : Any = torch.from_numpy(_a ).unsqueeze(0 ) _a : Tuple = ta_kaldi.fbank(_a ,num_mel_bins=self.num_mel_bins ,sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __lowercase ( _a : np.ndarray ,_a : int ,_a : Optional[bool] = True ,_a : Optional[bool] = True ,_a : float = 0.0 ,): '''simple docstring''' if normalize_means: _a : Union[str, Any] = x[:input_length].mean(axis=0 ) _a : Any = np.subtract(_a ,_a ) if normalize_vars: _a : Union[str, Any] = x[:input_length].std(axis=0 ) _a : str = np.divide(_a ,_a ) if input_length < x.shape[0]: _a : List[Any] = padding_value # make sure array is in float32 _a : int = x.astype(np.floataa ) return x def __lowercase ( self : int ,_a : List[np.ndarray] ,_a : Optional[np.ndarray] = None ): '''simple docstring''' _a : Union[str, Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_a ,_a ,self.normalize_means ,self.normalize_vars ,self.padding_value ) for x, n in zip(_a ,_a ) ] def __call__( self : Optional[Any] ,_a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Optional[int] = None ,_a : bool = False ,_a : Optional[int] = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[int] = None ,_a : Optional[bool] = None ,**_a : List[str] ,): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _a : List[Any] = isinstance(_a ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _a : Dict = is_batched_numpy or ( isinstance(_a ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: _a : Tuple = [np.asarray(_a ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a ,np.ndarray ): _a : Tuple = np.asarray(_a ,dtype=np.floataa ) elif isinstance(_a ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a : Any = [raw_speech] # extract fbank features _a : Union[str, Any] = [self._extract_fbank_features(_a ) for waveform in raw_speech] # convert into correct format for padding _a : Tuple = BatchFeature({'input_features': features} ) _a : int = self.pad( _a ,padding=_a ,max_length=_a ,truncation=_a ,pad_to_multiple_of=_a ,return_attention_mask=_a ,**_a ,) # make sure list is in array format _a : Union[str, Any] = padded_inputs.get('input_features' ) if isinstance(input_features[0] ,_a ): _a : int = [np.asarray(_a ,dtype=np.floataa ) for feature in input_features] _a : List[Any] = padded_inputs.get('attention_mask' ) if attention_mask is not None: _a : List[Any] = [np.asarray(_a ,dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _a : Optional[Any] = ( np.array(_a ,dtype=np.intaa ) if self._get_padding_strategies(_a ,max_length=_a ) is not PaddingStrategy.DO_NOT_PAD else None ) _a : List[str] = self.normalize( padded_inputs['input_features'] ,attention_mask=_a ) if return_tensors is not None: _a : str = padded_inputs.convert_to_tensors(_a ) return padded_inputs
364
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
0
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCamelCase_ = 299792458 # Symbols UpperCamelCase_ = symbols('''ct x y z''') def lowerCamelCase_ ( _a : float ): '''simple docstring''' if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def lowerCamelCase_ ( _a : float ): '''simple docstring''' return 1 / sqrt(1 - beta(_a ) ** 2 ) def lowerCamelCase_ ( _a : float ): '''simple docstring''' return np.array( [ [gamma(_a ), -gamma(_a ) * beta(_a ), 0, 0], [-gamma(_a ) * beta(_a ), gamma(_a ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCamelCase_ ( _a : float , _a : np.ndarray | None = None ): '''simple docstring''' if event is None: UpperCAmelCase_ : Tuple = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_a ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCamelCase_ = transform(29979245) print('''Example of four vector: ''') print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values UpperCamelCase_ = {ct: c, x: 1, y: 1, z: 1} UpperCamelCase_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
345
'''simple docstring''' from statistics import mean, stdev def UpperCamelCase_( snake_case : list , snake_case : int = 3 ): '''simple docstring''' snake_case_ = min(snake_case ) snake_case_ = max(snake_case ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case ) for x in data] def UpperCamelCase_( snake_case : list , snake_case : int = 3 ): '''simple docstring''' snake_case_ = mean(snake_case ) snake_case_ = stdev(snake_case ) # standardize data return [round((x - mu) / (sigma) , snake_case ) for x in data]
85
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) class lowercase ( lowerCAmelCase__): """simple docstring""" a__ : str = "timm_backbone" def __init__( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : str=None , **__UpperCAmelCase : Optional[int] , ) -> Tuple: super().__init__(**a__ ) UpperCAmelCase_= backbone UpperCAmelCase_= num_channels UpperCAmelCase_= features_only UpperCAmelCase_= use_pretrained_backbone UpperCAmelCase_= True UpperCAmelCase_= out_indices if out_indices is not None else (-1,)
364
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __A = datasets.utils.logging.get_logger(__name__) __A = ['''names''', '''prefix'''] __A = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __A = ['''encoding_errors''', '''on_bad_lines'''] __A = ['''date_format'''] @dataclass class lowercase ( datasets.BuilderConfig): """simple docstring""" a__ : str = "," a__ : Optional[str] = None a__ : Optional[Union[int, List[int], str]] = "infer" a__ : Optional[List[str]] = None a__ : Optional[List[str]] = None a__ : Optional[Union[int, str, List[int], List[str]]] = None a__ : Optional[Union[List[int], List[str]]] = None a__ : Optional[str] = None a__ : bool = True a__ : Optional[Literal["c", "python", "pyarrow"]] = None a__ : Dict[Union[int, str], Callable[[Any], Any]] = None a__ : Optional[list] = None a__ : Optional[list] = None a__ : bool = False a__ : Optional[Union[int, List[int]]] = None a__ : Optional[int] = None a__ : Optional[Union[str, List[str]]] = None a__ : bool = True a__ : bool = True a__ : bool = False a__ : bool = True a__ : Optional[str] = None a__ : str = "." a__ : Optional[str] = None a__ : str = '"' a__ : int = 0 a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None a__ : Optional[str] = None a__ : bool = True a__ : bool = True a__ : int = 0 a__ : bool = True a__ : bool = False a__ : Optional[str] = None a__ : int = 1_0000 a__ : Optional[datasets.Features] = None a__ : Optional[str] = "strict" a__ : Literal["error", "warn", "skip"] = "error" a__ : Optional[str] = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: if self.delimiter is not None: UpperCAmelCase_= self.delimiter if self.column_names is not None: UpperCAmelCase_= self.column_names @property def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: UpperCAmelCase_= { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __UpperCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowercase ( datasets.ArrowBasedBuilder): """simple docstring""" a__ : int = CsvConfig def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Dict ) -> Optional[int]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase_= dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCAmelCase , (str, list, tuple) ): UpperCAmelCase_= data_files if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= [files] UpperCAmelCase_= [dl_manager.iter_files(__UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCAmelCase_= [] for split_name, files in data_files.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_= [files] UpperCAmelCase_= [dl_manager.iter_files(__UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCAmelCase , gen_kwargs={"""files""": files} ) ) return splits def _SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : pa.Table ) -> pa.Table: if self.config.features is not None: UpperCAmelCase_= self.config.features.arrow_schema if all(not require_storage_cast(__UpperCAmelCase ) for feature in self.config.features.values() ): # cheaper cast UpperCAmelCase_= pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__UpperCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCAmelCase_= table_cast(__UpperCAmelCase , __UpperCAmelCase ) return pa_table def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[Any] ) -> List[str]: UpperCAmelCase_= self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCAmelCase_= ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__UpperCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCAmelCase ) ): UpperCAmelCase_= pd.read_csv(__UpperCAmelCase , iterator=__UpperCAmelCase , dtype=__UpperCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__UpperCAmelCase ): UpperCAmelCase_= pa.Table.from_pandas(__UpperCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__UpperCAmelCase ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCAmelCase )}: {e}""" ) raise
277
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github A__ : Tuple = [ 'good first issue', 'feature request', 'wip', ] def _snake_case ( ) -> Any: lowerCamelCase_ : Optional[Any] =Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase_ : Union[str, Any] =g.get_repo("huggingface/accelerate" ) lowerCamelCase_ : Dict =repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase_ : int =sorted([comment for comment in issue.get_comments()] , key=lambda lowerCamelCase__ : i.created_at , reverse=lowerCamelCase__ ) lowerCamelCase_ : Optional[int] =comments[0] if len(lowerCamelCase__ ) > 0 else None lowerCamelCase_ : Tuple =dt.utcnow() lowerCamelCase_ : List[Any] =(current_time - issue.updated_at).days lowerCamelCase_ : Optional[int] =(current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
144
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float ) -> tuple: if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
144
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case ={ """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =["""ConditionalDetrFeatureExtractor"""] __snake_case =["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
'''simple docstring''' import requests from bsa import BeautifulSoup def a_ ( lowerCamelCase : str = "AAPL" ): lowerCAmelCase = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' lowerCAmelCase = BeautifulSoup(requests.get(lowerCamelCase ).text , 'html.parser' ) lowerCAmelCase = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
55
1
import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float = 1E-12 , SCREAMING_SNAKE_CASE_ : int = 1_00 , ): assert np.shape(SCREAMING_SNAKE_CASE_ )[0] == np.shape(SCREAMING_SNAKE_CASE_ )[1] # Ensure proper dimensionality. assert np.shape(SCREAMING_SNAKE_CASE_ )[0] == np.shape(SCREAMING_SNAKE_CASE_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) == np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(SCREAMING_SNAKE_CASE_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(SCREAMING_SNAKE_CASE_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(SCREAMING_SNAKE_CASE_ , np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_ ) return lambda_, vector def _a ( ): __lowerCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __lowerCAmelCase = np.array([41, 4, 20] ) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa ) __lowerCAmelCase = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(SCREAMING_SNAKE_CASE_ ) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(SCREAMING_SNAKE_CASE_ ) - np.abs(SCREAMING_SNAKE_CASE_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
92
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a__ ( unittest.TestCase ): def __magic_name__ ( self ): lowercase : Optional[int] = "laion/clap-htsat-unfused" lowercase : Optional[int] = tempfile.mkdtemp() def __magic_name__ ( self , **_a ): return RobertaTokenizer.from_pretrained(self.checkpoint , **_a ) def __magic_name__ ( self , **_a ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __magic_name__ ( self ): shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ): lowercase : Optional[int] = self.get_tokenizer() lowercase : List[Any] = self.get_feature_extractor() lowercase : Dict = ClapProcessor(tokenizer=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) lowercase : int = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _a ) def __magic_name__ ( self ): lowercase : Tuple = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase : Optional[int] = self.get_feature_extractor(do_normalize=_a , padding_value=1.0 ) lowercase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _a ) def __magic_name__ ( self ): lowercase : List[Any] = self.get_feature_extractor() lowercase : List[str] = self.get_tokenizer() lowercase : int = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Dict = floats_list((3, 1_000) ) lowercase : str = feature_extractor(_a , return_tensors="np" ) lowercase : Dict = processor(audios=_a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ ( self ): lowercase : Dict = self.get_feature_extractor() lowercase : int = self.get_tokenizer() lowercase : Dict = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Optional[Any] = "This is a test string" lowercase : Any = processor(text=_a ) lowercase : List[Any] = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ): lowercase : Optional[int] = self.get_feature_extractor() lowercase : Any = self.get_tokenizer() lowercase : Union[str, Any] = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : str = processor.batch_decode(_a ) lowercase : Optional[int] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : List[Any] = self.get_feature_extractor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Any = ClapProcessor(tokenizer=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
202
