code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def snake_case_ (_a : Tuple ): UpperCAmelCase = [0] * len(_a ) UpperCAmelCase = [] UpperCAmelCase = [1] * len(_a ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCAmelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_a ) print(max(_a ) ) # Adjacency list of Graph A ={0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
34
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def snake_case_ (_a : dict , _a : str , _a : set , _a : set , _a : dict , _a : dict , _a : PriorityQueue , _a : dict , _a : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue UpperCAmelCase = cst_fwd.get(_a , np.inf ) UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) UpperCAmelCase = new_cost_f UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def snake_case_ (_a : str , _a : str , _a : dict , _a : dict ): UpperCAmelCase = -1 UpperCAmelCase = set() UpperCAmelCase = set() UpperCAmelCase = {source: 0} UpperCAmelCase = {destination: 0} UpperCAmelCase = {source: None} UpperCAmelCase = {destination: None} UpperCAmelCase = PriorityQueue() UpperCAmelCase = PriorityQueue() UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): UpperCAmelCase , UpperCAmelCase = queue_forward.get() visited_forward.add(_a ) UpperCAmelCase , UpperCAmelCase = queue_backward.get() visited_backward.add(_a ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) UpperCAmelCase = pass_and_relaxation( _a , _a , _a , _a , _a , _a , _a , _a , _a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: UpperCAmelCase = shortest_distance return shortest_path_distance A ={ 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } A ={ 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
34
1
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _lowercase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings( _lowerCAmelCase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : List[Any] , _lowercase : GenericTensor ): if self.framework == "tf": __UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def a ( self : List[str] , _lowercase : GenericTensor ): __UpperCAmelCase = self.get_masked_index(_lowercase ) __UpperCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def a ( self : Optional[int] , _lowercase : GenericTensor ): if isinstance(_lowercase , _lowercase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowercase ) def a ( self : List[str] , _lowercase : Optional[int] , _lowercase : Tuple=None , **_lowercase : Tuple ): if return_tensors is None: __UpperCAmelCase = self.framework __UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase ) self.ensure_exactly_one_mask_token(_lowercase ) return model_inputs def a ( self : Optional[int] , _lowercase : Tuple ): __UpperCAmelCase = self.model(**_lowercase ) __UpperCAmelCase = model_inputs['''input_ids'''] return model_outputs def a ( self : Optional[int] , _lowercase : List[str] , _lowercase : Optional[Any]=5 , _lowercase : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __UpperCAmelCase = target_ids.shape[0] __UpperCAmelCase = model_outputs['''input_ids'''][0] __UpperCAmelCase = model_outputs['''logits'''] if self.framework == "tf": __UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __UpperCAmelCase = outputs.numpy() __UpperCAmelCase = outputs[0, masked_index, :] __UpperCAmelCase = stable_softmax(_lowercase , axis=-1 ) if target_ids is not None: __UpperCAmelCase = tf.gather_nd(tf.squeeze(_lowercase , 0 ) , target_ids.reshape(-1 , 1 ) ) __UpperCAmelCase = tf.expand_dims(_lowercase , 0 ) __UpperCAmelCase = tf.math.top_k(_lowercase , k=_lowercase ) __UpperCAmelCase , __UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: __UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __UpperCAmelCase = outputs[0, masked_index, :] __UpperCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: __UpperCAmelCase = probs[..., target_ids] __UpperCAmelCase , __UpperCAmelCase = probs.topk(_lowercase ) __UpperCAmelCase = [] __UpperCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __UpperCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __UpperCAmelCase = input_ids.numpy().copy() if target_ids is not None: __UpperCAmelCase = target_ids[p].tolist() __UpperCAmelCase = p # Filter padding out: __UpperCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_lowercase ) result.append(_lowercase ) if single_mask: return result[0] return result def a ( self : str , _lowercase : List[Any] , _lowercase : List[Any]=None ): if isinstance(_lowercase , _lowercase ): __UpperCAmelCase = [targets] try: __UpperCAmelCase = self.tokenizer.get_vocab() except Exception: __UpperCAmelCase = {} __UpperCAmelCase = [] for target in targets: __UpperCAmelCase = vocab.get(_lowercase , _lowercase ) if id_ is None: __UpperCAmelCase = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , max_length=1 , truncation=_lowercase , )['''input_ids'''] if len(_lowercase ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue __UpperCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) __UpperCAmelCase = list(set(_lowercase ) ) if len(_lowercase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) __UpperCAmelCase = np.array(_lowercase ) return target_ids def a ( self : int , _lowercase : Dict=None , _lowercase : Optional[Any]=None ): __UpperCAmelCase = {} if targets is not None: __UpperCAmelCase = self.get_target_ids(_lowercase , _lowercase ) __UpperCAmelCase = target_ids if top_k is not None: __UpperCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : Union[str, Any] , _lowercase : Optional[Any] , *_lowercase : Union[str, Any] , **_lowercase : int ): __UpperCAmelCase = super().__call__(_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs
86
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=_lowerCAmelCase ): a__ : Union[str, Any] = ["onnx"] def __init__( self : Any , *_lowercase : Dict , **_lowercase : Any ): requires_backends(self , ['''onnx'''] ) @classmethod def a ( cls : str , *_lowercase : List[Any] , **_lowercase : int ): requires_backends(cls , ['''onnx'''] ) @classmethod def a ( cls : Union[str, Any] , *_lowercase : List[str] , **_lowercase : Optional[int] ): requires_backends(cls , ['''onnx'''] )
86
1
'''simple docstring''' import math def __A ( lowerCamelCase_ = 1_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = sum(i * i for i in range(1 , n + 1 ) ) SCREAMING_SNAKE_CASE : Tuple = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
323
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train""" SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Union[str, Any] = streaming SCREAMING_SNAKE_CASE : Optional[int] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : int = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Tuple = streaming SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Dict ): '''simple docstring''' pass
323
1
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: '''simple docstring''' snake_case : int = RobertaPreLayerNormConfig.from_pretrained( SCREAMING_SNAKE_CASE__ , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict snake_case : List[str] = torch.load(hf_hub_download(repo_id=SCREAMING_SNAKE_CASE__ , filename='''pytorch_model.bin''' ) ) snake_case : Optional[int] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): snake_case : Tuple = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue snake_case : Optional[int] = tensor_value snake_case : List[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ , state_dict=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # convert tokenizer snake_case : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint-repo", default=None, type=str, required=True, help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
83
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = """efficientnet""" def __init__( self : str , UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 600 , UpperCamelCase__ : float = 2.0 , UpperCamelCase__ : float = 3.1 , UpperCamelCase__ : int = 8 , UpperCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase__ : List[int] = [] , UpperCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase__ : float = 0.25 , UpperCamelCase__ : str = "swish" , UpperCamelCase__ : int = 2560 , UpperCamelCase__ : str = "mean" , UpperCamelCase__ : float = 0.02 , UpperCamelCase__ : float = 0.001 , UpperCamelCase__ : float = 0.99 , UpperCamelCase__ : float = 0.5 , UpperCamelCase__ : float = 0.2 , **UpperCamelCase__ : Any , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) snake_case : Dict = num_channels snake_case : List[Any] = image_size snake_case : Any = width_coefficient snake_case : int = depth_coefficient snake_case : List[str] = depth_divisor snake_case : Tuple = kernel_sizes snake_case : Optional[Any] = in_channels snake_case : Optional[Any] = out_channels snake_case : Dict = depthwise_padding snake_case : Optional[Any] = strides snake_case : List[str] = num_block_repeats snake_case : Any = expand_ratios snake_case : Any = squeeze_expansion_ratio snake_case : Optional[Any] = hidden_act snake_case : Optional[int] = hidden_dim snake_case : Dict = pooling_type snake_case : Any = initializer_range snake_case : Optional[Any] = batch_norm_eps snake_case : Tuple = batch_norm_momentum snake_case : Any = dropout_rate snake_case : str = drop_connect_rate snake_case : Dict = sum(UpperCamelCase__ ) * 4 class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = version.parse("""1.11""" ) @property def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase ( self : Tuple ) -> float: """simple docstring""" return 1e-5
83
1
from functools import reduce UpperCAmelCase__ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A ( _UpperCAmelCase : str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(A__ ) * int(A__ ) ) , n[i : i + 13] ) ) for i in range(len(A__ ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
339
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( A__ : bool = True , *A__ : int , **A__ : Union[str, Any] ) -> List[str]: """simple docstring""" if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) _lowercase =False if main_process_only: _lowercase =PartialState().local_process_index == 0 return _tqdm(*A__ , **A__ , disable=A__ )
205
0
from itertools import count def __a ( _SCREAMING_SNAKE_CASE = 50 ) ->int: a__: Optional[Any] = [1] * min_block_length for n in count(_SCREAMING_SNAKE_CASE ): fill_count_functions.append(1 ) for block_length in range(_SCREAMING_SNAKE_CASE , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(f"{solution() = }")
367
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = DebertaTokenizer a__ = True a__ = DebertaTokenizerFast def lowerCamelCase_ ( self) -> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__: List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] a__: List[str] = dict(zip(lowercase , range(len(lowercase)))) a__: Any = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a__: Optional[Any] = {'unk_token': '[UNK]'} a__: Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowercase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowercase)) def lowerCamelCase_ ( self , **lowercase) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase) def lowerCamelCase_ ( self , lowercase) -> Dict: '''simple docstring''' a__: Tuple = 'lower newer' a__: int = 'lower newer' return input_text, output_text def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Optional[int] = self.get_tokenizer() a__: List[Any] = 'lower newer' a__: Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] a__: Optional[Any] = tokenizer.tokenize(lowercase) self.assertListEqual(lowercase , lowercase) a__: int = tokens + [tokenizer.unk_token] a__: Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase) , lowercase) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: int = self.get_tokenizer() a__: Any = tokenizer('Hello' , 'World') a__: Optional[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , lowercase) @slow def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Dict = self.tokenizer_class.from_pretrained('microsoft/deberta-base') a__: Union[str, Any] = tokenizer.encode('sequence builders' , add_special_tokens=lowercase) a__: Optional[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=lowercase) a__: List[str] = tokenizer.encode( 'sequence builders' , add_special_tokens=lowercase , add_prefix_space=lowercase) a__: Any = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowercase , add_prefix_space=lowercase) a__: Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase) a__: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: List[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: a__: int = tokenizer_class.from_pretrained('microsoft/deberta-base') a__: List[str] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] a__: Dict = tokenizer(lowercase , padding=lowercase) a__: Union[str, Any] = [tokenizer.decode(lowercase , skip_special_tokens=lowercase) for seq in encoding['input_ids']] # fmt: off a__: Any = { 'input_ids': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on a__: str = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , lowercase) for expected, decoded in zip(lowercase , lowercase): self.assertEqual(lowercase , lowercase)
203
0
def a__ ( UpperCAmelCase : int , UpperCAmelCase : int ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCAmelCase : int = str(bin(UpperCAmelCase ) )[2:] # remove the leading "0b" UpperCAmelCase : Optional[Any] = str(bin(UpperCAmelCase ) )[2:] UpperCAmelCase : Tuple = max(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase ) , b_binary.zfill(UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
336
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: UpperCAmelCase : str = [randint(-1_000 , 1_000 ) for i in range(10 )] UpperCAmelCase : Any = randint(-5_000 , 5_000 ) return (arr, r) _lowerCamelCase : Any = make_dataset() def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCAmelCase , 3 ): if sum(UpperCAmelCase ) == target: return tuple(sorted(UpperCAmelCase ) ) return (0, 0, 0) def a__ ( UpperCAmelCase : list[int] , UpperCAmelCase : int ) -> tuple[int, int, int]: arr.sort() UpperCAmelCase : Tuple = len(UpperCAmelCase ) for i in range(n - 1 ): UpperCAmelCase , UpperCAmelCase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' UpperCAmelCase : Tuple = ''' triplet_sum1(*dataset) ''' UpperCAmelCase : List[str] = ''' triplet_sum2(*dataset) ''' UpperCAmelCase : Tuple = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) UpperCAmelCase : str = repeat(setup=UpperCAmelCase , stmt=UpperCAmelCase , repeat=5 , number=10_000 ) return (min(UpperCAmelCase ), min(UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase : int = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
336
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[Any] = ["""pixel_values"""] def __init__( self : List[str] , __UpperCAmelCase : bool = True , __UpperCAmelCase : int = 32 , __UpperCAmelCase : List[str]=PILImageResampling.BILINEAR , __UpperCAmelCase : bool = True , **__UpperCAmelCase : Tuple , ): a : List[Any] = do_resize a : str = do_rescale a : Optional[Any] = size_divisor a : Any = resample super().__init__(**__UpperCAmelCase) def __snake_case ( self : List[str] , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[ChannelDimension] = None , **__UpperCAmelCase : List[str]): a : Optional[int] = get_image_size(__UpperCAmelCase) # Rounds the height and width down to the closest multiple of size_divisor a : str = height // size_divisor * size_divisor a : int = width // size_divisor * size_divisor a : str = resize(__UpperCAmelCase , (new_h, new_w) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase) return image def __snake_case ( self : str , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : float , __UpperCAmelCase : Optional[ChannelDimension] = None , **__UpperCAmelCase : str): return rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[Union[TensorType, str]] = None , __UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCAmelCase : List[str] , ): a : Dict = do_resize if do_resize is not None else self.do_resize a : List[Any] = do_rescale if do_rescale is not None else self.do_rescale a : List[str] = size_divisor if size_divisor is not None else self.size_divisor a : Tuple = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing") a : Tuple = make_list_of_images(__UpperCAmelCase) if not valid_images(__UpperCAmelCase): raise ValueError("Invalid image(s)") # All transformations expect numpy arrays. a : Union[str, Any] = [to_numpy_array(__UpperCAmelCase) for img in images] if do_resize: a : List[Any] = [self.resize(__UpperCAmelCase , size_divisor=__UpperCAmelCase , resample=__UpperCAmelCase) for image in images] if do_rescale: a : Dict = [self.rescale(__UpperCAmelCase , scale=1 / 255) for image in images] a : List[str] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase) for image in images] a : Dict = {"pixel_values": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase)
359
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __lowercase = True except ImportError: __lowercase = False try: from torch.hub import _get_torch_home __lowercase = _get_torch_home() except ImportError: __lowercase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) __lowercase = os.path.join(torch_cache_home, """transformers""") __lowercase = """https://cdn.huggingface.co""" __lowercase = """https://s3.amazonaws.com/models.huggingface.co/bert""" __lowercase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) __lowercase = os.path.join(PATH, """config.yaml""") __lowercase = os.path.join(PATH, """attributes.txt""") __lowercase = os.path.join(PATH, """objects.txt""") __lowercase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) __lowercase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) __lowercase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) __lowercase = """pytorch_model.bin""" __lowercase = """config.yaml""" def lowercase ( A_=OBJECTS , A_=ATTRIBUTES )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) a : Union[str, Any] = [] with open(A_ ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Dict = OrderedDict() with open(A_ , "rb" ) as f: a : Optional[Any] = pkl.load(A_ )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): a : Dict = ckp.pop(A_ ) if isinstance(A_ , np.ndarray ): a : Optional[Any] = torch.tensor(A_ ) else: assert isinstance(A_ , torch.tensor ), type(A_ ) a : int = v return r class _A : """simple docstring""" UpperCAmelCase : int = {} def __init__( self : Any , __UpperCAmelCase : dict , __UpperCAmelCase : str = "root" , __UpperCAmelCase : Optional[int]=0): a : List[str] = name a : Tuple = level a : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() a : List[Any] = copy.deepcopy(__UpperCAmelCase) a : int = copy.deepcopy(__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a : Union[str, Any] = Config(__UpperCAmelCase , name=__UpperCAmelCase , level=level + 1) a : Dict = v setattr(self , __UpperCAmelCase , __UpperCAmelCase) a : Tuple = d def __repr__( self : List[str]): return str(list((self._pointer.keys()))) def __setattr__( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Tuple): a : Optional[Any] = val a : Tuple = val a : Dict = key.split(".") a : Union[str, Any] = len(__UpperCAmelCase) - 1 a : Optional[int] = self._pointer if len(__UpperCAmelCase) > 1: for i, l in enumerate(__UpperCAmelCase): if hasattr(self , __UpperCAmelCase) and isinstance(getattr(self , __UpperCAmelCase) , __UpperCAmelCase): setattr(getattr(self , __UpperCAmelCase) , ".".join(levels[i:]) , __UpperCAmelCase) if l == last_level: a : int = val else: a : str = pointer[l] def __snake_case ( self : str): return self._pointer def __snake_case ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any]): with open(f'''{file_name}''' , "w") as stream: dump(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int): with open(f'''{file_name}''' , "w") as stream: json.dump(__UpperCAmelCase , __UpperCAmelCase) @staticmethod def __snake_case ( __UpperCAmelCase : Dict): with open(__UpperCAmelCase) as stream: a : List[str] = load(__UpperCAmelCase , Loader=__UpperCAmelCase) return data def __str__( self : Tuple): a : str = " " if self._name != "root": a : List[str] = f'''{t * (self._level-1)}{self._name}:\n''' else: a : Optional[Any] = "" a : List[Any] = self._level for i, (k, v) in enumerate(self._pointer.items()): if isinstance(__UpperCAmelCase , __UpperCAmelCase): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(__UpperCAmelCase).__name__})\n''' a : Tuple = level return r[:-1] @classmethod def __snake_case ( cls : str , __UpperCAmelCase : str , **__UpperCAmelCase : List[Any]): a , a : Tuple = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) return cls(__UpperCAmelCase) @classmethod def __snake_case ( cls : Union[str, Any] , __UpperCAmelCase : str , **__UpperCAmelCase : List[str]): a : int = kwargs.pop("cache_dir" , __UpperCAmelCase) a : List[Any] = kwargs.pop("force_download" , __UpperCAmelCase) a : Optional[int] = kwargs.pop("resume_download" , __UpperCAmelCase) a : Tuple = kwargs.pop("proxies" , __UpperCAmelCase) a : int = kwargs.pop("local_files_only" , __UpperCAmelCase) if os.path.isdir(__UpperCAmelCase): a : Union[str, Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase) elif os.path.isfile(__UpperCAmelCase) or is_remote_url(__UpperCAmelCase): a : List[Any] = pretrained_model_name_or_path else: a : int = hf_bucket_url(__UpperCAmelCase , filename=__UpperCAmelCase , use_cdn=__UpperCAmelCase) try: # Load from URL or cache if already cached a : Optional[Any] = cached_path( __UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError a : Union[str, Any] = Config.load_yaml(__UpperCAmelCase) except EnvironmentError: a : str = "Can't load config for" raise EnvironmentError(__UpperCAmelCase) if resolved_config_file == config_file: print("loading configuration file from path") else: print("loading configuration file cache") return Config.load_yaml(__UpperCAmelCase), kwargs def lowercase ( A_ )-> str: '''simple docstring''' a : Tuple = torch.load("dump.pt" , map_location=in_tensor.device ) a : Any = in_tensor.numpy() a : Optional[int] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(A_ , A_ , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Optional[Any] = urlparse(A_ ) return parsed.scheme in ("http", "https") def lowercase ( A_ , A_ , A_=True )-> str: '''simple docstring''' a : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX a : str = "/" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase ( A_ , A_ , A_=None , A_=0 , A_=None , )-> List[str]: '''simple docstring''' a : Optional[int] = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(A_ , A_ ): ua += "; " + "; ".join("{}/{}".format(A_ , A_ ) for k, v in user_agent.items() ) elif isinstance(A_ , A_ ): ua += "; " + user_agent a : str = {"user-agent": ua} if resume_size > 0: a : List[Any] = "bytes=%d-" % (resume_size,) a : str = requests.get(A_ , stream=A_ , proxies=A_ , headers=A_ ) if response.status_code == 416: # Range not satisfiable return a : Optional[int] = response.headers.get("Content-Length" ) a : List[Any] = resume_size + int(A_ ) if content_length is not None else None a : List[Any] = tqdm( unit="B" , unit_scale=A_ , total=A_ , initial=A_ , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(A_ ) ) temp_file.write(A_ ) progress.close() def lowercase ( A_ , A_=None , A_=False , A_=None , A_=10 , A_=False , A_=None , A_=False , )-> str: '''simple docstring''' if cache_dir is None: a : List[Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : Tuple = str(A_ ) os.makedirs(A_ , exist_ok=A_ ) a : Optional[Any] = None if not local_files_only: try: a : Dict = requests.head(A_ , allow_redirects=A_ , proxies=A_ , timeout=A_ ) if response.status_code == 200: a : int = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass a : List[str] = url_to_filename(A_ , A_ ) # get cache path to put the file a : List[str] = os.path.join(A_ , A_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(A_ ): return cache_path else: a : Any = [ file for file in fnmatch.filter(os.listdir(A_ ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(A_ ) > 0: return os.path.join(A_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(A_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. a : Dict = cache_path + ".lock" with FileLock(A_ ): # If the download just completed while the lock was activated. if os.path.exists(A_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: a : Optional[Any] = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(A_ , "a+b" ) as f: yield f a : Tuple = _resumable_file_manager if os.path.exists(A_ ): a : Optional[Any] = os.stat(A_ ).st_size else: a : Optional[int] = 0 else: a : Union[str, Any] = partial(tempfile.NamedTemporaryFile , dir=A_ , delete=A_ ) a : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , A_ , temp_file.name , ) http_get( A_ , A_ , proxies=A_ , resume_size=A_ , user_agent=A_ , ) os.replace(temp_file.name , A_ ) a : List[str] = {"url": url, "etag": etag} a : Tuple = cache_path + ".json" with open(A_ , "w" ) as meta_file: json.dump(A_ , A_ ) return cache_path def lowercase ( A_ , A_=None )-> Any: '''simple docstring''' a : Dict = url.encode("utf-8" ) a : Optional[Any] = shaaaa(A_ ) a : Any = url_hash.hexdigest() if etag: a : Union[str, Any] = etag.encode("utf-8" ) a : Tuple = shaaaa(A_ ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def lowercase ( A_ , A_=None , A_=False , A_=None , A_=False , A_=None , A_=False , A_=False , A_=False , )-> Tuple: '''simple docstring''' if cache_dir is None: a : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(A_ , A_ ): a : List[Any] = str(A_ ) if isinstance(A_ , A_ ): a : int = str(A_ ) if is_remote_url(A_ ): # URL, so get it from the cache (downloading if necessary) a : Optional[Any] = get_from_cache( A_ , cache_dir=A_ , force_download=A_ , proxies=A_ , resume_download=A_ , user_agent=A_ , local_files_only=A_ , ) elif os.path.exists(A_ ): # File, and it exists. a : Union[str, Any] = url_or_filename elif urlparse(A_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(A_ ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(A_ ) ) if extract_compressed_file: if not is_zipfile(A_ ) and not tarfile.is_tarfile(A_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" a , a : Dict = os.path.split(A_ ) a : List[str] = output_file.replace("." , "-" ) + "-extracted" a : Optional[Any] = os.path.join(A_ , A_ ) if os.path.isdir(A_ ) and os.listdir(A_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions a : Tuple = output_path + ".lock" with FileLock(A_ ): shutil.rmtree(A_ , ignore_errors=A_ ) os.makedirs(A_ ) if is_zipfile(A_ ): with ZipFile(A_ , "r" ) as zip_file: zip_file.extractall(A_ ) zip_file.close() elif tarfile.is_tarfile(A_ ): a : List[str] = tarfile.open(A_ ) tar_file.extractall(A_ ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(A_ ) ) return output_path_extracted return output_path def lowercase ( A_ , A_="," )-> Union[str, Any]: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): with open(A_ ) as f: a : str = eval(f.read() ) else: a : List[Any] = requests.get(A_ ) try: a : Any = requests.json() except Exception: a : Any = req.content.decode() assert data is not None, "could not connect" try: a : Optional[Any] = eval(A_ ) except Exception: a : Any = data.split("\n" ) req.close() return data def lowercase ( A_ )-> str: '''simple docstring''' a : Optional[int] = requests.get(A_ ) a : List[str] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase ( A_ )-> Any: '''simple docstring''' a : List[Any] = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(A_ ) with open(A_ , "rb" ) as stream: a : Any = pkl.load(A_ ) a : List[str] = weights.pop("model" ) a : Dict = {} for k, v in model.items(): a : List[str] = torch.from_numpy(A_ ) if "running_var" in k: a : Dict = torch.tensor([0] ) a : Any = k.replace("running_var" , "num_batches_tracked" ) a : List[Any] = zero return new def lowercase ( )-> Optional[int]: '''simple docstring''' print(F'''{os.path.abspath(os.path.join(A_ , os.pardir ) )}/demo.ipynb''' ) def lowercase ( A_ , A_="RGB" )-> Any: '''simple docstring''' assert isinstance(A_ , A_ ) if os.path.isfile(A_ ): a : Dict = cva.imread(A_ ) else: a : Union[str, Any] = get_image_from_url(A_ ) assert img is not None, F'''could not connect to: {im}''' a : int = cva.cvtColor(A_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": a : List[str] = img[:, :, ::-1] return img def lowercase ( A_ , A_=1 )-> int: '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(A_ ) , A_ ))
226
0
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowerCamelCase__ = logging.getLogger(__name__) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): # save results if os.path.exists(_UpperCamelCase ): if os.path.exists(os.path.join(_UpperCamelCase , 'config.json' ) ) and os.path.isfile( os.path.join(_UpperCamelCase , 'config.json' ) ): os.remove(os.path.join(_UpperCamelCase , 'config.json' ) ) if os.path.exists(os.path.join(_UpperCamelCase , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(_UpperCamelCase , 'pytorch_model.bin' ) ): os.remove(os.path.join(_UpperCamelCase , 'pytorch_model.bin' ) ) else: os.makedirs(_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=False ): __lowerCAmelCase : Optional[Any] = 2 if unlogit: __lowerCAmelCase : str = torch.pow(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase : Tuple = p * torch.log(_UpperCamelCase ) __lowerCAmelCase : Any = 0 return -plogp.sum(dim=-1 ) def __lowerCAmelCase (_UpperCamelCase ): logger.info('lv, h >\t' + '\t'.join(F"{x + 1}" for x in range(len(_UpperCamelCase ) ) ) ) for row in range(len(_UpperCamelCase ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:d}" for x in tensor[row].cpu().data ) ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=False ): __lowerCAmelCase , __lowerCAmelCase : int = model.config.num_hidden_layers, model.config.num_attention_heads __lowerCAmelCase : List[Any] = torch.zeros(_UpperCamelCase , _UpperCamelCase ).to(args.device ) __lowerCAmelCase : Any = torch.zeros(_UpperCamelCase , _UpperCamelCase ).to(args.device ) if head_mask is None: __lowerCAmelCase : int = torch.ones(_UpperCamelCase , _UpperCamelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=_UpperCamelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __lowerCAmelCase : int = None __lowerCAmelCase : Tuple = 0.0 __lowerCAmelCase : Tuple = 0.0 for step, inputs in enumerate(tqdm(_UpperCamelCase , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): __lowerCAmelCase : List[str] = tuple(t.to(args.device ) for t in inputs ) ((__lowerCAmelCase) , ) : Tuple = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __lowerCAmelCase : Union[str, Any] = model(_UpperCamelCase , labels=_UpperCamelCase , head_mask=_UpperCamelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_UpperCamelCase ): __lowerCAmelCase : int = entropy(attn.detach() , _UpperCamelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_UpperCamelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __lowerCAmelCase : List[str] = 2 __lowerCAmelCase : Tuple = torch.pow(torch.pow(_UpperCamelCase , _UpperCamelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: __lowerCAmelCase : Dict = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(_UpperCamelCase ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(_UpperCamelCase ) logger.info('Head ranked by importance scores' ) __lowerCAmelCase : int = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __lowerCAmelCase : Dict = torch.arange( head_importance.numel() , device=args.device ) __lowerCAmelCase : Any = head_ranks.view_as(_UpperCamelCase ) print_ad_tensor(_UpperCamelCase ) return attn_entropy, head_importance, total_loss def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = compute_heads_importance(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , compute_entropy=_UpperCamelCase ) __lowerCAmelCase : List[str] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , _UpperCamelCase , original_score * args.masking_threshold ) __lowerCAmelCase : Optional[int] = torch.ones_like(_UpperCamelCase ) __lowerCAmelCase : Any = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __lowerCAmelCase : Tuple = original_score while current_score >= original_score * args.masking_threshold: __lowerCAmelCase : Union[str, Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __lowerCAmelCase : Optional[Any] = float('Inf' ) __lowerCAmelCase : Tuple = head_importance.view(-1 ).sort()[1] if len(_UpperCamelCase ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads __lowerCAmelCase : List[str] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) __lowerCAmelCase : Optional[int] = new_head_mask.view(-1 ) __lowerCAmelCase : Optional[int] = 0.0 __lowerCAmelCase : Optional[Any] = new_head_mask.view_as(_UpperCamelCase ) __lowerCAmelCase : Any = new_head_mask.clone().detach() print_ad_tensor(_UpperCamelCase ) # Compute metric and head importance again __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = compute_heads_importance( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , compute_entropy=_UpperCamelCase , head_mask=_UpperCamelCase ) __lowerCAmelCase : Tuple = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , _UpperCamelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(_UpperCamelCase ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = datetime.now() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = compute_heads_importance( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , compute_entropy=_UpperCamelCase , compute_importance=_UpperCamelCase , head_mask=_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = 1 / loss __lowerCAmelCase : Dict = datetime.now() - before_time __lowerCAmelCase : str = sum(p.numel() for p in model.parameters() ) __lowerCAmelCase : Tuple = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_UpperCamelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Tuple = [ v, ] assert sum(len(_UpperCamelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_UpperCamelCase ) __lowerCAmelCase : Optional[int] = sum(p.numel() for p in model.parameters() ) __lowerCAmelCase : str = datetime.now() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = compute_heads_importance( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , compute_entropy=_UpperCamelCase , compute_importance=_UpperCamelCase , head_mask=_UpperCamelCase , actually_pruned=_UpperCamelCase , ) __lowerCAmelCase : Optional[Any] = 1 / loss __lowerCAmelCase : Optional[Any] = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _UpperCamelCase , _UpperCamelCase , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , _UpperCamelCase , _UpperCamelCase ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(_UpperCamelCase , args.output_dir ) def __lowerCAmelCase (): __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=_UpperCamelCase , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=_UpperCamelCase , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=_UpperCamelCase , type=_UpperCamelCase , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=_UpperCamelCase , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=_UpperCamelCase , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=_UpperCamelCase , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=_UpperCamelCase , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=_UpperCamelCase , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=_UpperCamelCase , help='Batch size.' ) parser.add_argument('--seed' , type=_UpperCamelCase , default=42 ) parser.add_argument('--local_rank' , type=_UpperCamelCase , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=_UpperCamelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_UpperCamelCase , default='' , help='Can be used for distant debugging.' ) __lowerCAmelCase : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_UpperCamelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __lowerCAmelCase : List[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) __lowerCAmelCase : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __lowerCAmelCase : Dict = torch.device('cuda' , args.local_rank ) __lowerCAmelCase : Union[str, Any] = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __lowerCAmelCase : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __lowerCAmelCase : int = nn.parallel.DistributedDataParallel( _UpperCamelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_UpperCamelCase ) elif args.n_gpu > 1: __lowerCAmelCase : Tuple = nn.DataParallel(_UpperCamelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_UpperCamelCase ) torch.save(_UpperCamelCase , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , _UpperCamelCase ) # Prepare dataset __lowerCAmelCase : List[str] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __lowerCAmelCase : List[Any] = (torch.from_numpy(_UpperCamelCase ),) __lowerCAmelCase : Optional[int] = TensorDataset(*_UpperCamelCase ) __lowerCAmelCase : Tuple = RandomSampler(_UpperCamelCase ) __lowerCAmelCase : Optional[Any] = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __lowerCAmelCase : List[str] = mask_heads(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) prune_heads(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
86
"""simple docstring""" import numpy as np def __lowerCAmelCase (_UpperCamelCase ): return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase (_UpperCamelCase ): return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
86
1
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __A ( lowerCAmelCase_ = "isbn/0140328726" ): _UpperCAmelCase : int = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: _UpperCAmelCase : Union[str, Any] = f"{olid} is not a valid Open Library olid" raise ValueError(lowerCAmelCase_ ) return requests.get(f"https://openlibrary.org/{new_olid}.json" ).json() def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } _UpperCAmelCase : str = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _UpperCAmelCase : List[str] = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] _UpperCAmelCase : Tuple = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = """, """.join(lowerCAmelCase_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCAmelCase_ : Optional[int] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(F"\nSearching Open Library for ISBN: {isbn}...\n") try: lowerCAmelCase_ : int = summarize_book(get_openlibrary_data(F"isbn/{isbn}")) print('''\n'''.join(F"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"Sorry, there are no results for ISBN: {isbn}.")
