code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _A ( a__ ): _UpperCamelCase : Tuple = 4_2 _UpperCamelCase : str = 4_2 class _A ( a__ , a__ ): _UpperCamelCase : Tuple = 1 @register_to_config def __init__( self : str , _A : int = 2_000 , _A : float = 0.15 , _A : float = 0.01 , _A : float = 1_348.0 , _A : float = 1E-5 , _A : int = 1 , ) -> int: """simple docstring""" lowercase : Union[str, Any] = sigma_max # setable values lowercase : Dict = None self.set_sigmas(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __a ( self : Tuple , _A : torch.FloatTensor , _A : Optional[int] = None ) -> Tuple: """simple docstring""" return sample def __a ( self : Optional[int] , _A : int , _A : float = None , _A : Union[str, torch.device] = None ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase : Dict = torch.linspace(1 , UpperCamelCase_ , UpperCamelCase_ , device=UpperCamelCase_ ) def __a ( self : str , _A : int , _A : float = None , _A : float = None , _A : float = None ) -> str: """simple docstring""" lowercase : Optional[Any] = sigma_min if sigma_min is not None else self.config.sigma_min lowercase : Union[str, Any] = sigma_max if sigma_max is not None else self.config.sigma_max lowercase : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ ) lowercase : Optional[int] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase : Any = torch.exp(torch.linspace(math.log(UpperCamelCase_ ) , math.log(UpperCamelCase_ ) , UpperCamelCase_ ) ) lowercase : Dict = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __a ( self : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> Any: """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __a ( self : List[Any] , _A : torch.FloatTensor , _A : int , _A : torch.FloatTensor , _A : Optional[torch.Generator] = None , _A : bool = True , ) -> Tuple: """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase : Optional[int] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase : Any = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase : int = timesteps.to(self.discrete_sigmas.device ) lowercase : Union[str, Any] = self.discrete_sigmas[timesteps].to(sample.device ) lowercase : Any = self.get_adjacent_sigma(UpperCamelCase_ , UpperCamelCase_ ).to(sample.device ) lowercase : Union[str, Any] = torch.zeros_like(UpperCamelCase_ ) lowercase : str = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase : List[str] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase : List[Any] = diffusion.unsqueeze(-1 ) lowercase : int = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase : str = randn_tensor( sample.shape , layout=sample.layout , generator=UpperCamelCase_ , device=sample.device , dtype=sample.dtype ) lowercase : Optional[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase : Union[str, Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=UpperCamelCase_ , prev_sample_mean=UpperCamelCase_ ) def __a ( self : Any , _A : torch.FloatTensor , _A : torch.FloatTensor , _A : Optional[torch.Generator] = None , _A : bool = True , ) -> List[str]: """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase : Union[str, Any] = randn_tensor(sample.shape , layout=sample.layout , generator=UpperCamelCase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase : Tuple = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowercase : str = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowercase : Optional[int] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase : Tuple = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase : Any = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase : str = step_size.unsqueeze(-1 ) lowercase : Optional[Any] = sample + step_size * model_output lowercase : List[str] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def __a ( self : str , _A : torch.FloatTensor , _A : torch.FloatTensor , _A : torch.FloatTensor , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = timesteps.to(original_samples.device ) lowercase : Optional[int] = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase : str = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(UpperCamelCase_ ) * sigmas[:, None, None, None] ) lowercase : int = noise + original_samples return noisy_samples def __len__( self : Tuple ) -> Union[str, Any]: """simple docstring""" return self.config.num_train_timesteps
308
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _snake_case ( _snake_case : int ): for param in module.parameters(): lowerCAmelCase : Optional[int] = False def _snake_case ( ): lowerCAmelCase : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase : Any = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def _snake_case ( _snake_case : Dict ): lowerCAmelCase : Optional[int] = plt.imshow(_snake_case ) fig.axes.get_xaxis().set_visible(_snake_case ) fig.axes.get_yaxis().set_visible(_snake_case ) plt.show() def _snake_case ( ): lowerCAmelCase : List[str] = datetime.now() lowerCAmelCase : Union[str, Any] = current_time.strftime('''%H:%M:%S''' ) return timestamp
60
0
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCAmelCase ( __UpperCAmelCase : str ): '''simple docstring''' for param in module.parameters(): __snake_case : int = False def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : List[str] = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __snake_case : List[Any] = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def __lowerCAmelCase ( __UpperCAmelCase : Optional[Any] ): '''simple docstring''' __snake_case : Any = plt.imshow(__UpperCAmelCase ) fig.axes.get_xaxis().set_visible(__UpperCAmelCase ) fig.axes.get_yaxis().set_visible(__UpperCAmelCase ) plt.show() def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Tuple = datetime.now() __snake_case : Dict = current_time.strftime("""%H:%M:%S""" ) return timestamp
367