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _A ( _a : Optional[Any] , _a : Dict , _a : Optional[int] ): """simple docstring""" A = AutoConfig.from_pretrained(_UpperCAmelCase ) A = FlaxAutoModelForSeqaSeqLM.from_config(config=_UpperCAmelCase ) A = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) A = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": A = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": A = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A = 'TransientGlobalSelfAttention' else: raise ValueError( """Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`""" """ attribute with a value from [\'local\', \'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): A = f'layers_{str(_UpperCAmelCase )}' # Self-Attention A = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] A = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] A = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] A = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization A = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: A = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] A = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: A = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] A = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization A = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning A = flax_model.params['encoder']['block'][str(_UpperCAmelCase )]['layer'] A = tax_attention_key A = tax_attention_out A = tax_attention_query A = tax_attention_value A = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A = tax_global_layer_norm if split_mlp_wi: A = tax_mlp_wi_a A = tax_mlp_wi_a else: A = tax_mlp_wi A = tax_mlp_wo A = tax_mlp_layer_norm A = flax_model_encoder_layer_block # Only for layer 0: A = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T A = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T A = tax_encoder_global_rel_embedding # Assigning A = tax_model['target']['encoder']['encoder_norm']['scale'] A = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): A = f'layers_{str(_UpperCAmelCase )}' # Self-Attention A = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] A = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] A = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] A = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization A = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention A = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] A = tax_enc_dec_attention_module['key']['kernel'] A = tax_enc_dec_attention_module['out']['kernel'] A = tax_enc_dec_attention_module['query']['kernel'] A = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization A = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: A = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] A = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: A = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] A = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization A = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning A = flax_model.params['decoder']['block'][str(_UpperCAmelCase )]['layer'] A = tax_attention_key A = tax_attention_out A = tax_attention_query A = tax_attention_value A = tax_pre_attention_layer_norm A = tax_enc_dec_attention_key A = tax_enc_dec_attention_out A = tax_enc_dec_attention_query A = tax_enc_dec_attention_value A = tax_cross_layer_norm if split_mlp_wi: A = tax_mlp_wi_a A = tax_mlp_wi_a else: A = tax_mlp_wi A = tax_mlp_wo A = txa_mlp_layer_norm A = flax_model_decoder_layer_block # Decoder Normalization A = tax_model['target']['decoder']['decoder_norm']['scale'] A = txa_decoder_norm # Only for layer 0: A = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T A = tax_decoder_rel_embedding # Token Embeddings A = tax_model['target']['token_embedder']['embedding'] A = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: A = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(_UpperCAmelCase ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) UpperCAmelCase =parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
351
"""simple docstring""" import pytest UpperCAmelCase ="__dummy_dataset1__" UpperCAmelCase ="\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _A ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _A ( _a : str , _a : List[Any] , _a : List[Any] ): """simple docstring""" A = dataset_loading_script_name A = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=_a ) A = script_dir / f'{script_name}.py' with open(_a , """w""" ) as f: f.write(_a ) return str(_a )
77
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : Dict = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'wavlm' def __init__( self , _lowerCamelCase=32 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase="group" , _lowerCamelCase="gelu" , _lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCamelCase=False , _lowerCamelCase=128 , _lowerCamelCase=16 , _lowerCamelCase=320 , _lowerCamelCase=800 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_5 , _lowerCamelCase=10 , _lowerCamelCase=2 , _lowerCamelCase=0.0 , _lowerCamelCase=10 , _lowerCamelCase=320 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=100 , _lowerCamelCase=256 , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase="mean" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=256 , _lowerCamelCase=(512, 512, 512, 512, 1500) , _lowerCamelCase=(5, 3, 3, 1, 1) , _lowerCamelCase=(1, 2, 3, 1, 1) , _lowerCamelCase=512 , _lowerCamelCase=80 , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=False , _lowerCamelCase=3 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[Any]: super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Any = feat_extract_norm SCREAMING_SNAKE_CASE : Dict = feat_extract_activation SCREAMING_SNAKE_CASE : Union[str, Any] = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = conv_bias SCREAMING_SNAKE_CASE : Optional[int] = num_buckets SCREAMING_SNAKE_CASE : List[str] = max_bucket_distance SCREAMING_SNAKE_CASE : Dict = num_conv_pos_embeddings SCREAMING_SNAKE_CASE : Dict = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE : Optional[int] = len(self.conv_dim ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : int = hidden_dropout SCREAMING_SNAKE_CASE : Dict = attention_dropout SCREAMING_SNAKE_CASE : Tuple = activation_dropout SCREAMING_SNAKE_CASE : Optional[Any] = feat_proj_dropout SCREAMING_SNAKE_CASE : Any = final_dropout SCREAMING_SNAKE_CASE : List[Any] = layerdrop SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : int = num_ctc_classes SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : int = do_stable_layer_norm SCREAMING_SNAKE_CASE : List[str] = use_weighted_layer_sum SCREAMING_SNAKE_CASE : str = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE : List[Any] = apply_spec_augment SCREAMING_SNAKE_CASE : Tuple = mask_time_prob SCREAMING_SNAKE_CASE : str = mask_time_length SCREAMING_SNAKE_CASE : Union[str, Any] = mask_time_min_masks SCREAMING_SNAKE_CASE : Tuple = mask_feature_prob SCREAMING_SNAKE_CASE : Union[str, Any] = mask_feature_length # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE : int = num_codevectors_per_group SCREAMING_SNAKE_CASE : Any = num_codevector_groups SCREAMING_SNAKE_CASE : Union[str, Any] = contrastive_logits_temperature SCREAMING_SNAKE_CASE : List[Any] = num_negatives SCREAMING_SNAKE_CASE : str = codevector_dim SCREAMING_SNAKE_CASE : Union[str, Any] = proj_codevector_dim SCREAMING_SNAKE_CASE : Dict = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE : List[str] = ctc_loss_reduction SCREAMING_SNAKE_CASE : int = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE : Union[str, Any] = add_adapter SCREAMING_SNAKE_CASE : List[str] = adapter_kernel_size SCREAMING_SNAKE_CASE : Tuple = adapter_stride SCREAMING_SNAKE_CASE : Dict = num_adapter_layers SCREAMING_SNAKE_CASE : str = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE : Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE : Tuple = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = list(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = xvector_output_dim @property def __lowerCAmelCase ( self ) ->int: return functools.reduce(operator.mul , self.conv_stride , 1 )
313
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Any = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
318
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
318
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a ={ """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
73
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a_ :List[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any], **_snake_case : str ) ->Dict: super().__init__(**_snake_case ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : Union[str, Any], _snake_case : Union[np.ndarray, bytes, str], **_snake_case : Tuple ) ->Dict: return super().__call__(_snake_case, **_snake_case ) def lowercase_ ( self : Tuple, **_snake_case : Any ) ->Union[str, Any]: snake_case__ : str = {} if "candidate_labels" in kwargs: snake_case__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: snake_case__ : str = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowercase_ ( self : Dict, _snake_case : str, _snake_case : Optional[int]=None, _snake_case : List[str]="This is a sound of {}." ) ->int: if isinstance(_snake_case, _snake_case ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png snake_case__ : List[Any] = requests.get(_snake_case ).content else: with open(_snake_case, 'rb' ) as f: snake_case__ : Union[str, Any] = f.read() if isinstance(_snake_case, _snake_case ): snake_case__ : List[Any] = ffmpeg_read(_snake_case, self.feature_extractor.sampling_rate ) if not isinstance(_snake_case, np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) snake_case__ : Tuple = self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='pt' ) snake_case__ : int = candidate_labels snake_case__ : int = [hypothesis_template.format(_snake_case ) for x in candidate_labels] snake_case__ : Optional[int] = self.tokenizer(_snake_case, return_tensors=self.framework, padding=_snake_case ) snake_case__ : List[Any] = [text_inputs] return inputs def lowercase_ ( self : Optional[int], _snake_case : Optional[Any] ) ->int: snake_case__ : Optional[int] = model_inputs.pop('candidate_labels' ) snake_case__ : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0], _snake_case ): snake_case__ : Optional[Any] = text_inputs[0] else: # Batching case. snake_case__ : int = text_inputs[0][0] snake_case__ : Any = self.model(**_snake_case, **_snake_case ) snake_case__ : List[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def lowercase_ ( self : Union[str, Any], _snake_case : str ) ->List[str]: snake_case__ : int = model_outputs.pop('candidate_labels' ) snake_case__ : List[Any] = model_outputs['logits'][0] if self.framework == "pt": snake_case__ : Tuple = logits.softmax(dim=0 ) snake_case__ : Union[str, Any] = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) snake_case__ : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_snake_case, _snake_case ), key=lambda _snake_case : -x[0] ) ] return result
277
0
import argparse import os import re import packaging.version __lowerCAmelCase = '''examples/''' __lowerCAmelCase = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __lowerCAmelCase = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } __lowerCAmelCase = '''README.md''' def snake_case_ ( snake_case , snake_case , snake_case ) -> str: with open(snake_case , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase__: Any = f.read() lowercase__ , lowercase__: List[str] = REPLACE_PATTERNS[pattern] lowercase__: Optional[Any] = replace.replace('VERSION' , snake_case ) lowercase__: Optional[int] = re_pattern.sub(snake_case , snake_case ) with open(snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(snake_case ) def snake_case_ ( snake_case ) -> str: for folder, directories, fnames in os.walk(snake_case ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(snake_case , snake_case ) , snake_case , pattern='examples' ) def snake_case_ ( snake_case , snake_case=False ) -> Dict: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case , snake_case , snake_case ) if not patch: update_version_in_examples(snake_case ) def snake_case_ ( ) -> List[str]: lowercase__: Tuple = '🤗 Transformers currently provides the following architectures' lowercase__: int = '1. Want to contribute a new model?' with open(snake_case , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase__: List[str] = f.readlines() # Find the start of the list. lowercase__: Tuple = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase__: Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowercase__: str = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(snake_case ) def snake_case_ ( ) -> Optional[int]: with open(REPLACE_FILES['init'] , 'r' ) as f: lowercase__: List[Any] = f.read() lowercase__: int = REPLACE_PATTERNS['init'][0].search(snake_case ).groups()[0] return packaging.version.parse(snake_case ) def snake_case_ ( snake_case=False ) -> Any: lowercase__: Dict = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowercase__: List[Any] = default_version.base_version elif patch: lowercase__: Any = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowercase__: str = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowercase__: List[str] = input(f'Which version are you releasing? [{default_version}]' ) if len(snake_case ) == 0: lowercase__: List[str] = default_version print(f'Updating version to {version}.' ) global_version_update(snake_case , patch=snake_case ) def snake_case_ ( ) -> str: lowercase__: int = get_version() lowercase__: List[Any] = f'{current_version.major}.{current_version.minor + 1}.0.dev0' lowercase__: Union[str, Any] = current_version.base_version # Check with the user we got that right. lowercase__: Any = input(f'Which version are we developing now? [{dev_version}]' ) if len(snake_case ) == 0: lowercase__: int = dev_version print(f'Updating version to {version}.' ) global_version_update(snake_case ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __lowerCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
288