170
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase_ : Any = logging.getLogger(__name__) class __lowerCAmelCase ( __a ): def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): _UpperCAmelCase : str = self.layer[current_layer](lowerCAmelCase__ , lowerCAmelCase__ , head_mask[current_layer] ) _UpperCAmelCase : List[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , __a , ) class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ ): super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = BertEncoderWithPabee(lowerCAmelCase__ ) self.init_weights() _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : int = 0 def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = threshold def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = patience def snake_case_ (self ): _UpperCAmelCase : int = 0 _UpperCAmelCase : Optional[Any] = 0 def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.inference_layers_num / self.inference_instances_num _UpperCAmelCase : Optional[int] = ( F"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" F" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(lowerCAmelCase__ ) @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: _UpperCAmelCase : Optional[Any] = input_ids.size() elif inputs_embeds is not None: _UpperCAmelCase : str = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) _UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _UpperCAmelCase : Optional[Any] = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) if token_type_ids is None: _UpperCAmelCase : Optional[int] = torch.zeros(lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = encoder_hidden_states.size() _UpperCAmelCase : List[str] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _UpperCAmelCase : Tuple = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.invert_attention_mask(lowerCAmelCase__ ) else: _UpperCAmelCase : List[str] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _UpperCAmelCase : Any = self.get_head_mask(lowerCAmelCase__ , self.config.num_hidden_layers ) _UpperCAmelCase : int = self.embeddings( input_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = embedding_output if self.training: _UpperCAmelCase : Union[str, Any] = [] for i in range(self.config.num_hidden_layers ): _UpperCAmelCase : Tuple = self.encoder.adaptive_forward( lowerCAmelCase__ , current_layer=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) _UpperCAmelCase : Any = self.pooler(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output_layers[i](output_dropout(lowerCAmelCase__ ) ) res.append(lowerCAmelCase__ ) elif self.patience == 0: # Use all layers for inference _UpperCAmelCase : int = self.encoder( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = self.pooler(encoder_outputs[0] ) _UpperCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase__ )] else: _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : int = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _UpperCAmelCase : int = self.encoder.adaptive_forward( lowerCAmelCase__ , current_layer=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.pooler(lowerCAmelCase__ ) _UpperCAmelCase : int = output_layers[i](lowerCAmelCase__ ) if regression: _UpperCAmelCase : List[Any] = logits.detach() if patient_result is not None: _UpperCAmelCase : Union[str, Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _UpperCAmelCase : List[str] = 0 else: _UpperCAmelCase : Optional[int] = logits.detach().argmax(dim=1 ) if patient_result is not None: _UpperCAmelCase : str = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase__ ) ): patient_counter += 1 else: _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : List[str] = logits if patient_counter == self.patience: break _UpperCAmelCase : List[str] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , __a , ) class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ ): super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : int = config.num_labels _UpperCAmelCase : List[Any] = BertModelWithPabee(lowerCAmelCase__ ) _UpperCAmelCase : int = nn.Dropout(config.hidden_dropout_prob ) _UpperCAmelCase : str = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ): _UpperCAmelCase : Optional[int] = self.bert( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _UpperCAmelCase : Any = (logits[-1],) if labels is not None: _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : int = 0 for ix, logits_item in enumerate(lowerCAmelCase__ ): if self.num_labels == 1: # We are doing regression _UpperCAmelCase : Dict = MSELoss() _UpperCAmelCase : List[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _UpperCAmelCase : Optional[Any] = CrossEntropyLoss() _UpperCAmelCase : Union[str, Any] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _UpperCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _UpperCAmelCase : Tuple = (total_loss / total_weights,) + outputs return outputs
170
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ : int = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
83
'''simple docstring''' def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[str] = abs(UpperCAmelCase_ ) _UpperCamelCase : int = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def A__ ( UpperCAmelCase_ ): _UpperCamelCase : List[Any] = abs(UpperCAmelCase_ ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def A__ ( UpperCAmelCase_ ): return sum(int(UpperCAmelCase_ ) for c in str(abs(UpperCAmelCase_ ) ) ) def A__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: _UpperCamelCase : str = f'{func.__name__}({value})' _UpperCamelCase : Tuple = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(UpperCAmelCase_ )} -- {timing:.4f} seconds' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
83
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : List[str] = torch.load(a_ , map_location='cpu' ) if "model" in sd.keys(): lowerCAmelCase__ : Union[str, Any] = torch.load(a_ , map_location='cpu' )['model'] # pop unnecessary weights lowerCAmelCase__ : int = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(a_ ) lowerCAmelCase__ : Optional[int] = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowerCAmelCase__ : Tuple = sd.pop(a_ ) lowerCAmelCase__ : Optional[Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowerCAmelCase__ : Union[str, Any] = sd[key] # We split QKV in separate Q,K,V lowerCAmelCase__ : Dict = key.replace('.qkv_proj.' , '.q_proj.' ) lowerCAmelCase__ : Union[str, Any] = key.replace('.qkv_proj.' , '.k_proj.' ) lowerCAmelCase__ : Dict = key.replace('.qkv_proj.' , '.v_proj.' ) lowerCAmelCase__ : Optional[int] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = torch.split(a_ , depth // 3 , dim=0 ) lowerCAmelCase__ : Optional[Any] = q lowerCAmelCase__ : List[str] = k lowerCAmelCase__ : Optional[int] = v del sd[key] return sd @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: lowerCAmelCase__ : Tuple = load_checkpoint(a_ ) if config is not None: lowerCAmelCase__ : str = OPTConfig.from_pretrained(a_ ) else: lowerCAmelCase__ : int = OPTConfig() lowerCAmelCase__ : Any = OPTModel(a_ ).half().eval() model.load_state_dict(a_ ) # Check results Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") lowerCamelCase__ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
364
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __lowerCAmelCase : List[Any] = 'hf-internal-testing/tiny-random-bert' __lowerCAmelCase : str = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') __lowerCAmelCase : int = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : int ) -> str: """simple docstring""" __magic_name__ = cached_file(UpperCamelCase__ , UpperCamelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) ) with open(os.path.join(UpperCamelCase__ , """refs""" , """main""" ) ) as f: __magic_name__ = f.read() self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , """snapshots""" , UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # File is cached at the same place the second time. __magic_name__ = cached_file(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Using a specific revision to test the full commit hash. __magic_name__ = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="""9b8c223""" ) self.assertEqual(UpperCamelCase__ , os.path.join(UpperCamelCase__ , """snapshots""" , UpperCamelCase__ , UpperCamelCase__ ) ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid model identifier""" ): __magic_name__ = cached_file("""tiny-random-bert""" , UpperCamelCase__ ) with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid git identifier""" ): __magic_name__ = cached_file(UpperCamelCase__ , UpperCamelCase__ , revision="""aaaa""" ) with self.assertRaisesRegex(UpperCamelCase__ , """does not appear to have a file named""" ): __magic_name__ = cached_file(UpperCamelCase__ , """conf""" ) def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" with self.assertRaisesRegex(UpperCamelCase__ , """does not appear to have a file named""" ): __magic_name__ = cached_file(UpperCamelCase__ , """conf""" ) with open(os.path.join(UpperCamelCase__ , """refs""" , """main""" ) ) as f: __magic_name__ = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , """.no_exist""" , UpperCamelCase__ , """conf""" ) ) ) __magic_name__ = cached_file(UpperCamelCase__ , """conf""" , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) __magic_name__ = cached_file(UpperCamelCase__ , """conf""" , local_files_only=UpperCamelCase__ , _raise_exceptions_for_missing_entries=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) __magic_name__ = mock.Mock() __magic_name__ = 500 __magic_name__ = {} __magic_name__ = HTTPError __magic_name__ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=UpperCamelCase__ ) as mock_head: __magic_name__ = cached_file(UpperCamelCase__ , """conf""" , _raise_exceptions_for_connection_errors=UpperCamelCase__ ) self.assertIsNone(UpperCamelCase__ ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self : Union[str, Any] ) -> Any: """simple docstring""" self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCamelCase__ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCamelCase__ ) ) self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , UpperCamelCase__ ) ) def _lowercase ( self : str ) -> str: """simple docstring""" self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid model identifier""" ): get_file_from_repo("""bert-base-case""" , UpperCamelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase__ , """is not a valid git identifier""" ): get_file_from_repo("""bert-base-cased""" , UpperCamelCase__ , revision="""ahaha""" ) __magic_name__ = get_file_from_repo("""bert-base-cased""" , UpperCamelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. __magic_name__ = json.loads(open(UpperCamelCase__ , """r""" ).read() ) self.assertEqual(config["""hidden_size"""] , 768 ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ = Path(UpperCamelCase__ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase__ , """a.txt""" ) , str(UpperCamelCase__ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase__ , """b.txt""" ) )
88
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , ) -> str: '''simple docstring''' snake_case : List[str] = parent snake_case : int = 13 snake_case : Optional[int] = 7 snake_case : Tuple = True snake_case : Optional[Any] = True snake_case : Optional[Any] = False snake_case : Optional[Any] = True snake_case : List[Any] = 99 snake_case : Union[str, Any] = 32 snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 4 snake_case : Optional[Any] = 37 snake_case : str = "gelu" snake_case : int = 0.1 snake_case : Any = 0.1 snake_case : Any = 512 snake_case : Union[str, Any] = 16 snake_case : List[str] = 2 snake_case : int = 0.02 snake_case : str = 3 snake_case : Tuple = 4 snake_case : Optional[Any] = None def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Optional[Any] = None if self.use_input_mask: snake_case : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : List[Any] = None snake_case : int = None snake_case : Tuple = None if self.use_labels: snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : str = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = TFDistilBertModel(config=UpperCamelCase__ ) snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} snake_case : Union[str, Any] = model(UpperCamelCase__ ) snake_case : Tuple = [input_ids, input_mask] snake_case : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Tuple = TFDistilBertForMaskedLM(config=UpperCamelCase__ ) snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} snake_case : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : List[Any] = TFDistilBertForQuestionAnswering(config=UpperCamelCase__ ) snake_case : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, } snake_case : str = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : int = self.num_labels snake_case : List[str] = TFDistilBertForSequenceClassification(UpperCamelCase__ ) snake_case : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} snake_case : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : Tuple = self.num_choices snake_case : Any = TFDistilBertForMultipleChoice(UpperCamelCase__ ) snake_case : List[str] = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) snake_case : Any = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) snake_case : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } snake_case : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : str = self.num_labels snake_case : Tuple = TFDistilBertForTokenClassification(UpperCamelCase__ ) snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} snake_case : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Any = self.prepare_config_and_inputs() ((snake_case) ,(snake_case) ,(snake_case) ,(snake_case) ,(snake_case) ,(snake_case)) : Union[str, Any] = config_and_inputs snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): __UpperCAmelCase : List[str] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCAmelCase : Optional[int] = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[Any] = False def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : int = TFDistilBertModelTester(self ) snake_case : str = ConfigTester(self , config_class=UpperCamelCase__ , dim=37 ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase__ ) @slow def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): snake_case : Optional[int] = TFDistilBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : str = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) snake_case : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case : Any = model(UpperCamelCase__ )[0] snake_case : Dict = [1, 6, 768] self.assertEqual(output.shape , UpperCamelCase__ ) snake_case : str = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 )
203
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase_ : Dict = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ UpperCAmelCase_ : List[Any] = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ UpperCAmelCase_ : int = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ UpperCAmelCase_ : List[str] = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ UpperCAmelCase_ : int = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def _A ( self : str ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def _A ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict=[1, 10, 100] , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : List[Any]=3.0 ): if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=__lowerCAmelCase ) as executor: UpperCamelCase :Dict = [] UpperCamelCase :Optional[int] = Counter() UpperCamelCase :Tuple = 0 UpperCamelCase :List[Any] = defaultdict(__lowerCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): for candidate in candidates: UpperCamelCase :List[str] = candidate + """\n""" + test_case UpperCamelCase :Any = (test_program, timeout, task_id, completion_id[task_id]) UpperCamelCase :int = executor.submit(__lowerCAmelCase , *__lowerCAmelCase ) futures.append(__lowerCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__lowerCAmelCase ): UpperCamelCase :Optional[int] = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) UpperCamelCase , UpperCamelCase :Optional[int] = [], [] for result in results.values(): result.sort() UpperCamelCase :Union[str, Any] = [r[1]["""passed"""] for r in result] total.append(len(__lowerCAmelCase ) ) correct.append(sum(__lowerCAmelCase ) ) UpperCamelCase :int = np.array(__lowerCAmelCase ) UpperCamelCase :Union[str, Any] = np.array(__lowerCAmelCase ) UpperCamelCase :str = k UpperCamelCase :Dict = {F"""pass@{k}""": estimate_pass_at_k(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] , __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" def estimator(__magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCamelCase :int = itertools.repeat(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) else: assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) UpperCamelCase :Any = iter(lowerCAmelCase__ ) return np.array([estimator(int(lowerCAmelCase__ ) , int(lowerCAmelCase__ ) , lowerCAmelCase__ ) for n, c in zip(lowerCAmelCase__ , lowerCAmelCase__ )] )
360
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Union[str, Any] = """char""" snake_case__ : Optional[int] = """bpe""" snake_case__ : Dict = """wp""" UpperCAmelCase_ : List[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : List[Any] = ["""image_processor""", """char_tokenizer"""] snake_case__ : Dict = """ViTImageProcessor""" snake_case__ : List[str] = """MgpstrTokenizer""" def __init__( self : Optional[int] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : Any ): UpperCamelCase :Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowerCamelCase , ) UpperCamelCase :Optional[int] = kwargs.pop("""feature_extractor""" ) UpperCamelCase :List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) UpperCamelCase :Optional[int] = tokenizer UpperCamelCase :int = AutoTokenizer.from_pretrained("""gpt2""" ) UpperCamelCase :int = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : str , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : str=None , **__lowerCamelCase : Dict ): if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: UpperCamelCase :Tuple = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None: UpperCamelCase :Any = self.char_tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: UpperCamelCase :Dict = encodings["""input_ids"""] return inputs def _A ( self : Tuple , __lowerCamelCase : str ): UpperCamelCase , UpperCamelCase , UpperCamelCase :int = sequences UpperCamelCase :Tuple = char_preds.size(0 ) UpperCamelCase , UpperCamelCase :str = self._decode_helper(__lowerCamelCase , """char""" ) UpperCamelCase , UpperCamelCase :List[Any] = self._decode_helper(__lowerCamelCase , """bpe""" ) UpperCamelCase , UpperCamelCase :List[Any] = self._decode_helper(__lowerCamelCase , """wp""" ) UpperCamelCase :Any = [] UpperCamelCase :str = [] for i in range(__lowerCamelCase ): UpperCamelCase :Union[str, Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCamelCase :Any = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCamelCase :str = scores.index(max(__lowerCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCamelCase :Optional[Any] = {} UpperCamelCase :Dict = final_strs UpperCamelCase :Union[str, Any] = final_scores UpperCamelCase :List[str] = char_strs UpperCamelCase :Tuple = bpe_strs UpperCamelCase :Optional[Any] = wp_strs return out def _A ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): if format == DecodeType.CHARACTER: UpperCamelCase :List[str] = self.char_decode UpperCamelCase :Union[str, Any] = 1 UpperCamelCase :Optional[Any] = """[s]""" elif format == DecodeType.BPE: UpperCamelCase :Union[str, Any] = self.bpe_decode UpperCamelCase :str = 2 UpperCamelCase :int = """#""" elif format == DecodeType.WORDPIECE: UpperCamelCase :int = self.wp_decode UpperCamelCase :Any = 102 UpperCamelCase :int = """[SEP]""" else: raise ValueError(F"""Format {format} is not supported.""" ) UpperCamelCase , UpperCamelCase :int = [], [] UpperCamelCase :Any = pred_logits.size(0 ) UpperCamelCase :List[Any] = pred_logits.size(1 ) UpperCamelCase , UpperCamelCase :Optional[int] = pred_logits.topk(1 , dim=-1 , largest=__lowerCamelCase , sorted=__lowerCamelCase ) UpperCamelCase :Optional[Any] = preds_index.view(-1 , __lowerCamelCase )[:, 1:] UpperCamelCase :int = decoder(__lowerCamelCase ) UpperCamelCase , UpperCamelCase :Optional[int] = torch.nn.functional.softmax(__lowerCamelCase , dim=2 ).max(dim=2 ) UpperCamelCase :Tuple = preds_max_prob[:, 1:] for index in range(__lowerCamelCase ): UpperCamelCase :Tuple = preds_str[index].find(__lowerCamelCase ) UpperCamelCase :List[Any] = preds_str[index][:pred_eos] UpperCamelCase :List[Any] = preds_index[index].cpu().tolist() UpperCamelCase :Optional[Any] = pred_index.index(__lowerCamelCase ) if eos_token in pred_index else -1 UpperCamelCase :List[str] = preds_max_prob[index][: pred_eos_index + 1] UpperCamelCase :List[str] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__lowerCamelCase ) conf_scores.append(__lowerCamelCase ) return dec_strs, conf_scores def _A ( self : Optional[Any] , __lowerCamelCase : str ): UpperCamelCase :Dict = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(__lowerCamelCase )] return decode_strs def _A ( self : Union[str, Any] , __lowerCamelCase : str ): return self.bpe_tokenizer.batch_decode(__lowerCamelCase ) def _A ( self : int , __lowerCamelCase : Optional[int] ): UpperCamelCase :Any = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(__lowerCamelCase )] return decode_strs
62
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path __snake_case =( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) __snake_case =[ord(letter) for letter in string.ascii_lowercase] __snake_case ={ord(char) for char in VALID_CHARS} __snake_case =["""the""", """be""", """to""", """of""", """and""", """in""", """that""", """have"""] def a_ ( lowerCamelCase : list[int] , lowerCamelCase : tuple[int, ...] ): lowerCAmelCase = "" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 for keychar, cipherchar in zip(cycle(_UpperCAmelCase ) , _UpperCAmelCase ): lowerCAmelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_UpperCAmelCase ) return decoded def a_ ( lowerCamelCase : list[int] ): lowerCAmelCase = [] for key in product(_UpperCAmelCase , repeat=3 ): lowerCAmelCase = try_key(_UpperCAmelCase , _UpperCAmelCase ) if encoded is not None: possibles.append(_UpperCAmelCase ) return possibles def a_ ( lowerCamelCase : list[str] , lowerCamelCase : str ): return [possible for possible in possibles if common_word in possible.lower()] def a_ ( lowerCamelCase : str = "p059_cipher.txt" ): lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = Path(_UpperCAmelCase ).parent.joinpath(_UpperCAmelCase ).read_text(encoding='utf-8' ) lowerCAmelCase = [int(_UpperCAmelCase ) for number in data.strip().split(',' )] lowerCAmelCase = filter_valid_chars(_UpperCAmelCase ) for common_word in COMMON_WORDS: lowerCAmelCase = filter_common_word(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) == 1: break lowerCAmelCase = possibles[0] return sum(ord(_UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
4
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCAmelCase__ ( unittest.TestCase ,__UpperCamelCase ): '''simple docstring''' def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = load_tool('''text-to-speech''' ) self.tool.setup() def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = self.tool('''hey''' ) __UpperCAmelCase : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = self.tool('''hey''' ) __UpperCAmelCase : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
226
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = 42 class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self , lowerCAmelCase_ = 32 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 20 , lowerCAmelCase_ = 7_68 , lowerCAmelCase_=77 , lowerCAmelCase_=4 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = "silu" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = "linear" , lowerCAmelCase_ = "prd" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ): """simple docstring""" super().__init__() _snake_case = num_attention_heads _snake_case = attention_head_dim _snake_case = num_attention_heads * attention_head_dim _snake_case = additional_embeddings _snake_case = time_embed_dim or inner_dim _snake_case = embedding_proj_dim or embedding_dim _snake_case = clip_embed_dim or embedding_dim _snake_case = Timesteps(__a , __a , 0 ) _snake_case = TimestepEmbedding(__a , __a , out_dim=__a , act_fn=__a ) _snake_case = nn.Linear(__a , __a ) if embedding_proj_norm_type is None: _snake_case = None elif embedding_proj_norm_type == "layer": _snake_case = nn.LayerNorm(__a ) else: raise ValueError(F'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' ) _snake_case = nn.Linear(__a , __a ) if encoder_hid_proj_type is None: _snake_case = None elif encoder_hid_proj_type == "linear": _snake_case = nn.Linear(__a , __a ) else: raise ValueError(F'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' ) _snake_case = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __a ) ) if added_emb_type == "prd": _snake_case = nn.Parameter(torch.zeros(1 , 1 , __a ) ) elif added_emb_type is None: _snake_case = None else: raise ValueError( F'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' ) _snake_case = nn.ModuleList( [ BasicTransformerBlock( __a , __a , __a , dropout=__a , activation_fn='gelu' , attention_bias=__a , ) for d in range(__a ) ] ) if norm_in_type == "layer": _snake_case = nn.LayerNorm(__a ) elif norm_in_type is None: _snake_case = None else: raise ValueError(F'Unsupported norm_in_type: {norm_in_type}.' ) _snake_case = nn.LayerNorm(__a ) _snake_case = nn.Linear(__a , __a ) _snake_case = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , __a , persistent=__a ) _snake_case = nn.Parameter(torch.zeros(1 , __a ) ) _snake_case = nn.Parameter(torch.zeros(1 , __a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase ( self ): """simple docstring""" _snake_case = {} def fn_recursive_add_processors(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if hasattr(__a , 'set_processor' ): _snake_case = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , __a , __a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__a , __a , __a ) return processors def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = len(self.attn_processors.keys() ) if isinstance(__a , __a ) and len(__a ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(__a )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if hasattr(__a , 'set_processor' ): if not isinstance(__a , __a ): module.set_processor(__a ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , __a , __a ) for name, module in self.named_children(): fn_recursive_attn_processor(__a , __a , __a ) def lowerCamelCase ( self ): """simple docstring""" self.set_attn_processor(AttnProcessor() ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ): """simple docstring""" _snake_case = hidden_states.shape[0] _snake_case = timestep if not torch.is_tensor(__a ): _snake_case = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__a ) and len(timesteps.shape ) == 0: _snake_case = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case = timesteps * torch.ones(__a , dtype=timesteps.dtype , device=timesteps.device ) _snake_case = self.time_proj(__a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case = timesteps_projected.to(dtype=self.dtype ) _snake_case = self.time_embedding(__a ) if self.embedding_proj_norm is not None: _snake_case = self.embedding_proj_norm(__a ) _snake_case = self.embedding_proj(__a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case = self.encoder_hidden_states_proj(__a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case = self.proj_in(__a ) _snake_case = self.positional_embedding.to(hidden_states.dtype ) _snake_case = [] _snake_case = 0 if encoder_hidden_states is not None: additional_embeds.append(__a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case = hidden_states[:, None, :] _snake_case = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case = self.prd_embedding.to(hidden_states.dtype ).expand(__a , -1 , -1 ) additional_embeds.append(__a ) _snake_case = torch.cat( __a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case = F.pad( __a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case = hidden_states + positional_embeddings if attention_mask is not None: _snake_case = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case = F.pad(__a , (0, self.additional_embeddings) , value=0.0 ) _snake_case = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case = self.norm_in(__a ) for block in self.transformer_blocks: _snake_case = block(__a , attention_mask=__a ) _snake_case = self.norm_out(__a ) if self.prd_embedding is not None: _snake_case = hidden_states[:, -1] else: _snake_case = hidden_states[:, additional_embeddings_len:] _snake_case = self.proj_to_clip_embeddings(__a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__a ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
362
'''simple docstring''' class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = name _snake_case = value _snake_case = weight def __repr__( self ): """simple docstring""" return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCamelCase ( self ): """simple docstring""" return self.value def lowerCamelCase ( self ): """simple docstring""" return self.name def lowerCamelCase ( self ): """simple docstring""" return self.weight def lowerCamelCase ( self ): """simple docstring""" return self.value / self.weight def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> int: _snake_case = [] for i in range(len(__A ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Optional[int]: _snake_case = sorted(__A , key=__A , reverse=__A ) _snake_case = [] _snake_case , _snake_case = 0.0, 0.0 for i in range(len(__A ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
160
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] =logging.get_logger(__name__) _lowercase : Dict ={"vocab_file": "sentencepiece.bpe.model"} _lowercase : Optional[Any] ={ "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _lowercase : Optional[int] ={ "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } _lowercase : Any ="▁" class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :List[str] = VOCAB_FILES_NAMES __lowerCAmelCase :Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase :int = ["input_ids", "attention_mask"] def __init__( self , __lowercase , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase = None , **__lowercase , ) -> None: """simple docstring""" a__ : Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token a__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) a__ : List[str] = vocab_file a__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowercase ) ) a__ : Union[str, Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} a__ : Union[str, Any] = len(self.sp_model ) - 1 a__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ : Optional[Any] = [self.cls_token_id] a__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[int]: """simple docstring""" a__ : Any = [self.sep_token_id] a__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : int = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]: """simple docstring""" return self.sp_model.encode(__lowercase , out_type=__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Dict: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a__ : int = self.sp_model.PieceToId(__lowercase ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Dict: """simple docstring""" a__ : Any = [] a__ : int = """""" a__ : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowercase ) + token a__ : Optional[int] = True a__ : str = [] else: current_sub_tokens.append(__lowercase ) a__ : str = False out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def __getstate__( self ) -> Union[str, Any]: """simple docstring""" a__ : Optional[int] = self.__dict__.copy() a__ : int = None return state def __setstate__( self , __lowercase ) -> Any: """simple docstring""" a__ : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a__ : Optional[Any] = {} a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : Tuple = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , """wb""" ) as fi: a__ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
170
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Optional[Any] ={"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Optional[int] = "openai-gpt" __lowerCAmelCase :Any = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __lowercase=4_0_4_7_8 , __lowercase=5_1_2 , __lowercase=7_6_8 , __lowercase=1_2 , __lowercase=1_2 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1E-5 , __lowercase=0.0_2 , __lowercase="cls_index" , __lowercase=True , __lowercase=None , __lowercase=True , __lowercase=0.1 , **__lowercase , ) -> Optional[int]: """simple docstring""" a__ : Tuple = vocab_size a__ : Union[str, Any] = n_positions a__ : int = n_embd a__ : Dict = n_layer a__ : Dict = n_head a__ : List[str] = afn a__ : List[str] = resid_pdrop a__ : List[Any] = embd_pdrop a__ : List[str] = attn_pdrop a__ : Dict = layer_norm_epsilon a__ : List[str] = initializer_range a__ : Tuple = summary_type a__ : Union[str, Any] = summary_use_proj a__ : Optional[Any] = summary_activation a__ : Union[str, Any] = summary_first_dropout a__ : Optional[Any] = summary_proj_to_labels super().__init__(**__lowercase )
170
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __magic_name__ ( __lowerCAmelCase ): '''simple docstring''' __UpperCamelCase = '''deformable_detr''' __UpperCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _a=True , _a=None , _a=3 , _a=300 , _a=1_024 , _a=6 , _a=1_024 , _a=8 , _a=6 , _a=1_024 , _a=8 , _a=0.0 , _a=True , _a="relu" , _a=256 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.02 , _a=1.0 , _a=True , _a=False , _a="sine" , _a="resnet50" , _a=True , _a=False , _a=4 , _a=4 , _a=4 , _a=False , _a=300 , _a=False , _a=1 , _a=5 , _a=2 , _a=1 , _a=1 , _a=5 , _a=2 , _a=0.1 , _a=0.25 , _a=False , **_a , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCamelCase = backbone_config.get("""model_type""" ) lowerCamelCase = CONFIG_MAPPING[backbone_model_type] lowerCamelCase = config_class.from_dict(lowerCAmelCase_ ) lowerCamelCase = use_timm_backbone lowerCamelCase = backbone_config lowerCamelCase = num_channels lowerCamelCase = num_queries lowerCamelCase = max_position_embeddings lowerCamelCase = d_model lowerCamelCase = encoder_ffn_dim lowerCamelCase = encoder_layers lowerCamelCase = encoder_attention_heads lowerCamelCase = decoder_ffn_dim lowerCamelCase = decoder_layers lowerCamelCase = decoder_attention_heads lowerCamelCase = dropout lowerCamelCase = attention_dropout lowerCamelCase = activation_dropout lowerCamelCase = activation_function lowerCamelCase = init_std lowerCamelCase = init_xavier_std lowerCamelCase = encoder_layerdrop lowerCamelCase = auxiliary_loss lowerCamelCase = position_embedding_type lowerCamelCase = backbone lowerCamelCase = use_pretrained_backbone lowerCamelCase = dilation # deformable attributes lowerCamelCase = num_feature_levels lowerCamelCase = encoder_n_points lowerCamelCase = decoder_n_points lowerCamelCase = two_stage lowerCamelCase = two_stage_num_proposals lowerCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowerCamelCase = class_cost lowerCamelCase = bbox_cost lowerCamelCase = giou_cost # Loss coefficients lowerCamelCase = mask_loss_coefficient lowerCamelCase = dice_loss_coefficient lowerCamelCase = bbox_loss_coefficient lowerCamelCase = giou_loss_coefficient lowerCamelCase = eos_coefficient lowerCamelCase = focal_alpha lowerCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _lowerCAmelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowerCAmelCase ( self ): """simple docstring""" return self.d_model def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCamelCase = self.backbone_config.to_dict() lowerCamelCase = self.__class__.model_type return output
365
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : int = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "blip_2_vision_model" def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.00_001 , _a=0.0 , _a=1e-1_0 , _a=True , **_a , ): """simple docstring""" super().__init__(**_a ) lowerCamelCase = hidden_size lowerCamelCase = intermediate_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = patch_size lowerCamelCase = image_size lowerCamelCase = initializer_range lowerCamelCase = attention_dropout lowerCamelCase = layer_norm_eps lowerCamelCase = hidden_act lowerCamelCase = qkv_bias @classmethod def _lowerCAmelCase ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) lowerCamelCase , lowerCamelCase = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCamelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a , **_a ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "blip_2_qformer" def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1e-1_2 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): """simple docstring""" super().__init__(pad_token_id=_a , **_a ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = hidden_act lowerCamelCase = intermediate_size lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = position_embedding_type lowerCamelCase = cross_attention_frequency lowerCamelCase = encoder_hidden_size @classmethod def _lowerCAmelCase ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) lowerCamelCase , lowerCamelCase = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowerCamelCase = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_a , **_a ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "blip-2" __UpperCamelCase = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): """simple docstring""" super().__init__(**_a ) if vision_config is None: lowerCamelCase = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: lowerCamelCase = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: lowerCamelCase = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowerCamelCase = BlipaVisionConfig(**_a ) lowerCamelCase = BlipaQFormerConfig(**_a ) lowerCamelCase = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowerCamelCase = CONFIG_MAPPING[text_model_type](**_a ) lowerCamelCase = self.text_config.tie_word_embeddings lowerCamelCase = self.text_config.is_encoder_decoder lowerCamelCase = num_query_tokens lowerCamelCase = self.vision_config.hidden_size lowerCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase = 1.0 lowerCamelCase = 0.02 @classmethod def _lowerCAmelCase ( cls , _a , _a , _a , **_a , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.vision_config.to_dict() lowerCamelCase = self.qformer_config.to_dict() lowerCamelCase = self.text_config.to_dict() lowerCamelCase = self.__class__.model_type return output
168
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : List[str] ,A : List[Any]=3 ,A : Any=32 ,A : Optional[int]=3 ,A : Optional[int]=10 ,A : Optional[Any]=[8, 16, 32, 64] ,A : Optional[Any]=[1, 1, 2, 1] ,A : Any=True ,A : str=True ,A : Any="relu" ,A : Dict=3 ,A : Optional[Any]=None ,A : Dict=["stage2", "stage3", "stage4"] ,A : List[str]=[2, 3, 4] ,A : Union[str, Any]=1 ,): __A = parent __A = batch_size __A = image_size __A = num_channels __A = embeddings_size __A = hidden_sizes __A = depths __A = is_training __A = use_labels __A = hidden_act __A = num_labels __A = scope __A = len(A ) __A = out_features __A = out_indices __A = num_groups def UpperCamelCase_ ( self : Any ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Tuple ): return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def UpperCamelCase_ ( self : Dict ,A : int ,A : Dict ,A : List[Any] ): __A = BitModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any] ,A : List[str] ,A : Tuple ): __A = self.num_labels __A = BitForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ,A : List[str] ,A : List[str] ): __A = BitBackbone(config=A ) model.to(A ) model.eval() __A = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None __A = None __A = BitBackbone(config=A ) model.to(A ) model.eval() __A = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () snake_case_ = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Optional[int] ): __A = BitModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : Optional[int] ): return @unittest.skip(reason="Bit does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def UpperCamelCase_ ( self : List[str] ): pass def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A ) def UpperCamelCase_ ( self : List[str] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(config=A ) for name, module in model.named_modules(): if isinstance(A ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,) def UpperCamelCase_ ( self : Tuple ): def check_hidden_states_output(A : Any ,A : List[str] ,A : Tuple ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __A = self.model_tester.num_stages self.assertEqual(len(A ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __A = layer_type __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def UpperCamelCase_ ( self : Optional[int] ): pass def UpperCamelCase_ ( self : int ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : List[str] ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = BitModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> int: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Any ): __A = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) ) @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (BitBackbone,) if is_torch_available() else () snake_case_ = BitConfig snake_case_ = False def UpperCamelCase_ ( self : Optional[int] ): __A = BitModelTester(self )
15
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
0
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 SCREAMING_SNAKE_CASE__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") SCREAMING_SNAKE_CASE__ = get_tests_dir("fixtures/vocab.json") SCREAMING_SNAKE_CASE__ = get_tests_dir("fixtures") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def snake_case ( self ): """simple docstring""" snake_case = 0 def snake_case ( self ): """simple docstring""" snake_case = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig() snake_case = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) snake_case = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) copyfile(lowerCAmelCase , os.path.join(lowerCAmelCase , 'vocab.json' ) ) snake_case = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) snake_case = WavaVecaProcessor(lowerCAmelCase , lowerCAmelCase ) # save in new folder processor.save_pretrained(lowerCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(lowerCAmelCase , lowerCAmelCase ) , 'r' ) as f: snake_case = json.load(lowerCAmelCase ) config_dict.pop('processor_class' ) with open(os.path.join(lowerCAmelCase , lowerCAmelCase ) , 'w' ) as f: f.write(json.dumps(lowerCAmelCase ) ) snake_case = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaFeatureExtractor() snake_case = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) snake_case = WavaVecaProcessor(lowerCAmelCase , lowerCAmelCase ) # save in new folder processor.save_pretrained(lowerCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(lowerCAmelCase , lowerCAmelCase ) , 'r' ) as f: snake_case = json.load(lowerCAmelCase ) config_dict.pop('processor_class' ) with open(os.path.join(lowerCAmelCase , lowerCAmelCase ) , 'w' ) as f: f.write(json.dumps(lowerCAmelCase ) ) snake_case = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: snake_case = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(lowerCAmelCase ) # copy relevant files copyfile(lowerCAmelCase , os.path.join(lowerCAmelCase , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(lowerCAmelCase , lowerCAmelCase ) , 'w' ) as f: f.write('{}' ) snake_case = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" with self.assertRaises(lowerCAmelCase ): snake_case = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase ): snake_case = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase ) snake_case = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) snake_case = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) snake_case = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version snake_case = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase , use_fast=lowerCAmelCase ) snake_case = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def snake_case ( self ): """simple docstring""" try: AutoConfig.register('custom' , lowerCAmelCase ) AutoFeatureExtractor.register(lowerCAmelCase , lowerCAmelCase ) AutoTokenizer.register(lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase ) AutoProcessor.register(lowerCAmelCase , lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): AutoProcessor.register(lowerCAmelCase , lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case = CustomFeatureExtractor.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(lowerCAmelCase , 'vocab.txt' ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(lowerCAmelCase ) snake_case = CustomProcessor(lowerCAmelCase , lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowerCAmelCase ) snake_case = AutoProcessor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def snake_case ( self ): """simple docstring""" class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : List[Any] = False class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : str = False class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Optional[Any] = """AutoFeatureExtractor""" _lowerCAmelCase : Dict = """AutoTokenizer""" _lowerCAmelCase : Optional[Any] = False try: AutoConfig.register('custom' , lowerCAmelCase ) AutoFeatureExtractor.register(lowerCAmelCase , lowerCAmelCase ) AutoTokenizer.register(lowerCAmelCase , slow_tokenizer_class=lowerCAmelCase ) AutoProcessor.register(lowerCAmelCase , lowerCAmelCase ) # If remote code is not set, the default is to use local classes. snake_case = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. snake_case = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. snake_case = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowerCAmelCase ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def snake_case ( self ): """simple docstring""" snake_case = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def snake_case ( self ): """simple docstring""" snake_case = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def snake_case ( cls ): """simple docstring""" snake_case = TOKEN HfFolder.save_token(lowerCAmelCase ) @classmethod def snake_case ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def snake_case ( self ): """simple docstring""" snake_case = WavaVecaProcessor.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase , 'test-processor' ) , push_to_hub=lowerCAmelCase , use_auth_token=self._token ) snake_case = WavaVecaProcessor.from_pretrained(F"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase , getattr(new_processor.feature_extractor , lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def snake_case ( self ): """simple docstring""" snake_case = WavaVecaProcessor.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowerCAmelCase , 'test-processor-org' ) , push_to_hub=lowerCAmelCase , use_auth_token=self._token , organization='valid_org' , ) snake_case = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase , getattr(new_processor.feature_extractor , lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def snake_case ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() snake_case = CustomFeatureExtractor.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case = os.path.join(lowerCAmelCase , 'vocab.txt' ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) snake_case = CustomTokenizer(lowerCAmelCase ) snake_case = CustomProcessor(lowerCAmelCase , lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"""{USER}/test-dynamic-processor""" , token=self._token ) snake_case = Repository(lowerCAmelCase , clone_from=F"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(lowerCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowerCAmelCase , 'tokenizer_config.json' ) ) as f: snake_case = json.load(lowerCAmelCase ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase , 'custom_processing.py' ) ) ) repo.push_to_hub() snake_case = AutoProcessor.from_pretrained(F"""{USER}/test-dynamic-processor""" , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
149
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" pass class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = data snake_case = None def __iter__( self ): """simple docstring""" snake_case = self snake_case = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCAmelCase ) yield node.data snake_case = node.next_node @property def snake_case ( self ): """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = Node(1) SCREAMING_SNAKE_CASE__ = Node(2) SCREAMING_SNAKE_CASE__ = Node(3) SCREAMING_SNAKE_CASE__ = Node(4) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE__ = root_node.next_node print(root_node.has_loop) # True SCREAMING_SNAKE_CASE__ = Node(5) SCREAMING_SNAKE_CASE__ = Node(6) SCREAMING_SNAKE_CASE__ = Node(5) SCREAMING_SNAKE_CASE__ = Node(6) print(root_node.has_loop) # False SCREAMING_SNAKE_CASE__ = Node(1) print(root_node.has_loop) # False
149
1
def a ( snake_case__: int = 1_000 ): '''simple docstring''' lowercase_ = 2**power lowercase_ = 0 while n: lowercase_ , lowercase_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
62
0
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 10_00 ) -> int: '''simple docstring''' __snake_case : Any = 1 __snake_case : List[str] = 0 for divide_by_number in range(UpperCAmelCase_ , digit + 1 ): __snake_case : list[int] = [] __snake_case : str = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCAmelCase_ ): __snake_case : Dict = len(UpperCAmelCase_ ) __snake_case : Any = divide_by_number else: has_been_divided.append(UpperCAmelCase_ ) __snake_case : List[str] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
95
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests _a : int= "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _a : Dict= BASE_URL + "/user" # https://github.com/settings/tokens _a : Union[str, Any]= os.environ.get("USER_TOKEN", "") def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> dict[Any, Any]: '''simple docstring''' __snake_case : Tuple = { 'Authorization': F"token {auth_token}", 'Accept': 'application/vnd.github.v3+json', } return requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("'USER_TOKEN' field cannot be empty.")