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = "encodec" def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase : Tuple=2_40_00 , _lowerCAmelCase : List[Any]=1 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : int=1_28 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Union[str, Any]=[8, 5, 4, 2] , _lowerCAmelCase : str="weight_norm" , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : int=2 , _lowerCAmelCase : str=True , _lowerCAmelCase : Dict="reflect" , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : Optional[int]=10_24 , _lowerCAmelCase : int=None , _lowerCAmelCase : List[str]=True , **_lowerCAmelCase : List[Any] , ): __snake_case : Optional[int] = target_bandwidths __snake_case : int = sampling_rate __snake_case : List[Any] = audio_channels __snake_case : str = normalize __snake_case : Union[str, Any] = chunk_length_s __snake_case : Union[str, Any] = overlap __snake_case : Union[str, Any] = hidden_size __snake_case : Union[str, Any] = num_filters __snake_case : Optional[Any] = num_residual_layers __snake_case : List[Any] = upsampling_ratios __snake_case : List[str] = norm_type __snake_case : Union[str, Any] = kernel_size __snake_case : Optional[int] = last_kernel_size __snake_case : Optional[Any] = residual_kernel_size __snake_case : Dict = dilation_growth_rate __snake_case : int = use_causal_conv __snake_case : Tuple = pad_mode __snake_case : str = compress __snake_case : Optional[Any] = num_lstm_layers __snake_case : List[Any] = trim_right_ratio __snake_case : Any = codebook_size __snake_case : int = codebook_dim if codebook_dim is not None else hidden_size __snake_case : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_lowerCAmelCase ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case__ ( self : int ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def snake_case__ ( self : Union[str, Any] ): __snake_case : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def snake_case__ ( self : Tuple ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
20
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _A : int = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] _A : List[Any] = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() _A : Tuple = logging.get_logger(__name__) _A : Optional[Any] = ' Hello world! cécé herlolip' _A : List[str] = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def _a ( UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : Optional[int] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : List[str] = dct.pop(UpperCAmelCase ) lowerCamelCase__ : List[str] = val def _a ( UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : Any = torch.load(UpperCAmelCase , map_location='''cpu''' ) lowerCamelCase__ : List[Any] = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def _a ( UpperCAmelCase ) -> str: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Optional[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowerCamelCase__ : int = emb.weight.data return lin_layer @torch.no_grad() def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[Any]: """simple docstring""" if not os.path.exists(UpperCAmelCase ): lowerCamelCase__ : Tuple = torch.hub.load('''pytorch/fairseq''' , UpperCAmelCase ).eval() else: lowerCamelCase__ : Tuple = load_xsum_checkpoint(UpperCAmelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCamelCase__ : Any = checkpoint_path.replace('''.''' , '''-''' ) lowerCamelCase__ : Optional[int] = BartConfig.from_pretrained(UpperCAmelCase ) lowerCamelCase__ : Dict = bart.encode(UpperCAmelCase ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = BartTokenizer.from_pretrained(UpperCAmelCase ).encode(UpperCAmelCase , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(UpperCAmelCase , UpperCAmelCase ).all(): raise ValueError( f"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCamelCase__ : Tuple = bart.state_dict() remove_ignore_keys_(UpperCAmelCase ) lowerCamelCase__ : Dict = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = BartForSequenceClassification(UpperCAmelCase ).eval() model.load_state_dict(UpperCAmelCase ) lowerCamelCase__ : Dict = bart.predict('''mnli''' , UpperCAmelCase , return_logits=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase )[0] # logits else: # no classification heads to worry about lowerCamelCase__ : int = bart.model.state_dict() remove_ignore_keys_(UpperCAmelCase ) lowerCamelCase__ : List[str] = state_dict['''decoder.embed_tokens.weight'''] lowerCamelCase__ : Any = bart.extract_features(UpperCAmelCase ) if hf_checkpoint_name == "facebook/bart-large": lowerCamelCase__ : List[str] = BartModel(UpperCAmelCase ).eval() model.load_state_dict(UpperCAmelCase ) lowerCamelCase__ : Any = model(UpperCAmelCase ).model[0] else: lowerCamelCase__ : str = BartForConditionalGeneration(UpperCAmelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(UpperCAmelCase ) if hasattr(UpperCAmelCase , '''lm_head''' ): lowerCamelCase__ : Optional[Any] = make_linear_from_emb(model.model.shared ) lowerCamelCase__ : Any = model.model(UpperCAmelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) _A : Optional[int] = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
142
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : Dict = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowerCamelCase__ : Any = s_dict.pop(UpperCAmelCase ) elif "subsample" in key: lowerCamelCase__ : Any = s_dict.pop(UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = emb.weight.shape lowerCamelCase__ : str = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = emb.weight.data return lin_layer def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[Any] = torch.load(UpperCAmelCase , map_location='''cpu''' ) lowerCamelCase__ : List[Any] = mam_aaa['''args'''] lowerCamelCase__ : Dict = mam_aaa['''model'''] lowerCamelCase__ : Optional[Any] = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) lowerCamelCase__ : Tuple = state_dict['''decoder.embed_tokens.weight'''].shape[0] lowerCamelCase__ : Tuple = args.share_decoder_input_output_embed lowerCamelCase__ : Dict = [int(UpperCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )] lowerCamelCase__ : str = SpeechaTextConfig( vocab_size=UpperCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(UpperCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCAmelCase , num_beams=5 , max_length=200 , use_cache=UpperCAmelCase , decoder_start_token_id=2 , early_stopping=UpperCAmelCase , ) lowerCamelCase__ : Optional[int] = SpeechaTextForConditionalGeneration(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f" but all the following weights are missing {missing}" ) if tie_embeds: lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase__ : Tuple = lm_head_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _A : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