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case_ ( snake_case , snake_case , snake_case = False ) -> list[float]: if radian_mode: return [magnitude * cos(snake_case ), magnitude * sin(snake_case )] return [magnitude * cos(radians(snake_case ) ), magnitude * sin(radians(snake_case ) )] def snake_case_ ( snake_case , snake_case , snake_case = 10**-1 ) -> bool: lowercase__: NDArray[floataa] = cross(snake_case , snake_case ) lowercase__: float = sum(snake_case ) return abs(snake_case ) < eps if __name__ == "__main__": # Test to check if it works __lowerCAmelCase = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) __lowerCAmelCase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg __lowerCAmelCase = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) __lowerCAmelCase = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg __lowerCAmelCase = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) __lowerCAmelCase = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
288
1
'''simple docstring''' import requests from bsa import BeautifulSoup def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : dict ): lowerCamelCase_ = BeautifulSoup(requests.get(UpperCAmelCase_ , params=UpperCAmelCase_ ).content , "html.parser" ) lowerCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) lowerCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": a_ : str = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
55
'''simple docstring''' a_ : Any = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
55
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): __UpperCamelCase =key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): __UpperCamelCase =key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __UpperCamelCase =key[key.find('patch_embed' ) + len('patch_embed' )] __UpperCamelCase =key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(lowerCAmelCase__ )-1}' ) if "norm" in key: __UpperCamelCase =key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __UpperCamelCase =key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] __UpperCamelCase =key.replace(F'layer_norm{idx}' , F'layer_norm.{int(lowerCAmelCase__ )-1}' ) if "layer_norm1" in key: __UpperCamelCase =key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: __UpperCamelCase =key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 __UpperCamelCase =key[key.find('block' ) + len('block' )] __UpperCamelCase =key.replace(F'block{idx}' , F'block.{int(lowerCAmelCase__ )-1}' ) if "attn.q" in key: __UpperCamelCase =key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: __UpperCamelCase =key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: __UpperCamelCase =key.replace('attn' , 'attention.self' ) if "fc1" in key: __UpperCamelCase =key.replace('fc1' , 'dense1' ) if "fc2" in key: __UpperCamelCase =key.replace('fc2' , 'dense2' ) if "linear_pred" in key: __UpperCamelCase =key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: __UpperCamelCase =key.replace('linear_fuse.conv' , 'linear_fuse' ) __UpperCamelCase =key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __UpperCamelCase =key[key.find('linear_c' ) + len('linear_c' )] __UpperCamelCase =key.replace(F'linear_c{idx}' , F'linear_c.{int(lowerCAmelCase__ )-1}' ) if "bot_conv" in key: __UpperCamelCase =key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: __UpperCamelCase =key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: __UpperCamelCase =key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: __UpperCamelCase =key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: __UpperCamelCase =key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: __UpperCamelCase =key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: __UpperCamelCase =key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): __UpperCamelCase =key.replace('module.last_layer_depth' , 'head.head' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __UpperCamelCase =state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) __UpperCamelCase =state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict __UpperCamelCase =kv_weight[ : config.hidden_sizes[i], : ] __UpperCamelCase =kv_bias[: config.hidden_sizes[i]] __UpperCamelCase =kv_weight[ config.hidden_sizes[i] :, : ] __UpperCamelCase =kv_bias[config.hidden_sizes[i] :] def _UpperCAmelCase ( ): __UpperCamelCase ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCamelCase =Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): __UpperCamelCase =GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) __UpperCamelCase =GLPNImageProcessor() # prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict __UpperCamelCase =torch.load(lowerCAmelCase__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(lowerCAmelCase__ ) # key and value matrices need special treatment read_in_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # create HuggingFace model and load state dict __UpperCamelCase =GLPNForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # forward pass __UpperCamelCase =model(lowerCAmelCase__ ) __UpperCamelCase =outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: __UpperCamelCase =torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: __UpperCamelCase =torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) __UpperCamelCase =torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) _A = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
366
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self , A_ ) -> Optional[int]: super().__init__() __UpperCamelCase =torchvision.models.resnetaaa(pretrained=A_ ) __UpperCamelCase =list(model.children() )[:-2] __UpperCamelCase =nn.Sequential(*A_ ) __UpperCamelCase =nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _a ( self , A_ ) -> int: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 __UpperCamelCase =self.pool(self.model(A_ ) ) __UpperCamelCase =torch.flatten(A_ , start_dim=2 ) __UpperCamelCase =out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =[json.loads(A_ ) for l in open(A_ )] __UpperCamelCase =os.path.dirname(A_ ) __UpperCamelCase =tokenizer __UpperCamelCase =labels __UpperCamelCase =len(A_ ) __UpperCamelCase =max_seq_length __UpperCamelCase =transforms def __len__( self ) -> Any: return len(self.data ) def __getitem__( self , A_ ) -> Union[str, Any]: __UpperCamelCase =torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=A_ ) ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =sentence[0], sentence[1:-1], sentence[-1] __UpperCamelCase =sentence[: self.max_seq_length] __UpperCamelCase =torch.zeros(self.n_classes ) __UpperCamelCase =1 __UpperCamelCase =Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) __UpperCamelCase =self.transforms(A_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _a ( self ) -> List[str]: __UpperCamelCase =Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =[len(row['sentence'] ) for row in batch] __UpperCamelCase , __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.long ) __UpperCamelCase =torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =input_row['sentence'] __UpperCamelCase =1 __UpperCamelCase =torch.stack([row['image'] for row in batch] ) __UpperCamelCase =torch.stack([row['label'] for row in batch] ) __UpperCamelCase =torch.stack([row['image_start_token'] for row in batch] ) __UpperCamelCase =torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _UpperCAmelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _UpperCAmelCase ( ): return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
117
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if number > 0: raise ValueError('''input must be a negative integer''' ) __UpperCamelCase :str = len(bin(SCREAMING_SNAKE_CASE )[3:] ) __UpperCamelCase :Optional[Any] = bin(abs(SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:] __UpperCamelCase :Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
43
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a_ ( _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : int = args.pruning_method lowercase__ : Tuple = args.threshold lowercase__ : str = args.model_name_or_path.rstrip('/' ) lowercase__ : List[Any] = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) lowercase__ : Optional[Any] = torch.load(os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) lowercase__ : List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowercase__ : Tuple = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: lowercase__ : List[str] = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: lowercase__ : Optional[Any] = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": lowercase__ : Optional[Any] = MagnitudeBinarizer.apply(inputs=_lowerCAmelCase , threshold=_lowerCAmelCase ) lowercase__ : Optional[int] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue lowercase__ : Optional[Any] = name[:-6] lowercase__ : Optional[int] = model[f"""{prefix_}mask_scores"""] lowercase__ : Any = TopKBinarizer.apply(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[Any] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowercase__ : Any = name[:-6] lowercase__ : Optional[Any] = model[f"""{prefix_}mask_scores"""] lowercase__ : Tuple = ThresholdBinarizer.apply(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : List[str] = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue lowercase__ : Union[str, Any] = name[:-6] lowercase__ : Optional[int] = model[f"""{prefix_}mask_scores"""] lowercase__ , lowercase__ : Tuple = -0.1, 1.1 lowercase__ : Optional[Any] = torch.sigmoid(_lowerCAmelCase ) lowercase__ : Optional[Any] = s * (r - l) + l lowercase__ : Optional[Any] = s_bar.clamp(min=0.0 , max=1.0 ) lowercase__ : Union[str, Any] = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowercase__ : Union[str, Any] = os.path.join( os.path.dirname(_lowerCAmelCase ) , f"""bertarized_{os.path.basename(_lowerCAmelCase )}""" ) if not os.path.isdir(_lowerCAmelCase ): shutil.copytree(_lowerCAmelCase , _lowerCAmelCase ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) _UpperCamelCase : Dict = parser.parse_args() main(args)
77
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple): """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
361
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
313
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase : int = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowercase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
318
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class __lowercase ( _lowercase ): lowerCamelCase : int = "ctrl" lowerCamelCase : Optional[int] = ["past_key_values"] lowerCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self , A=2_4_6_5_3_4 , A=2_5_6 , A=1_2_8_0 , A=8_1_9_2 , A=4_8 , A=1_6 , A=0.1 , A=0.1 , A=1E-6 , A=0.02 , A=True , **A , ): lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Optional[Any] = n_positions lowerCamelCase_ : List[Any] = n_embd lowerCamelCase_ : Optional[Any] = n_layer lowerCamelCase_ : Any = n_head lowerCamelCase_ : int = dff lowerCamelCase_ : str = resid_pdrop lowerCamelCase_ : List[Any] = embd_pdrop lowerCamelCase_ : List[Any] = layer_norm_epsilon lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Dict = use_cache super().__init__(**A )
318
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase=True , _lowerCamelCase=5_1_2 , _lowerCamelCase=1_6 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): UpperCamelCase_: Any = parent UpperCamelCase_: Union[str, Any] = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: Union[str, Any] = is_training UpperCamelCase_: List[str] = use_input_mask UpperCamelCase_: Union[str, Any] = use_token_type_ids UpperCamelCase_: int = use_labels UpperCamelCase_: List[Any] = vocab_size UpperCamelCase_: Optional[int] = hidden_size UpperCamelCase_: Tuple = num_hidden_layers UpperCamelCase_: Union[str, Any] = num_attention_heads UpperCamelCase_: Any = intermediate_multiple_size UpperCamelCase_: str = hidden_act UpperCamelCase_: Optional[Any] = hidden_dropout UpperCamelCase_: Optional[int] = attention_dropout UpperCamelCase_: Dict = weight_tying UpperCamelCase_: List[Any] = max_position_embeddings UpperCamelCase_: Dict = type_vocab_size UpperCamelCase_: str = type_sequence_label_size UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: Optional[Any] = num_labels UpperCamelCase_: List[Any] = num_choices UpperCamelCase_: List[str] = scope def _a ( self ): UpperCamelCase_: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Union[str, Any] = None if self.use_input_mask: UpperCamelCase_: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: str = None if self.use_labels: UpperCamelCase_: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_: Dict = self.get_config() return config, input_ids, input_mask, token_labels def _a ( self ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase_: Any = True return config, input_ids, input_mask, token_labels def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = GPTNeoXJapaneseModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) UpperCamelCase_: Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = True UpperCamelCase_: Optional[Any] = GPTNeoXJapaneseModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: int = GPTNeoXJapaneseForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = True UpperCamelCase_: Any = GPTNeoXJapaneseForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass UpperCamelCase_: Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_: List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_: Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_: List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_: Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_: Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , output_hidden_states=_lowerCamelCase ) UpperCamelCase_: int = output_from_no_past['hidden_states'][0] UpperCamelCase_: Optional[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , output_hidden_states=_lowerCamelCase , )['hidden_states'][0] # select random slice UpperCamelCase_: str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_: Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_: List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def _a ( self ): UpperCamelCase_: Tuple = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[int] = config_and_inputs UpperCamelCase_: Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : int =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () a : int =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () a : Any =( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) a : Any =False a : Union[str, Any] =False a : Dict =False a : Union[str, Any] =False def _a ( self ): UpperCamelCase_: Optional[Any] = GPTNeoXJapaneseModelTester(self ) UpperCamelCase_: str = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=3_7 ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): # This regression test was failing with PyTorch < 1.3 UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCamelCase_: Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_: List[str] = 'abeja/gpt-neox-japanese-2.7b' UpperCamelCase_: Optional[Any] = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] UpperCamelCase_: List[str] = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] UpperCamelCase_: Dict = GPTNeoXJapaneseTokenizer.from_pretrained(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowerCamelCase ) UpperCamelCase_: Tuple = [] for prompt in prompts: UpperCamelCase_: Tuple = tokenizer(_lowerCamelCase , return_tensors='pt' ).input_ids UpperCamelCase_: int = model.generate(_lowerCamelCase , max_length=5_0 ) UpperCamelCase_: Tuple = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