95
1
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def a ( __a ) -> Any: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def a ( ) -> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def a ( ) -> Dict: '''simple docstring''' UpperCamelCase__ :List[Any] = '''mock-s3-bucket''' UpperCamelCase__ :int = f'''s3://{mock_bucket}''' UpperCamelCase__ :List[str] = extract_path_from_uri(__a ) assert dataset_path.startswith('''s3://''' ) is False UpperCamelCase__ :Optional[int] = '''./local/path''' UpperCamelCase__ :Union[str, Any] = extract_path_from_uri(__a ) assert dataset_path == new_dataset_path def a ( __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = is_remote_filesystem(__a ) assert is_remote is True UpperCamelCase__ :Union[str, Any] = fsspec.filesystem('''file''' ) UpperCamelCase__ :Optional[int] = is_remote_filesystem(__a ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __a ) def a ( __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :Tuple = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} UpperCamelCase__ :Union[str, Any] = input_paths[compression_fs_class.protocol] if input_path is None: UpperCamelCase__ :Optional[int] = f'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__a ) UpperCamelCase__ :Dict = fsspec.filesystem(compression_fs_class.protocol , fo=__a ) assert isinstance(__a , __a ) UpperCamelCase__ :str = os.path.basename(__a ) UpperCamelCase__ :Optional[Any] = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__a , '''r''' , encoding='''utf-8''' ) as f, open(__a , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def a ( __a , __a , __a ) -> Dict: '''simple docstring''' UpperCamelCase__ :Tuple = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} UpperCamelCase__ :Any = compressed_file_paths[protocol] UpperCamelCase__ :Union[str, Any] = '''dataset.jsonl''' UpperCamelCase__ :str = f'''{protocol}://{member_file_path}::{compressed_file_path}''' UpperCamelCase__ , *UpperCamelCase__ :Dict = fsspec.get_fs_token_paths(__a ) assert fs.isfile(__a ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def a ( __a , __a , __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :Any = hf_api.dataset_info(__a , token=__a ) UpperCamelCase__ :List[str] = HfFileSystem(repo_info=__a , token=__a ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__a ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def a ( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__a , __a , clobber=__a ) with pytest.warns(__a ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__a ) == 1 assert ( str(warning_info[0].message ) == f'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
97
"""simple docstring""" from statistics import mean import numpy as np def __A ( a_ :list , a_ :list , a_ :list , a_ :int) -> list: __a : Any = 0 # Number of processes finished __a : Union[str, Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __a : Any = [0] * no_of_process # List to include calculation results __a : str = [0] * no_of_process # Sort by arrival time. __a : List[Any] = [burst_time[i] for i in np.argsort(a_)] __a : Tuple = [process_name[i] for i in np.argsort(a_)] arrival_time.sort() while no_of_process > finished_process_count: __a : Optional[Any] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __a : Dict = arrival_time[i] __a : Dict = 0 # Index showing the location of the process being performed __a : Tuple = 0 # Saves the current response ratio. __a : List[str] = 0 for i in range(0 , a_): if finished_process[i] == 0 and arrival_time[i] <= current_time: __a : Tuple = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __a : Tuple = temp __a : Optional[Any] = i # Calculate the turn around time __a : Optional[int] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __a : int = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __A ( a_ :list , a_ :list , a_ :list , a_ :int) -> list: __a : Dict = [0] * no_of_process for i in range(0 , a_): __a : Optional[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": A = 5 A = ['''A''', '''B''', '''C''', '''D''', '''E'''] A = [1, 2, 3, 4, 5] A = [1, 2, 3, 4, 5] A = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) A = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
160
0
from math import pi def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : int ): '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
159
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCamelCase : str = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __snake_case (unittest.TestCase , _a ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[Any] = load_tool("""text-question-answering""" ) self.tool.setup() _lowerCAmelCase : Optional[Any] = load_tool("""text-question-answering""" , remote=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tool(_UpperCAmelCase , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : List[Any] = self.remote_tool(_UpperCAmelCase , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : List[Any] = self.tool(text=_UpperCAmelCase , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : List[Any] = self.remote_tool(text=_UpperCAmelCase , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" )
159
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : List[Any] = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCAmelCase_ ( _a): lowerCamelCase__ : List[str] = "levit" def __init__( self , a=2_2_4 , a=3 , a=3 , a=2 , a=1 , a=1_6 , a=[1_2_8, 2_5_6, 3_8_4] , a=[4, 8, 1_2] , a=[4, 4, 4] , a=[1_6, 1_6, 1_6] , a=0 , a=[2, 2, 2] , a=[2, 2, 2] , a=0.02 , **a , ) -> Tuple: super().__init__(**a ) lowercase__ : List[Any] = image_size lowercase__ : Optional[int] = num_channels lowercase__ : Tuple = kernel_size lowercase__ : Any = stride lowercase__ : str = padding lowercase__ : Tuple = hidden_sizes lowercase__ : List[Any] = num_attention_heads lowercase__ : Dict = depths lowercase__ : List[str] = key_dim lowercase__ : Any = drop_path_rate lowercase__ : Optional[int] = patch_size lowercase__ : Dict = attention_ratio lowercase__ : Optional[int] = mlp_ratio lowercase__ : Any = initializer_range lowercase__ : Union[str, Any] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = version.parse("1.11") @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4
77
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ : Optional[int] = logging.get_logger(__name__) a_ : Dict = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """marian""" _lowerCAmelCase = ["""past_key_values"""] _lowerCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __magic_name__=5_81_01 , __magic_name__=None , __magic_name__=10_24 , __magic_name__=12 , __magic_name__=40_96 , __magic_name__=16 , __magic_name__=12 , __magic_name__=40_96 , __magic_name__=16 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=True , __magic_name__=True , __magic_name__="gelu" , __magic_name__=10_24 , __magic_name__=0.1 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.0_2 , __magic_name__=5_81_00 , __magic_name__=False , __magic_name__=5_81_00 , __magic_name__=0 , __magic_name__=0 , __magic_name__=True , **__magic_name__ , ) -> str: _a = vocab_size _a = decoder_vocab_size or vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True _a = share_encoder_decoder_embeddings super().__init__( pad_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class a ( _SCREAMING_SNAKE_CASE ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _a = {0: 'batch'} _a = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _a = {0: 'batch', 1: 'decoder_sequence'} _a = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__magic_name__ ): _a = {0: 'batch', 2: 'past_sequence + sequence'} _a = {0: 'batch', 2: 'past_sequence + sequence'} else: _a = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__magic_name__ , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__magic_name__ ): _a = {0: 'batch', 2: 'past_sequence + sequence'} _a = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) _a = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a , _a = common_inputs['input_ids'].shape _a = common_inputs['decoder_input_ids'].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__magic_name__ , __magic_name__ ) _a = max(__magic_name__ , __magic_name__ ) - min_num_layers _a = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_encoder_and_decoder( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _a , _a = common_inputs['input_ids'].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['attention_mask'].dtype _a = torch.cat( [common_inputs['attention_mask'], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) _a = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__magic_name__ ) _a = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence _a = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = -1 , __magic_name__ = -1 , __magic_name__ = False , __magic_name__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: _a = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: _a = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) @property def __UpperCAmelCase ( self ) -> float: return 1e-4
168
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def A_ ( A__ , A__=False ) -> str: a__ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A_ ( A__ , A__ , A__=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: a__ : List[str] = '' else: a__ : Tuple = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ : List[str] = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) a__ : Optional[Any] = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict a__ : List[str] = in_proj_weight[ : config.hidden_size, : ] a__ : List[Any] = in_proj_bias[: config.hidden_size] a__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] a__ : str = in_proj_bias[-config.hidden_size :] def A_ ( A__ ) -> Optional[int]: a__ : List[str] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(A__ , A__ ) def A_ ( A__ ) -> Optional[int]: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. a__ : Dict = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def A_ ( A__ , A__ , A__ ) -> int: a__ : List[Any] = dct.pop(A__ ) a__ : Union[str, Any] = val def A_ ( A__ , A__ ) -> Dict: a__ : Tuple = ViTMSNConfig() a__ : Dict = 1000 a__ : Optional[Any] = 'datasets/huggingface/label-files' a__ : str = 'imagenet-1k-id2label.json' a__ : Optional[Any] = json.load(open(hf_hub_download(A__ , A__ ) , 'r' ) ) a__ : Tuple = {int(A__ ): v for k, v in idalabel.items()} a__ : str = idalabel a__ : List[str] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: a__ : int = 384 a__ : Optional[int] = 1536 a__ : int = 6 elif "l16" in checkpoint_url: a__ : str = 1024 a__ : Any = 4096 a__ : str = 24 a__ : Dict = 16 a__ : Optional[int] = 0.1 elif "b4" in checkpoint_url: a__ : Tuple = 4 elif "l7" in checkpoint_url: a__ : Union[str, Any] = 7 a__ : Union[str, Any] = 1024 a__ : Dict = 4096 a__ : Dict = 24 a__ : str = 16 a__ : Tuple = 0.1 a__ : Dict = ViTMSNModel(A__ ) a__ : Optional[Any] = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )['target_encoder'] a__ : str = ViTImageProcessor(size=config.image_size ) remove_projection_head(A__ ) a__ : str = create_rename_keys(A__ , base_model=A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , base_model=A__ ) model.load_state_dict(A__ ) model.eval() a__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' a__ : Tuple = Image.open(requests.get(A__ , stream=A__ ).raw ) a__ : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=A__ , image_std=A__ ) a__ : Optional[Any] = image_processor(images=A__ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) a__ : str = model(**A__ ) a__ : int = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: a__ : List[Any] = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: a__ : List[Any] = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] ) elif "l16" in checkpoint_url: a__ : Tuple = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] ) elif "b4" in checkpoint_url: a__ : Dict = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: a__ : Optional[Any] = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , A__ , atol=1E-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase : str = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
355
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : str = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer A__: Optional[int] = logging.get_logger(__name__) A__: Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__: Any = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } A__: Any = {'''allegro/herbert-base-cased''': 514} A__: Optional[int] = {} class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = HerbertTokenizer def __init__( self: Tuple , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: str=None , __lowerCamelCase: int="<s>" , __lowerCamelCase: Dict="<unk>" , __lowerCamelCase: Tuple="<pad>" , __lowerCamelCase: Union[str, Any]="<mask>" , __lowerCamelCase: int="</s>" , **__lowerCamelCase: Tuple , ): '''simple docstring''' super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sep_token=__lowerCamelCase , **__lowerCamelCase , ) def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase__: Dict = [self.cls_token_id] UpperCamelCase__: Tuple = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase__: Optional[Any] = [self.sep_token_id] UpperCamelCase__: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ): '''simple docstring''' UpperCamelCase__: int = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
149
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_): UpperCamelCase__: List[str] = cva.getAffineTransform(A_ ,A_) return cva.warpAffine(A_ ,A_ ,(rows, cols)) if __name__ == "__main__": # read original image A__: Union[str, Any] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value A__: Tuple = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A__ , A__: List[Any] = gray_img.shape # set different points to rotate image A__: Tuple = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) A__: Dict = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) A__: Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) A__: Union[str, Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list A__: str = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A__: Optional[int] = plt.figure(1) A__: List[str] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
149
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = TFAutoModel.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = AutoModel.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = TFAutoModelForPreTraining.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = AutoModelForPreTraining.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained( _UpperCAmelCase , output_loading_info=_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = TFAutoModelForSequenceClassification.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = AutoModelForQuestionAnswering.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCAmelCase ) , 14410 ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCAmelCase ) , 14410 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_pt=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCAmelCase ) , 14410 ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(_UpperCAmelCase , from_tf=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=_UpperCAmelCase ) , 14410 )
350
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''roberta''' def __init__( self : int , _UpperCAmelCase : List[Any]=50265 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[Any]=1e-12 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple="absolute" , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=None , **_UpperCAmelCase : List[str] , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
241
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCAmelCase : Dict = random.Random() if is_torch_available(): import torch def _A ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any=1.0 , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : List[str]=None ): """simple docstring""" if rng is None: a__ : Any =global_rng a__ : List[Any] =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=2_0_0_0 , lowerCAmelCase__=1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1_6_0_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=True , ) -> Any: '''simple docstring''' a__ : List[Any] =parent a__ : Optional[int] =batch_size a__ : Optional[Any] =min_seq_length a__ : List[str] =max_seq_length a__ : Any =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__ : Dict =feature_size a__ : Dict =padding_value a__ : Optional[int] =sampling_rate a__ : Optional[int] =return_attention_mask a__ : Optional[Any] =do_normalize def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase ( self , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> Any: '''simple docstring''' def _flatten(lowerCAmelCase__ ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: a__ : str =floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a__ : Union[str, Any] =[ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__ : List[Any] =[np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : int = ASTFeatureExtractor def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Optional[int] =ASTFeatureExtractionTester(self ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__ : str =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : List[Any] =[np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test not batched input a__ : Dict =feat_extract(speech_inputs[0] , return_tensors="np" ).input_values a__ : Optional[int] =feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test batched a__ : Any =feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ).input_values a__ : str =feat_extract(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a__ : str =[floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] a__ : Dict =np.asarray(lowerCAmelCase__ ) a__ : List[Any] =feat_extract(lowerCAmelCase__ , return_tensors="np" ).input_values a__ : Optional[int] =feat_extract(lowerCAmelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) @require_torch def _lowercase ( self ) -> int: '''simple docstring''' import torch a__ : Union[str, Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : Tuple =np.random.rand(1_0_0 ).astype(np.floataa ) a__ : Any =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__ : int =feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a__ : List[str] =feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _lowercase ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' from datasets import load_dataset a__ : int =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech a__ : str =ds.sort("id" ).select(range(lowerCAmelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def _lowercase ( self ) -> int: '''simple docstring''' a__ : Optional[Any] =torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on a__ : str =self._load_datasamples(1 ) a__ : Dict =ASTFeatureExtractor() a__ : str =feature_extractor(lowerCAmelCase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , lowerCAmelCase__ , atol=1E-4 ) )
95
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = "arrow" , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__( split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : int =load_from_cache_file a__ : Tuple =file_format a__ : List[Any] =Spark( df=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , working_dir=lowerCAmelCase__ , **lowerCAmelCase__ , ) def _lowercase ( self ) -> str: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) a__ : str =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
95
1
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class A__ ( A__ ): A__ = 'segformer' def __init__( self : Dict , _a : int=3 , _a : List[Any]=4 , _a : Union[str, Any]=[2, 2, 2, 2] , _a : Tuple=[8, 4, 2, 1] , _a : int=[32, 64, 160, 256] , _a : List[Any]=[7, 3, 3, 3] , _a : str=[4, 2, 2, 2] , _a : str=[1, 2, 5, 8] , _a : Union[str, Any]=[4, 4, 4, 4] , _a : List[Any]="gelu" , _a : List[str]=0.0 , _a : Optional[int]=0.0 , _a : str=0.1 , _a : Tuple=0.02 , _a : Union[str, Any]=0.1 , _a : List[str]=1e-6 , _a : Optional[int]=256 , _a : Optional[Any]=255 , **_a : Tuple , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_a ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , _a , ) _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =num_encoder_blocks _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =sr_ratios _SCREAMING_SNAKE_CASE =hidden_sizes _SCREAMING_SNAKE_CASE =patch_sizes _SCREAMING_SNAKE_CASE =strides _SCREAMING_SNAKE_CASE =mlp_ratios _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =classifier_dropout_prob _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =drop_path_rate _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =decoder_hidden_size _SCREAMING_SNAKE_CASE =kwargs.get('reshape_last_stage' , _a ) _SCREAMING_SNAKE_CASE =semantic_loss_ignore_index class A__ ( A__ ): A__ = version.parse('1.11' ) @property def A ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Any ) -> float: '''simple docstring''' return 1e-4 @property def A ( self : List[str] ) -> int: '''simple docstring''' return 12
114
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase : List[str] = {"UserAgent": UserAgent().random} def _lowerCAmelCase ( _UpperCamelCase : str ) -> dict: """simple docstring""" _SCREAMING_SNAKE_CASE =script.contents[0] _SCREAMING_SNAKE_CASE =json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__ : def __init__( self : int , _a : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =f"https://www.instagram.com/{username}/" _SCREAMING_SNAKE_CASE =self.get_json() def A ( self : Optional[int] ) -> dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =requests.get(self.url , headers=_a ).text _SCREAMING_SNAKE_CASE =BeautifulSoup(_a , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : str ) -> str: '''simple docstring''' return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: '''simple docstring''' return f"{self.fullname} ({self.username}) is {self.biography}" @property def A ( self : List[Any] ) -> str: '''simple docstring''' return self.user_data["username"] @property def A ( self : str ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def A ( self : Any ) -> str: '''simple docstring''' return self.user_data["biography"] @property def A ( self : Optional[Any] ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def A ( self : Tuple ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def A ( self : Optional[int] ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def A ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def A ( self : List[str] ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def A ( self : Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def A ( self : Dict ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def A ( self : Tuple ) -> bool: '''simple docstring''' return self.user_data["is_private"] def _lowerCAmelCase ( _UpperCamelCase : str = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions _SCREAMING_SNAKE_CASE =InstagramUser(_UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Optional[int] = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
114
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :str , **lowerCAmelCase_ :Any )->Optional[int]: '''simple docstring''' snake_case_ = AutoConfig.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) snake_case_ = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
159
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self : Optional[Any] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_5_5 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = True , **_lowerCAmelCase : int , ) -> None: """simple docstring""" super().__init__(**_lowerCAmelCase ) snake_case_ = size if size is not None else {"shortest_edge": 2_2_4} snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) snake_case_ = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="crop_size" ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case_ = image_std if image_std is not None else OPENAI_CLIP_STD snake_case_ = do_convert_rgb def lowerCAmelCase__ ( self : Dict , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" snake_case_ = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case_ = get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[int] , ) -> np.ndarray: """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : bool = None , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : int = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : float = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : Optional[Union[float, List[float]]] = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase : Optional[int] , ) -> PIL.Image.Image: """simple docstring""" snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(_lowerCAmelCase , param_name="size" , default_to_square=_lowerCAmelCase ) snake_case_ = resample if resample is not None else self.resample snake_case_ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ = crop_size if crop_size is not None else self.crop_size snake_case_ = get_size_dict(_lowerCAmelCase , param_name="crop_size" , default_to_square=_lowerCAmelCase ) snake_case_ = do_rescale if do_rescale is not None else self.do_rescale snake_case_ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = image_mean if image_mean is not None else self.image_mean snake_case_ = image_std if image_std is not None else self.image_std snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: snake_case_ = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: snake_case_ = [self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: snake_case_ = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: snake_case_ = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] snake_case_ = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] snake_case_ = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
159
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Tuple = logging.get_logger(__name__) A_ : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} A_ : int = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } A_ : Tuple = { 'allenai/longformer-base-4096': 4096, 'allenai/longformer-large-4096': 4096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase () -> Any: A__ : Optional[int] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) A__ : List[Any] = bs[:] A__ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase_ ) cs.append(2**8 + n ) n += 1 A__ : List[Any] = [chr(lowercase_ ) for n in cs] return dict(zip(lowercase_ , lowercase_ ) ) def UpperCamelCase (lowercase_: int ) -> List[str]: A__ : Tuple = set() A__ : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : Optional[int] = char return pairs class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Any = VOCAB_FILES_NAMES UpperCAmelCase__: Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , A__ , A__ , A__="replace" , A__="<s>" , A__="</s>" , A__="</s>" , A__="<s>" , A__="<unk>" , A__="<pad>" , A__="<mask>" , A__=False , **A__ , ): A__ : Any = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else bos_token A__ : Optional[Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else eos_token A__ : Any = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else sep_token A__ : List[Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else cls_token A__ : List[str] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else unk_token A__ : Tuple = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ : Union[str, Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token super().__init__( errors=A__ , bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , add_prefix_space=A__ , **A__ , ) with open(A__ , encoding="""utf-8""" ) as vocab_handle: A__ : Optional[int] = json.load(A__ ) A__ : List[str] = {v: k for k, v in self.encoder.items()} A__ : Dict = errors # how to handle errors in decoding A__ : List[Any] = bytes_to_unicode() A__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(A__ , encoding="""utf-8""" ) as merges_handle: A__ : Optional[int] = merges_handle.read().split("""\n""" )[1:-1] A__ : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] A__ : List[Any] = dict(zip(A__ , range(len(A__ ) ) ) ) A__ : Optional[int] = {} A__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A__ : Optional[Any] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , A__ ): if token in self.cache: return self.cache[token] A__ : Optional[Any] = tuple(A__ ) A__ : int = get_pairs(A__ ) if not pairs: return token while True: A__ : Tuple = min(A__ , key=lambda A__ : self.bpe_ranks.get(A__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Optional[int] = bigram A__ : Union[str, Any] = [] A__ : List[Any] = 0 while i < len(A__ ): try: A__ : List[str] = word.index(A__ , A__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Optional[Any] = j if word[i] == first and i < len(A__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : str = tuple(A__ ) A__ : List[str] = new_word if len(A__ ) == 1: break else: A__ : Any = get_pairs(A__ ) A__ : Tuple = """ """.join(A__ ) A__ : List[str] = word return word def __A ( self , A__ ): A__ : List[str] = [] for token in re.findall(self.pat , A__ ): A__ : Union[str, Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A__ ).split(""" """ ) ) return bpe_tokens def __A ( self , A__ ): return self.encoder.get(A__ , self.encoder.get(self.unk_token ) ) def __A ( self , A__ ): return self.decoder.get(A__ ) def __A ( self , A__ ): A__ : List[str] = """""".join(A__ ) A__ : Any = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __A ( self , A__ , A__ = None ): if not os.path.isdir(A__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ : List[str] = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Any = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A__ , ensure_ascii=A__ ) + """\n""" ) A__ : Union[str, Any] = 0 with open(A__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) A__ : str = token_index writer.write(""" """.join(A__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __A ( self , A__ , A__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Tuple = [self.cls_token_id] A__ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , A__ , A__ = None , A__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1, 1] + ([0] * len(A__ )) + [1] def __A ( self , A__ , A__ = None ): A__ : int = [self.sep_token_id] A__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , A__ , A__=False , **A__ ): A__ : Tuple = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A__ ) > 0 and not text[0].isspace()): A__ : Dict = """ """ + text return (text, kwargs)
141
import requests A_ : List[Any] = 'YOUR API KEY' def UpperCamelCase (lowercase_: str , lowercase_: str = giphy_api_key ) -> list: A__ : Dict = """+""".join(query.split() ) A__ : Optional[int] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" A__ : Any = requests.get(lowercase_ ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
141
1
import math import os import sys def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[str] = "" try: with open(__UpperCAmelCase , "rb") as binary_file: SCREAMING_SNAKE_CASE : Optional[int] = binary_file.read() for dat in data: SCREAMING_SNAKE_CASE : int = f"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible") sys.exit() def lowerCamelCase__ ( _a , _a , _a , _a): lexicon.pop(__UpperCAmelCase) SCREAMING_SNAKE_CASE : int = last_match_id if math.loga(__UpperCAmelCase).is_integer(): for curr_key in lexicon: SCREAMING_SNAKE_CASE : Dict = "0" + lexicon[curr_key] SCREAMING_SNAKE_CASE : List[str] = bin(__UpperCAmelCase)[2:] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = {"0": "0", "1": "1"} SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = "", "" SCREAMING_SNAKE_CASE : Tuple = len(__UpperCAmelCase) for i in range(len(__UpperCAmelCase)): curr_string += data_bits[i] if curr_string not in lexicon: continue SCREAMING_SNAKE_CASE : str = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) index += 1 SCREAMING_SNAKE_CASE : Tuple = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": SCREAMING_SNAKE_CASE : Any = lexicon[curr_string] result += last_match_id return result def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = os.path.getsize(__UpperCAmelCase) SCREAMING_SNAKE_CASE : Optional[int] = bin(__UpperCAmelCase)[2:] SCREAMING_SNAKE_CASE : Any = len(__UpperCAmelCase) return "0" * (length_length - 1) + file_length_binary + compressed def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = 8 try: with open(__UpperCAmelCase , "wb") as opened_file: SCREAMING_SNAKE_CASE : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase) , __UpperCAmelCase) ] if len(result_byte_array[-1]) % byte_length == 0: result_byte_array.append("10000000") else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1]) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2).to_bytes(1 , byteorder="big")) except OSError: print("File not accessible") sys.exit() def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Any = read_file_binary(__UpperCAmelCase) SCREAMING_SNAKE_CASE : Dict = compress_data(__UpperCAmelCase) SCREAMING_SNAKE_CASE : str = add_file_length(__UpperCAmelCase , __UpperCAmelCase) write_file_binary(__UpperCAmelCase , __UpperCAmelCase) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
76
from __future__ import annotations from math import gcd def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: return (pow(__UpperCAmelCase , 2 ) + step) % modulus for _ in range(__UpperCAmelCase ): # These track the position within the cycle detection logic. SCREAMING_SNAKE_CASE_ = seed SCREAMING_SNAKE_CASE_ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. SCREAMING_SNAKE_CASE_ = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = rand_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. SCREAMING_SNAKE_CASE_ = gcd(hare - tortoise , __UpperCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. SCREAMING_SNAKE_CASE_ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) lowerCamelCase__ : Tuple = parser.parse_args() lowerCamelCase__ : Any = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'''{args.num} is probably prime''') else: lowerCamelCase__ : Tuple = args.num // divisor print(f'''{args.num} = {divisor} * {quotient}''')
225
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Any = '''▁''' a__ : int = {'''vocab_file''': '''sentencepiece.bpe.model'''} a__ : Optional[Any] = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } a__ : Any = { '''facebook/xglm-564M''': 2_048, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : str = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : Dict = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] SCREAMING_SNAKE_CASE : Dict = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE : Union[str, Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} SCREAMING_SNAKE_CASE : Tuple = len(self.sp_model ) SCREAMING_SNAKE_CASE : Tuple = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[str] = self.__dict__.copy() SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __lowerCAmelCase ( self ) ->List[str]: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : List[str] = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class lowercase_ (unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = ort.SessionOptions() __lowercase = False return options def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __lowercase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' ,revision='''onnx''' ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''A red cat sitting on a park bench''' __lowercase = np.random.RandomState(0 ) __lowercase = pipe( prompt=lowercase__ ,image=lowercase__ ,mask_image=lowercase__ ,guidance_scale=7.5 ,num_inference_steps=1_0 ,generator=lowercase__ ,output_type='''np''' ,) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __lowercase = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' ,subfolder='''scheduler''' ,revision='''onnx''' ) __lowercase = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' ,revision='''onnx''' ,scheduler=lowercase__ ,safety_checker=lowercase__ ,feature_extractor=lowercase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = '''A red cat sitting on a park bench''' __lowercase = np.random.RandomState(0 ) __lowercase = pipe( prompt=lowercase__ ,image=lowercase__ ,mask_image=lowercase__ ,guidance_scale=7.5 ,num_inference_steps=2_0 ,generator=lowercase__ ,output_type='''np''' ,) __lowercase = output.images __lowercase = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __lowercase = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
104
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Union[str, Any] = ["""flax"""] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : List[str] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Union[str, Any] , **a_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : Union[str, Any] , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""flax"""] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Dict = ["""flax"""] def __init__( self : Any , *a_ : Optional[int] , **a_ : str ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Tuple , **a_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , *a_ : Any , **a_ : Union[str, Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""flax"""] def __init__( self : str , *a_ : Optional[int] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Dict , **a_ : str ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Optional[int] , **a_ : List[str] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""flax"""] def __init__( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Dict , **a_ : Any ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Tuple , *a_ : Optional[Any] , **a_ : Tuple ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[int] , *a_ : List[Any] , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : str , **a_ : Any ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Any , **a_ : Tuple ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Optional[int] , **a_ : str ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : int = ["""flax"""] def __init__( self : Dict , *a_ : str , **a_ : int ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : List[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : List[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""flax"""] def __init__( self : Any , *a_ : Any , **a_ : int ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Tuple , **a_ : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Dict , **a_ : Dict ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Any , **a_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : List[Any] , **a_ : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : List[Any] , **a_ : Tuple ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""flax"""] def __init__( self : Tuple , *a_ : Optional[int] , **a_ : Union[str, Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : List[str] , **a_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , *a_ : Any , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""flax"""] def __init__( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Dict ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : int , **a_ : List[str] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : int , **a_ : str ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""flax"""] def __init__( self : List[str] , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : Optional[int] , **a_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : Union[str, Any] , **a_ : Union[str, Any] ): requires_backends(cls , ["flax"] )
241
0
from __future__ import annotations from collections.abc import Generator def SCREAMING_SNAKE_CASE__ ( ) -> Generator[int, None, None]: __lowerCamelCase : dict[int, int] = {} __lowerCamelCase : int = 2 while True: __lowerCamelCase : Optional[Any] = factor_map.pop(lowerCamelCase__ , lowerCamelCase__ ) if factor: __lowerCamelCase : int = factor + prime while x in factor_map: x += factor __lowerCamelCase : int = factor else: __lowerCamelCase : Optional[int] = prime yield prime prime += 1 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1e10 ) -> int: __lowerCamelCase : Union[str, Any] = sieve() __lowerCamelCase : str = 1 while True: __lowerCamelCase : Any = next(lowerCamelCase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCamelCase__ ) n += 2 if __name__ == "__main__": print(solution())
369
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a ="""true""" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=8_2 , lowerCamelCase__=1_6 ) -> List[Any]: set_seed(4_2 ) __lowerCamelCase : Tuple = RegressionModel() __lowerCamelCase : str = deepcopy(lowerCamelCase__ ) __lowerCamelCase : Optional[int] = RegressionDataset(length=lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = DataLoader(lowerCamelCase__ , batch_size=lowerCamelCase__ ) model.to(accelerator.device ) __lowerCamelCase , __lowerCamelCase : Tuple = accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ ) return model, ddp_model, dataloader def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=False ) -> List[Any]: __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) __lowerCamelCase : Any = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs with accelerator.main_process_first(): __lowerCamelCase : Union[str, Any] = dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) __lowerCamelCase : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase__ ): if use_longest: return tokenizer.pad(lowerCamelCase__ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(lowerCamelCase__ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(lowerCamelCase__ , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1_6 ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : Optional[int] = Accelerator(dispatch_batches=lowerCamelCase__ , split_batches=lowerCamelCase__ ) __lowerCamelCase : Union[str, Any] = get_dataloader(lowerCamelCase__ , not dispatch_batches ) __lowerCamelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Tuple = accelerator.prepare(lowerCamelCase__ , lowerCamelCase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : str = [] for batch in dataloader: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = batch.values() with torch.no_grad(): __lowerCamelCase : Tuple = model(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __lowerCamelCase , __lowerCamelCase : Dict = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase__ ) targs.append(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = torch.cat(lowerCamelCase__ ), torch.cat(lowerCamelCase__ ) return logits, targs def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=8_2 , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=1_6 ) -> Dict: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = get_basic_setup(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase : Dict = generate_predictions(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) assert ( len(lowerCamelCase__ ) == num_samples ), F"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase__ )}" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = False , lowerCamelCase__ = False ) -> Dict: __lowerCamelCase : Dict = evaluate.load('glue' , 'mrpc' ) __lowerCamelCase , __lowerCamelCase : Optional[int] = get_mrpc_setup(lowerCamelCase__ , lowerCamelCase__ ) # First do baseline __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = setup['no'] model.to(lowerCamelCase__ ) model.eval() for batch in dataloader: batch.to(lowerCamelCase__ ) with torch.inference_mode(): __lowerCamelCase : Dict = model(**lowerCamelCase__ ) __lowerCamelCase : Any = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCamelCase__ , references=batch['labels'] ) __lowerCamelCase : str = metric.compute() # Then do distributed __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): __lowerCamelCase : List[str] = model(**lowerCamelCase__ ) __lowerCamelCase : List[Any] = outputs.logits.argmax(dim=-1 ) __lowerCamelCase : List[str] = batch['labels'] __lowerCamelCase , __lowerCamelCase : Union[str, Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCamelCase__ , references=lowerCamelCase__ ) __lowerCamelCase : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: __lowerCamelCase : int = Accelerator(split_batches=lowerCamelCase__ , dispatch_batches=lowerCamelCase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(lowerCamelCase__ , lowerCamelCase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __lowerCamelCase : Optional[Any] = Accelerator(split_batches=lowerCamelCase__ , dispatch_batches=lowerCamelCase__ ) if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(lowerCamelCase__ , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) __lowerCamelCase : Dict = Accelerator() test_torch_metrics(lowerCamelCase__ , 5_1_2 ) accelerator.state._reset_state() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
113
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset a : Union[str, Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class a ( nn.Module ): """simple docstring""" def __init__( self : int , __lowercase : Optional[int] ) -> Optional[Any]: super().__init__() __UpperCAmelCase : List[str] = torchvision.models.resnetaaa(pretrained=__lowercase ) __UpperCAmelCase : str = list(model.children() )[:-2] __UpperCAmelCase : Optional[Any] = nn.Sequential(*__lowercase ) __UpperCAmelCase : List[str] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCAmelCase ( self : Optional[Any] , __lowercase : Optional[int] ) -> str: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 __UpperCAmelCase : int = self.pool(self.model(__lowercase ) ) __UpperCAmelCase : int = torch.flatten(__lowercase , start_dim=2 ) __UpperCAmelCase : List[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class a ( lowercase__ ): """simple docstring""" def __init__( self : Tuple , __lowercase : List[str] , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Dict ) -> str: __UpperCAmelCase : int = [json.loads(__lowercase ) for l in open(__lowercase )] __UpperCAmelCase : Tuple = os.path.dirname(__lowercase ) __UpperCAmelCase : Optional[Any] = tokenizer __UpperCAmelCase : Optional[Any] = labels __UpperCAmelCase : Any = len(__lowercase ) __UpperCAmelCase : Dict = max_seq_length __UpperCAmelCase : Union[str, Any] = transforms def __len__( self : Optional[int] ) -> Dict: return len(self.data ) def __getitem__( self : int , __lowercase : Optional[Any] ) -> Any: __UpperCAmelCase : Optional[int] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=__lowercase ) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Dict = sentence[: self.max_seq_length] __UpperCAmelCase : List[str] = torch.zeros(self.n_classes ) __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Dict = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) __UpperCAmelCase : Union[str, Any] = self.transforms(__lowercase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCAmelCase ( self : Optional[Any] ) -> int: __UpperCAmelCase : str = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def lowerCamelCase__ ( __lowerCamelCase : Tuple ): __UpperCAmelCase : Dict = [len(row["""sentence"""] ) for row in batch] __UpperCAmelCase , __UpperCAmelCase : List[str] = len(__lowerCamelCase ), max(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = torch.zeros(__lowerCamelCase , __lowerCamelCase , dtype=torch.long ) __UpperCAmelCase : Optional[Any] = torch.zeros(__lowerCamelCase , __lowerCamelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__lowerCamelCase , __lowerCamelCase ) ): __UpperCAmelCase : List[str] = input_row["""sentence"""] __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Union[str, Any] = torch.stack([row["""image"""] for row in batch] ) __UpperCAmelCase : Dict = torch.stack([row["""label"""] for row in batch] ) __UpperCAmelCase : List[str] = torch.stack([row["""image_start_token"""] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase__ ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase__ ( ): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
114
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a : Any = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase__ ( __lowerCamelCase : Vector , __lowerCamelCase : Vector ): return np.sqrt(np.sum((np.asarray(__lowerCamelCase ) - np.asarray(__lowerCamelCase )) ** 2 ) ) def lowerCamelCase__ ( __lowerCamelCase : Vector , __lowerCamelCase : Vector ): return sum((va - va) ** 2 for va, va in zip(__lowerCamelCase , __lowerCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase__ ( ): from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) benchmark()
114
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def A (__A : Optional[Any] ) -> int: """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def A () -> List[str]: """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def A () -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = 'mock-s3-bucket' UpperCAmelCase_ = F"""s3://{mock_bucket}""" UpperCAmelCase_ = extract_path_from_uri(__A ) assert dataset_path.startswith('''s3://''' ) is False UpperCAmelCase_ = './local/path' UpperCAmelCase_ = extract_path_from_uri(__A ) assert dataset_path == new_dataset_path def A (__A : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ = is_remote_filesystem(__A ) assert is_remote is True UpperCAmelCase_ = fsspec.filesystem('''file''' ) UpperCAmelCase_ = is_remote_filesystem(__A ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __A ) def A (__A : Union[str, Any] , __A : Optional[int] , __A : Tuple , __A : Any , __A : Optional[Any] , __A : Any , __A : List[Any] ) -> int: """simple docstring""" UpperCAmelCase_ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} UpperCAmelCase_ = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase_ = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__A ) UpperCAmelCase_ = fsspec.filesystem(compression_fs_class.protocol , fo=__A ) assert isinstance(__A , __A ) UpperCAmelCase_ = os.path.basename(__A ) UpperCAmelCase_ = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__A , '''r''' , encoding='''utf-8''' ) as f, open(__A , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def A (__A : Any , __A : Dict , __A : int ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} UpperCAmelCase_ = compressed_file_paths[protocol] UpperCAmelCase_ = 'dataset.jsonl' UpperCAmelCase_ = F"""{protocol}://{member_file_path}::{compressed_file_path}""" UpperCAmelCase_ = fsspec.get_fs_token_paths(__A ) assert fs.isfile(__A ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def A (__A : int , __A : str , __A : Any , __A : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ = hf_api.dataset_info(__A , token=__A ) UpperCAmelCase_ = HfFileSystem(repo_info=__A , token=__A ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__A ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__A , __A , clobber=__A ) with pytest.warns(__A ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__A ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
355
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = 10 def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4] UpperCAmelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0) , _snake_case) def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = '''''' UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) self.assertEqual(_snake_case , []) self.assertEqual(_snake_case , []) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase_ , UpperCAmelCase_ = process_story(_snake_case) UpperCAmelCase_ = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(_snake_case , _snake_case) UpperCAmelCase_ = ['''It was the best of times.'''] self.assertEqual(_snake_case , _snake_case) def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(_snake_case , 0).numpy() , expected.numpy()) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 23).numpy() , expected.numpy()) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1]) UpperCAmelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(_snake_case , 1).numpy() , expected.numpy()) def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = 101 UpperCAmelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]) UpperCAmelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) UpperCAmelCase_ = compute_token_type_ids(_snake_case , _snake_case) np.testing.assert_array_equal(_snake_case , _snake_case)
7
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( lowercase__ : list, lowercase__ : int ): '''simple docstring''' if len(lowercase__ ) <= 1 or n <= 1: return insert_next(lowercase__, n - 1 ) rec_insertion_sort(lowercase__, n - 1 ) def __UpperCamelCase ( lowercase__ : list, lowercase__ : int ): '''simple docstring''' if index >= len(lowercase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowercase , __lowercase =( collection[index], collection[index - 1], ) insert_next(lowercase__, index + 1 ) if __name__ == "__main__": UpperCAmelCase = input('''Enter integers separated by spaces: ''') UpperCAmelCase = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
141
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase ( A ): lowerCAmelCase_ = "data2vec-audio" def __init__( self : Tuple , __lowercase : Optional[int]=32 , __lowercase : List[str]=768 , __lowercase : List[str]=12 , __lowercase : str=12 , __lowercase : Tuple=3072 , __lowercase : Any="gelu" , __lowercase : Dict=0.1 , __lowercase : Any=0.1 , __lowercase : Tuple=0.1 , __lowercase : List[str]=0.0 , __lowercase : List[Any]=0.1 , __lowercase : str=0.1 , __lowercase : Optional[int]=0.0_2 , __lowercase : Dict=1E-5 , __lowercase : Any="gelu" , __lowercase : Dict=(512, 512, 512, 512, 512, 512, 512) , __lowercase : str=(5, 2, 2, 2, 2, 2, 2) , __lowercase : List[Any]=(10, 3, 3, 3, 3, 2, 2) , __lowercase : Dict=False , __lowercase : int=16 , __lowercase : Any=19 , __lowercase : Tuple=5 , __lowercase : Optional[Any]=0.0_5 , __lowercase : Optional[int]=10 , __lowercase : int=2 , __lowercase : Optional[Any]=0.0 , __lowercase : Tuple=10 , __lowercase : Union[str, Any]=0 , __lowercase : Optional[int]="sum" , __lowercase : str=False , __lowercase : Union[str, Any]=False , __lowercase : Any=256 , __lowercase : str=(512, 512, 512, 512, 1500) , __lowercase : Union[str, Any]=(5, 3, 3, 1, 1) , __lowercase : List[Any]=(1, 2, 3, 1, 1) , __lowercase : Any=512 , __lowercase : int=0 , __lowercase : Union[str, Any]=1 , __lowercase : Optional[int]=2 , __lowercase : Any=False , __lowercase : Optional[int]=3 , __lowercase : Optional[Any]=2 , __lowercase : Any=3 , __lowercase : Tuple=None , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) __lowercase =hidden_size __lowercase =feat_extract_activation __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =conv_bias __lowercase =num_conv_pos_embeddings __lowercase =num_conv_pos_embedding_groups __lowercase =conv_pos_kernel_size __lowercase =len(self.conv_dim ) __lowercase =num_hidden_layers __lowercase =intermediate_size __lowercase =hidden_act __lowercase =num_attention_heads __lowercase =hidden_dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =feat_proj_dropout __lowercase =final_dropout __lowercase =layerdrop __lowercase =layer_norm_eps __lowercase =initializer_range __lowercase =vocab_size __lowercase =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase =mask_time_prob __lowercase =mask_time_length __lowercase =mask_time_min_masks __lowercase =mask_feature_prob __lowercase =mask_feature_length __lowercase =mask_feature_min_masks # ctc loss __lowercase =ctc_loss_reduction __lowercase =ctc_zero_infinity # adapter __lowercase =add_adapter __lowercase =adapter_kernel_size __lowercase =adapter_stride __lowercase =num_adapter_layers __lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =list(__lowercase ) __lowercase =xvector_output_dim @property def snake_case ( self : Optional[Any] ): """simple docstring""" return math.prod(self.conv_stride )
141
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _snake_case ( lowercase__ : Tuple ) -> int: '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _snake_case ( lowercase__ : Tuple , lowercase__ : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ :Any = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCAmelCase_ :Optional[int] = key.replace("""heads.cmd.mim_head.cls.predictions""" , """mmm_image_head""" ) lowerCAmelCase_ :str = key.replace("""heads.cmd.mlm_head.cls.predictions""" , """mmm_text_head""" ) lowerCAmelCase_ :List[Any] = key.replace("""heads.cmd.itm_head.cls""" , """itm_head""" ) lowerCAmelCase_ :List[str] = key.replace("""heads.cmd.itm_head.pooler""" , """itm_head.pooler""" ) lowerCAmelCase_ :str = key.replace("""heads.cmd.clip_head.logit_scale""" , """flava.logit_scale""" ) lowerCAmelCase_ :List[str] = key.replace("""heads.fairseq_mlm.cls.predictions""" , """mlm_head""" ) lowerCAmelCase_ :Tuple = key.replace("""heads.imagenet.mim_head.cls.predictions""" , """mim_head""" ) lowerCAmelCase_ :Tuple = key.replace("""mm_text_projection""" , """flava.text_to_mm_projection""" ) lowerCAmelCase_ :Any = key.replace("""mm_image_projection""" , """flava.image_to_mm_projection""" ) lowerCAmelCase_ :Tuple = key.replace("""image_encoder.module""" , """flava.image_model""" ) lowerCAmelCase_ :Dict = key.replace("""text_encoder.module""" , """flava.text_model""" ) lowerCAmelCase_ :int = key.replace("""mm_encoder.module.encoder.cls_token""" , """flava.multimodal_model.cls_token""" ) lowerCAmelCase_ :Tuple = key.replace("""mm_encoder.module""" , """flava.multimodal_model""" ) lowerCAmelCase_ :Optional[Any] = key.replace("""text_projection""" , """flava.text_projection""" ) lowerCAmelCase_ :Any = key.replace("""image_projection""" , """flava.image_projection""" ) lowerCAmelCase_ :int = value.float() for key, value in codebook_state_dict.items(): lowerCAmelCase_ :Dict = value return upgrade @torch.no_grad() def _snake_case ( lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : int=None ) -> Tuple: '''simple docstring''' if config_path is not None: lowerCAmelCase_ :Union[str, Any] = FlavaConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ :Union[str, Any] = FlavaConfig() lowerCAmelCase_ :str = FlavaForPreTraining(lowercase__ ).eval() lowerCAmelCase_ :Union[str, Any] = convert_dalle_checkpoint(lowercase__ , lowercase__ , save_checkpoint=lowercase__ ) if os.path.exists(lowercase__ ): lowerCAmelCase_ :str = torch.load(lowercase__ , map_location="""cpu""" ) else: lowerCAmelCase_ :List[str] = torch.hub.load_state_dict_from_url(lowercase__ , map_location="""cpu""" ) lowerCAmelCase_ :Dict = upgrade_state_dict(lowercase__ , lowercase__ ) hf_model.load_state_dict(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = hf_model.state_dict() lowerCAmelCase_ :Any = count_parameters(lowercase__ ) lowerCAmelCase_ :str = count_parameters(lowercase__ ) + count_parameters(lowercase__ ) assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __UpperCAmelCase = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['DeiTFeatureExtractor'] __UpperCAmelCase = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class a : _lowerCAmelCase = field( metadata={"""help""": """The output directory where the model will be written."""} , ) _lowerCAmelCase = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don\'t set if you want to train an encoder model from scratch.""" ) } , ) _lowerCAmelCase = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don\'t set if you want to train a decoder model from scratch.""" ) } , ) _lowerCAmelCase = field( default=snake_case_ , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) _lowerCAmelCase = field( default=snake_case_ , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def _A () -> List[Any]: '''simple docstring''' _a = HfArgumentParser((ModelArguments,) ) ((_a ) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _a = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _a = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _a = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _a = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _a = True _a = True _a = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCamelCase__ , decoder_config=lowerCamelCase__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _a = decoder_config.decoder_start_token_id _a = decoder_config.pad_token_id if decoder_start_token_id is None: _a = decoder_config.bos_token_id if pad_token_id is None: _a = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _a = decoder_config.eos_token_id _a = decoder_start_token_id _a = pad_token_id _a = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _a = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _a = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
168
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE_ ): return ext raise Exception( F'Unable to determine file format from file extension {path}. ' F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def lowercase (SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) SCREAMING_SNAKE_CASE = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format SCREAMING_SNAKE_CASE = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = nlp SCREAMING_SNAKE_CASE = reader @staticmethod def __A ( lowerCAmelCase__ ) -> Optional[Any]: SCREAMING_SNAKE_CASE = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=lowerCAmelCase__ , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=lowerCAmelCase__ , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=lowerCAmelCase__ , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=lowerCAmelCase__ , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=lowerCAmelCase__ , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=lowerCAmelCase__ , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=lowerCAmelCase__ , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=lowerCAmelCase__ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=lowerCAmelCase__ ) def __A ( self ) -> Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._nlp, [] for entry in self._reader: SCREAMING_SNAKE_CASE = nlp(**lowerCAmelCase__ ) if self._reader.is_multi_columns else nlp(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): outputs.append(lowerCAmelCase__ ) else: outputs += output # Saving data if self._nlp.binary_output: SCREAMING_SNAKE_CASE = self._reader.save_binary(lowerCAmelCase__ ) logger.warning(F'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(lowerCAmelCase__ )
38
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json'''} __UpperCamelCase = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __UpperCamelCase = {'''mgp-str''': 27} class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="[GO]" , lowerCAmelCase__="[GO]" , lowerCAmelCase__="[s]" , lowerCAmelCase__="[GO]" , **lowerCAmelCase__ ) -> int: super().__init__( unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.vocab.items()} @property def __A ( self ) -> List[str]: return len(self.vocab ) def __A ( self ) -> str: return dict(self.vocab , **self.added_tokens_encoder ) def __A ( self , lowerCAmelCase__ ) -> Tuple: SCREAMING_SNAKE_CASE = [] for s in text: char_tokens.extend(lowerCAmelCase__ ) return char_tokens def __A ( self , lowerCAmelCase__ ) -> int: return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def __A ( self , lowerCAmelCase__ ) -> int: return self.decoder.get(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase__ ) ) return SCREAMING_SNAKE_CASE = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '\n' ) return (vocab_file,)
38
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE :Any = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] SCREAMING_SNAKE_CASE :Optional[int] = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE :str = {F'''funnel-transformer/{name}''': 5_12 for name in _model_names} SCREAMING_SNAKE_CASE :Tuple = {F'''funnel-transformer/{name}''': {'''do_lower_case''': True} for name in _model_names} class __lowerCAmelCase ( lowerCamelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = FunnelTokenizer _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = 2 def __init__( self : str , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Dict="<unk>" , _lowerCAmelCase : Tuple="<sep>" , _lowerCAmelCase : List[str]="<pad>" , _lowerCAmelCase : Any="<cls>" , _lowerCAmelCase : str="<mask>" , _lowerCAmelCase : Optional[Any]="<s>" , _lowerCAmelCase : Tuple="</s>" , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Any=None , _lowerCAmelCase : Dict="##" , **_lowerCAmelCase : List[Any] , ) -> Tuple: """simple docstring""" super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , clean_text=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , wordpieces_prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__ ) != tokenize_chinese_chars ): snake_case_ = getattr(lowerCAmelCase__ , normalizer_state.pop("type" ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**lowerCAmelCase__ ) snake_case_ = do_lower_case def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any=None ) -> Optional[Any]: """simple docstring""" snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] = None ) -> List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
159
"""simple docstring""" from math import isclose, sqrt def lowercase (SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ) -> tuple[float, float, float]: SCREAMING_SNAKE_CASE = point_y / 4 / point_x SCREAMING_SNAKE_CASE = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) SCREAMING_SNAKE_CASE = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) SCREAMING_SNAKE_CASE = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 SCREAMING_SNAKE_CASE = outgoing_gradient**2 + 4 SCREAMING_SNAKE_CASE = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) SCREAMING_SNAKE_CASE = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 SCREAMING_SNAKE_CASE = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) SCREAMING_SNAKE_CASE = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point SCREAMING_SNAKE_CASE = x_minus if isclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else x_plus SCREAMING_SNAKE_CASE = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowercase (SCREAMING_SNAKE_CASE_ : float = 1.4 , SCREAMING_SNAKE_CASE_ : float = -9.6 ) -> int: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = first_x_coord SCREAMING_SNAKE_CASE = first_y_coord SCREAMING_SNAKE_CASE = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = next_point(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
113
0
import os def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(lowerCamelCase_ ) , lowerCamelCase_ ) ) as input_file: SCREAMING_SNAKE_CASE__ : List[Any] = [ [int(lowerCamelCase_ ) for element in line.split("," )] for line in input_file.readlines() ] SCREAMING_SNAKE_CASE__ : Tuple = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : Any = len(matrix[0] ) SCREAMING_SNAKE_CASE__ : Any = [[-1 for _ in range(lowerCamelCase_ )] for _ in range(lowerCamelCase_ )] for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ : Any = matrix[i][0] for j in range(1 , lowerCamelCase_ ): for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"{solution() = }")
368
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : Any, _UpperCAmelCase : List[Any]=sys.maxsize ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "bilinear" SCREAMING_SNAKE_CASE__ : Optional[int] = max_size SCREAMING_SNAKE_CASE__ : Optional[int] = short_edge_length def __call__( self : Optional[int], _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = [] for img in imgs: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Tuple = img.shape[:2] # later: provide list and randomly choose index for resize SCREAMING_SNAKE_CASE__ : List[str] = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1 ) if size == 0: return img SCREAMING_SNAKE_CASE__ : int = size * 1.0 / min(_UpperCAmelCase, _UpperCAmelCase ) if h < w: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = size, scale * w else: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = scale * h, size if max(_UpperCAmelCase, _UpperCAmelCase ) > self.max_size: SCREAMING_SNAKE_CASE__ : str = self.max_size * 1.0 / max(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = newh * scale SCREAMING_SNAKE_CASE__ : List[str] = neww * scale SCREAMING_SNAKE_CASE__ : Any = int(neww + 0.5 ) SCREAMING_SNAKE_CASE__ : List[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: SCREAMING_SNAKE_CASE__ : List[Any] = Image.fromarray(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pil_image.resize((neww, newh), PILImageResampling.BILINEAR ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : str = img.permute(2, 0, 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw SCREAMING_SNAKE_CASE__ : Tuple = nn.functional.interpolate( _UpperCAmelCase, (newh, neww), mode=self.interp_method, align_corners=_UpperCAmelCase ).squeeze(0 ) img_augs.append(_UpperCAmelCase ) return img_augs class lowerCamelCase : """simple docstring""" def __init__( self : Dict, _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST ) SCREAMING_SNAKE_CASE__ : Any = cfg.INPUT.FORMAT SCREAMING_SNAKE_CASE__ : List[str] = cfg.SIZE_DIVISIBILITY SCREAMING_SNAKE_CASE__ : List[Any] = cfg.PAD_VALUE SCREAMING_SNAKE_CASE__ : Dict = cfg.INPUT.MAX_SIZE_TEST SCREAMING_SNAKE_CASE__ : Optional[int] = cfg.MODEL.DEVICE SCREAMING_SNAKE_CASE__ : int = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ), 1, 1 ) SCREAMING_SNAKE_CASE__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ), 1, 1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = lambda _UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def A_ ( self : str, _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = tuple(max(_UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [im.shape[-2:] for im in images] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ nn.functional.pad( _UpperCAmelCase, [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]], value=self.pad_value, ) for size, im in zip(_UpperCAmelCase, _UpperCAmelCase ) ] return torch.stack(_UpperCAmelCase ), torch.tensor(_UpperCAmelCase ) def __call__( self : Any, _UpperCAmelCase : Dict, _UpperCAmelCase : List[str]=False ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): if not isinstance(_UpperCAmelCase, _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : str = [images] if single_image: assert len(_UpperCAmelCase ) == 1 for i in range(len(_UpperCAmelCase ) ): if isinstance(images[i], torch.Tensor ): images.insert(_UpperCAmelCase, images.pop(_UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i], torch.Tensor ): images.insert( _UpperCAmelCase, torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase ), input_format=self.input_format ) ) .to(self.device ) .float(), ) # resize smallest edge SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([im.shape[:2] for im in images] ) SCREAMING_SNAKE_CASE__ : Tuple = self.aug(_UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic SCREAMING_SNAKE_CASE__ : List[Any] = [self.normalizer(_UpperCAmelCase ) for x in images] # now pad them to do the following operations SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self.pad(_UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.true_divide(_UpperCAmelCase, _UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple[int, int] ) -> List[Any]: '''simple docstring''' assert torch.isfinite(SCREAMING_SNAKE_CASE__ ).all(), "Box tensor contains infinite or NaN!" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = box_size tensor[:, 0].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 1].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 2].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ ) tensor[:, 3].clamp_(min=0 , max=SCREAMING_SNAKE_CASE__ )
191
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = KandinskyVaaControlnetPipeline UpperCAmelCase__ = ["""image_embeds""", """negative_image_embeds""", """hint"""] UpperCAmelCase__ = ["""image_embeds""", """negative_image_embeds""", """hint"""] UpperCAmelCase__ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase__ = False @property def A_ ( self : Union[str, Any] ) -> List[Any]: return 32 @property def A_ ( self : Optional[int] ) -> str: return 32 @property def A_ ( self : str ) -> Tuple: return self.time_input_dim @property def A_ ( self : int ) -> Any: return self.time_input_dim * 4 @property def A_ ( self : List[str] ) -> int: return 100 @property def A_ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCamelCase__ : List[str] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : Dict = UNetaDConditionModel(**UpperCAmelCase ) return model @property def A_ ( self : Any ) -> Optional[int]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def A_ ( self : Union[str, Any] ) -> List[str]: torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def A_ ( self : Tuple ) -> Dict: lowerCamelCase__ : Optional[Any] = self.dummy_unet lowerCamelCase__ : str = self.dummy_movq lowerCamelCase__ : Optional[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase , ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def A_ ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str=0 ) -> List[Any]: lowerCamelCase__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCamelCase__ : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase ) # create hint lowerCamelCase__ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith('mps' ): lowerCamelCase__ : Dict = torch.manual_seed(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def A_ ( self : List[Any] ) -> Any: lowerCamelCase__ : int = 'cpu' lowerCamelCase__ : List[str] = self.get_dummy_components() lowerCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase__ : Dict = pipe(**self.get_dummy_inputs(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = output.images lowerCamelCase__ : Union[str, Any] = pipe( **self.get_dummy_inputs(UpperCAmelCase ) , return_dict=UpperCAmelCase , )[0] lowerCamelCase__ : List[Any] = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : Dict = np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Optional[int] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) lowerCamelCase__ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : str = torch.from_numpy(np.array(UpperCAmelCase ) ).float() / 2_5_5.0 lowerCamelCase__ : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCamelCase__ : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCamelCase__ : str = pipeline.to(UpperCAmelCase ) pipeline.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : int = torch.Generator(device='cuda' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Tuple = pipe_prior( UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCamelCase__ : Union[str, Any] = torch.Generator(device='cuda' ).manual_seed(0 ) lowerCamelCase__ : List[Any] = pipeline( image_embeds=UpperCAmelCase , negative_image_embeds=UpperCAmelCase , hint=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=100 , output_type='np' , ) lowerCamelCase__ : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
50
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowercase_ = False @skip_mps class A ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = StableDiffusionAttendAndExcitePipeline lowerCamelCase = False lowerCamelCase = TEXT_TO_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def snake_case__ ( cls : Any )-> Optional[Any]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : Optional[Any] )-> Dict: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[str] )-> int: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4),layers_per_block=1,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'),up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'),cross_attention_dim=3_2,attention_head_dim=(2, 4),use_linear_projection=lowercase_,) A__ = DDIMScheduler( beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,) A__ = CLIPTextModel(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def snake_case__ ( self : Tuple,lowercase_ : str,lowercase_ : List[Any]=0 )-> int: '''simple docstring''' if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = A__ = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def snake_case__ ( self : List[str] )-> Optional[Any]: '''simple docstring''' A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_dummy_inputs(lowercase_ ) A__ = pipe(**lowercase_ ).images A__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 6_4, 6_4, 3) ) A__ = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) A__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_,1E-3 ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def snake_case__ ( self : str )-> int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2,expected_max_diff=7E-4 ) def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class A ( unittest.TestCase ): """simple docstring""" @classmethod def snake_case__ ( cls : Any )-> Optional[int]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(lowercase_ ) @classmethod def snake_case__ ( cls : int )-> List[Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(lowercase_ ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' A__ = torch.manual_seed(5_1 ) A__ = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4',safety_checker=lowercase_,torch_dtype=torch.floataa ) pipe.to('cuda' ) A__ = 'a painting of an elephant with glasses' A__ = [5, 7] A__ = pipe( prompt=lowercase_,token_indices=lowercase_,guidance_scale=7.5,generator=lowercase_,num_inference_steps=5,max_iter_to_alter=5,output_type='numpy',).images[0] A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5E-1
7
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[Any] = '''encoder-decoder''' lowerCamelCase : List[str] = True def __init__( self : Any , **UpperCAmelCase__ : List[Any] ) -> str: super().__init__(**UpperCAmelCase__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCAmelCase = kwargs.pop('encoder' ) lowerCAmelCase = encoder_config.pop('model_type' ) lowerCAmelCase = kwargs.pop('decoder' ) lowerCAmelCase = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowerCAmelCase = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = True @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Any ) -> PretrainedConfig: logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) lowerCAmelCase = True lowerCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> Dict: lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.encoder.to_dict() lowerCAmelCase = self.decoder.to_dict() lowerCAmelCase = self.__class__.model_type return output
55