292
def snake_case (UpperCAmelCase__ ) -> int: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: UpperCamelCase_: List[Any] = F'''The input value of [n={number}] has to be > 0''' raise ValueError(UpperCAmelCase__ ) else: UpperCamelCase_: str = sylvester(number - 1 ) UpperCamelCase_: str = num - 1 UpperCamelCase_: Any = num return lower * upper + 1 if __name__ == "__main__": print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
292
1
"""simple docstring""" from __future__ import annotations def _UpperCAmelCase ( __lowerCamelCase : list , __lowerCamelCase : int ) -> Optional[Any]: # Checks if the entire collection has been sorted if len(__lowerCamelCase ) <= 1 or n <= 1: return insert_next(__lowerCamelCase , n - 1 ) rec_insertion_sort(__lowerCamelCase , n - 1 ) def _UpperCAmelCase ( __lowerCamelCase : list , __lowerCamelCase : int ) -> Optional[Any]: # Checks order between adjacent elements if index >= len(__lowerCamelCase ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _snake_case , _snake_case = ( collection[index], collection[index - 1], ) insert_next(__lowerCamelCase , index + 1 ) if __name__ == "__main__": UpperCAmelCase__ = input('Enter integers separated by spaces: ') UpperCAmelCase__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
288
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCAmelCase__ = 'http://www.mocksite.com/file1.txt' UpperCAmelCase__ = '"text": ["foo", "foo"]' UpperCAmelCase__ = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class lowerCAmelCase__ : __a = 200 __a = {"""Content-Length""": """100"""} __a = {} def lowercase ( self : List[str] , **_lowerCamelCase : List[str] ): return [bytes(_lowerCamelCase , '''utf-8''' )] def _UpperCAmelCase ( *__lowerCamelCase : List[str] , **__lowerCamelCase : Dict ) -> Dict: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str ) -> int: import requests monkeypatch.setattr(__lowerCamelCase , '''request''' , __lowerCamelCase ) _snake_case = URL if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = url elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [url] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': url} _snake_case = '''dummy''' _snake_case = '''downloads''' _snake_case = tmp_path _snake_case = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase , __lowerCamelCase ) , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.download(__lowerCamelCase ) _snake_case = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [downloaded_paths] _snake_case = [urls] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in downloaded_paths.keys() _snake_case = downloaded_paths.values() _snake_case = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase , __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case = Path(__lowerCamelCase ) _snake_case = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case = downloaded_path.read_text() assert content == CONTENT _snake_case = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() _snake_case = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ) -> int: _snake_case = str(__lowerCamelCase ) if issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = filename elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = [filename] elif issubclass(__lowerCamelCase , __lowerCamelCase ): _snake_case = {'''train''': filename} _snake_case = '''dummy''' _snake_case = xz_file.parent _snake_case = '''extracted''' _snake_case = DownloadConfig( cache_dir=__lowerCamelCase , use_etag=__lowerCamelCase , ) _snake_case = DownloadManager(dataset_name=__lowerCamelCase , download_config=__lowerCamelCase ) _snake_case = dl_manager.extract(__lowerCamelCase ) _snake_case = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = [extracted_paths] _snake_case = [paths] elif isinstance(__lowerCamelCase , __lowerCamelCase ): assert "train" in extracted_paths.keys() _snake_case = extracted_paths.values() _snake_case = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase , __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case = Path(__lowerCamelCase ) _snake_case = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase , etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case = extracted_path.read_text() _snake_case = text_file.read_text() assert extracted_file_content == expected_file_content def _UpperCAmelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ) -> Dict: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCamelCase , start=1 ): _snake_case = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : str ) -> Dict: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : List[Any] ) -> Tuple: _snake_case = request.getfixturevalue(__lowerCamelCase ) _snake_case = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ) , start=1 ): _test_jsonl(__lowerCamelCase , __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> List[Any]: _snake_case = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ) , start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
288
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self : Tuple , A : int ) ->Union[str, Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): lowerCamelCase__ : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(lowercase_ ) def __lowerCamelCase ( self : Optional[Any] ) ->Tuple: lowerCamelCase__ : Optional[Any] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase__ : Tuple = PyTorchBenchmark(lowercase_ ) lowerCamelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : List[Any] ) ->List[str]: lowerCamelCase__ : str = '''sgugger/tiny-distilbert-classification''' lowerCamelCase__ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , only_pretrain_model=lowercase_ , ) lowerCamelCase__ : Any = PyTorchBenchmark(lowercase_ ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Tuple ) ->Dict: lowerCamelCase__ : List[str] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , torchscript=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase__ : List[str] = PyTorchBenchmark(lowercase_ ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __lowerCamelCase ( self : Optional[int] ) ->List[str]: lowerCamelCase__ : List[Any] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , fpaa=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase__ : List[Any] = PyTorchBenchmark(lowercase_ ) lowerCamelCase__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Optional[Any] ) ->Union[str, Any]: lowerCamelCase__ : Dict = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : List[Any] = AutoConfig.from_pretrained(lowercase_ ) # set architectures equal to `None` lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase__ : Optional[Any] = PyTorchBenchmark(lowercase_ , configs=[config] ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Tuple ) ->Optional[int]: lowerCamelCase__ : List[str] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase__ : List[Any] = PyTorchBenchmark(lowercase_ ) lowerCamelCase__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __lowerCamelCase ( self : Optional[Any] ) ->Optional[int]: lowerCamelCase__ : Any = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowercase_ , multi_process=lowercase_ , ) lowerCamelCase__ : int = PyTorchBenchmark(lowercase_ ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self : List[str] ) ->int: lowerCamelCase__ : Union[str, Any] = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained(lowercase_ ) lowerCamelCase__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase__ : Dict = PyTorchBenchmark(lowercase_ , configs=[config] ) lowerCamelCase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Union[str, Any] ) ->Any: lowerCamelCase__ : str = '''sshleifer/tinier_bart''' lowerCamelCase__ : Optional[Any] = AutoConfig.from_pretrained(lowercase_ ) lowerCamelCase__ : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase__ : Any = PyTorchBenchmark(lowercase_ , configs=[config] ) lowerCamelCase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self : Any ) ->Dict: lowerCamelCase__ : int = '''sshleifer/tiny-gpt2''' lowerCamelCase__ : Any = AutoConfig.from_pretrained(lowercase_ ) lowerCamelCase__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase__ : Optional[int] = PyTorchBenchmark(lowercase_ , configs=[config] ) lowerCamelCase__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self : List[Any] ) ->Union[str, Any]: lowerCamelCase__ : int = '''sshleifer/tinier_bart''' lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowercase_ ) lowerCamelCase__ : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase_ , ) lowerCamelCase__ : Union[str, Any] = PyTorchBenchmark(lowercase_ , configs=[config] ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self : Tuple ) ->Dict: lowerCamelCase__ : Dict = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , save_to_csv=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase_ , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(lowercase_ , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(lowercase_ , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(lowercase_ , '''train_time.csv''' ) , env_info_csv_file=os.path.join(lowercase_ , '''env.csv''' ) , multi_process=lowercase_ , ) lowerCamelCase__ : Dict = PyTorchBenchmark(lowercase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_ , '''env.csv''' ) ).exists() ) def __lowerCamelCase ( self : Tuple ) ->int: lowerCamelCase__ : List[Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(A : List[Any] ): self.assertTrue(hasattr(lowercase_ , '''sequential''' ) ) self.assertTrue(hasattr(lowercase_ , '''cumulative''' ) ) self.assertTrue(hasattr(lowercase_ , '''current''' ) ) self.assertTrue(hasattr(lowercase_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowercase_ , inference=lowercase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase_ , '''log.txt''' ) , log_print=lowercase_ , trace_memory_line_by_line=lowercase_ , multi_process=lowercase_ , ) lowerCamelCase__ : Union[str, Any] = PyTorchBenchmark(lowercase_ ) lowerCamelCase__ : str = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase_ , '''log.txt''' ) ).exists() )
364