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def a_ ( lowerCamelCase : int ): lowerCAmelCase = torch.exp(lowerCamelCase ) lowerCAmelCase = torch.sum(lowerCamelCase , dim=1 ) # sum of exp(x_i) lowerCAmelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowerCamelCase ) - B / A class UpperCAmelCase_ ( nn.Module ): def __init__( self : int , UpperCAmelCase__ : int ) -> str: super().__init__() lowerCAmelCase = config.output_attentions lowerCAmelCase = config.output_hidden_states lowerCAmelCase = nn.ModuleList([BertLayer(UpperCAmelCase__ ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase = nn.ModuleList([BertHighway(UpperCAmelCase__ ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : str ) -> int: if (type(UpperCAmelCase__ ) is float) or (type(UpperCAmelCase__ ) is int): for i in range(len(self.early_exit_entropy ) ): lowerCAmelCase = x else: lowerCAmelCase = x def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[str] ) -> Optional[Any]: lowerCAmelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[int]=None , ) -> str: lowerCAmelCase = () lowerCAmelCase = () lowerCAmelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowerCAmelCase = all_hidden_states + (hidden_states,) lowerCAmelCase = layer_module( UpperCAmelCase__ , UpperCAmelCase__ , head_mask[i] , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = layer_outputs[0] if self.output_attentions: lowerCAmelCase = all_attentions + (layer_outputs[1],) lowerCAmelCase = (hidden_states,) if self.output_hidden_states: lowerCAmelCase = current_outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase = current_outputs + (all_attentions,) lowerCAmelCase = self.highway[i](UpperCAmelCase__ ) # logits, pooled_output if not self.training: lowerCAmelCase = highway_exit[0] lowerCAmelCase = entropy(UpperCAmelCase__ ) lowerCAmelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCAmelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCAmelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCAmelCase__ , i + 1 ) else: lowerCAmelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCAmelCase = all_hidden_states + (hidden_states,) lowerCAmelCase = (hidden_states,) if self.output_hidden_states: lowerCAmelCase = outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase = outputs + (all_attentions,) lowerCAmelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> str: super().__init__(UpperCAmelCase__ ) lowerCAmelCase = config lowerCAmelCase = BertEmbeddings(UpperCAmelCase__ ) lowerCAmelCase = DeeBertEncoder(UpperCAmelCase__ ) lowerCAmelCase = BertPooler(UpperCAmelCase__ ) self.init_weights() def __UpperCAmelCase ( self : Any ) -> int: self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Dict ) -> List[Any]: lowerCAmelCase = value def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : int ) -> Dict: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase__ ) @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[Any]=None , ) -> Optional[int]: if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: lowerCAmelCase = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) lowerCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ ) if encoder_attention_mask is None: lowerCAmelCase = torch.ones(UpperCAmelCase__ , device=UpperCAmelCase__ ) if token_type_ids is None: lowerCAmelCase = torch.zeros(UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase = self.get_extended_attention_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCAmelCase = encoder_attention_mask[:, None, None, :] lowerCAmelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowerCAmelCase = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase = self.get_head_mask(UpperCAmelCase__ , self.config.num_hidden_layers ) lowerCAmelCase = self.embeddings( input_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ ) lowerCAmelCase = self.encoder( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) lowerCAmelCase = encoder_outputs[0] lowerCAmelCase = self.pooler(UpperCAmelCase__ ) lowerCAmelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCAmelCase_ ( __lowercase ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int ) -> Dict: lowerCAmelCase = message lowerCAmelCase = exit_layer # start from 1! class UpperCAmelCase_ ( nn.Module ): def __init__( self : List[Any] , UpperCAmelCase__ : Optional[Any] ) -> List[str]: super().__init__() lowerCAmelCase = BertPooler(UpperCAmelCase__ ) lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Dict ) -> Optional[int]: # Pooler lowerCAmelCase = encoder_outputs[0] lowerCAmelCase = self.pooler(UpperCAmelCase__ ) # "return" pooler_output # BertModel lowerCAmelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCAmelCase = bmodel_output[1] lowerCAmelCase = self.dropout(UpperCAmelCase__ ) lowerCAmelCase = self.classifier(UpperCAmelCase__ ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , __lowercase , ) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Dict , UpperCAmelCase__ : Dict ) -> Any: super().__init__(UpperCAmelCase__ ) lowerCAmelCase = config.num_labels lowerCAmelCase = config.num_hidden_layers lowerCAmelCase = DeeBertModel(UpperCAmelCase__ ) lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[Any]=-1 , UpperCAmelCase__ : Optional[Any]=False , ) -> Dict: lowerCAmelCase = self.num_layers try: lowerCAmelCase = self.bert( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCAmelCase = outputs[1] lowerCAmelCase = self.dropout(UpperCAmelCase__ ) lowerCAmelCase = self.classifier(UpperCAmelCase__ ) lowerCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase = e.message lowerCAmelCase = e.exit_layer lowerCAmelCase = outputs[0] if not self.training: lowerCAmelCase = entropy(UpperCAmelCase__ ) lowerCAmelCase = [] lowerCAmelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase = MSELoss() lowerCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase = CrossEntropyLoss() lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCAmelCase = [] for highway_exit in outputs[-1]: lowerCAmelCase = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase = MSELoss() lowerCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase = CrossEntropyLoss() lowerCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase__ ) if train_highway: lowerCAmelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase = (loss,) + outputs if not self.training: lowerCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
55
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowerCAmelCase_ ( snake_case_ : str ) -> str: '''simple docstring''' return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : List[str] ) -> str: '''simple docstring''' UpperCAmelCase_ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue UpperCAmelCase_ = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) UpperCAmelCase_ = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) UpperCAmelCase_ = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) UpperCAmelCase_ = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) UpperCAmelCase_ = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) UpperCAmelCase_ = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) UpperCAmelCase_ = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) UpperCAmelCase_ = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) UpperCAmelCase_ = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) UpperCAmelCase_ = key.replace("image_encoder.module" , "flava.image_model" ) UpperCAmelCase_ = key.replace("text_encoder.module" , "flava.text_model" ) UpperCAmelCase_ = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) UpperCAmelCase_ = key.replace("mm_encoder.module" , "flava.multimodal_model" ) UpperCAmelCase_ = key.replace("text_projection" , "flava.text_projection" ) UpperCAmelCase_ = key.replace("image_projection" , "flava.image_projection" ) UpperCAmelCase_ = value.float() for key, value in codebook_state_dict.items(): UpperCAmelCase_ = value return upgrade @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : str=None ) -> Tuple: '''simple docstring''' if config_path is not None: UpperCAmelCase_ = FlavaConfig.from_pretrained(snake_case_ ) else: UpperCAmelCase_ = FlavaConfig() UpperCAmelCase_ = FlavaForPreTraining(snake_case_ ).eval() UpperCAmelCase_ = convert_dalle_checkpoint(snake_case_ , snake_case_ , save_checkpoint=snake_case_ ) if os.path.exists(snake_case_ ): UpperCAmelCase_ = torch.load(snake_case_ , map_location="cpu" ) else: UpperCAmelCase_ = torch.hub.load_state_dict_from_url(snake_case_ , map_location="cpu" ) UpperCAmelCase_ = upgrade_state_dict(snake_case_ , snake_case_ ) hf_model.load_state_dict(snake_case_ ) UpperCAmelCase_ = hf_model.state_dict() UpperCAmelCase_ = count_parameters(snake_case_ ) UpperCAmelCase_ = count_parameters(snake_case_ ) + count_parameters(snake_case_ ) assert torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[str] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') SCREAMING_SNAKE_CASE_: Union[str, Any] =parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __A ( unittest.TestCase ): def _lowercase (self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase (self : str ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def _lowercase (self : int ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _lowercase (self : Any ): torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowercase (self : Optional[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(__a ) def _lowercase (self : Any ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=__a , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase_ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Optional[int] ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowercase (self : str ): UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase_ = unet.half() UpperCAmelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : List[Any] ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _lowercase (self : Tuple ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _lowercase (self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
1
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : List[str] , __A : str ) -> int: __lowerCAmelCase : str = set() __lowerCAmelCase : int = [] def parse_line(__A : List[Any] ): for line in fp: if isinstance(__A , __A ): __lowerCAmelCase : str = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(__A ) > 0: __lowerCAmelCase : Tuple = """\n""".join(__A ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(__A ) buffer.clear() continue else: __lowerCAmelCase : Optional[int] = line.strip() buffer.append(__A ) if from_gh: for filename in os.listdir(__A ): __lowerCAmelCase : Optional[Any] = os.path.join(__A , __A ) if not os.path.isdir(__A ): # read the file if filename != "warnings.txt": continue with open(__A ) as fp: parse_line(__A ) else: try: with zipfile.ZipFile(__A ) as z: for filename in z.namelist(): if not os.path.isdir(__A ): # read the file if filename != "warnings.txt": continue with z.open(__A ) as fp: parse_line(__A ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def snake_case_ (__A : Dict , __A : Union[str, Any] ) -> Dict: __lowerCAmelCase : Any = set() __lowerCAmelCase : Optional[int] = [os.path.join(__A , __A ) for p in os.listdir(__A ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(__A , __A ) ) return selected_warnings if __name__ == "__main__": def snake_case_ (__A : int ) -> Tuple: return values.split(""",""" ) __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCAmelCase = extract_warnings(args.output_dir, args.targets) __UpperCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
139
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : int=18 , lowerCAmelCase : int=30 , lowerCAmelCase : Optional[int]=4_00 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=None , lowerCAmelCase : List[str]=True , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=True , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} __lowerCAmelCase : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowerCAmelCase : str = parent __lowerCAmelCase : List[str] = batch_size __lowerCAmelCase : int = num_channels __lowerCAmelCase : List[str] = image_size __lowerCAmelCase : Optional[int] = min_resolution __lowerCAmelCase : List[str] = max_resolution __lowerCAmelCase : List[Any] = do_resize __lowerCAmelCase : Optional[int] = size __lowerCAmelCase : List[Any] = do_center_crop __lowerCAmelCase : Optional[Any] = crop_size __lowerCAmelCase : int = do_flip_channel_order def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[str] =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_flip_channel_order""" ) ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def SCREAMING_SNAKE_CASE ( self : str ) -> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input __lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : str = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input __lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Tuple = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: """simple docstring""" __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input __lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase : Tuple = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
139
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase_ : int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCAmelCase_ : str = tuple[int, int] class _SCREAMING_SNAKE_CASE : def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Node | None , ): UpperCamelCase :Any = pos_x UpperCamelCase :List[str] = pos_y UpperCamelCase :Any = (pos_y, pos_x) UpperCamelCase :str = goal_x UpperCamelCase :Tuple = goal_y UpperCamelCase :Tuple = g_cost UpperCamelCase :Tuple = parent UpperCamelCase :List[Any] = self.calculate_heuristic() UpperCamelCase :List[str] = self.g_cost + self.h_cost def _A ( self : List[Any] ): UpperCamelCase :List[str] = self.pos_x - self.goal_x UpperCamelCase :Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__lowerCamelCase ) + abs(__lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[Any] , __lowerCamelCase : Node ): return self.f_cost < other.f_cost class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowerCamelCase : TPosition , __lowerCamelCase : TPosition ): UpperCamelCase :str = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) UpperCamelCase :int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , __lowerCamelCase ) UpperCamelCase :Optional[Any] = [self.start] UpperCamelCase :list[Node] = [] UpperCamelCase :Optional[int] = False def _A ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCamelCase :Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) UpperCamelCase :List[Any] = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path UpperCamelCase :List[Any] = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) return [self.start.pos] def _A ( self : Tuple , __lowerCamelCase : Node ): UpperCamelCase :List[Any] = [] for action in delta: UpperCamelCase :Union[str, Any] = parent.pos_x + action[1] UpperCamelCase :List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def _A ( self : Any , __lowerCamelCase : Node | None ): UpperCamelCase :Union[str, Any] = node UpperCamelCase :List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase :Optional[Any] = current_node.parent path.reverse() return path class _SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __lowerCamelCase : TPosition , __lowerCamelCase : TPosition ): UpperCamelCase :Any = AStar(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[str] = AStar(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Dict = False def _A ( self : Tuple ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCamelCase :Dict = self.fwd_astar.open_nodes.pop(0 ) UpperCamelCase :Union[str, Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __lowerCamelCase , __lowerCamelCase ) self.fwd_astar.closed_nodes.append(__lowerCamelCase ) self.bwd_astar.closed_nodes.append(__lowerCamelCase ) UpperCamelCase :int = current_bwd_node UpperCamelCase :str = current_fwd_node UpperCamelCase :List[Any] = { self.fwd_astar: self.fwd_astar.get_successors(__lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(__lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path UpperCamelCase :Optional[int] = astar.open_nodes.pop( astar.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__lowerCamelCase ) else: astar.open_nodes.append(__lowerCamelCase ) return [self.fwd_astar.start.pos] def _A ( self : List[Any] , __lowerCamelCase : Node , __lowerCamelCase : Node ): UpperCamelCase :List[str] = self.fwd_astar.retrace_path(__lowerCamelCase ) UpperCamelCase :Tuple = self.bwd_astar.retrace_path(__lowerCamelCase ) bwd_path.pop() bwd_path.reverse() UpperCamelCase :List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCAmelCase_ : Optional[int] = (0, 0) UpperCAmelCase_ : str = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Any = AStar(init, goal) UpperCAmelCase_ : str = a_star.search() UpperCAmelCase_ : Optional[int] = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') UpperCAmelCase_ : Union[str, Any] = time.time() UpperCAmelCase_ : List[str] = BidirectionalAStar(init, goal) UpperCAmelCase_ : Union[str, Any] = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
38
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : str = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
1
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = u for i in range(1 , __a ): snake_case_ : Optional[Any] = temp * (u - i) return temp def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = int(input('enter the numbers of values: ' ) ) snake_case_ : list[list[float]] = [] for _ in range(__a ): y.append([] ) for i in range(__a ): for j in range(__a ): y[i].append(__a ) snake_case_ : str = 0 print('enter the values of parameters in a list: ' ) snake_case_ : int = list(map(__a , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__a ): snake_case_ : Union[str, Any] = float(input() ) snake_case_ : int = int(input('enter the value to interpolate: ' ) ) snake_case_ : List[Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __a ): for j in range(n - i ): snake_case_ : int = y[j + 1][i - 1] - y[j][i - 1] snake_case_ : str = y[0][0] for i in range(1 , __a ): summ += (ucal(__a , __a ) * y[0][i]) / math.factorial(__a ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
368
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = u for i in range(1 , __a ): snake_case_ : Optional[Any] = temp * (u - i) return temp def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = int(input('enter the numbers of values: ' ) ) snake_case_ : list[list[float]] = [] for _ in range(__a ): y.append([] ) for i in range(__a ): for j in range(__a ): y[i].append(__a ) snake_case_ : str = 0 print('enter the values of parameters in a list: ' ) snake_case_ : int = list(map(__a , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__a ): snake_case_ : Union[str, Any] = float(input() ) snake_case_ : int = int(input('enter the value to interpolate: ' ) ) snake_case_ : List[Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __a ): for j in range(n - i ): snake_case_ : int = y[j + 1][i - 1] - y[j][i - 1] snake_case_ : str = y[0][0] for i in range(1 , __a ): summ += (ucal(__a , __a ) * y[0][i]) / math.factorial(__a ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
88
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[Any] = logging.get_logger(__name__) a__ : int = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class lowercase_ ( a__ ): __UpperCAmelCase = 'dpr' def __init__( self , a=3_05_22 , a=7_68 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=2 , a=0.02 , a=1e-12 , a=0 , a="absolute" , a = 0 , **a , ): super().__init__(pad_token_id=a , **a ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = projection_dim UpperCamelCase__ = position_embedding_type
80
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Any = '''xmod''' def __init__( self ,SCREAMING_SNAKE_CASE__=3_05_22 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-12 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__="absolute" ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=("en_XX",) ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = vocab_size __SCREAMING_SNAKE_CASE :List[Any] = hidden_size __SCREAMING_SNAKE_CASE :List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE :List[str] = num_attention_heads __SCREAMING_SNAKE_CASE :Optional[int] = hidden_act __SCREAMING_SNAKE_CASE :Tuple = intermediate_size __SCREAMING_SNAKE_CASE :Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE :str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE :Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE :str = initializer_range __SCREAMING_SNAKE_CASE :List[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE :Optional[Any] = position_embedding_type __SCREAMING_SNAKE_CASE :Any = use_cache __SCREAMING_SNAKE_CASE :List[str] = classifier_dropout __SCREAMING_SNAKE_CASE :Any = pre_norm __SCREAMING_SNAKE_CASE :Dict = adapter_reduction_factor __SCREAMING_SNAKE_CASE :Dict = adapter_layer_norm __SCREAMING_SNAKE_CASE :Dict = adapter_reuse_layer_norm __SCREAMING_SNAKE_CASE :Tuple = ln_before_adapter __SCREAMING_SNAKE_CASE :Any = list(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = default_language class _SCREAMING_SNAKE_CASE( A ): @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE :Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE :Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
191
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCAmelCase : Optional[int] = list[list[float | int]] def A_( A : Matrix , A : Matrix): UpperCamelCase = len(__a) UpperCamelCase = [[0 for _ in range(size + 1)] for _ in range(__a)] UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 for row in range(__a): for col in range(__a): UpperCamelCase = matrix[row][col] UpperCamelCase = vector[row][0] UpperCamelCase = 0 UpperCamelCase = 0 while row < size and col < size: # pivoting UpperCamelCase = max((abs(augmented[rowa][col]), rowa) for rowa in range(__a , __a))[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCamelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __a): UpperCamelCase = augmented[rowa][col] / augmented[row][col] UpperCamelCase = 0 for cola in range(col + 1 , size + 1): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __a): for row in range(__a): UpperCamelCase = augmented[row][col] / augmented[col][col] for cola in range(__a , size + 1): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10)] for row in range(__a) ] def A_( A : list[int]): UpperCamelCase = len(__a) UpperCamelCase = [[0 for _ in range(__a)] for _ in range(__a)] UpperCamelCase = [[0] for _ in range(__a)] UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 for x_val, y_val in enumerate(__a): for col in range(__a): UpperCamelCase = (x_val + 1) ** (size - col - 1) UpperCamelCase = y_val UpperCamelCase = solve(__a , __a) def interpolated_func(A : int) -> int: return sum( round(coeffs[x_val][0]) * (var ** (size - x_val - 1)) for x_val in range(__a)) return interpolated_func def A_( A : int): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def A_( A : Callable[[int], int] = question_function , A : int = 10): UpperCamelCase = [func(__a) for x_val in range(1 , order + 1)] UpperCamelCase = [ interpolate(data_points[:max_coeff]) for max_coeff in range(1 , order + 1) ] UpperCamelCase = 0 UpperCamelCase = 42 UpperCamelCase = 42 for poly in polynomials: UpperCamelCase = 1 while func(__a) == poly(__a): x_val += 1 ret += poly(__a) return ret if __name__ == "__main__": print(f"""{solution() = }""")
355
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_): @register_to_config def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ = False , )-> Optional[Any]: '''simple docstring''' super().__init__() UpperCamelCase = nn.Embedding(A_ , A_ ) UpperCamelCase = nn.Embedding(A_ , A_ ) UpperCamelCase = False UpperCamelCase = nn.Dropout(p=A_ ) UpperCamelCase = TaConfig( vocab_size=A_ , d_model=A_ , num_heads=A_ , d_kv=A_ , d_ff=A_ , dropout_rate=A_ , feed_forward_proj=A_ , is_decoder=A_ , is_encoder_decoder=A_ , ) UpperCamelCase = nn.ModuleList() for lyr_num in range(A_ ): UpperCamelCase = TaBlock(A_ ) self.encoders.append(A_ ) UpperCamelCase = TaLayerNorm(A_ ) UpperCamelCase = nn.Dropout(p=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = self.token_embedder(A_ ) UpperCamelCase = encoder_input_tokens.shape[1] UpperCamelCase = torch.arange(A_ , device=encoder_input_tokens.device ) x += self.position_encoding(A_ ) UpperCamelCase = self.dropout_pre(A_ ) # inverted the attention mask UpperCamelCase = encoder_input_tokens.size() UpperCamelCase = self.get_extended_attention_mask(A_ , A_ ) for lyr in self.encoders: UpperCamelCase = lyr(A_ , A_ )[0] UpperCamelCase = self.layer_norm(A_ ) return self.dropout_post(A_ ), encoder_inputs_mask
251
0
'''simple docstring''' from collections import defaultdict def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowerCamelCase_ = first_str.lower().strip() lowerCamelCase_ = second_str.lower().strip() # Remove whitespace lowerCamelCase_ = first_str.replace(" " , "" ) lowerCamelCase_ = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): return False # Default values for count should be 0 lowerCamelCase_ = defaultdict(UpperCAmelCase_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCAmelCase_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() a_ : str = input("""Enter the first string """).strip() a_ : Dict = input("""Enter the second string """).strip() a_ : Dict = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
55
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = StableUnCLIPPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = 32 lowerCamelCase_ = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=UpperCamelCase , num_layers=1 , ) torch.manual_seed(0 ) lowerCamelCase_ = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=UpperCamelCase , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) lowerCamelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) lowerCamelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL() lowerCamelCase_ = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def snake_case ( self , UpperCamelCase , UpperCamelCase=0 ): """simple docstring""" if str(UpperCamelCase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(UpperCamelCase ) else: lowerCamelCase_ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) lowerCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowerCamelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ = pipe("anime turle" , generator=UpperCamelCase , output_type="np" ) lowerCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def snake_case ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase_ = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
55
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __A = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" __A = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" __A = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=4 , lowerCamelCase__=False ) -> List[str]: '''simple docstring''' __lowerCamelCase = compute_bleu( reference_corpus=lowerCamelCase__ , translation_corpus=lowerCamelCase__ , max_order=lowerCamelCase__ , smooth=lowerCamelCase__ ) (__lowerCamelCase) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
351
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A = logging.get_logger(__name__) __A = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''whisper''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , lowerCamelCase__=51_865 , lowerCamelCase__=80 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=6 , lowerCamelCase__=4 , lowerCamelCase__=1_536 , lowerCamelCase__=1_536 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=50_257 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="gelu" , lowerCamelCase__=256 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=1_500 , lowerCamelCase__=448 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=50_256 , lowerCamelCase__=None , lowerCamelCase__=[220, 50_256] , lowerCamelCase__=False , lowerCamelCase__=256 , lowerCamelCase__=False , lowerCamelCase__=0.05 , lowerCamelCase__=10 , lowerCamelCase__=2 , lowerCamelCase__=0.0 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=7 , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = num_mel_bins __lowerCamelCase = d_model __lowerCamelCase = encoder_layers __lowerCamelCase = encoder_attention_heads __lowerCamelCase = decoder_layers __lowerCamelCase = decoder_attention_heads __lowerCamelCase = decoder_ffn_dim __lowerCamelCase = encoder_ffn_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = activation_function __lowerCamelCase = init_std __lowerCamelCase = encoder_layerdrop __lowerCamelCase = decoder_layerdrop __lowerCamelCase = use_cache __lowerCamelCase = encoder_layers __lowerCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase = max_source_positions __lowerCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size __lowerCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks __lowerCamelCase = median_filter_width super().__init__( pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , decoder_start_token_id=lowerCamelCase__ , suppress_tokens=lowerCamelCase__ , begin_suppress_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' __lowerCamelCase = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: __lowerCamelCase = {0: 'batch'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ , direction='inputs' ) return common_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = -1 , lowerCamelCase__ = -1 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = 22_050 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' __lowerCamelCase = OrderedDict() __lowerCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase__ , framework=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , time_duration=lowerCamelCase__ , frequency=lowerCamelCase__ , ) __lowerCamelCase = encoder_inputs['input_features'].shape[2] __lowerCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = encoder_inputs.pop('input_features' ) __lowerCamelCase = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: __lowerCamelCase = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase_ ( self ) -> float: '''simple docstring''' return 1e-3
348
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets A_ = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" A_ = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" A_ = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def __UpperCamelCase ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] ,) def __UpperCamelCase ( self : List[str] ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def __UpperCamelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[Any]=None ,SCREAMING_SNAKE_CASE__ : Optional[Any]="uniform_average" ,SCREAMING_SNAKE_CASE__ : int=True ): SCREAMING_SNAKE_CASE:int = mean_squared_error( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,sample_weight=SCREAMING_SNAKE_CASE__ ,multioutput=SCREAMING_SNAKE_CASE__ ,squared=SCREAMING_SNAKE_CASE__ ) return {"mse": mse}
139
'''simple docstring''' from __future__ import annotations def A_ ( snake_case , snake_case , snake_case , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
139
1
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[str] = old_name if "patch_embed" in old_name: __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = old_name.split('.' ) if layer == "0": __magic_name__ : Optional[Any] = old_name.replace('0' , 'convolution1' ) elif layer == "1": __magic_name__ : Optional[Any] = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": __magic_name__ : int = old_name.replace('3' , 'convolution2' ) else: __magic_name__ : List[str] = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(R'\d\.\d' , lowerCAmelCase ): __magic_name__ : str = R'\b\d{2}\b' if bool(re.search(lowerCAmelCase , lowerCAmelCase ) ): __magic_name__ : int = re.search(R'\d\.\d\d.' , lowerCAmelCase ).group() else: __magic_name__ : Union[str, Any] = re.search(R'\d\.\d.' , lowerCAmelCase ).group() if int(match[0] ) < 6: __magic_name__ : Dict = old_name.replace(lowerCAmelCase , '' ) __magic_name__ : List[str] = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) __magic_name__ : Optional[int] = 'intermediate_stages.' + trimmed_name else: __magic_name__ : Optional[Any] = old_name.replace(lowerCAmelCase , '' ) if int(match[2] ) < num_meta4D_last_stage: __magic_name__ : Any = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: __magic_name__ : Dict = str(int(match[2] ) - num_meta4D_last_stage ) __magic_name__ : Any = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: __magic_name__ : Union[str, Any] = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: __magic_name__ : Union[str, Any] = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: __magic_name__ : Any = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: __magic_name__ : List[Any] = trimmed_name.replace('fc2' , 'linear_out' ) __magic_name__ : Optional[int] = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(R'.\d.' , lowerCAmelCase ): __magic_name__ : Dict = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: __magic_name__ : Optional[int] = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __magic_name__ : Optional[int] = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __magic_name__ : List[Any] = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: __magic_name__ : Tuple = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: __magic_name__ : List[Any] = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: __magic_name__ : str = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: __magic_name__ : str = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __magic_name__ : int = new_name.replace('norm' , 'layernorm' ) __magic_name__ : Union[str, Any] = 'efficientformer.' + new_name else: __magic_name__ : Any = 'efficientformer.encoder.' + new_name return new_name def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] ): """simple docstring""" for key in checkpoint.copy().keys(): __magic_name__ : Optional[Any] = checkpoint.pop(lowerCAmelCase ) __magic_name__ : List[str] = val return checkpoint def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' __magic_name__ : Any = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return image def lowerCamelCase ( lowerCAmelCase : Path , lowerCAmelCase : Path , lowerCAmelCase : Path , lowerCAmelCase : bool ): """simple docstring""" __magic_name__ : Any = torch.load(lowerCAmelCase , map_location='cpu' )['model'] __magic_name__ : Optional[int] = EfficientFormerConfig.from_json_file(lowerCAmelCase ) __magic_name__ : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(lowerCAmelCase ) __magic_name__ : int = '_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) __magic_name__ : Optional[Any] = config.depths[-1] - config.num_metaad_blocks + 1 __magic_name__ : Optional[Any] = convert_torch_checkpoint(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() __magic_name__ : str = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __magic_name__ : Tuple = prepare_img() __magic_name__ : List[str] = 256 __magic_name__ : Dict = 224 __magic_name__ : List[str] = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) __magic_name__ : Optional[Any] = processor(images=lowerCAmelCase , return_tensors='pt' ).pixel_values # original processing pipeline __magic_name__ : int = Compose( [ Resize(lowerCAmelCase , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(lowerCAmelCase ), ToTensor(), Normalize(lowerCAmelCase , lowerCAmelCase ), ] ) __magic_name__ : Union[str, Any] = image_transforms(lowerCAmelCase ).unsqueeze(0 ) assert torch.allclose(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Optional[int] = model(lowerCAmelCase ) __magic_name__ : Tuple = outputs.logits __magic_name__ : Union[str, Any] = (1, 1000) if "l1" in model_name: __magic_name__ : Union[str, Any] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __magic_name__ : Optional[Any] = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , lowerCAmelCase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __magic_name__ : Optional[Any] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(lowerCAmelCase ) print(f'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message='Add model' , use_temp_dir=lowerCAmelCase , ) processor.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message='Add image processor' , use_temp_dir=lowerCAmelCase , ) if __name__ == "__main__": lowerCAmelCase :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) lowerCAmelCase :Tuple = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
275
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __magic_name__ : int = sorted(string.lower() ) return len(lowerCAmelCase ) == len(set(lowerCAmelCase ) ) if __name__ == "__main__": lowerCAmelCase :Any = input('''Enter a string ''').strip() lowerCAmelCase :List[Any] = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
275
1
'''simple docstring''' def __UpperCAmelCase ( a_: Union[str, Any], a_: List[str] ): return 1 if input_a == input_a else 0 def __UpperCAmelCase ( ): assert xnor_gate(0, 0 ) == 1 assert xnor_gate(0, 1 ) == 0 assert xnor_gate(1, 0 ) == 0 assert xnor_gate(1, 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
145
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a__ ( A_ ): '''simple docstring''' __magic_name__ = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(A_, A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ , __magic_name__ = emb.weight.shape __magic_name__ = nn.Linear(A_, A_, bias=A_ ) __magic_name__ = emb.weight.data return lin_layer def a__ ( A_ ): '''simple docstring''' __magic_name__ = torch.load(A_, map_location="""cpu""" ) __magic_name__ = Namespace(**checkpoint["""cfg"""]["""model"""] ) __magic_name__ = checkpoint["""model"""] remove_ignore_keys_(A_ ) __magic_name__ = state_dict["""decoder.embed_tokens.weight"""].shape[0] __magic_name__ = {key.replace("""decoder""", """model""" ): val for key, val in state_dict.items()} __magic_name__ = XGLMConfig( vocab_size=A_, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="""gelu""", scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) __magic_name__ = XGLMForCausalLM(A_ ) __magic_name__ = model.load_state_dict(A_, strict=A_ ) print(A_ ) __magic_name__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
88
0
"""simple docstring""" from datetime import datetime import requests def lowercase__(A ) ->bytes: """simple docstring""" lowercase__ : Optional[int]= "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" lowercase__ : Dict= requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(lowerCAmelCase__ ).content if __name__ == "__main__": a : Optional[Any] = input("""Enter Video/IGTV url: """).strip() a : Optional[Any] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
366