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _A : Any = logging.get_logger(__name__) def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: """simple docstring""" def run_func(UpperCAmelCase ): @wraps(UpperCAmelCase ) def run_in_eager_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) @wraps(UpperCAmelCase ) @tf.function(experimental_compile=UpperCAmelCase ) def run_in_graph_mode(*UpperCAmelCase , **UpperCAmelCase ): return func(*UpperCAmelCase , **UpperCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> ["tf.Tensor"]: """simple docstring""" lowerCamelCase__ : List[Any] = random.Random() lowerCamelCase__ : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(UpperCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : TensorFlowBenchmarkArguments _UpperCAmelCase : PretrainedConfig _UpperCAmelCase : str = "TensorFlow" @property def __lowerCamelCase ( self : int ) ->Optional[int]: return tf.__version__ def __lowerCamelCase ( self : Optional[int] , A : str , A : int , A : int ) ->float: # initialize GPU on separate process lowerCamelCase__ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : int = self._prepare_inference_func(A , A , A ) return self._measure_speed(_inference ) def __lowerCamelCase ( self : str , A : str , A : int , A : int ) ->float: lowerCamelCase__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : List[Any] = self._prepare_train_func(A , A , A ) return self._measure_speed(_train ) def __lowerCamelCase ( self : int , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : int = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : str = self._prepare_inference_func(A , A , A ) return self._measure_memory(_inference ) def __lowerCamelCase ( self : List[str] , A : str , A : int , A : int ) ->[Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , A ) lowerCamelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) lowerCamelCase__ : str = self._prepare_train_func(A , A , A ) return self._measure_memory(_train ) def __lowerCamelCase ( self : Dict , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Tuple = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Any = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : List[Any] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : int = getattr(A , A ) lowerCamelCase__ : int = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : Union[str, Any] = TF_MODEL_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Tuple = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Optional[Any] = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(A , decoder_input_ids=A , training=A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(A , training=A ) lowerCamelCase__ : int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __lowerCamelCase ( self : List[str] , A : str , A : int , A : int ) ->Callable[[], None]: lowerCamelCase__ : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) lowerCamelCase__ : Optional[int] = ( hasattr(A , '''architectures''' ) and isinstance(config.architectures , A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCamelCase__ : Any = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model lowerCamelCase__ : List[str] = __import__('''transformers''' , fromlist=[model_class] ) lowerCamelCase__ : Optional[int] = getattr(A , A ) lowerCamelCase__ : Optional[Any] = model_cls(A ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: lowerCamelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](A ) # encoder-decoder has vocab size saved differently lowerCamelCase__ : Optional[int] = config.vocab_size if hasattr(A , '''vocab_size''' ) else config.encoder.vocab_size lowerCamelCase__ : Dict = random_input_ids(A , A , A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCamelCase__ : int = model(A , decoder_input_ids=A , labels=A , training=A )[0] lowerCamelCase__ : List[Any] = tf.gradients(A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCamelCase__ : Optional[int] = model(A , labels=A , training=A )[0] lowerCamelCase__ : List[str] = tf.gradients(A , model.trainable_variables ) return gradients lowerCamelCase__ : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __lowerCamelCase ( self : Tuple , A : Any ) ->float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCamelCase__ : Optional[Any] = timeit.repeat( A , repeat=self.args.repeat , number=1_0 , ) return min(A ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def __lowerCamelCase ( self : List[Any] , A : Callable[[], None] ) ->[Memory, MemorySummary]: logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) lowerCamelCase__ : Union[str, Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) lowerCamelCase__ : Union[str, Any] = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() lowerCamelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCamelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(A ) lowerCamelCase__ : List[Any] = meminfo.used lowerCamelCase__ : Union[str, Any] = Memory(A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) lowerCamelCase__ : Tuple = None else: lowerCamelCase__ : Dict = measure_peak_memory_cpu(A ) lowerCamelCase__ : Optional[Any] = Memory(A ) if isinstance(A , A ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCamelCase__ : Union[str, Any] = stop_memory_tracing(A ) if memory is None: lowerCamelCase__ : Dict = summary.total else: lowerCamelCase__ : Optional[int] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
265
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowerCamelCase_ = logging.get_logger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int] , __UpperCAmelCase : Any=False , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=6.0 , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Any=False , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : List[Any]="fp4" , __UpperCAmelCase : List[str]=False , **__UpperCAmelCase : List[str] , ): '''simple docstring''' _A = load_in_abit _A = load_in_abit _A = llm_inta_threshold _A = llm_inta_skip_modules _A = llm_inta_enable_fpaa_cpu_offload _A = llm_inta_has_fpaa_weight _A = bnb_abit_quant_type _A = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _A = torch.floataa elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = getattr(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , torch.dtype ): _A = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def lowerCAmelCase ( self : int ): '''simple docstring''' if not isinstance(self.llm_inta_threshold , __UpperCAmelCase ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , __UpperCAmelCase ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , __UpperCAmelCase ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , __UpperCAmelCase ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , __UpperCAmelCase ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , __UpperCAmelCase ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' return self.load_in_abit or self.load_in_abit def lowerCAmelCase ( self : int ): '''simple docstring''' if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowerCAmelCase ( cls : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : str , **__UpperCAmelCase : Dict ): '''simple docstring''' _A = cls(**__UpperCAmelCase ) _A = [] for key, value in kwargs.items(): if hasattr(__UpperCAmelCase , __UpperCAmelCase ): setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) to_remove.append(__UpperCAmelCase ) for key in to_remove: kwargs.pop(__UpperCAmelCase , __UpperCAmelCase ) if return_unused_kwargs: return config, kwargs else: return config def lowerCAmelCase ( self : int , __UpperCAmelCase : Union[str, os.PathLike] ): '''simple docstring''' with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: _A = self.to_dict() _A = json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + "\n" writer.write(__UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = copy.deepcopy(self.__dict__ ) _A = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : List[Any] ): '''simple docstring''' return f'''{self.__class__.__name__} {self.to_json_string()}''' def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : bool = True ): '''simple docstring''' if use_diff is True: _A = self.to_diff_dict() else: _A = self.to_dict() return json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + "\n" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.to_dict() # get the default config dict _A = BitsAndBytesConfig().to_dict() _A = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _A = value return serializable_config_dict
79
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Optional[Any] = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
117
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Dict = """pix2struct_text_model""" lowerCAmelCase_ : str = ["""past_key_values"""] lowerCAmelCase_ : Dict = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , _UpperCAmelCase : Dict=5_02_44 , _UpperCAmelCase : Tuple=7_68 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Dict=20_48 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Any=1_28 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=1E-6 , _UpperCAmelCase : List[str]=1.0 , _UpperCAmelCase : str="gelu_new" , _UpperCAmelCase : str=0 , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any=True , **_UpperCAmelCase : str , ): """simple docstring""" UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = d_kv UpperCAmelCase__ = d_ff UpperCAmelCase__ = num_layers UpperCAmelCase__ = num_heads UpperCAmelCase__ = relative_attention_num_buckets UpperCAmelCase__ = relative_attention_max_distance UpperCAmelCase__ = dropout_rate UpperCAmelCase__ = layer_norm_epsilon UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = use_cache UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = decoder_start_token_id # for backwards compatibility UpperCAmelCase__ = dense_act_fn super().__init__( pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , is_decoder=_UpperCAmelCase , **_UpperCAmelCase , ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : int ): """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCAmelCase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """pix2struct_vision_model""" def __init__( self : Any , _UpperCAmelCase : List[Any]=7_68 , _UpperCAmelCase : Optional[int]=7_68 , _UpperCAmelCase : Dict=20_48 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Dict="gelu_new" , _UpperCAmelCase : List[Any]=1E-6 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Union[str, Any]=1E-10 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Optional[int]=40_96 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : Dict=1_28 , **_UpperCAmelCase : int , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = patch_embed_hidden_size UpperCAmelCase__ = d_ff UpperCAmelCase__ = dropout_rate UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = initializer_range UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = dense_act_fn UpperCAmelCase__ = seq_len UpperCAmelCase__ = relative_attention_num_buckets UpperCAmelCase__ = relative_attention_max_distance UpperCAmelCase__ = d_kv @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[int] ): """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCAmelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : str = """pix2struct""" lowerCAmelCase_ : Union[str, Any] = True def __init__( self : int , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : Optional[int] , ): """simple docstring""" super().__init__(tie_word_embeddings=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) if text_config is None: UpperCAmelCase__ = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: UpperCAmelCase__ = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) UpperCAmelCase__ = PixaStructTextConfig(**_UpperCAmelCase ) UpperCAmelCase__ = PixaStructVisionConfig(**_UpperCAmelCase ) UpperCAmelCase__ = self.text_config.decoder_start_token_id UpperCAmelCase__ = self.text_config.pad_token_id UpperCAmelCase__ = self.text_config.eos_token_id UpperCAmelCase__ = initializer_factor UpperCAmelCase__ = initializer_range UpperCAmelCase__ = self.initializer_range UpperCAmelCase__ = self.initializer_range UpperCAmelCase__ = is_vqa @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Any , _UpperCAmelCase : PixaStructTextConfig , _UpperCAmelCase : PixaStructVisionConfig , **_UpperCAmelCase : Any ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.text_config.to_dict() UpperCAmelCase__ = self.vision_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
362
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCAmelCase_ = logging.get_logger(__name__) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCAmelCase__ = json.loads(SCREAMING_SNAKE_CASE__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCAmelCase__ = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCAmelCase__ = json.loads(SCREAMING_SNAKE_CASE__ ) if not mpi_options.get("""sagemaker_mpi_enabled""" , SCREAMING_SNAKE_CASE__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , _UpperCAmelCase , ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: UpperCAmelCase__ = torch.device("""cpu""" ) UpperCAmelCase__ = 0 elif is_sagemaker_model_parallel_available(): UpperCAmelCase__ = smp.local_rank() UpperCAmelCase__ = torch.device("""cuda""" , _UpperCAmelCase ) UpperCAmelCase__ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) UpperCAmelCase__ = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) UpperCAmelCase__ = torch.device("""cuda""" , self.local_rank ) UpperCAmelCase__ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCAmelCase__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCAmelCase__ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) UpperCAmelCase__ = torch.device("""cuda""" , self.local_rank ) UpperCAmelCase__ = 1 if device.type == "cuda": torch.cuda.set_device(_UpperCAmelCase ) return device @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return not is_sagemaker_model_parallel_available() @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return False
61
0
"""simple docstring""" from manim import * class UpperCAmelCase_ ( _a): def _UpperCAmelCase ( self ) -> int: lowercase__ : str = Rectangle(height=0.5 , width=0.5 ) lowercase__ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase__ : List[str] = [mem.copy() for i in range(6 )] lowercase__ : int = [mem.copy() for i in range(6 )] lowercase__ : int = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : Optional[int] = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : List[str] = VGroup(a , a ).arrange(a , buff=0 ) lowercase__ : Union[str, Any] = Text('CPU' , font_size=2_4 ) lowercase__ : Union[str, Any] = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a ) lowercase__ : Union[str, Any] = [mem.copy() for i in range(4 )] lowercase__ : List[Any] = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : Tuple = Text('GPU' , font_size=2_4 ) lowercase__ : Optional[int] = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) gpu.move_to([-1, -1, 0] ) self.add(a ) lowercase__ : int = [mem.copy() for i in range(6 )] lowercase__ : List[str] = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : int = Text('Model' , font_size=2_4 ) lowercase__ : Optional[Any] = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) model.move_to([3, -1.0, 0] ) self.add(a ) lowercase__ : Dict = [] for i, rect in enumerate(a ): rect.set_stroke(a ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowercase__ : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=a , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=a , buff=0.0 ) self.add(a ) cpu_targs.append(a ) lowercase__ : Any = [mem.copy() for i in range(6 )] lowercase__ : Optional[Any] = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : Optional[int] = Text('Loaded Checkpoint' , font_size=2_4 ) lowercase__ : Dict = Group(a , a ).arrange(a , aligned_edge=a , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowercase__ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ : Any = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a , a ) lowercase__ : List[Any] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowercase__ : List[str] = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a ) , Write(a ) ) self.play(Write(a , run_time=1 ) , Create(a , run_time=1 ) ) lowercase__ : str = [] lowercase__ : Any = [] for i, rect in enumerate(a ): lowercase__ : Optional[int] = fill.copy().set_fill(a , opacity=0.7 ) target.move_to(a ) first_animations.append(GrowFromCenter(a , run_time=1 ) ) lowercase__ : Optional[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(a , run_time=1.5 ) ) self.play(*a ) self.play(*a ) self.wait()