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger a : Any = get_logger(__name__) a : Any = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class __UpperCAmelCase: """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __UpperCAmelCase: """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @add_start_docstrings(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' for processor in self: lowercase__ : Optional[Any]= inspect.signature(processor.__call__ ).parameters if len(snake_case__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) lowercase__ : Union[str, Any]= processor(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) else: lowercase__ : Dict= processor(snake_case__ , snake_case__ , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) lowercase__ : Any= temperature def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : int= scores / self.temperature return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = -float("Inf" ) , snake_case__ = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(snake_case__ , snake_case__ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) lowercase__ : int= top_p lowercase__ : Optional[int]= filter_value lowercase__ : Tuple= min_tokens_to_keep def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__, lowercase__ : Dict= lax.top_k(snake_case__ , scores.shape[-1] ) lowercase__ : Optional[int]= jnp.full_like(snake_case__ , self.filter_value ) lowercase__ : Union[str, Any]= jax.nn.softmax(snake_case__ , axis=-1 ).cumsum(axis=-1 ) lowercase__ : str= cumulative_probs < self.top_p # include the token that is higher than top_p as well lowercase__ : str= jnp.roll(snake_case__ , 1 ) score_mask |= score_mask.at[:, 0].set(snake_case__ ) # min tokens to keep lowercase__ : Optional[int]= score_mask.at[:, : self.min_tokens_to_keep].set(snake_case__ ) lowercase__ : str= jnp.where(snake_case__ , snake_case__ , snake_case__ ) lowercase__ : str= jax.lax.sort_key_val(snake_case__ , snake_case__ )[-1] return next_scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = -float("Inf" ) , snake_case__ = 1 ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) lowercase__ : List[Any]= max(snake_case__ , snake_case__ ) lowercase__ : Dict= filter_value def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__, lowercase__ : Optional[Any]= scores.shape lowercase__ : int= jnp.full(batch_size * vocab_size , self.filter_value ) lowercase__ : Dict= min(self.top_k , scores.shape[-1] ) # Safety check lowercase__, lowercase__ : List[Any]= lax.top_k(snake_case__ , snake_case__ ) lowercase__ : Optional[int]= jnp.broadcast_to((jnp.arange(snake_case__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowercase__ : str= topk_scores.flatten() lowercase__ : Any= topk_indices.flatten() + shift lowercase__ : Optional[Any]= next_scores_flat.at[topk_indices_flat].set(snake_case__ ) lowercase__ : str= next_scores_flat.reshape(snake_case__ , snake_case__ ) return next_scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : Any= bos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Any= jnp.full(scores.shape , -float("inf" ) ) lowercase__ : int= 1 - jnp.bool_(cur_len - 1 ) lowercase__ : int= jnp.where(snake_case__ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Tuple= max_length lowercase__ : str= eos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= jnp.full(scores.shape , -float("inf" ) ) lowercase__ : Any= 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowercase__ : Optional[int]= jnp.where(snake_case__ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(snake_case__ , snake_case__ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) lowercase__ : List[str]= min_length lowercase__ : Dict= eos_token_id def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # create boolean flag to decide if min length penalty should be applied lowercase__ : Tuple= 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowercase__ : Dict= jnp.where(snake_case__ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= list(snake_case__ ) lowercase__ : List[Any]= begin_index def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= 1 - jnp.bool_(cur_len - self.begin_index ) lowercase__ : str= jnp.where(snake_case__ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , snake_case__ ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : List[Any]= list(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Any= scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : int= dict(snake_case__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowercase__ : List[Any]= jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowercase__ : List[Any]= force_token_array.at[index].set(snake_case__ ) lowercase__ : int= jnp.intaa(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' def _force_token(snake_case__ ): lowercase__ : Dict= scores.shape[0] lowercase__ : Any= self.force_token_array[generation_idx] lowercase__ : List[Any]= jnp.ones_like(snake_case__ , dtype=scores.dtype ) * -float("inf" ) lowercase__ : List[Any]= jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowercase__ : List[str]= lax.dynamic_update_slice(snake_case__ , snake_case__ , (0, current_token) ) return new_scores lowercase__ : Dict= lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case__ ) , lambda: scores , ) , ) return scores class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : str= generate_config.eos_token_id lowercase__ : Optional[int]= generate_config.no_timestamps_token_id lowercase__ : Dict= generate_config.no_timestamps_token_id + 1 lowercase__ : List[Any]= decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(snake_case__ , "max_initial_timestamp_index" ): lowercase__ : int= generate_config.max_initial_timestamp_index else: lowercase__ : Dict= model_config.vocab_size if self.max_initial_timestamp_index is None: lowercase__ : str= model_config.vocab_size def __call__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' # suppress <|notimestamps|> which is handled by without_timestamps lowercase__ : int= scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(snake_case__ , snake_case__ ): lowercase__ : Union[str, Any]= jnp.where((cur_len - self.begin_index) >= 1 , snake_case__ , snake_case__ ) lowercase__ : Tuple= jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case__ , ) lowercase__ : int= jnp.where((cur_len - self.begin_index) < 2 , snake_case__ , snake_case__ ) lowercase__ : Optional[int]= jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case__ , snake_case__ , ) return jnp.where( snake_case__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , snake_case__ , ) lowercase__ : List[str]= jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) lowercase__ : str= jnp.where(cur_len == self.begin_index , snake_case__ , snake_case__ ) lowercase__ : List[Any]= jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case__ , ) lowercase__ : Any= self.timestamp_begin + self.max_initial_timestamp_index lowercase__ : str= jnp.where( snake_case__ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , snake_case__ , ) # if sum of probability over timestamps is above any other token, sample timestamp lowercase__ : str= jax.nn.log_softmax(snake_case__ , axis=-1 ) def handle_cumulative_probs(snake_case__ , snake_case__ ): lowercase__ : Dict= jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowercase__ : Union[str, Any]= jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , snake_case__ , ) lowercase__ : Optional[int]= jax.vmap(snake_case__ )(snake_case__ , snake_case__ ) return scores
150
0
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar UpperCamelCase_ = TypeVar("_T") class _a ( Generic[_T] ): '''simple docstring''' def __init__( self, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : list[_T] = list(iterable or [] ) SCREAMING_SNAKE_CASE : list[_T] = [] def __len__( self ): '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__( self ): '''simple docstring''' return F"Queue({tuple(self._stacka[::-1] + self._stacka )})" def UpperCamelCase_ ( self, A ): '''simple docstring''' self._stacka.append(A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self._stacka.pop SCREAMING_SNAKE_CASE : Dict = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('Queue is empty' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
251
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowercase__( __UpperCamelCase: Union[dict, list, tuple, torch.Tensor] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] if isinstance(__UpperCamelCase ,__UpperCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase ,(list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase ,torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: Tuple[int, ...] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [] for d in reversed(__UpperCamelCase ): idx.append(flat_idx % d ) SCREAMING_SNAKE_CASE : Tuple = flat_idx // d return tuple(reversed(__UpperCamelCase ) ) @torch.jit.ignore def lowercase__( __UpperCamelCase: Sequence[int] ,__UpperCamelCase: Sequence[int] ,__UpperCamelCase: Sequence[int] ,__UpperCamelCase: Optional[Sequence[bool]] = None ,__UpperCamelCase: Optional[Sequence[bool]] = None ,): """simple docstring""" def reduce_edge_list(__UpperCamelCase: List[bool] ) -> None: SCREAMING_SNAKE_CASE : List[str] = True for i in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE : Optional[Any] = -1 * (i + 1) l[reversed_idx] &= tally SCREAMING_SNAKE_CASE : str = l[reversed_idx] if start_edges is None: SCREAMING_SNAKE_CASE : int = [s == 0 for s in start] reduce_edge_list(__UpperCamelCase ) if end_edges is None: SCREAMING_SNAKE_CASE : Tuple = [e == (d - 1) for e, d in zip(__UpperCamelCase ,__UpperCamelCase )] reduce_edge_list(__UpperCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCamelCase ) == 0: return [()] elif len(__UpperCamelCase ) == 1: return [(slice(start[0] ,end[0] + 1 ),)] SCREAMING_SNAKE_CASE : List[Tuple[slice, ...]] = [] SCREAMING_SNAKE_CASE : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCamelCase ,__UpperCamelCase ): if s == e: path_list.append(slice(__UpperCamelCase ,s + 1 ) ) else: break SCREAMING_SNAKE_CASE : Tuple[slice, ...] = tuple(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = len(__UpperCamelCase ) # start == end, and we're done if divergence_idx == len(__UpperCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : List[str] = start[divergence_idx] return tuple( path + (slice(__UpperCamelCase ,sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] ,[d - 1 for d in dims[divergence_idx + 1 :]] ,dims[divergence_idx + 1 :] ,start_edges=start_edges[divergence_idx + 1 :] ,end_edges=[True for _ in end_edges[divergence_idx + 1 :]] ,) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : List[Any] = end[divergence_idx] return tuple( path + (slice(__UpperCamelCase ,edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] ,end[divergence_idx + 1 :] ,dims[divergence_idx + 1 :] ,start_edges=[True for _ in start_edges[divergence_idx + 1 :]] ,end_edges=end_edges[divergence_idx + 1 :] ,) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) SCREAMING_SNAKE_CASE : List[str] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowercase__( __UpperCamelCase: torch.Tensor ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = t.shape[:no_batch_dims] SCREAMING_SNAKE_CASE : str = list(_flat_idx_to_idx(__UpperCamelCase ,__UpperCamelCase ) ) # _get_minimal_slice_set is inclusive SCREAMING_SNAKE_CASE : int = list(_flat_idx_to_idx(flat_end - 1 ,__UpperCamelCase ) ) # Get an ordered list of slices to perform SCREAMING_SNAKE_CASE : str = _get_minimal_slice_set( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) SCREAMING_SNAKE_CASE : Dict = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowercase__( __UpperCamelCase: Callable ,__UpperCamelCase: Dict[str, Any] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: bool = False ,__UpperCamelCase: Any = None ,__UpperCamelCase: bool = False ,): """simple docstring""" if not (len(__UpperCamelCase ) > 0): raise ValueError('Must provide at least one input' ) SCREAMING_SNAKE_CASE : List[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCamelCase )] SCREAMING_SNAKE_CASE : Optional[int] = tuple([max(__UpperCamelCase ) for s in zip(*__UpperCamelCase )] ) def _prep_inputs(__UpperCamelCase: torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: SCREAMING_SNAKE_CASE : str = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) SCREAMING_SNAKE_CASE : str = t.reshape(-1 ,*t.shape[no_batch_dims:] ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_prep_inputs ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if _out is not None: SCREAMING_SNAKE_CASE : Tuple = tensor_tree_map(lambda __UpperCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) ,_out ) SCREAMING_SNAKE_CASE : List[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d SCREAMING_SNAKE_CASE : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__UpperCamelCase: torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : List[str] = prepped_outputs for _ in range(__UpperCamelCase ): # Chunk the input if not low_mem: SCREAMING_SNAKE_CASE : List[str] = _select_chunk else: SCREAMING_SNAKE_CASE : Union[str, Any] = partial( _chunk_slice ,flat_start=__UpperCamelCase ,flat_end=min(__UpperCamelCase ,i + chunk_size ) ,no_batch_dims=len(__UpperCamelCase ) ,) SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(__UpperCamelCase ,__UpperCamelCase ) # Run the layer on the chunk SCREAMING_SNAKE_CASE : int = layer(**__UpperCamelCase ) # Allocate space for the output if out is None: SCREAMING_SNAKE_CASE : List[Any] = tensor_tree_map(lambda __UpperCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) ,__UpperCamelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCamelCase ,__UpperCamelCase ): def assign(__UpperCamelCase: dict ,__UpperCamelCase: dict ) -> None: for k, v in da.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): assign(__UpperCamelCase ,da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: SCREAMING_SNAKE_CASE : Union[str, Any] = da[k] assign(__UpperCamelCase ,__UpperCamelCase ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): for xa, xa in zip(__UpperCamelCase ,__UpperCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: SCREAMING_SNAKE_CASE : List[str] = xa elif isinstance(__UpperCamelCase ,torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: SCREAMING_SNAKE_CASE : Optional[int] = output_chunk else: raise ValueError('Not supported' ) i += chunk_size SCREAMING_SNAKE_CASE : Any = tensor_tree_map(lambda __UpperCamelCase : t.view(orig_batch_dims + t.shape[1:] ) ,__UpperCamelCase ) return out class _a : '''simple docstring''' def __init__( self, A = 512, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = max_chunk_size SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[tuple] = None def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size SCREAMING_SNAKE_CASE : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size, 2 ) ) + 1 )] SCREAMING_SNAKE_CASE : List[str] = [c for c in candidates if c > min_chunk_size] SCREAMING_SNAKE_CASE : Optional[int] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(A ) -> bool: try: with torch.no_grad(): fn(*A, chunk_size=A ) return True except RuntimeError: return False SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = len(A ) - 1 while i > min_viable_chunk_size_index: SCREAMING_SNAKE_CASE : Any = test_chunk_size(candidates[i] ) if not viable: SCREAMING_SNAKE_CASE : List[Any] = (min_viable_chunk_size_index + i) // 2 else: SCREAMING_SNAKE_CASE : Optional[Any] = i SCREAMING_SNAKE_CASE : List[Any] = (i + len(A ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = True for aa, aa in zip(A, A ): assert type(A ) == type(A ) if isinstance(A, (list, tuple) ): consistent &= self._compare_arg_caches(A, A ) elif isinstance(A, A ): SCREAMING_SNAKE_CASE : Optional[Any] = [v for _, v in sorted(aa.items(), key=lambda A : x[0] )] SCREAMING_SNAKE_CASE : Optional[int] = [v for _, v in sorted(aa.items(), key=lambda A : x[0] )] consistent &= self._compare_arg_caches(A, A ) else: consistent &= aa == aa return consistent def UpperCamelCase_ ( self, A, A, A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : tuple = tree_map(lambda A : a.shape if isinstance(A, torch.Tensor ) else a, A, A ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(A ) SCREAMING_SNAKE_CASE : str = self._compare_arg_caches(self.cached_arg_data, A ) else: # Otherwise, we can reuse the precomputed value SCREAMING_SNAKE_CASE : Union[str, Any] = False if not consistent: SCREAMING_SNAKE_CASE : Any = self._determine_favorable_chunk_size( A, A, A, ) SCREAMING_SNAKE_CASE : Dict = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
251
1
'''simple docstring''' from math import factorial, pi def SCREAMING_SNAKE_CASE__ ( __A , __A = 30 ) -> float: if not isinstance(__A , (int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) _snake_case = float(__A ) _snake_case = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__A ) ) def SCREAMING_SNAKE_CASE__ ( __A , __A = 30 ) -> float: if not isinstance(__A , (int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(__A , __A ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) _snake_case = float(__A ) _snake_case = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
160
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) _snake_case = img _snake_case = img.shape[1] _snake_case = img.shape[0] _snake_case = dst_width _snake_case = dst_height _snake_case = self.src_w / self.dst_w _snake_case = self.src_h / self.dst_h _snake_case = _snake_case = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def lowerCamelCase ( self ): """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): _snake_case = self.img[self.get_y(lowerCAmelCase_ )][self.get_x(lowerCAmelCase_ )] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return int(self.ratio_x * x ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowercase , lowercase : Optional[Any] = 800, 600 lowercase : Tuple = imread("image_data/lena.jpg", 1) lowercase : Any = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
160
1
'''simple docstring''' import string def __lowerCamelCase ( lowerCAmelCase_ ) -> None: for key in range(len(string.ascii_uppercase ) ): _a : Union[str, Any] = '' for symbol in message: if symbol in string.ascii_uppercase: _a : Optional[Any] = string.ascii_uppercase.find(lowerCAmelCase_ ) _a : List[str] = num - key if num < 0: _a : str = num + len(string.ascii_uppercase ) _a : int = translated + string.ascii_uppercase[num] else: _a : Dict = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def __lowerCamelCase ( ) -> None: _a : int = input('Encrypted message: ' ) _a : Tuple = message.upper() decrypt(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
89
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ ) else: UpperCAmelCase : Union[str, Any] =None UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : VQModel __lowerCamelCase : CLIPTextModel __lowerCamelCase : CLIPTokenizer __lowerCamelCase : TransformeraDModel __lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings __lowerCamelCase : VQDiffusionScheduler def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings UpperCAmelCase : Optional[int] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase : int =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 ) else: UpperCAmelCase : str =[''''''] * batch_size UpperCAmelCase : Tuple =text_input_ids.shape[-1] UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1] UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 ) UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =1 elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Tuple =len(snake_case__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' ) UpperCAmelCase : Tuple =batch_size * num_images_per_prompt UpperCAmelCase : List[str] =guidance_scale > 1.0 UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case__ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1 UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase : Any =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Optional[int] =latents for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 ) UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ ) UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase : Optional[Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ ) UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ ) UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ ) UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase : int =keep_mask[:, :-1, :] UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase : Dict =log_p_x_0.clone() UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0) return rv
348
0
import pprint import requests UpperCamelCase = """https://zenquotes.io/api""" def _SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def _SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": UpperCamelCase = random_quotes() pprint.pprint(response)
65
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge UpperCamelCase = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] UpperCamelCase = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def _SCREAMING_SNAKE_CASE ( ): A_ : Dict = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bootstrap_aggregation=SCREAMING_SNAKE_CASE , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : List[Any] = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bootstrap_aggregation=SCREAMING_SNAKE_CASE , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def _SCREAMING_SNAKE_CASE ( ): A_ : Any = '''rougeLsum''' A_ : List[str] = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k] A_ : List[str] = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k] assert score > score_no_sep def _SCREAMING_SNAKE_CASE ( ): A_ : Optional[int] = ['''rouge1''', '''rouge2''', '''rougeL'''] A_ : Optional[int] = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE , rouge_keys=SCREAMING_SNAKE_CASE ) A_ : Optional[int] = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE , rouge_keys=SCREAMING_SNAKE_CASE ) assert score_sep == score_no_sep def _SCREAMING_SNAKE_CASE ( ): A_ : Union[str, Any] = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] A_ : Optional[int] = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE ) == calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ): A_ : List[Any] = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] A_ : Optional[Any] = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] A_ : List[str] = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , rouge_keys=['''rougeLsum'''] , newline_sep=SCREAMING_SNAKE_CASE )['''rougeLsum'''] A_ : Optional[Any] = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def _SCREAMING_SNAKE_CASE ( ): A_ : Any = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) A_ : List[Any] = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : List[str] = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=SCREAMING_SNAKE_CASE ) assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
65
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase ( lowercase__ ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase__ ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def _lowercase ( lowercase__ ): __lowerCAmelCase : Any = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __lowerCAmelCase : Dict = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format __lowerCAmelCase : Dict = PipelineDataFormat.from_str( format=lowercase__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowercase__ , lowercase__ ) class __lowercase (_UpperCAmelCase ): def __init__( self , A_ , A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = nlp __lowerCAmelCase : Tuple = reader @staticmethod def UpperCamelCase__ ( A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : str = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''' ) run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''' ) run_parser.add_argument('''--input''' , type=A_ , help='''Path to the file to use for inference''' ) run_parser.add_argument('''--output''' , type=A_ , help='''Path to the file that will be used post to write results.''' ) run_parser.add_argument('''--model''' , type=A_ , help='''Name or path to the model to instantiate.''' ) run_parser.add_argument('''--config''' , type=A_ , help='''Name or path to the model\'s config to instantiate.''' ) run_parser.add_argument( '''--tokenizer''' , type=A_ , help='''Name of the tokenizer to use. (default: same as the model name)''' ) run_parser.add_argument( '''--column''' , type=A_ , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=A_ , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=A_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''' ) run_parser.set_defaults(func=A_ ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase, __lowerCAmelCase : Any = self._nlp, [] for entry in self._reader: __lowerCAmelCase : Optional[int] = nlp(**A_ ) if self._reader.is_multi_columns else nlp(A_ ) if isinstance(A_ , A_ ): outputs.append(A_ ) else: outputs += output # Saving data if self._nlp.binary_output: __lowerCAmelCase : Union[str, Any] = self._reader.save_binary(A_ ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(A_ )
275
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _UpperCamelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _UpperCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _UpperCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = len([g for position, g in enumerate(lowercase__ ) if g == main_target[position]] ) return (item, float(lowercase__ )) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : str = random.randint(0 , len(lowercase__ ) - 1 ) __lowerCAmelCase : int = parent_a[:random_slice] + parent_a[random_slice:] __lowerCAmelCase : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : List[str] = list(lowercase__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowerCAmelCase : int = random.choice(lowercase__ ) return "".join(lowercase__ ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , ): __lowerCAmelCase : str = [] # Generate more children proportionally to the fitness score. __lowerCAmelCase : str = int(parent_a[1] * 1_0_0 ) + 1 __lowerCAmelCase : Optional[Any] = 1_0 if child_n >= 1_0 else child_n for _ in range(lowercase__ ): __lowerCAmelCase : List[Any] = population_score[random.randint(0 , lowercase__ )][0] __lowerCAmelCase, __lowerCAmelCase : Dict = crossover(parent_a[0] , lowercase__ ) # Append new string to the population list. pop.append(mutate(lowercase__ , lowercase__ ) ) pop.append(mutate(lowercase__ , lowercase__ ) ) return pop def _lowercase ( lowercase__ , lowercase__ , lowercase__ = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __lowerCAmelCase : int = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(lowercase__ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowerCAmelCase : Any = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowerCAmelCase : List[str] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(lowercase__ ) # Generate random starting population. __lowerCAmelCase : List[Any] = [] for _ in range(lowercase__ ): population.append(''''''.join([random.choice(lowercase__ ) for i in range(len(lowercase__ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowerCAmelCase, __lowerCAmelCase : Tuple = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowerCAmelCase : Any = [evaluate(lowercase__ , lowercase__ ) for item in population] # Check if there is a matching evolution. __lowerCAmelCase : Union[str, Any] = sorted(lowercase__ , key=lambda lowercase__ : x[1] , reverse=lowercase__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowerCAmelCase : Tuple = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase__ ) # Normalize population score to be between 0 and 1. __lowerCAmelCase : List[Any] = [ (item, score / len(lowercase__ )) for item, score in population_score ] # This is selection for i in range(lowercase__ ): population.extend(select(population_score[int(lowercase__ )] , lowercase__ , lowercase__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase__ ) > N_POPULATION: break if __name__ == "__main__": _UpperCamelCase = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _UpperCamelCase = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = basic(target_str, genes_list) print( F"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
275
1
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase_ ) -> List[Any]: super().__init__() _A = nn.ModuleList(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(lowerCAmelCase_ , lowerCAmelCase_ , self.nets ) ): _A , _A = controlnet( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # merge samples if i == 0: _A , _A = down_samples, mid_sample else: _A = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ) -> int: _A = 0 _A = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCAmelCase_ , is_main_process=lowerCAmelCase_ , save_function=lowerCAmelCase_ , safe_serialization=lowerCAmelCase_ , variant=lowerCAmelCase_ , ) idx += 1 _A = model_path_to_save + F'''_{idx}''' @classmethod def UpperCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Union[str, Any]: _A = 0 _A = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _A = pretrained_model_path while os.path.isdir(lowerCAmelCase_ ): _A = ControlNetModel.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) controlnets.append(lowerCAmelCase_ ) idx += 1 _A = pretrained_model_path + F'''_{idx}''' logger.info(F'''{len(lowerCAmelCase_ )} controlnets loaded from {pretrained_model_path}.''' ) if len(lowerCAmelCase_ ) == 0: raise ValueError( F'''No ControlNets found under {os.path.dirname(lowerCAmelCase_ )}. Expected at least {pretrained_model_path + '_0'}.''' ) return cls(lowerCAmelCase_ )
356
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Tuple = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCamelCase :Union[str, Any] = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCamelCase :List[str] = '''document_qa''' lowerCamelCase :Union[str, Any] = AutoProcessor lowerCamelCase :str = VisionEncoderDecoderModel lowerCamelCase :str = ['''image''', '''text'''] lowerCamelCase :List[str] = ['''text'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _A = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _A = task_prompt.replace("""{user_input}""" , lowerCAmelCase_ ) _A = self.pre_processor.tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors="""pt""" ).input_ids _A = self.pre_processor(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCAmelCase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCAmelCase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCAmelCase_ , ).sequences def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Dict: _A = self.pre_processor.batch_decode(lowerCAmelCase_ )[0] _A = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) _A = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) _A = re.sub(r"""<.*?>""" , """""" , lowerCAmelCase_ , count=1 ).strip() # remove first task start token _A = self.pre_processor.tokenajson(lowerCAmelCase_ ) return sequence["answer"]
81
0
from ... import PretrainedConfig lowercase__ :Any = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Tuple =NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowercase_ : Any ='''nezha''' def __init__( self ,A__=2_1_1_2_8 ,A__=7_6_8 ,A__=1_2 ,A__=1_2 ,A__=3_0_7_2 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=6_4 ,A__=2 ,A__=0.02 ,A__=1E-12 ,A__=0.1 ,A__=0 ,A__=2 ,A__=3 ,A__=True ,**A__ ,): super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
101
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase__ ( _UpperCamelCase : Any="ro" , _UpperCamelCase : Optional[Any]="en" , _UpperCamelCase : Any="wmt16" , _UpperCamelCase : Tuple=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) snake_case = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) snake_case = datasets.load_dataset(_UpperCamelCase , _UpperCamelCase ) if save_dir is None: snake_case = f"""{dataset}-{pair}""" snake_case = Path(_UpperCamelCase ) save_dir.mkdir(exist_ok=_UpperCamelCase ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets snake_case = 'val' if split == 'validation' else split snake_case = save_dir.joinpath(f"""{fn}.source""" ) snake_case = save_dir.joinpath(f"""{fn}.target""" ) snake_case = src_path.open('w+' ) snake_case = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
150
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): if num < 0: return False __UpperCamelCase =num __UpperCamelCase =0 while num > 0: __UpperCamelCase =rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
117
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } _A = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } _A = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = BertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> Any: super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): __UpperCamelCase =getattr(A_ , normalizer_state.pop('type' ) ) __UpperCamelCase =do_lower_case __UpperCamelCase =strip_accents __UpperCamelCase =tokenize_chinese_chars __UpperCamelCase =normalizer_class(**A_ ) __UpperCamelCase =do_lower_case def _a ( self , A_ , A_=None ) -> List[str]: __UpperCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
117
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''pixel_values'''] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Optional[Any] = size if size is not None else {'''shortest_edge''': 224} __a : str = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __a : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __a : Optional[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name='''crop_size''' ) __a : Union[str, Any] = do_resize __a : Optional[Any] = size __a : str = resample __a : Tuple = do_center_crop __a : List[Any] = crop_size __a : List[Any] = do_rescale __a : int = rescale_factor __a : Union[str, Any] = do_normalize __a : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a : Any = image_std if image_std is not None else OPENAI_CLIP_STD __a : int = do_convert_rgb def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : List[str] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __a : int = get_resize_output_image_size(_UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : Any = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): __a : Optional[int] = do_resize if do_resize is not None else self.do_resize __a : Dict = size if size is not None else self.size __a : Tuple = get_size_dict(_UpperCAmelCase , param_name='''size''' , default_to_square=_UpperCAmelCase ) __a : Union[str, Any] = resample if resample is not None else self.resample __a : int = do_center_crop if do_center_crop is not None else self.do_center_crop __a : Tuple = crop_size if crop_size is not None else self.crop_size __a : List[Any] = get_size_dict(_UpperCAmelCase , param_name='''crop_size''' , default_to_square=_UpperCAmelCase ) __a : Any = do_rescale if do_rescale is not None else self.do_rescale __a : Any = rescale_factor if rescale_factor is not None else self.rescale_factor __a : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __a : Tuple = image_mean if image_mean is not None else self.image_mean __a : Any = image_std if image_std is not None else self.image_std __a : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a : List[str] = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a : Union[str, Any] = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __a : Union[str, Any] = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __a : Optional[Any] = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: __a : Dict = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: __a : Union[str, Any] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __a : Union[str, Any] = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __a : Any = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __a : Dict = {'''pixel_values''': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
160
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __a : Optional[int] = img __a : Any = img.shape[1] __a : Optional[int] = img.shape[0] __a : Tuple = dst_width __a : List[Any] = dst_height __a : Optional[int] = self.src_w / self.dst_w __a : Tuple = self.src_h / self.dst_h __a : Union[str, Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def _lowerCamelCase ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): __a : Optional[int] = self.img[self.get_y(_UpperCAmelCase )][self.get_x(_UpperCAmelCase )] def _lowerCamelCase ( self , _UpperCAmelCase ): return int(self.ratio_x * x ) def _lowerCamelCase ( self , _UpperCAmelCase ): return int(self.ratio_y * y ) if __name__ == "__main__": A , A = 800, 600 A = imread('''image_data/lena.jpg''', 1) A = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
160
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _A = logging.getLogger(__name__) @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : str UpperCAmelCase__ : List[str] UpperCAmelCase__ : Optional[List[str]] @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : List[int] UpperCAmelCase__ : List[int] UpperCAmelCase__ : Optional[List[int]] = None UpperCAmelCase__ : Optional[List[int]] = None class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "train" UpperCAmelCase__ : Tuple = "dev" UpperCAmelCase__ : Optional[Any] = "test" class UpperCAmelCase__ : """simple docstring""" @staticmethod def _a ( A_ , A_ ) -> List[InputExample]: raise NotImplementedError @staticmethod def _a ( A_ ) -> List[str]: raise NotImplementedError @staticmethod def _a ( A_ , A_ , A_ , A_ , A_=False , A_="[CLS]" , A_=1 , A_="[SEP]" , A_=False , A_=False , A_=0 , A_=0 , A_=-100 , A_=0 , A_=True , ) -> List[InputFeatures]: __UpperCamelCase ={label: i for i, label in enumerate(A_ )} __UpperCamelCase =[] for ex_index, example in enumerate(A_ ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' , A_ , len(A_ ) ) __UpperCamelCase =[] __UpperCamelCase =[] for word, label in zip(example.words , example.labels ): __UpperCamelCase =tokenizer.tokenize(A_ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(A_ ) > 0: tokens.extend(A_ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A_ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. __UpperCamelCase =tokenizer.num_special_tokens_to_add() if len(A_ ) > max_seq_length - special_tokens_count: __UpperCamelCase =tokens[: (max_seq_length - special_tokens_count)] __UpperCamelCase =label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] __UpperCamelCase =[sequence_a_segment_id] * len(A_ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: __UpperCamelCase =[cls_token] + tokens __UpperCamelCase =[pad_token_label_id] + label_ids __UpperCamelCase =[cls_token_segment_id] + segment_ids __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. __UpperCamelCase =[1 if mask_padding_with_zero else 0] * len(A_ ) # Zero-pad up to the sequence length. __UpperCamelCase =max_seq_length - len(A_ ) if pad_on_left: __UpperCamelCase =([pad_token] * padding_length) + input_ids __UpperCamelCase =([0 if mask_padding_with_zero else 1] * padding_length) + input_mask __UpperCamelCase =([pad_token_segment_id] * padding_length) + segment_ids __UpperCamelCase =([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(A_ ) == max_seq_length assert len(A_ ) == max_seq_length assert len(A_ ) == max_seq_length assert len(A_ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(A_ ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(A_ ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(A_ ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(A_ ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(A_ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: __UpperCamelCase =None features.append( InputFeatures( input_ids=A_ , attention_mask=A_ , token_type_ids=A_ , label_ids=A_ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[InputFeatures] UpperCAmelCase__ : int = nn.CrossEntropyLoss().ignore_index def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ = None , A_=False , A_ = Split.train , ) -> List[str]: # Load data features from cache or dataset file __UpperCamelCase =os.path.join( A_ , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(A_ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCamelCase =cached_features_file + '.lock' with FileLock(A_ ): if os.path.exists(A_ ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) __UpperCamelCase =torch.load(A_ ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) __UpperCamelCase =token_classification_task.read_examples_from_file(A_ , A_ ) # TODO clean up all this to leverage built-in features of tokenizers __UpperCamelCase =token_classification_task.convert_examples_to_features( A_ , A_ , A_ , A_ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A_ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'Saving features into cached file {cached_features_file}' ) torch.save(self.features , A_ ) def __len__( self ) -> List[Any]: return len(self.features ) def __getitem__( self , A_ ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : List[InputFeatures] UpperCAmelCase__ : int = -1_0_0 def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ = None , A_=False , A_ = Split.train , ) -> List[Any]: __UpperCamelCase =token_classification_task.read_examples_from_file(A_ , A_ ) # TODO clean up all this to leverage built-in features of tokenizers __UpperCamelCase =token_classification_task.convert_examples_to_features( A_ , A_ , A_ , A_ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A_ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: __UpperCamelCase =tf.data.Dataset.from_generator( A_ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: __UpperCamelCase =tf.data.Dataset.from_generator( A_ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ) -> Optional[int]: return len(self.features ) def __getitem__( self , A_ ) -> InputFeatures: return self.features[i]