77
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
313
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } UpperCamelCase_ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCamelCase_ ( _a : Dict , _a : Any , _a : Optional[int] , _a : Any , _a : Optional[Any] ): '''simple docstring''' for attribute in key.split(""".""" ): UpperCAmelCase_ : Optional[int] = getattr(_a , _a ) if weight_type is not None: UpperCAmelCase_ : Dict = getattr(_a , _a ).shape else: UpperCAmelCase_ : Dict = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase_ : Any = value elif weight_type == "weight_g": UpperCAmelCase_ : Dict = value elif weight_type == "weight_v": UpperCAmelCase_ : Tuple = value elif weight_type == "bias": UpperCAmelCase_ : int = value else: UpperCAmelCase_ : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase_ ( _a : Any , _a : str ): '''simple docstring''' UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Dict = fairseq_model.state_dict() UpperCAmelCase_ : Optional[Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase_ : Optional[int] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase_ : Any = True if "*" in mapped_key: UpperCAmelCase_ : Any = name.split(_a )[0].split(""".""" )[-2] UpperCAmelCase_ : List[str] = mapped_key.replace("""*""" , _a ) if "weight_g" in name: UpperCAmelCase_ : Optional[int] = """weight_g""" elif "weight_v" in name: UpperCAmelCase_ : List[Any] = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: UpperCAmelCase_ : Optional[Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ : int = """weight""" else: UpperCAmelCase_ : int = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase_ ( _a : Optional[Any] , _a : str , _a : Optional[int] , _a : Dict , _a : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase_ : str = name.split(""".""" ) UpperCAmelCase_ : Optional[Any] = int(items[0] ) UpperCAmelCase_ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase_ : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase_ : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase_ : Dict = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase_ : Dict = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_a ) @torch.no_grad() def lowerCamelCase_ ( _a : Optional[Any] , _a : List[str] , _a : Dict=None ): '''simple docstring''' UpperCAmelCase_ : List[str] = torch.load(_a ) UpperCAmelCase_ : Tuple = WavLMConfigOrig(checkpoint["""cfg"""] ) UpperCAmelCase_ : Tuple = WavLMOrig(_a ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: UpperCAmelCase_ : Tuple = WavLMConfig.from_pretrained(_a ) else: UpperCAmelCase_ : Optional[int] = WavLMConfig() UpperCAmelCase_ : Optional[Any] = WavLMModel(_a ) recursively_load_weights(_a , _a ) hf_wavlm.save_pretrained(_a ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCamelCase_ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
59
from sklearn.metrics import matthews_corrcoef import datasets UpperCamelCase_ = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' UpperCamelCase_ = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' UpperCamelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): '''simple docstring''' def A__ ( self: Any ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) ,reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] ,) def A__ ( self: List[str] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any]=None ) -> int: return { "matthews_correlation": float(matthews_corrcoef(lowerCamelCase_ ,lowerCamelCase_ ,sample_weight=lowerCamelCase_ ) ), }
59
1
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def A__ ( UpperCamelCase ): if isinstance(UpperCamelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class _UpperCAmelCase : def lowerCamelCase ( self :str , __UpperCamelCase :Tuple , __UpperCamelCase :Optional[Any] ): pass def lowerCamelCase ( self :List[str] ): pass def lowerCamelCase ( self :Optional[Any] ): pass def lowerCamelCase ( self :Dict , __UpperCamelCase :np.ndarray , __UpperCamelCase :np.ndarray , __UpperCamelCase :float ): A = np.abs((a - b) ).max() self.assertLessEqual(__UpperCamelCase , __UpperCamelCase , f"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCamelCase ( self :Tuple , __UpperCamelCase :Optional[Any] , __UpperCamelCase :Tuple , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Dict , __UpperCamelCase :List[Any]=None , **__UpperCamelCase :Any ): A = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase , __UpperCamelCase ) A = FlaxVisionTextDualEncoderModel(__UpperCamelCase ) A = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase ( self :Dict , __UpperCamelCase :List[str] , __UpperCamelCase :Dict , __UpperCamelCase :Optional[Any] , __UpperCamelCase :Tuple , __UpperCamelCase :Optional[Any]=None , **__UpperCamelCase :Union[str, Any] ): A, A = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) A = {"vision_model": vision_model, "text_model": text_model} A = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase ) A = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase ( self :List[Any] , __UpperCamelCase :Any , __UpperCamelCase :int , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :int , __UpperCamelCase :Union[str, Any]=None , **__UpperCamelCase :str ): A, A = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) A = {"vision_model": vision_model, "text_model": text_model} A = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase ) A = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) A = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) A = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase ) A = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase ) A = after_output[0] A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1e-3 ) def lowerCamelCase ( self :Tuple , __UpperCamelCase :Optional[int] , __UpperCamelCase :Dict , __UpperCamelCase :Dict , __UpperCamelCase :Dict , __UpperCamelCase :str=None , **__UpperCamelCase :List[str] ): A, A = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase ) A = {"vision_model": vision_model, "text_model": text_model} A = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase ) A = model( input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase , output_attentions=__UpperCamelCase ) A = output.vision_model_output.attentions self.assertEqual(len(__UpperCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A = to_atuple(vision_model.config.image_size ) A = to_atuple(vision_model.config.patch_size ) A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A = output.text_model_output.attentions self.assertEqual(len(__UpperCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase ( self :Tuple , __UpperCamelCase :List[Any] , __UpperCamelCase :Dict , __UpperCamelCase :Tuple ): pt_model.to(__UpperCamelCase ) pt_model.eval() # prepare inputs A = inputs_dict A = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): A = pt_model(**__UpperCamelCase ).to_tuple() A = fx_model(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__UpperCamelCase , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCamelCase ) A = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase , from_pt=__UpperCamelCase ) A = fx_model_loaded(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__UpperCamelCase , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCamelCase ) A = VisionTextDualEncoderModel.from_pretrained(__UpperCamelCase , from_flax=__UpperCamelCase ) pt_model_loaded.to(__UpperCamelCase ) pt_model_loaded.eval() with torch.no_grad(): A = pt_model_loaded(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__UpperCamelCase , pt_output_loaded.numpy() , 4e-2 ) def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :Optional[int] , __UpperCamelCase :List[Any] , __UpperCamelCase :Optional[int] ): A = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase , __UpperCamelCase ) A = VisionTextDualEncoderModel(__UpperCamelCase ) A = FlaxVisionTextDualEncoderModel(__UpperCamelCase ) A = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCamelCase ) A = fx_state self.check_pt_flax_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase ( self :Tuple , __UpperCamelCase :Any , __UpperCamelCase :List[Any] , __UpperCamelCase :Union[str, Any] ): A = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase , __UpperCamelCase ) A = VisionTextDualEncoderModel(__UpperCamelCase ) A = FlaxVisionTextDualEncoderModel(__UpperCamelCase ) A = load_flax_weights_in_pytorch_model(__UpperCamelCase , fx_model.params ) self.check_pt_flax_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCamelCase ( self :Any ): A = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__UpperCamelCase ) def lowerCamelCase ( self :Dict ): A = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__UpperCamelCase ) def lowerCamelCase ( self :Dict ): A = self.prepare_config_and_inputs() self.check_save_load(**__UpperCamelCase ) def lowerCamelCase ( self :Dict ): A = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__UpperCamelCase ) @is_pt_flax_cross_test def lowerCamelCase ( self :List[Any] ): A = self.prepare_config_and_inputs() A = config_inputs_dict.pop("vision_config" ) A = config_inputs_dict.pop("text_config" ) A = config_inputs_dict self.check_equivalence_pt_to_flax(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.check_equivalence_flax_to_pt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @slow def lowerCamelCase ( self :Dict ): A, A = self.get_pretrained_model_and_inputs() A = model_a(**__UpperCamelCase ) A = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__UpperCamelCase ) A = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase ) A = model_a(**__UpperCamelCase ) A = after_outputs[0] A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1e-5 ) @require_flax class _UpperCAmelCase ( lowercase_ , unittest.TestCase ): def lowerCamelCase ( self :Optional[int] ): A = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=__UpperCamelCase , text_from_pt=__UpperCamelCase , ) A = 13 A = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCamelCase ( self :Any , __UpperCamelCase :Dict , __UpperCamelCase :List[Any] ): A = FlaxViTModel(__UpperCamelCase ) A = FlaxBertModel(__UpperCamelCase ) return vision_model, text_model def lowerCamelCase ( self :Optional[Any] ): A = FlaxViTModelTester(self ) A = FlaxBertModelTester(self ) A = vit_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A, A = vision_config_and_inputs A, A, A, A = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _UpperCAmelCase ( lowercase_ , unittest.TestCase ): def lowerCamelCase ( self :List[Any] ): A = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=__UpperCamelCase , text_from_pt=__UpperCamelCase , ) A = 13 A = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) A = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) A = random_attention_mask([batch_size, 4] ) A = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCamelCase ( self :Tuple , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Optional[Any] ): A = FlaxCLIPVisionModel(__UpperCamelCase ) A = FlaxBertModel(__UpperCamelCase ) return vision_model, text_model def lowerCamelCase ( self :Optional[int] ): A = FlaxCLIPVisionModelTester(self ) A = FlaxBertModelTester(self ) A = clip_model_tester.prepare_config_and_inputs() A = bert_model_tester.prepare_config_and_inputs() A, A = vision_config_and_inputs A, A, A, A = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self :Any ): A = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0 ) A = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A = processor( text=["una foto di un gatto", "una foto di un cane"] , images=__UpperCamelCase , padding=__UpperCamelCase , return_tensors="np" ) A = model(**__UpperCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __UpperCamelCase , atol=1e-3 ) )
292
"""simple docstring""" import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A__ ( UpperCamelCase ): A = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def A__ ( UpperCamelCase ): A = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A = s_dict.pop(UpperCamelCase ) elif "subsample" in key: A = s_dict.pop(UpperCamelCase ) def A__ ( UpperCamelCase ): A, A = emb.weight.shape A = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) A = emb.weight.data return lin_layer def A__ ( UpperCamelCase , UpperCamelCase ): A = torch.load(UpperCamelCase , map_location="cpu" ) A = mam_aaa["args"] A = mam_aaa["model"] A = state_dict["decoder.output_projection.weight"] remove_ignore_keys_(UpperCamelCase ) rename_keys(UpperCamelCase ) A = state_dict["decoder.embed_tokens.weight"].shape[0] A = args.share_decoder_input_output_embed A = [int(UpperCamelCase ) for i in args.conv_kernel_sizes.split("," )] A = SpeechaTextConfig( vocab_size=UpperCamelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , num_conv_layers=len(UpperCamelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCamelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCamelCase , num_beams=5 , max_length=200 , use_cache=UpperCamelCase , decoder_start_token_id=2 , early_stopping=UpperCamelCase , ) A = SpeechaTextForConditionalGeneration(UpperCamelCase ) A, A = model.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) if len(UpperCamelCase ) > 0 and not set(UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F" but all the following weights are missing {missing}" ) if tie_embeds: A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A = lm_head_weights model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _snake_case : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