117
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =filter(lambda SCREAMING_SNAKE_CASE__ : p.requires_grad , model.parameters() ) __UpperCamelCase =sum([np.prod(p.size() ) for p in model_parameters] ) return params _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): if metric == "rouge2": __UpperCamelCase ='{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __UpperCamelCase ='{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __UpperCamelCase ='{val_avg_em:.4f}-{step_count}' elif metric == "loss": __UpperCamelCase ='{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __UpperCamelCase =ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , monitor=F'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , ) class UpperCAmelCase__ ( pl.Callback ): """simple docstring""" def _a ( self , A_ , A_ ) -> int: __UpperCamelCase ={f'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(A_ ) @rank_zero_only def _a ( self , A_ , A_ , A_ , A_=True ) -> None: logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) __UpperCamelCase =trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __UpperCamelCase =Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase =od / 'test_results.txt' __UpperCamelCase =od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase =od / f'{type_path}_results/{trainer.global_step:05d}.txt' __UpperCamelCase =od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=A_ ) generations_file.parent.mkdir(exist_ok=A_ ) with open(A_ , 'a+' ) as writer: for key in sorted(A_ ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase =metrics[key] if isinstance(A_ , torch.Tensor ): __UpperCamelCase =val.item() __UpperCamelCase =f'{key}: {val:.6f}\n' writer.write(A_ ) if not save_generations: return if "preds" in metrics: __UpperCamelCase ='\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(A_ ) @rank_zero_only def _a ( self , A_ , A_ ) -> Optional[int]: try: __UpperCamelCase =pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase =pl_module.model.num_parameters() __UpperCamelCase =count_trainable_parameters(A_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self , A_ , A_ ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(A_ , A_ , 'test' ) @rank_zero_only def _a ( self , A_ , A_ ) -> List[str]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
117
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = 9, 14 # noqa: F841 UpperCAmelCase__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase__ = defaultdict(__A ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase__ = mst(__A ) UpperCAmelCase__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase__ = tuple(answer[:2] ) UpperCAmelCase__ = tuple(edge[::-1] ) assert edge in result or reverse in result
65
from __future__ import annotations from scipy.special import comb # type: ignore class A : def __init__(self : List[Any] , __UpperCAmelCase : list[tuple[float, float]] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. UpperCAmelCase__ = len(__UpperCAmelCase ) - 1 def lowercase_ (self : int , __UpperCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCAmelCase__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__UpperCAmelCase ) , 5 ) == 1 return output_values def lowercase_ (self : Dict , __UpperCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCAmelCase__ = self.basis_function(__UpperCAmelCase ) UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowercase_ (self : Optional[int] , __UpperCAmelCase : float = 0.01 ) -> Optional[int]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore UpperCAmelCase__ = [] # x coordinates of points to plot UpperCAmelCase__ = [] # y coordinates of points to plot UpperCAmelCase__ = 0.0 while t <= 1: UpperCAmelCase__ = self.bezier_curve_function(__UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size UpperCAmelCase__ = [i[0] for i in self.list_of_points] UpperCAmelCase__ = [i[1] for i in self.list_of_points] plt.plot( __UpperCAmelCase , __UpperCAmelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(__UpperCAmelCase , __UpperCAmelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
65
1
import math import random def lowerCAmelCase__ ( a__: float , a__: bool = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase__ :Optional[Any] = 0.02 def lowerCAmelCase__ ( a__: int , a__: int ) -> float: '''simple docstring''' _UpperCAmelCase = float(2 * (random.randint(1 , 1_0_0 )) - 1 ) for _ in range(a__ ): # Forward propagation _UpperCAmelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _UpperCAmelCase = (expected / 1_0_0) - layer_a # Error delta _UpperCAmelCase = layer_1_error * sigmoid_function(a__ , a__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_0_0 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ :List[Any] = int(input('''Expected value: ''')) lowerCAmelCase__ :Any = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
364
from __future__ import annotations from PIL import Image # Define glider example lowerCAmelCase__ :str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCAmelCase__ :Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]: '''simple docstring''' _UpperCAmelCase = [] for i in range(len(a__ ) ): _UpperCAmelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours _UpperCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(a__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(a__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(a__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. _UpperCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(a__ ) return next_generation def lowerCAmelCase__ ( a__: list[list[int]] , a__: int ) -> list[Image.Image]: '''simple docstring''' _UpperCAmelCase = [] for _ in range(a__ ): # Create output image _UpperCAmelCase = Image.new('RGB' , (len(cells[0] ), len(a__ )) ) _UpperCAmelCase = img.load() # Save cells to image for x in range(len(a__ ) ): for y in range(len(cells[0] ) ): _UpperCAmelCase = 2_5_5 - cells[y][x] * 2_5_5 _UpperCAmelCase = (colour, colour, colour) # Save image images.append(a__ ) _UpperCAmelCase = new_generation(a__ ) return images if __name__ == "__main__": lowerCAmelCase__ :Tuple = generate_images(GLIDER, 1_6) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
185
0
"""simple docstring""" from __future__ import annotations import numpy as np def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = np.shape(UpperCamelCase_ ) if rows != columns: __SCREAMING_SNAKE_CASE = ( """\'table\' has to be of square shaped array but got a """ f"{rows}x{columns} array:\n{table}" ) raise ValueError(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = np.zeros((rows, columns) ) __SCREAMING_SNAKE_CASE = np.zeros((rows, columns) ) for i in range(UpperCamelCase_ ): for j in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase_ ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) __SCREAMING_SNAKE_CASE = (table[i][j] - total) / upper[j][j] __SCREAMING_SNAKE_CASE = 1 for j in range(UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase_ ) ) __SCREAMING_SNAKE_CASE = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
100
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : Union[str, Any] = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __UpperCAmelCase = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCAmelCase_ ( _a ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=1 ) -> List[Any]: UpperCamelCase : int = tokenizer UpperCamelCase : Dict = dataset UpperCamelCase : Optional[int] = len(snake_case_ ) if n_tasks is None else n_tasks UpperCamelCase : List[str] = n_copies def __iter__( self ) -> Tuple: UpperCamelCase : Optional[int] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) UpperCamelCase : Optional[int] = self.tokenizer(snake_case_, padding=snake_case_, return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCAmelCase_ ( _a ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : Dict = start_length UpperCamelCase : Optional[Any] = eof_strings UpperCamelCase : List[str] = tokenizer def __call__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCamelCase : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(snake_case_ ) def UpperCamelCase ( snake_case__ : Optional[Any] ) -> Union[str, Any]: UpperCamelCase : List[Any] = re.split('(%s)' % '|'.join(_lowerCAmelCase ) , _lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=20 , **snake_case__ : str ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = defaultdict(_lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCAmelCase ) ): with torch.no_grad(): UpperCamelCase : Optional[int] = batch["""ids"""].shape[-1] UpperCamelCase : List[Any] = accelerator.unwrap_model(_lowerCAmelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCAmelCase , **_lowerCAmelCase ) # each task is generated batch_size times UpperCamelCase : Optional[int] = batch["""task_id"""].repeat(_lowerCAmelCase ) UpperCamelCase : List[Any] = accelerator.pad_across_processes( _lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCamelCase : Optional[Any] = accelerator.gather((generated_tokens, generated_tasks) ) UpperCamelCase : Optional[Any] = generated_tokens.cpu().numpy() UpperCamelCase : Optional[int] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCAmelCase , _lowerCAmelCase ): gen_token_dict[task].append(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = [[] for _ in range(_lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCamelCase : int = tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) code_gens[task].append(remove_last_block(_lowerCAmelCase ) ) return code_gens def UpperCamelCase ( ) -> Union[str, Any]: # Setup configuration UpperCamelCase : List[str] = HfArgumentParser(_lowerCAmelCase ) UpperCamelCase : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCamelCase : Union[str, Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCamelCase : Union[str, Any] = """false""" if args.num_workers is None: UpperCamelCase : int = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCamelCase : int = Accelerator() set_seed(args.seed , device_specific=_lowerCAmelCase ) # Load model and tokenizer UpperCamelCase : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCamelCase : Dict = tokenizer.eos_token UpperCamelCase : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCamelCase : Any = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCAmelCase , _lowerCAmelCase )] ), } # Load evaluation dataset and metric UpperCamelCase : Optional[int] = load_dataset('openai_humaneval' ) UpperCamelCase : List[Any] = load_metric('code_eval' ) UpperCamelCase : Optional[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) UpperCamelCase : Dict = args.n_samples // args.batch_size UpperCamelCase : int = TokenizedDataset(_lowerCAmelCase , human_eval['test'] , n_copies=_lowerCAmelCase , n_tasks=_lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCamelCase : Optional[Any] = DataLoader(_lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCamelCase : List[Any] = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`' ' flag to enable code evaluation.' ) raise exception UpperCamelCase : Dict = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : str = complete_code( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , n_tasks=_lowerCAmelCase , batch_size=args.batch_size , **_lowerCAmelCase , ) if accelerator.is_main_process: UpperCamelCase : str = [] for task in tqdm(range(_lowerCAmelCase ) ): UpperCamelCase : Any = human_eval["""test"""][task]["""test"""] UpperCamelCase : int = F"""check({human_eval["test"][task]["entry_point"]})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric UpperCamelCase : Optional[Any] = code_eval_metric.compute( references=_lowerCAmelCase , predictions=_lowerCAmelCase , num_workers=args.num_workers ) print(F"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
371
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') __UpperCAmelCase = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: __UpperCAmelCase = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __UpperCAmelCase = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
103
0
from math import factorial def _a ( lowerCamelCase: int = 20 ) -> int: '''simple docstring''' __A = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __A = n // 2 return int(factorial(lowerCamelCase ) / (factorial(lowerCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: snake_case__ : Tuple = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
117
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case__ : int = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } snake_case__ : int = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } snake_case__ : str = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class A_ ( _lowerCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BertTokenizer def __init__(self :List[str] , _UpperCamelCase :List[str]=None , _UpperCamelCase :Optional[Any]=None , _UpperCamelCase :str=True , _UpperCamelCase :Optional[Any]="[UNK]" , _UpperCamelCase :Tuple="[SEP]" , _UpperCamelCase :List[Any]="[PAD]" , _UpperCamelCase :int="[CLS]" , _UpperCamelCase :Optional[int]="[MASK]" , _UpperCamelCase :Union[str, Any]=True , _UpperCamelCase :str=None , **_UpperCamelCase :List[str] , )-> str: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) __A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): __A = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) __A = do_lower_case __A = strip_accents __A = tokenize_chinese_chars __A = normalizer_class(**_UpperCamelCase ) __A = do_lower_case def _lowerCAmelCase (self :Any , _UpperCamelCase :int , _UpperCamelCase :List[str]=None )-> List[Any]: __A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCAmelCase (self :List[str] , _UpperCamelCase :List[int] , _UpperCamelCase :Optional[List[int]] = None )-> List[int]: __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase (self :Any , _UpperCamelCase :str , _UpperCamelCase :Optional[str] = None )-> Tuple[str]: __A = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
117
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a__ = '''\ ''' a__ = ''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' a__ = ''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def __lowercase ( self , _a , _a , _a = 1_6 , _a = True , _a=None ) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a : List[str] = '''cuda''' else: _a : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a : Dict = AutoModelForCausalLM.from_pretrained(_a ) _a : List[Any] = model.to(_a ) _a : List[str] = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a : List[Any] = model.config.max_length - 1 else: _a : List[str] = model.config.max_length _a : Union[str, Any] = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) _a : List[Any] = encodings['''input_ids'''] _a : int = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a : Optional[int] = [] _a : Dict = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): _a : Dict = min(start_index + batch_size , len(_a ) ) _a : Union[str, Any] = encoded_texts[start_index:end_index] _a : int = attn_masks[start_index:end_index] if add_start_token: _a : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) _a : List[str] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a : Dict = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) _a : Dict = encoded_batch with torch.no_grad(): _a : Any = model(_a , attention_mask=_a ).logits _a : List[str] = out_logits[..., :-1, :].contiguous() _a : Union[str, Any] = labels[..., 1:].contiguous() _a : Optional[int] = attn_mask[..., 1:].contiguous() _a : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
15
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = 2 @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *_a , **_a ) -> List[str]: super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a : Dict = None if self.model.config.prefix is not None: _a : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a : str = self._sanitize_parameters(prefix=_a , **self._forward_params ) _a : Optional[Any] = {**self._preprocess_params, **preprocess_params} _a : List[Any] = {**self._forward_params, **forward_params} def __lowercase ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> Optional[int]: _a : List[Any] = {} if prefix is not None: _a : Optional[Any] = prefix if prefix: _a : Dict = self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Tuple = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _a : Dict = handle_long_generation preprocess_params.update(_a ) _a : Tuple = generate_kwargs _a : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a : Any = ReturnType.TENSORS if return_type is not None: _a : Any = return_type if clean_up_tokenization_spaces is not None: _a : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _a : Tuple = self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowercase ( self , *_a , **_a ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self , _a , **_a ) -> List[str]: return super().__call__(_a , **_a ) def __lowercase ( self , _a , _a="" , _a=None , **_a ) -> List[Any]: _a : Optional[int] = self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _a : Union[str, Any] = prompt_text if handle_long_generation == "hole": _a : List[str] = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a : int = generate_kwargs['''max_new_tokens'''] else: _a : List[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a : List[Any] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a : List[str] = inputs['''attention_mask'''][:, -keep_length:] return inputs def __lowercase ( self , _a , **_a ) -> Optional[int]: _a : Any = model_inputs['''input_ids'''] _a : Optional[Any] = model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _a : int = None _a : int = None _a : List[str] = 1 else: _a : List[Any] = input_ids.shape[0] _a : Union[str, Any] = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a : int = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a : int = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a : Dict = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a : Optional[Any] = self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _a : int = generated_sequence.shape[0] if self.framework == "pt": _a : Tuple = generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a : List[Any] = tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowercase ( self , _a , _a=ReturnType.FULL_TEXT , _a=True ) -> int: _a : Tuple = model_outputs['''generated_sequence'''][0] _a : int = model_outputs['''input_ids'''] _a : Any = model_outputs['''prompt_text'''] _a : Any = generated_sequence.numpy().tolist() _a : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a : Optional[int] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a : str = self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a : Union[str, Any] = 0 else: _a : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _a : str = prompt_text + text[prompt_length:] else: _a : List[str] = text[prompt_length:] _a : Union[str, Any] = {'''generated_text''': all_text} records.append(_a ) return records
15
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _a ( lowerCamelCase: Any , lowerCamelCase: Union[str, Any] , lowerCamelCase: int ) -> Optional[Any]: '''simple docstring''' __A = MobileBertConfig.from_json_file(lowerCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __A = MobileBertForPreTraining(lowerCamelCase ) # Load weights from tf checkpoint __A = load_tf_weights_in_mobilebert(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
117
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = cva.getAffineTransform(lowerCamelCase , lowerCamelCase ) return cva.warpAffine(lowerCamelCase , lowerCamelCase , (rows, cols) ) if __name__ == "__main__": # read original image snake_case__ : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value snake_case__ : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape snake_case__ , snake_case__ : str = gray_img.shape # set different points to rotate image snake_case__ : Any = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) snake_case__ : str = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) snake_case__ : int = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) snake_case__ : List[str] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list snake_case__ : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations snake_case__ : Optional[Any] = plt.figure(1) snake_case__ : Dict = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
117
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]: """simple docstring""" A : List[str] = parent A : Optional[Any] = batch_size A : Tuple = image_size A : int = patch_size A : Optional[int] = num_channels A : str = is_training A : List[Any] = use_labels A : Any = hidden_size A : Any = num_hidden_layers A : Optional[int] = num_attention_heads A : Any = intermediate_size A : List[str] = hidden_act A : str = hidden_dropout_prob A : Tuple = attention_probs_dropout_prob A : Any = type_sequence_label_size A : Optional[int] = initializer_range A : Dict = scope A : Tuple = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A : List[Any] = (image_size // patch_size) ** 2 A : Tuple = num_patches + 2 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Tuple = None if self.use_labels: A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE ) A : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE ) A : List[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A : Optional[int] = 1 A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE ) A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Tuple = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A : str = self.type_sequence_label_size A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE ) A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A : Optional[Any] = 1 A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE ) A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Optional[int] = self.prepare_config_and_inputs() A, A, A : Tuple = config_and_inputs A : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __magic_name__ = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = TFDeiTModelTester(self ) A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A, A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(SCREAMING_SNAKE_CASE ) A : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Union[str, Any] = [*signature.parameters.keys()] A : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowerCAmelCase ( self ) -> str: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ): '''simple docstring''' A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) A : Dict = self.default_image_processor A : List[str] = prepare_img() A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass A : Optional[int] = model(**SCREAMING_SNAKE_CASE ) # verify the logits A : List[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
311
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) lowercase : Tuple = parser.parse_args() lowercase : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
311
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = filter(lambda lowerCAmelCase_ : p.requires_grad, model.parameters() ) __lowerCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params _snake_case : Any = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : List[str] ): if metric == "rouge2": __lowerCAmelCase = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __lowerCAmelCase = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __lowerCAmelCase = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) __lowerCAmelCase = ModelCheckpoint( dirpath=UpperCAmelCase_, filename=UpperCAmelCase_, monitor=F"""val_{metric}""", mode='max', save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Tuple ): return EarlyStopping( monitor=F"""val_{metric}""", mode='min' if 'loss' in metric else 'max', patience=UpperCAmelCase_, verbose=UpperCAmelCase_, ) class _UpperCAmelCase ( pl.Callback ): """simple docstring""" def lowercase ( self : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = {f"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __lowerCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __lowerCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowerCAmelCase = od / 'test_results.txt' __lowerCAmelCase = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowerCAmelCase = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" __lowerCAmelCase = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , 'a+' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE_ ): if key in ["log", "progress_bar", "preds"]: continue __lowerCAmelCase = metrics[key] if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): __lowerCAmelCase = val.item() __lowerCAmelCase = f"""{key}: {val:.6f}\n""" writer.write(SCREAMING_SNAKE_CASE_ ) if not save_generations: return if "preds" in metrics: __lowerCAmelCase = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def lowercase ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : str ) -> Union[str, Any]: try: __lowerCAmelCase = pl_module.model.model.num_parameters() except AttributeError: __lowerCAmelCase = pl_module.model.num_parameters() __lowerCAmelCase = count_trainable_parameters(SCREAMING_SNAKE_CASE_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'test' ) @rank_zero_only def lowercase ( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ) -> str: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
284
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) A__ : List[str] = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""BeitFeatureExtractor"""] A__ : List[str] = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
185
0
from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase_ : list[int]): '''simple docstring''' lowerCAmelCase__ : List[str] = len(lowerCamelCase_) // 2 # choose the middle 3 elements lowerCAmelCase__ : Dict = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m]) == 2: m -= 1 return peak(lst[m:]) # decreasing else: if len(lst[:m]) == 2: m += 1 return peak(lst[:m]) if __name__ == "__main__": import doctest doctest.testmod()
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case : Optional[int] ={ 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int =['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple =['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys __snake_case : str =_LazyModule(__name__, globals()['__file__'], _import_structure)
94
1
"""simple docstring""" # using dfs for finding eulerian path traversal def lowercase ( A_ , A_ , A_ , A_=None )-> Dict: '''simple docstring''' a : Tuple = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: a , a : Optional[Any] = True, True a : List[str] = dfs(A_ , A_ , A_ , A_ ) return path def lowercase ( A_ , A_ )-> Optional[int]: '''simple docstring''' a : Any = 0 a : Dict = -1 for i in range(A_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 a : str = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowercase ( A_ , A_ )-> int: '''simple docstring''' a : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] a , a : Optional[Any] = check_circuit_or_path(A_ , A_ ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return a : Any = 1 if check == 2: a : List[Any] = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) a : Optional[Any] = dfs(A_ , A_ , A_ ) print(A_ ) def lowercase ( )-> Tuple: '''simple docstring''' a : Optional[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} a : Union[str, Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} a : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} a : Dict = {1: [2, 3], 2: [1, 3], 3: [1, 2]} a : Dict = { 1: [], 2: [] # all degree is zero } a : int = 10 check_euler(A_ , A_ ) check_euler(A_ , A_ ) check_euler(A_ , A_ ) check_euler(A_ , A_ ) check_euler(A_ , A_ ) if __name__ == "__main__": main()
40
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Tuple = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __snake_case ( UpperCamelCase_ ): _a = '''xlm-roberta-xl''' def __init__( self : int , A_ : List[str]=2_5_0_8_8_0 , A_ : List[str]=2_5_6_0 , A_ : Optional[int]=3_6 , A_ : List[Any]=3_2 , A_ : Optional[int]=1_0_2_4_0 , A_ : Dict="gelu" , A_ : int=0.1 , A_ : Optional[Any]=0.1 , A_ : int=5_1_4 , A_ : Any=1 , A_ : Optional[Any]=0.02 , A_ : str=1e-05 , A_ : Dict=1 , A_ : Any=0 , A_ : Tuple=2 , A_ : str="absolute" , A_ : str=True , A_ : List[str]=None , **A_ : Dict , ): super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Dict = type_vocab_size lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Optional[Any] = use_cache lowerCAmelCase_ : List[str] = classifier_dropout class __snake_case ( UpperCamelCase_ ): @property def UpperCAmelCase__ ( self : List[str]): if self.task == "multiple-choice": lowerCAmelCase_ : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
103
0
def __lowerCAmelCase ( a__ , a__ ): return int((input_a, input_a).count(1 ) != 0 ) def __lowerCAmelCase ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
351
A : Optional[Any] = tuple[float, float, float] A : Union[str, Any] = tuple[float, float, float] def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = end_pointa[0] - end_pointa[0] __a = end_pointa[1] - end_pointa[1] __a = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> Vectorad: __a = ab[1] * ac[2] - ab[2] * ac[1] # *i __a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCAmelCase ( a__ , a__ ) -> bool: return tuple(round(a__ , a__ ) for x in vector ) == (0, 0, 0) def __lowerCAmelCase ( a__ , a__ , a__ , a__ = 10 ) -> bool: __a = create_vector(a__ , a__ ) __a = create_vector(a__ , a__ ) return is_zero_vector(get_ad_vectors_cross(a__ , a__ ) , a__ )
33
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging SCREAMING_SNAKE_CASE :str = '\\n\n' SCREAMING_SNAKE_CASE :List[str] = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' SCREAMING_SNAKE_CASE :Dict = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) ,reference_urls=["https://huggingface.co/docs/transformers/perplexity"] ,) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : int = 16 ,A : bool = True ,A : Optional[int]=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __A = "cuda" else: __A = "cuda" if torch.cuda.is_available() else "cpu" __A = AutoModelForCausalLM.from_pretrained(A ) __A = model.to(A ) __A = AutoTokenizer.from_pretrained(A ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __A = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(A ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __A = model.config.max_length - 1 else: __A = model.config.max_length __A = tokenizer( A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,return_tensors="pt" ,return_attention_mask=A ,).to(A ) __A = encodings["input_ids"] __A = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __A = [] __A = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 ,len(A ) ,A ) ): __A = min(start_index + batch_size ,len(A ) ) __A = encoded_texts[start_index:end_index] __A = attn_masks[start_index:end_index] if add_start_token: __A = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(A ) __A = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 ) __A = torch.cat( [torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(A ), attn_mask] ,dim=1 ) __A = encoded_batch with torch.no_grad(): __A = model(A ,attention_mask=A ).logits __A = out_logits[..., :-1, :].contiguous() __A = labels[..., 1:].contiguous() __A = attn_mask[..., 1:].contiguous() __A = torch.expa( (loss_fct(shift_logits.transpose(1 ,2 ) ,A ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(A )}
15
import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = {} __A = job["started_at"] __A = job["completed_at"] __A = date_parser.parse(a_ ) __A = date_parser.parse(a_ ) __A = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __A = start __A = end __A = duration_in_min return job_info def UpperCAmelCase ( a_ , a_=None ) -> str: """simple docstring""" __A = None if token is not None: __A = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} __A = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __A = requests.get(a_ , headers=a_ ).json() __A = {} try: job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) __A = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(a_ ): __A = requests.get(url + F'''&page={i + 2}''' , headers=a_ ).json() job_time.update({job["name"]: extract_time_from_single_job(a_ ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() SCREAMING_SNAKE_CASE :Union[str, Any] = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE :Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
15
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a_ : Optional[Any] = logging.get_logger(__name__) a_ : Dict = Dict[str, Any] a_ : Optional[int] = List[Prediction] @add_end_docstrings(A__ ) class _snake_case ( A__ ): def __init__( self , *a , **a) -> Any: super().__init__(*__a , **__a) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''') requires_backends(self , 'vision') self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[Any]: SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *a , **a) -> Union[Predictions, List[Prediction]]: return super().__call__(*__a , **__a) def SCREAMING_SNAKE_CASE__ ( self , a) -> str: SCREAMING_SNAKE_CASE = load_image(__a) SCREAMING_SNAKE_CASE = torch.IntTensor([[image.height, image.width]]) SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors='pt') if self.tokenizer is not None: SCREAMING_SNAKE_CASE = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt') SCREAMING_SNAKE_CASE = target_size return inputs def SCREAMING_SNAKE_CASE__ ( self , a) -> int: SCREAMING_SNAKE_CASE = model_inputs.pop('target_size') SCREAMING_SNAKE_CASE = self.model(**__a) SCREAMING_SNAKE_CASE = outputs.__class__({'target_size': target_size, **outputs}) if self.tokenizer is not None: SCREAMING_SNAKE_CASE = model_inputs['bbox'] return model_outputs def SCREAMING_SNAKE_CASE__ ( self , a , a=0.9) -> Dict: SCREAMING_SNAKE_CASE = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = target_size[0].tolist() def unnormalize(a): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ])) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model_outputs['logits'].squeeze(0).softmax(dim=-1).max(dim=-1) SCREAMING_SNAKE_CASE = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] SCREAMING_SNAKE_CASE = [unnormalize(__a) for bbox in model_outputs['bbox'].squeeze(0)] SCREAMING_SNAKE_CASE = ['score', 'label', 'box'] SCREAMING_SNAKE_CASE = [dict(zip(__a , __a)) for vals in zip(scores.tolist() , __a , __a) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection(__a , __a , __a) SCREAMING_SNAKE_CASE = raw_annotations[0] SCREAMING_SNAKE_CASE = raw_annotation['scores'] SCREAMING_SNAKE_CASE = raw_annotation['labels'] SCREAMING_SNAKE_CASE = raw_annotation['boxes'] SCREAMING_SNAKE_CASE = scores.tolist() SCREAMING_SNAKE_CASE = [self.model.config.idalabel[label.item()] for label in labels] SCREAMING_SNAKE_CASE = [self._get_bounding_box(__a) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] SCREAMING_SNAKE_CASE = ['score', 'label', 'box'] SCREAMING_SNAKE_CASE = [ dict(zip(__a , __a)) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes']) ] return annotation def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = box.int().tolist() SCREAMING_SNAKE_CASE = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
362
from scipy.stats import pearsonr import datasets a_ : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a_ : Optional[int] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a_ : Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Optional[Any]: if return_pvalue: SCREAMING_SNAKE_CASE = pearsonr(a , a) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(a , a)[0])}
327
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=1_3 , snake_case=3_0 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=3_2 , snake_case=2 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_0 , snake_case=0.02 , snake_case=3 , snake_case=None , snake_case=2 , ): '''simple docstring''' UpperCAmelCase : Any = parent UpperCAmelCase : str = batch_size UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : List[str] = patch_size UpperCAmelCase : Optional[Any] = num_channels UpperCAmelCase : Any = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : str = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Any = initializer_range UpperCAmelCase : str = scope UpperCAmelCase : Optional[int] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2 UpperCAmelCase : Any = num_patches + 2 def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def A_ ( self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = TFDeiTModel(config=snake_case ) UpperCAmelCase : Any = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[Any] = TFDeiTForMaskedImageModeling(config=snake_case ) UpperCAmelCase : int = model(snake_case ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase : List[str] = 1 UpperCAmelCase : Optional[int] = TFDeiTForMaskedImageModeling(snake_case ) UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = model(snake_case ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Tuple = self.type_sequence_label_size UpperCAmelCase : Optional[Any] = TFDeiTForImageClassification(snake_case ) UpperCAmelCase : Optional[int] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase : int = 1 UpperCAmelCase : Dict = TFDeiTForImageClassification(snake_case ) UpperCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : Dict = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : int = False def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = TFDeiTModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 ) def A_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def A_ ( self ): '''simple docstring''' pass def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , tf.keras.layers.Dense ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(snake_case ) UpperCAmelCase : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def A_ ( self , snake_case , snake_case , snake_case=False ): '''simple docstring''' UpperCAmelCase : Optional[Any] = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def A_ ( self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = TFDeiTModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def lowercase ( ): '''simple docstring''' UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) UpperCAmelCase : Any = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : int = image_processor(images=snake_case , return_tensors="tf" ) # forward pass UpperCAmelCase : Dict = model(**snake_case ) # verify the logits UpperCAmelCase : List[str] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCAmelCase : Dict = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