292
1
import copy import re class __lowercase : """simple docstring""" _UpperCAmelCase = """hp""" _UpperCAmelCase = {} _UpperCAmelCase = None @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = prefix SCREAMING_SNAKE_CASE_ : List[str] = defaults cls.build_naming_info() @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if len(lowerCAmelCase__ ) == 0: return "" SCREAMING_SNAKE_CASE_ : int = None if any(char.isdigit() for char in word ): raise Exception(F'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCAmelCase__ ) + 1 ): SCREAMING_SNAKE_CASE_ : Any = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE_ : List[Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' while integer != 0: SCREAMING_SNAKE_CASE_ : Any = chr(ord('A' ) + integer % 1_0 ) + s integer //= 1_0 return s SCREAMING_SNAKE_CASE_ : Tuple = 0 while True: SCREAMING_SNAKE_CASE_ : int = word + '#' + int_to_alphabetic(lowerCAmelCase__ ) if sword in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE_ : Tuple = sword break SCREAMING_SNAKE_CASE_ : Tuple = short_word SCREAMING_SNAKE_CASE_ : Union[str, Any] = word return short_word @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = param_name.split('_' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [TrialShortNamer.shortname_for_word(lowerCAmelCase__ , lowerCAmelCase__ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name SCREAMING_SNAKE_CASE_ : Optional[int] = ['', '_'] for separator in separators: SCREAMING_SNAKE_CASE_ : Optional[Any] = separator.join(lowerCAmelCase__ ) if shortname not in info["reverse_short_param"]: SCREAMING_SNAKE_CASE_ : Optional[Any] = shortname SCREAMING_SNAKE_CASE_ : Optional[int] = param_name return shortname return param_name @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = TrialShortNamer.shortname_for_key(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = short_name SCREAMING_SNAKE_CASE_ : Union[str, Any] = param_name @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" if cls.NAMING_INFO is not None: return SCREAMING_SNAKE_CASE_ : int = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } SCREAMING_SNAKE_CASE_ : List[Any] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = info @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ ): """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None SCREAMING_SNAKE_CASE_ : Union[str, Any] = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue SCREAMING_SNAKE_CASE_ : Union[str, Any] = cls.NAMING_INFO['short_param'][k] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = 1 if v else 0 SCREAMING_SNAKE_CASE_ : List[str] = '' if isinstance(lowerCAmelCase__ , (int, float) ) else '-' SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'''{key}{sep}{v}''' name.append(lowerCAmelCase__ ) return "_".join(lowerCAmelCase__ ) @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = repr[len(cls.PREFIX ) + 1 :] if repr == "": SCREAMING_SNAKE_CASE_ : List[str] = [] else: SCREAMING_SNAKE_CASE_ : Optional[int] = repr.split('_' ) SCREAMING_SNAKE_CASE_ : Optional[int] = {} for value in values: if "-" in value: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = value.split('-' ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = re.sub('[0-9.]' , '' , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = float(re.sub('[^0-9.]' , '' , lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = cls.NAMING_INFO['reverse_short_param'][p_k] SCREAMING_SNAKE_CASE_ : Optional[Any] = p_v for k in cls.DEFAULTS: if k not in parameters: SCREAMING_SNAKE_CASE_ : Optional[int] = cls.DEFAULTS[k] return parameters
162
import math import unittest def a__ ( A__ ): assert isinstance(A__, A__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(A__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowerCAmelCase__ ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
162
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = (KDPMaDiscreteScheduler,) lowerCamelCase = 10 def snake_case__ ( self : Dict,**lowercase_ : Union[str, Any] )-> Any: '''simple docstring''' A__ = { 'num_train_timesteps': 1_1_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowercase_ ) return config def snake_case__ ( self : List[str] )-> Union[str, Any]: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ ) def snake_case__ ( self : Any )-> List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001],[0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowercase_,beta_end=lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type='v_prediction' ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(lowercase_,lowercase_ ) A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1_112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_428_650_170_972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def snake_case__ ( self : Tuple )-> Tuple: '''simple docstring''' if torch_device == "mps": return A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) A__ = self.dummy_model() A__ = self.dummy_sample_deter * scheduler.init_noise_sigma A__ = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = scheduler.scale_model_input(lowercase_,lowercase_ ) A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def snake_case__ ( self : Optional[Any] )-> Any: '''simple docstring''' if torch_device == "mps": return A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps,device=lowercase_ ) A__ = self.dummy_model() A__ = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: A__ = scheduler.scale_model_input(lowercase_,lowercase_ ) A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ) A__ = output.prev_sample A__ = torch.sum(torch.abs(lowercase_ ) ) A__ = torch.mean(torch.abs(lowercase_ ) ) if str(lowercase_ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
7
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = LongformerTokenizer lowercase = True lowercase = LongformerTokenizerFast lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase : int = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase : Dict = {"""unk_token""": """<unk>"""} UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def _lowercase( self , **A ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , **A ) -> int: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = """lower newer""" UpperCAmelCase : Optional[int] = """lower newer""" return input_text, output_text def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase : Dict = """lower newer""" UpperCAmelCase : int = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCAmelCase : Tuple = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A , A ) UpperCAmelCase : Any = tokens + [tokenizer.unk_token] UpperCAmelCase : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=A ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=A ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) UpperCAmelCase : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) UpperCAmelCase : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) UpperCAmelCase : List[str] = tokenizer.encode( """sequence builders""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : List[str] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowercase( self ) -> List[Any]: UpperCAmelCase : str = self.get_tokenizer() UpperCAmelCase : List[Any] = """Encode this sequence.""" UpperCAmelCase : List[str] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCAmelCase : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A , A ) UpperCAmelCase : Tuple = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A , A ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCAmelCase : int = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A , A ) # Testing spaces after special tokens UpperCAmelCase : Union[str, Any] = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(A , lstrip=A , rstrip=A )} ) # mask token has a left space UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) UpperCAmelCase : Union[str, Any] = """Encode <mask> sequence""" UpperCAmelCase : Union[str, Any] = """Encode <mask>sequence""" UpperCAmelCase : Union[str, Any] = tokenizer.encode(A ) UpperCAmelCase : Union[str, Any] = encoded.index(A ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A , A ) UpperCAmelCase : Tuple = tokenizer.encode(A ) UpperCAmelCase : Optional[int] = encoded.index(A ) UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A , A ) def _lowercase( self ) -> Optional[int]: pass def _lowercase( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : Dict = """A, <mask> AllenNLP sentence.""" UpperCAmelCase : Dict = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) UpperCAmelCase : Tuple = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCAmelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _lowercase( self ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""trim_offsets"""] , A ) def _lowercase( self ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase : int = f'''{text_of_1_token} {text_of_1_token}''' UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Dict = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : List[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[Any] = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )) , ) UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Union[str, Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , ) UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) UpperCAmelCase : Optional[int] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , )
265
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=A__ ) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a_ : ClassVar[Features] = Features({"""image""": Image()} ) a_ : ClassVar[Features] = Features({"""labels""": ClassLabel} ) a_ : str = "image" a_ : str = "labels" def lowerCamelCase ( self : Dict , a_ : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) lowerCAmelCase_ : Optional[int] = copy.deepcopy(self ) lowerCAmelCase_ : Optional[int] = self.label_schema.copy() lowerCAmelCase_ : List[str] = features[self.label_column] lowerCAmelCase_ : Optional[Any] = label_schema return task_template @property def lowerCamelCase ( self : str ): return { self.image_column: "image", self.label_column: "labels", }
367
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def __lowerCamelCase ( __UpperCamelCase ) -> np.ndarray: """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def __lowerCamelCase ( __UpperCamelCase ) -> np.ndarray: """simple docstring""" return (gray > 127) & (gray <= 255) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> np.ndarray: """simple docstring""" lowerCAmelCase_ : List[str] = np.zeros_like(__UpperCamelCase ) lowerCAmelCase_ : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCAmelCase_ : List[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCAmelCase_ : List[str] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCAmelCase_ : int = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowercase__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" lowercase__ = np.array(Image.open(lena_path)) # kernel to be applied lowercase__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowercase__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowercase__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
161
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__ ( lowercase__ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" ,type=lowercase_ ,default=lowercase_ ,help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" ,action="""store_true""" ,help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" ,action="""store_true""" ,help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" ,) download_parser.add_argument("""model""" ,type=lowercase_ ,help="""Name of the model to download""" ) download_parser.set_defaults(func=lowercase_ ) def __init__( self : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = model SCREAMING_SNAKE_CASE = cache SCREAMING_SNAKE_CASE = force SCREAMING_SNAKE_CASE = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model ,cache_dir=self._cache ,force_download=self._force ,trust_remote_code=self._trust_remote_code )
296
"""simple docstring""" import os _a = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} def __a ( __lowerCamelCase ): UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[str] = 0 while index < len(__lowerCamelCase ) - 1: UpperCAmelCase_ : Tuple = SYMBOLS[numerals[index]] UpperCAmelCase_ : List[str] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[str] = "" UpperCAmelCase_ : Any = num // 1000 numerals += m_count * "M" num %= 1000 UpperCAmelCase_ : Any = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCAmelCase_ : str = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __a ( __lowerCamelCase = "/p089_roman.txt" ): UpperCAmelCase_ : int = 0 with open(os.path.dirname(__lowerCamelCase ) + roman_numerals_filename ) as filea: UpperCAmelCase_ : Optional[Any] = filea.readlines() for line in lines: UpperCAmelCase_ : Tuple = line.strip() UpperCAmelCase_ : Optional[Any] = parse_roman_numerals(__lowerCamelCase ) UpperCAmelCase_ : Tuple = generate_roman_numerals(__lowerCamelCase ) savings += len(__lowerCamelCase ) - len(__lowerCamelCase ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
61
0
import math import sys def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if number != int(lowerCAmelCase__ ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 lowercase = [-1] * (number + 1) lowercase = 0 for i in range(1 , number + 1 ): lowercase = sys.maxsize lowercase = int(math.sqrt(lowerCAmelCase__ ) ) for j in range(1 , root + 1 ): lowercase = 1 + answers[i - (j**2)] lowercase = min(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
97
from pathlib import Path import fire from tqdm import tqdm def UpperCamelCase ( lowerCAmelCase__="ro" , lowerCAmelCase__="en" , lowerCAmelCase__="wmt16" , lowerCAmelCase__=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) lowercase = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) lowercase = datasets.load_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) if save_dir is None: lowercase = f'{dataset}-{pair}' lowercase = Path(lowerCAmelCase__ ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets lowercase = '''val''' if split == '''validation''' else split lowercase = save_dir.joinpath(f'{fn}.source' ) lowercase = save_dir.joinpath(f'{fn}.target' ) lowercase = src_path.open('''w+''' ) lowercase = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
97
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
59
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]: '''simple docstring''' snake_case : int = tempfile.mkdtemp() # fmt: off snake_case : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) snake_case : int = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } snake_case : Optional[Any] = os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , **snake_case__ : str ) -> Optional[int]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , **snake_case__ : List[str] ) -> int: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' snake_case : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case : Optional[int] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Dict = self.get_tokenizer() snake_case : Optional[Any] = self.get_image_processor() snake_case : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor.save_pretrained(self.tmpdirname ) snake_case : Any = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : str = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case : Tuple = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) snake_case : List[str] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> int: '''simple docstring''' snake_case : str = self.get_image_processor() snake_case : Optional[int] = self.get_tokenizer() snake_case : List[Any] = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Optional[Any] = self.prepare_image_inputs() snake_case : str = image_processor(snake_case__ , return_tensors="np" ) snake_case : Any = processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = self.get_image_processor() snake_case : int = self.get_tokenizer() snake_case : Any = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Tuple = "lower newer" snake_case : Tuple = processor(text=snake_case__ ) snake_case : Union[str, Any] = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = self.get_image_processor() snake_case : Dict = self.get_tokenizer() snake_case : Dict = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : int = "lower newer" snake_case : Dict = self.prepare_image_inputs() snake_case : Union[str, Any] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(snake_case__ ): processor() def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' snake_case : Tuple = self.get_image_processor() snake_case : Optional[Any] = self.get_tokenizer() snake_case : Tuple = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : List[Any] = processor.batch_decode(snake_case__ ) snake_case : Union[str, Any] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : str = self.get_image_processor() snake_case : Union[str, Any] = self.get_tokenizer() snake_case : Any = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) snake_case : Optional[Any] = "lower newer" snake_case : List[Any] = self.prepare_image_inputs() snake_case : Tuple = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
59
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ (): '''simple docstring''' _a = HfArgumentParser(UpperCamelCase ) _a = parser.parse_args_into_dataclasses()[0] _a = TensorFlowBenchmark(args=UpperCamelCase ) try: _a = parser.parse_args_into_dataclasses()[0] except ValueError as e: _a = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' _a = ''' '''.join(str(UpperCamelCase ).split(''' ''' )[:-1] ) _a = '''''' _a = eval(str(UpperCamelCase ).split(''' ''' )[-1] ) _a = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCamelCase ) if len(UpperCamelCase ) > 0: _a = full_error_msg + begin_error_msg + str(UpperCamelCase ) raise ValueError(UpperCamelCase ) benchmark.run() if __name__ == "__main__": main()
179
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class A ( _a ): lowercase_ = 42 lowercase_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
179
1
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = '''T5Config''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> jnp.ndarray: A_ = jnp.zeros_like(UpperCAmelCase__ ) A_ = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) A_ = shifted_input_ids.at[:, 0].set(UpperCAmelCase__ ) A_ = jnp.where(shifted_input_ids == -1_00, UpperCAmelCase__, UpperCAmelCase__ ) return shifted_input_ids class A__ ( _snake_case ): lowercase = "mt5" lowercase = MTaConfig class A__ ( _snake_case ): lowercase = "mt5" lowercase = MTaConfig class A__ ( _snake_case ): lowercase = "mt5" lowercase = MTaConfig
162
'''simple docstring''' from __future__ import annotations class A__ : def __init__( self , UpperCamelCase__=None ) -> Any: '''simple docstring''' A_ = data A_ = None def __repr__( self ) -> List[str]: '''simple docstring''' A_ = [] A_ = self while temp: string_rep.append(f'''{temp.data}''' ) A_ = temp.next return "->".join(UpperCamelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: if not elements_list: raise Exception("""The Elements List is empty""" ) A_ = A_ = Node(elements_list[0] ) for i in range(1, len(UpperCAmelCase__ ) ): A_ = Node(elements_list[i] ) A_ = current.next return head def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if head_node is not None and isinstance(UpperCAmelCase__, UpperCAmelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def UpperCAmelCase__ ( ) -> Optional[Any]: from doctest import testmod testmod() A_ = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(UpperCAmelCase__ ) print("""Elements in Reverse:""" ) print_reverse(UpperCAmelCase__ ) if __name__ == "__main__": main()
162
1
'''simple docstring''' def __UpperCAmelCase ( a_: List[Any], a_: str ): _UpperCAmelCase : str = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __UpperCAmelCase ( a_: Optional[int], a_: Tuple, a_: Any ): _UpperCAmelCase : Any = 0 while b > 0: if b & 1: _UpperCAmelCase : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = StableDiffusionInpaintPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ = frozenset([] ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' torch.manual_seed(0) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , ) A__ = PNDMScheduler(skip_prk_steps=UpperCAmelCase__) torch.manual_seed(0) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) A__ = CLIPTextModel(UpperCAmelCase__) A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') A__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any]=0) ->Optional[Any]: '''simple docstring''' A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) A__ = image.cpu().permute(0 , 2 , 3 , 1)[0] A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64)) A__ = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((64, 64)) if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) A__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: '''simple docstring''' A__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInpaintPipeline(**UpperCAmelCase__) A__ = sd_pipe.to(UpperCAmelCase__) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = self.get_dummy_inputs(UpperCAmelCase__) A__ = sd_pipe(**UpperCAmelCase__).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : int) ->Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') A__ = '''stabilityai/stable-diffusion-2-inpainting''' A__ = StableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase__ , safety_checker=UpperCAmelCase__) pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) pipe.enable_attention_slicing() A__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' A__ = torch.manual_seed(0) A__ = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , mask_image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , ) A__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') A__ = '''stabilityai/stable-diffusion-2-inpainting''' A__ = StableDiffusionInpaintPipeline.from_pretrained( UpperCAmelCase__ , torch_dtype=torch.floataa , safety_checker=UpperCAmelCase__ , ) pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) pipe.enable_attention_slicing() A__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' A__ = torch.manual_seed(0) A__ = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , mask_image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , ) A__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') A__ = '''stabilityai/stable-diffusion-2-inpainting''' A__ = PNDMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='''scheduler''') A__ = StableDiffusionInpaintPipeline.from_pretrained( UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() A__ = '''Face of a yellow cat, high resolution, sitting on a park bench''' A__ = torch.manual_seed(0) A__ = pipe( prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , mask_image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=2 , output_type='''np''' , ) A__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
14
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[Any] = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] a__ : str = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
161
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _lowerCamelCase = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } _lowerCamelCase = {'facebook/blenderbot-3B': 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ) -> Dict: UpperCAmelCase_ = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase_ = bs[:] UpperCAmelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Optional[int]: UpperCAmelCase_ = set() UpperCAmelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ = char return pairs class a ( _A ): '''simple docstring''' lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ['input_ids', 'attention_mask'] def __init__( self : Dict , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str="replace" , __snake_case : Optional[Any]="<s>" , __snake_case : Tuple="</s>" , __snake_case : Tuple="</s>" , __snake_case : Optional[Any]="<s>" , __snake_case : str="<unk>" , __snake_case : Optional[int]="<pad>" , __snake_case : str="<mask>" , __snake_case : Dict=False , **__snake_case : str , ): UpperCAmelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token UpperCAmelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token UpperCAmelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token UpperCAmelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token UpperCAmelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token UpperCAmelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase_ = json.load(__snake_case ) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = errors # how to handle errors in decoding UpperCAmelCase_ = bytes_to_unicode() UpperCAmelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase_ = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase_ = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase_ = {} UpperCAmelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self : Dict ): return len(self.encoder ) def lowerCamelCase_ ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : List[str] ): if token in self.cache: return self.cache[token] UpperCAmelCase_ = tuple(__snake_case ) UpperCAmelCase_ = get_pairs(__snake_case ) if not pairs: return token while True: UpperCAmelCase_ = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ = bigram UpperCAmelCase_ = [] UpperCAmelCase_ = 0 while i < len(__snake_case ): try: UpperCAmelCase_ = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ = tuple(__snake_case ) UpperCAmelCase_ = new_word if len(__snake_case ) == 1: break else: UpperCAmelCase_ = get_pairs(__snake_case ) UpperCAmelCase_ = ''' '''.join(__snake_case ) UpperCAmelCase_ = word return word def lowerCamelCase_ ( self : Union[str, Any] , __snake_case : List[str] ): UpperCAmelCase_ = [] for token in re.findall(self.pat , __snake_case ): UpperCAmelCase_ = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(''' ''' ) ) return bpe_tokens def lowerCamelCase_ ( self : Tuple , __snake_case : Optional[int] ): return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Any , __snake_case : int ): return self.decoder.get(__snake_case ) def lowerCamelCase_ ( self : str , __snake_case : Optional[Any] ): UpperCAmelCase_ = ''''''.join(__snake_case ) UpperCAmelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCamelCase_ ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase_ = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) UpperCAmelCase_ = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase_ = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def lowerCamelCase_ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : int=False , **__snake_case : Optional[int] ): UpperCAmelCase_ = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): UpperCAmelCase_ = ''' ''' + text return (text, kwargs) def lowerCamelCase_ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Optional[Any] , __snake_case : "Conversation" ): UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(__snake_case ) UpperCAmelCase_ = ''' '''.join(__snake_case ) UpperCAmelCase_ = self.encode(__snake_case ) if len(__snake_case ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
363
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
177
0