311
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( __magic_name__ ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase : Any = False def lowercase ( ): '''simple docstring''' UpperCAmelCase : int = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = plt.imshow(__magic_name__ ) fig.axes.get_xaxis().set_visible(__magic_name__ ) fig.axes.get_yaxis().set_visible(__magic_name__ ) plt.show() def lowercase ( ): '''simple docstring''' UpperCAmelCase : str = datetime.now() UpperCAmelCase : Tuple = current_time.strftime("%H:%M:%S" ) return timestamp
311
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
160
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase : Any = logging.get_logger(__name__) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=None , lowerCAmelCase_=None ): """simple docstring""" if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) _snake_case = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: _snake_case = text def lowerCamelCase ( self ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" self.generated_responses.append(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): """simple docstring""" _snake_case = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _snake_case = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( _lowerCamelCase , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowerCamelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCAmelCase_ , lowerCAmelCase_=0 , **lowerCAmelCase_ ): """simple docstring""" _snake_case = super().__call__(lowerCAmelCase_ , num_workers=lowerCAmelCase_ , **lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=32 ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _snake_case = self.tokenizer._build_conversation_input_ids(lowerCAmelCase_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(lowerCAmelCase_ ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=10 , **lowerCAmelCase_ ): """simple docstring""" _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) _snake_case = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs['attention_mask'][:, -trim:] _snake_case = model_inputs.pop('conversation' ) _snake_case = max_length _snake_case = self.model.generate(**lowerCAmelCase_ , **lowerCAmelCase_ ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=True ): """simple docstring""" _snake_case = model_outputs['output_ids'] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) _snake_case = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(lowerCAmelCase_ ) return conversation def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
160
1
def __lowerCamelCase ( UpperCAmelCase_ : list ): """simple docstring""" a :List[Any] = len(UpperCAmelCase_ ) for i in range(1 , UpperCAmelCase_ ): a :Union[str, Any] = collection[i] a :List[Any] = 0 a :Dict = i - 1 while low <= high: a :List[Any] = (low + high) // 2 if val < collection[mid]: a :str = mid - 1 else: a :Dict = mid + 1 for j in range(UpperCAmelCase_ , UpperCAmelCase_ , -1 ): a :Tuple = collection[j - 1] a :List[Any] = val return collection if __name__ == "__main__": snake_case : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() snake_case : Optional[int] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
94
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : dict , UpperCAmelCase_ : str ): """simple docstring""" a , a :Optional[Any] = set(UpperCAmelCase_ ), [start] while stack: a :Optional[int] = stack.pop() explored.add(UpperCAmelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCAmelCase_ ) return explored snake_case : Optional[int] = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
94
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : Optional[Any] , *snake_case_ : Optional[Any] , **snake_case_ : Tuple ): warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
354
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = RoFormerTokenizer __UpperCamelCase : Union[str, Any] = RoFormerTokenizerFast __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Tuple = True def lowerCAmelCase__ ( self : Optional[Any] ): super().setUp() def lowerCAmelCase__ ( self : List[str] , **snake_case_ : Union[str, Any] ): return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **snake_case_ ) def lowerCAmelCase__ ( self : Dict , **snake_case_ : Union[str, Any] ): return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: int = """永和服装饰品有限公司,今天天气非常好""" UpperCamelCase_: int = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Dict = self.get_tokenizer() UpperCamelCase_, UpperCamelCase_: Optional[int] = self.get_chinese_input_output_texts() UpperCamelCase_: Optional[int] = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , output_text.split() ) UpperCamelCase_: Dict = tokens + [tokenizer.unk_token] UpperCamelCase_: int = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Optional[int] = self.get_rust_tokenizer() UpperCamelCase_, UpperCamelCase_: Any = self.get_chinese_input_output_texts() UpperCamelCase_: int = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , output_text.split() ) UpperCamelCase_: Union[str, Any] = tokens + [tokenizer.unk_token] UpperCamelCase_: Optional[Any] = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Dict ): pass def lowerCAmelCase__ ( self : Tuple ): pass def lowerCAmelCase__ ( self : Union[str, Any] ): pass
223
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ = 1_00_00_00 ) -> int: __lowerCamelCase = set(range(3 , UpperCamelCase__ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCamelCase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCamelCase__ , UpperCamelCase__ ) ) ) __lowerCamelCase = [float(UpperCamelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCamelCase__ , limit + 1 , UpperCamelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
67
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __A : Dict = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class _UpperCAmelCase ( unittest.TestCase , _A ): def A ( self : List[Any] ) -> Dict: lowercase_ : Optional[int] = load_tool('''text-question-answering''' ) self.tool.setup() lowercase_ : Union[str, Any] = load_tool('''text-question-answering''' , remote=A ) def A ( self : Any ) -> List[str]: lowercase_ : Union[str, Any] = self.tool(A , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : str ) -> List[str]: lowercase_ : int = self.remote_tool(A , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : List[Any] ) -> int: lowercase_ : Optional[Any] = self.tool(text=A , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' ) def A ( self : List[str] ) -> Optional[int]: lowercase_ : int = self.remote_tool(text=A , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(A , '''launched the BigScience Research Workshop''' )
33
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[int]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE : int = DisjunctiveConstraint(_SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self ) ->str: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE : Tuple = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(_SCREAMING_SNAKE_CASE ) # fails here def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE : Optional[int] = DisjunctiveConstraint(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = dc.update(1 ) SCREAMING_SNAKE_CASE : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(_SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE : Any = dc.update(2 ) SCREAMING_SNAKE_CASE : List[str] = stepped is True and completed is False and reset is False self.assertTrue(_SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE : Tuple = dc.update(3 ) SCREAMING_SNAKE_CASE : Optional[Any] = stepped is True and completed is True and reset is False self.assertTrue(_SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveConstraint(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): # Checks if the entire collection has been sorted if len(UpperCamelCase_ ) <= 1 or n <= 1: return insert_next(UpperCamelCase_ , n - 1 ) rec_insertion_sort(UpperCamelCase_ , n - 1 ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): # Checks order between adjacent elements if index >= len(UpperCamelCase_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = ( collection[index], collection[index - 1], ) insert_next(UpperCamelCase_ , index + 1 ) if __name__ == "__main__": __magic_name__ = input("Enter integers separated by spaces: ") __magic_name__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
100
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _snake_case ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = StableUnCLIPPipeline SCREAMING_SNAKE_CASE__ = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false SCREAMING_SNAKE_CASE__ = False def SCREAMING_SNAKE_CASE__ ( self ): a :int = 32 a :List[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) a :Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) a :Dict = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) a :Optional[int] = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowerCamelCase , num_layers=1 , ) torch.manual_seed(0 ) a :str = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_lowerCamelCase , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) a :List[Any] = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) a :List[str] = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) a :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) a :Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) a :List[str] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) a :Any = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) a :List[Any] = AutoencoderKL() a :Dict = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): if str(_lowerCamelCase ).startswith('''mps''' ): a :Optional[int] = torch.manual_seed(_lowerCamelCase ) else: a :Dict = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): a :int = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): a :Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) a :Optional[int] = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a :List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) a :Dict = pipe('''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) a :Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a :str = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) a :Optional[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a :Dict = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) a :Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
281
def __lowerCamelCase ( UpperCAmelCase_ : int = 100 ): """simple docstring""" a :List[Any] = 0 a :List[Any] = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
281
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
"""simple docstring""" def __A ( a_ :int = 60_08_51_47_51_43) -> int: try: __a : List[Any] = int(a_) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''') if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''') __a : int = 1 __a : List[Any] = 2 while i * i <= n: while n % i == 0: __a : List[str] = i n //= i i += 1 if n > 1: __a : Optional[int] = n return int(a_) if __name__ == "__main__": print(F'{solution() = }')
160
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self ,_snake_case ,_snake_case=12 ,_snake_case=7 ,_snake_case=True ,_snake_case=True ,_snake_case=True ,_snake_case=99 ,_snake_case=32 ,_snake_case=32 ,_snake_case=2 ,_snake_case=4 ,_snake_case=37 ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=0.02 ,_snake_case=0 ,_snake_case=None ,): UpperCAmelCase_ : Any = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Optional[int] = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : str = use_input_mask UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = projection_dim UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : Any = dropout UpperCAmelCase_ : Dict = attention_dropout UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Optional[int] = scope UpperCAmelCase_ : List[str] = bos_token_id def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[Any] = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase_ : Any = input_mask.numpy() UpperCAmelCase_ , UpperCAmelCase_ : str = input_mask.shape UpperCAmelCase_ : str = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : int = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def UpperCamelCase__ ( self ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = TFBlipTextModel(config=_snake_case ) UpperCAmelCase_ : Optional[int] = model(_snake_case ,attention_mask=_snake_case ,training=_snake_case ) UpperCAmelCase_ : Dict = model(_snake_case ,training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = config_and_inputs UpperCAmelCase_ : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Tuple =(TFBlipTextModel,) if is_tf_available() else () __A : List[Any] =False __A : List[Any] =False __A : Any =False def UpperCamelCase__ ( self ): UpperCAmelCase_ : Any = BlipTextModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self ,config_class=_snake_case ,hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def UpperCamelCase__ ( self ): pass @slow def UpperCamelCase__ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCamelCase__ ( self ,_snake_case=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
67
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class _snake_case (__SCREAMING_SNAKE_CASE): __A : int ="mra" def __init__( self ,_snake_case=5_02_65 ,_snake_case=7_68 ,_snake_case=12 ,_snake_case=12 ,_snake_case=30_72 ,_snake_case="gelu" ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=5_12 ,_snake_case=1 ,_snake_case=0.02 ,_snake_case=1E-5 ,_snake_case="absolute" ,_snake_case=4 ,_snake_case="full" ,_snake_case=0 ,_snake_case=0 ,_snake_case=1 ,_snake_case=0 ,_snake_case=2 ,**_snake_case ,): super().__init__(pad_token_id=_snake_case ,bos_token_id=_snake_case ,eos_token_id=_snake_case ,**_snake_case ) UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : List[Any] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = position_embedding_type UpperCAmelCase_ : Optional[Any] = block_per_row UpperCAmelCase_ : Any = approx_mode UpperCAmelCase_ : Dict = initial_prior_first_n_blocks UpperCAmelCase_ : str = initial_prior_diagonal_n_blocks
67
1
import math def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = [] lowerCamelCase = 2 lowerCamelCase = int(math.sqrt(__lowerCamelCase ) ) # Size of every segment lowerCamelCase = [True] * (end + 1) lowerCamelCase = [] while start <= end: if temp[start] is True: in_prime.append(__lowerCamelCase ) for i in range(start * start , end + 1 , __lowerCamelCase ): lowerCamelCase = False start += 1 prime += in_prime lowerCamelCase = end + 1 lowerCamelCase = min(2 * end , __lowerCamelCase ) while low <= n: lowerCamelCase = [True] * (high - low + 1) for each in in_prime: lowerCamelCase = math.floor(low / each ) * each if t < low: t += each for j in range(__lowerCamelCase , high + 1 , __lowerCamelCase ): lowerCamelCase = False for j in range(len(__lowerCamelCase ) ): if temp[j] is True: prime.append(j + low ) lowerCamelCase = high + 1 lowerCamelCase = min(high + end , __lowerCamelCase ) return prime print(sieve(10**6))
252
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase : Tuple =logging.get_logger(__name__) lowerCAmelCase : List[str] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase : Optional[int] ={ '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowerCAmelCase : List[Any] ={ '''RUCAIBox/mvp''': 1_024, } class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ["input_ids", "attention_mask"] __A = MvpTokenizer def __init__( self : Optional[Any] , lowercase : Any=None , lowercase : List[Any]=None , lowercase : Dict=None , lowercase : int="replace" , lowercase : int="<s>" , lowercase : List[str]="</s>" , lowercase : Optional[Any]="</s>" , lowercase : List[str]="<s>" , lowercase : List[str]="<unk>" , lowercase : List[str]="<pad>" , lowercase : Tuple="<mask>" , lowercase : Tuple=False , lowercase : Dict=True , **lowercase : List[str] , ): """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) lowercase_ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :List[str] = getattr(lowercase , pre_tok_state.pop("type" ) ) lowercase_ :int = add_prefix_space lowercase_ :Optional[int] = pre_tok_class(**lowercase ) lowercase_ :Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ :List[Any] = "post_processor" lowercase_ :str = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: lowercase_ :Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ :int = tuple(state["sep"] ) if "cls" in state: lowercase_ :Any = tuple(state["cls"] ) lowercase_ :int = False if state.get("add_prefix_space" , lowercase ) != add_prefix_space: lowercase_ :Union[str, Any] = add_prefix_space lowercase_ :int = True if state.get("trim_offsets" , lowercase ) != trim_offsets: lowercase_ :Any = trim_offsets lowercase_ :int = True if changes_to_apply: lowercase_ :Tuple = getattr(lowercase , state.pop("type" ) ) lowercase_ :Any = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def lowercase__ ( self : Optional[int] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : int , lowercase : Dict ): """simple docstring""" lowercase_ :List[str] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value lowercase_ :Union[str, Any] = value def lowercase__ ( self : Optional[Any] , *lowercase : List[Any] , **lowercase : Any ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Optional[Any] , *lowercase : Optional[int] , **lowercase : int ): """simple docstring""" lowercase_ :Any = kwargs.get("is_split_into_words" , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def lowercase__ ( self : Dict , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" lowercase_ :str = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def lowercase__ ( self : Tuple , lowercase : Dict , lowercase : int=None ): """simple docstring""" lowercase_ :List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : int , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" lowercase_ :Union[str, Any] = [self.sep_token_id] lowercase_ :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
223
0
'''simple docstring''' UpperCamelCase_ : Optional[int] = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} UpperCamelCase_ : Any = ['''a''', '''b''', '''c''', '''d''', '''e'''] def __a ( _UpperCamelCase: Dict , _UpperCamelCase: int , _UpperCamelCase: Dict ) -> Optional[Any]: """simple docstring""" _snake_case = start # add current to visited visited.append(_UpperCamelCase ) _snake_case = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _snake_case = topological_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # if all neighbors visited add current to sort sort.append(_UpperCamelCase ) # if all vertices haven't been visited select a new one to visit if len(_UpperCamelCase ) != len(_UpperCamelCase ): for vertice in vertices: if vertice not in visited: _snake_case = topological_sort(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # return sort return sort if __name__ == "__main__": UpperCamelCase_ : Any = topological_sort('''a''', [], []) print(sort)
142
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE_ : List[Any] = """BridgeTowerImageProcessor""" SCREAMING_SNAKE_CASE_ : List[Any] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: super().__init__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 0 ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> BatchEncoding: _snake_case = self.tokenizer( text=_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,stride=_SCREAMING_SNAKE_CASE ,pad_to_multiple_of=_SCREAMING_SNAKE_CASE ,return_token_type_ids=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,return_overflowing_tokens=_SCREAMING_SNAKE_CASE ,return_special_tokens_mask=_SCREAMING_SNAKE_CASE ,return_offsets_mapping=_SCREAMING_SNAKE_CASE ,return_length=_SCREAMING_SNAKE_CASE ,verbose=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) # add pixel_values + pixel_mask _snake_case = self.image_processor( _SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,do_normalize=_SCREAMING_SNAKE_CASE ,do_center_crop=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> Any: _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
142
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "gpt_neox" def __init__( self : int , snake_case_ : Union[str, Any]=50_432 , snake_case_ : Union[str, Any]=6_144 , snake_case_ : Union[str, Any]=44 , snake_case_ : Any=64 , snake_case_ : Union[str, Any]=24_576 , snake_case_ : List[Any]="gelu" , snake_case_ : Any=0.25 , snake_case_ : Dict=10_000 , snake_case_ : List[Any]=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : Optional[int]=0.1 , snake_case_ : Any=2_048 , snake_case_ : str=0.02 , snake_case_ : Dict=1E-5 , snake_case_ : Union[str, Any]=True , snake_case_ : Dict=0 , snake_case_ : Optional[Any]=2 , snake_case_ : Dict=False , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : List[Any] , ): super().__init__(bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) snake_case__ : Tuple = vocab_size snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : Optional[int] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : Tuple = hidden_act snake_case__ : str = rotary_pct snake_case__ : Tuple = rotary_emb_base snake_case__ : List[str] = attention_dropout snake_case__ : Tuple = hidden_dropout snake_case__ : Dict = classifier_dropout snake_case__ : Dict = initializer_range snake_case__ : Optional[int] = layer_norm_eps snake_case__ : Optional[int] = use_cache snake_case__ : Union[str, Any] = tie_word_embeddings snake_case__ : str = use_parallel_residual snake_case__ : int = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def lowerCamelCase ( self : List[str] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) snake_case__ : Optional[int] = self.rope_scaling.get("""type""" , snake_case_ ) snake_case__ : int = self.rope_scaling.get("""factor""" , snake_case_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(snake_case_ , snake_case_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
35
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __A ='''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __A =concatenate_datasets __A =DownloadConfig __A =DownloadManager __A =DownloadMode __A =DownloadConfig __A =DownloadMode __A =DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCAmelCase = False class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __snake_case ( self ) -> List[Any]: return 12 @property def __snake_case ( self ) -> int: return 12 @property def __snake_case ( self ) -> Optional[int]: return 32 @property def __snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __snake_case ( self ) -> str: lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __snake_case ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case_ ) @property def __snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase = 12 lowerCAmelCase = 12 lowerCAmelCase = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } lowerCAmelCase = TransformeraDModel(**snake_case_ ) return model def __snake_case ( self ) -> Tuple: lowerCAmelCase = """cpu""" lowerCAmelCase = self.dummy_vqvae lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_transformer lowerCAmelCase = VQDiffusionScheduler(self.num_embed ) lowerCAmelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=snake_case_ ) lowerCAmelCase = VQDiffusionPipeline( vqvae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , transformer=snake_case_ , scheduler=snake_case_ , learned_classifier_free_sampling_embeddings=snake_case_ , ) lowerCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase = """teddy bear playing in the pool""" lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(0 ) lowerCAmelCase = pipe([prompt] , generator=snake_case_ , num_inference_steps=2 , output_type="""np""" ) lowerCAmelCase = output.images lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(0 ) lowerCAmelCase = pipe( [prompt] , generator=snake_case_ , output_type="""np""" , return_dict=snake_case_ , num_inference_steps=2 )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowerCAmelCase = np.array([0.6_5_5_1, 0.6_1_6_8, 0.5_0_0_8, 0.5_6_7_6, 0.5_6_5_9, 0.4_2_9_5, 0.6_0_7_3, 0.5_5_9_9, 0.4_9_9_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __snake_case ( self ) -> Dict: lowerCAmelCase = """cpu""" lowerCAmelCase = self.dummy_vqvae lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_transformer lowerCAmelCase = VQDiffusionScheduler(self.num_embed ) lowerCAmelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=snake_case_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowerCAmelCase = VQDiffusionPipeline( vqvae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , transformer=snake_case_ , scheduler=snake_case_ , learned_classifier_free_sampling_embeddings=snake_case_ , ) lowerCAmelCase = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase = """teddy bear playing in the pool""" lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(0 ) lowerCAmelCase = pipe([prompt] , generator=snake_case_ , num_inference_steps=2 , output_type="""np""" ) lowerCAmelCase = output.images lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(0 ) lowerCAmelCase = pipe( [prompt] , generator=snake_case_ , output_type="""np""" , return_dict=snake_case_ , num_inference_steps=2 )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowerCAmelCase = np.array([0.6_6_9_3, 0.6_0_7_5, 0.4_9_5_9, 0.5_7_0_1, 0.5_5_8_3, 0.4_3_3_3, 0.6_1_7_1, 0.5_6_8_4, 0.4_9_8_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ) -> Dict: lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) lowerCAmelCase = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) lowerCAmelCase = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(0 ) lowerCAmelCase = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=snake_case_ , output_type="""np""" , ) lowerCAmelCase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
371
'''simple docstring''' from __future__ import annotations def _snake_case ( _SCREAMING_SNAKE_CASE : int | str ) -> bool: """simple docstring""" lowerCAmelCase = str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def _snake_case ( _SCREAMING_SNAKE_CASE : int = 1_000_000 ) -> Dict: """simple docstring""" lowerCAmelCase = 0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
187
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel snake_case : List[str] = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } snake_case : List[Any] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : Tuple=False ) -> Optional[Any]: '''simple docstring''' __magic_name__ , __magic_name__ : Tuple = create_model( "HTSAT-tiny" , "roberta" , _snake_case , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_snake_case , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ ( _snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Union[str, Any] = {} __magic_name__ : Dict = R".*sequential.(\d+).*" __magic_name__ : List[str] = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __magic_name__ : Any = key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): # replace sequential layers with list __magic_name__ : int = re.match(_snake_case , _snake_case ).group(1 ) __magic_name__ : Union[str, Any] = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_snake_case )//3}.linear.''' ) elif re.match(_snake_case , _snake_case ): __magic_name__ : Tuple = int(re.match(_snake_case , _snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __magic_name__ : str = 1 if projecton_layer == 0 else 2 __magic_name__ : int = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __magic_name__ : Union[str, Any] = value __magic_name__ : List[str] = mixed_qkv.size(0 ) // 3 __magic_name__ : int = mixed_qkv[:qkv_dim] __magic_name__ : str = mixed_qkv[qkv_dim : qkv_dim * 2] __magic_name__ : List[str] = mixed_qkv[qkv_dim * 2 :] __magic_name__ : List[Any] = query_layer __magic_name__ : int = key_layer __magic_name__ : Any = value_layer else: __magic_name__ : str = value return model_state_dict def lowerCAmelCase_ ( _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Any=False ) -> Dict: '''simple docstring''' __magic_name__ , __magic_name__ : Any = init_clap(_snake_case , enable_fusion=_snake_case ) clap_model.eval() __magic_name__ : Union[str, Any] = clap_model.state_dict() __magic_name__ : Tuple = rename_state_dict(_snake_case ) __magic_name__ : List[str] = ClapConfig() __magic_name__ : Tuple = enable_fusion __magic_name__ : Any = ClapModel(_snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case ) model.save_pretrained(_snake_case ) transformers_config.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") snake_case : List[str] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
281
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if isinstance(_snake_case , _snake_case ): __magic_name__ : Union[str, Any] = np.full((len(_snake_case ), sequence_length, 2) , _snake_case ) else: __magic_name__ : List[Any] = np.full((len(_snake_case ), sequence_length) , _snake_case ) for i, tensor in enumerate(_snake_case ): if padding_side == "right": if isinstance(_snake_case , _snake_case ): __magic_name__ : Optional[Any] = tensor[:sequence_length] else: __magic_name__ : Union[str, Any] = tensor[:sequence_length] else: if isinstance(_snake_case , _snake_case ): __magic_name__ : List[Any] = tensor[:sequence_length] else: __magic_name__ : Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def lowerCAmelCase_ ( _snake_case : Optional[int] ) -> Tuple: '''simple docstring''' __magic_name__ : Union[str, Any] = ord(_snake_case ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __magic_name__ : Any = unicodedata.category(_snake_case ) if cat.startswith("P" ): return True return False @dataclass class _snake_case ( snake_case ): UpperCamelCase__ = 42 UpperCamelCase__ = True UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = -100 UpperCamelCase__ = "pt" def SCREAMING_SNAKE_CASE ( self , _a ): import torch __magic_name__ : List[str] = "label" if "label" in features[0].keys() else "labels" __magic_name__ : Union[str, Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __magic_name__ : Optional[int] = self.tokenizer.pad( _a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch __magic_name__ : Dict = torch.tensor(batch["entity_ids"] ).shape[1] __magic_name__ : List[Any] = self.tokenizer.padding_side if padding_side == "right": __magic_name__ : str = [ list(_a ) + [self.label_pad_token_id] * (sequence_length - len(_a )) for label in labels ] else: __magic_name__ : int = [ [self.label_pad_token_id] * (sequence_length - len(_a )) + list(_a ) for label in labels ] __magic_name__ : Dict = [feature["ner_tags"] for feature in features] __magic_name__ : List[Any] = padding_tensor(_a , -1 , _a , _a ) __magic_name__ : Any = [feature["original_entity_spans"] for feature in features] __magic_name__ : Any = padding_tensor(_a , (-1, -1) , _a , _a ) __magic_name__ : List[Any] = {k: torch.tensor(_a , dtype=torch.intaa ) for k, v in batch.items()} return batch
281
1
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Dict=False ): lowercase_ : int = 'backbone.' if is_semantic else '' lowercase_ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): for i in range(config.num_hidden_layers ): lowercase_ : Any = 'backbone.' if is_semantic else '' # queries, keys and values lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) lowercase_ : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) lowercase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowercase_ : List[str] = q_bias lowercase_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase_ : Any = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowercase_ : Any = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) lowercase_ : int = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) lowercase_ : Tuple = gamma_a lowercase_ : List[Any] = gamma_a def lowercase__( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): lowercase_ : List[Any] = dct.pop(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = val def lowercase__( ): lowercase_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Any = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Any=False ): lowercase_ : List[str] = False if 'rvlcdip' in checkpoint_url else True lowercase_ : Dict = BeitConfig(use_absolute_position_embeddings=__SCREAMING_SNAKE_CASE , use_mask_token=__SCREAMING_SNAKE_CASE ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowercase_ : Any = 10_24 lowercase_ : List[str] = 40_96 lowercase_ : Tuple = 24 lowercase_ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: lowercase_ : Optional[Any] = 16 lowercase_ : Any = 'huggingface/label-files' lowercase_ : int = 'rvlcdip-id2label.json' lowercase_ : Optional[int] = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : str = idalabel lowercase_ : str = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowercase_ : Dict = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] lowercase_ : Optional[Any] = create_rename_keys(__SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , has_lm_head=__SCREAMING_SNAKE_CASE ) # load HuggingFace model lowercase_ : Optional[int] = BeitForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) if has_lm_head else BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image lowercase_ : List[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__SCREAMING_SNAKE_CASE ) lowercase_ : str = prepare_img() lowercase_ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowercase_ : int = encoding['pixel_values'] lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = outputs.logits # verify logits lowercase_ : Optional[Any] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__SCREAMING_SNAKE_CASE ), "Shape of logits not as expected" Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: if has_lm_head: lowercase_ : List[str] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: lowercase_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) model.push_to_hub( repo_path_or_name=Path(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
321
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="timm_backbone" def __init__( self : Optional[int] , a : int=None , a : Dict=3 , a : Any=True , a : List[str]=True , a : Optional[Any]=None , **a : Optional[int] , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = backbone __lowerCamelCase = num_channels __lowerCamelCase = features_only __lowerCamelCase = use_pretrained_backbone __lowerCamelCase = True __lowerCamelCase = out_indices if out_indices is not None else (-1,)
67
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCAmelCase =["gpt2"] __UpperCAmelCase ="gpt2" if is_tf_available(): class a__ ( tf.Module ): def __init__( self : str , a : Union[str, Any] ): """simple docstring""" super().__init__() __lowerCamelCase = tokenizer __lowerCamelCase = AutoConfig.from_pretrained(a ) __lowerCamelCase = TFGPTaLMHeadModel.from_config(a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def SCREAMING_SNAKE_CASE__ ( self : str , a : Tuple ): """simple docstring""" __lowerCamelCase = self.tokenizer(a ) __lowerCamelCase = tokenized['''input_ids'''].to_tensor() __lowerCamelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCamelCase = self.model(input_ids=a , attention_mask=a )['''logits'''] return outputs @require_tf @require_keras_nlp class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" super().setUp() __lowerCamelCase = [GPTaTokenizer.from_pretrained(a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCamelCase = [TFGPTaTokenizer.from_pretrained(a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCamelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __lowerCamelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCamelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) __lowerCamelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCamelCase = python_outputs[key].numpy() __lowerCamelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(a , tf.intaa ) == tf_outputs_values ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.function(a ) for test_inputs in self.test_sentences: __lowerCamelCase = tf.constant(a ) __lowerCamelCase = compiled_tokenizer(a ) __lowerCamelCase = tf_tokenizer(a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = ModelToSave(tokenizer=a ) __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = model.serving(a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCamelCase = Path(a ) / '''saved.model''' tf.saved_model.save(a , a , signatures={'''serving_default''': model.serving} ) __lowerCamelCase = tf.saved_model.load(a ) __lowerCamelCase = loaded_model.signatures['''serving_default'''](a )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = tf_tokenizer(a ) # Build model with some sample inputs __lowerCamelCase = tf_tokenizer.get_config() __lowerCamelCase = TFGPTaTokenizer.from_config(a ) __lowerCamelCase = model_from_config(a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCamelCase = 12_31_23 for max_length in [3, 5, 10_24]: __lowerCamelCase = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCamelCase = tf_tokenizer(a , max_length=a ) __lowerCamelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
67
1
from collections import namedtuple import requests from lxml import html # type: ignore _snake_case = namedtuple("""covid_data""", """cases deaths recovered""") def _A ( __magic_name__ = "https://www.worldometers.info/coronavirus/" ): lowercase__ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(__magic_name__ ).content ).xpath(__magic_name__ ) ) _snake_case = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
201
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _A ( ): lowercase__ = HfArgumentParser(__magic_name__ ) lowercase__ = parser.parse_args_into_dataclasses()[0] lowercase__ = TensorFlowBenchmark(args=__magic_name__ ) try: lowercase__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase__ = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowercase__ = " ".join(str(__magic_name__ ).split(" " )[:-1] ) lowercase__ = "" lowercase__ = eval(str(__magic_name__ ).split(" " )[-1] ) lowercase__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = full_error_msg + begin_error_msg + str(__magic_name__ ) raise ValueError(__magic_name__ ) benchmark.run() if __name__ == "__main__": main()
201
1