142
1
'''simple docstring''' from __future__ import annotations def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : list[str] | None = None , _SCREAMING_SNAKE_CASE : dict[str, float] | None = None , _SCREAMING_SNAKE_CASE : bool = False , ) -> tuple[int, float, str]: """simple docstring""" UpperCAmelCase_ : Tuple = cipher_alphabet or [chr(_SCREAMING_SNAKE_CASE ) for i in range(97 , 1_23 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCAmelCase_ : str = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary UpperCAmelCase_ : List[Any] = frequencies_dict if not case_sensitive: UpperCAmelCase_ : Tuple = ciphertext.lower() # Chi squared statistic values UpperCAmelCase_ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : Optional[Any] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCAmelCase_ : Optional[int] = (alphabet_letters.index(letter.lower() ) - shift) % len( _SCREAMING_SNAKE_CASE ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCAmelCase_ : str = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCAmelCase_ : Dict = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCAmelCase_ : str = decrypted_with_shift.lower().count(_SCREAMING_SNAKE_CASE ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCAmelCase_ : Any = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCAmelCase_ : Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCAmelCase_ : Optional[int] = decrypted_with_shift.count(_SCREAMING_SNAKE_CASE ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCAmelCase_ : Tuple = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCAmelCase_ : Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCAmelCase_ : int = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_SCREAMING_SNAKE_CASE : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCAmelCase_ : int = min( _SCREAMING_SNAKE_CASE , key=_SCREAMING_SNAKE_CASE , ) # Get all the data from the most likely cipher (key, decoded message) ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[Any] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
67
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ) -> str | Literal[False]: """simple docstring""" UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase_ : List[str] = "_" if count > 1: return False else: return "".join(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : list[str] ) -> list[str]: """simple docstring""" UpperCAmelCase_ : List[str] = [] while True: UpperCAmelCase_ : Any = ["$"] * len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase_ : Union[str, Any] = "*" UpperCAmelCase_ : List[Any] = "*" temp.append("X" ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_SCREAMING_SNAKE_CASE ) == 0: return pi UpperCAmelCase_ : str = list(set(_SCREAMING_SNAKE_CASE ) ) def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Sequence[float] ) -> list[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [] for minterm in minterms: UpperCAmelCase_ : Optional[Any] = "" for _ in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_SCREAMING_SNAKE_CASE ) return temp def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" UpperCAmelCase_ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def a__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : list[str] ) -> list[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : str = [0] * len(_SCREAMING_SNAKE_CASE ) for i in range(len(chart[0] ) ): UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[int] = -1 for j in range(len(_SCREAMING_SNAKE_CASE ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase_ : Any = j if count == 1: UpperCAmelCase_ : Any = 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : int = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : int = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : str = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase_ : List[str] = count_n UpperCAmelCase_ : Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : int = 0 def a__ ( _SCREAMING_SNAKE_CASE : list[str] , _SCREAMING_SNAKE_CASE : list[str] ) -> list[list[int]]: """simple docstring""" UpperCAmelCase_ : Dict = [[0 for x in range(len(_SCREAMING_SNAKE_CASE ) )] for x in range(len(_SCREAMING_SNAKE_CASE ) )] for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : Optional[int] = prime_implicants[i].count("_" ) for j in range(len(_SCREAMING_SNAKE_CASE ) ): if is_for_table(prime_implicants[i] , binary[j] , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = 1 return chart def a__ ( ) -> None: """simple docstring""" UpperCAmelCase_ : List[Any] = int(input("Enter the no. of variables\n" ) ) UpperCAmelCase_ : Tuple = [ float(_SCREAMING_SNAKE_CASE ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] UpperCAmelCase_ : int = decimal_to_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = check(_SCREAMING_SNAKE_CASE ) print("Prime Implicants are:" ) print(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = prime_implicant_chart(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = selection(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print("Essential Prime Implicants are:" ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
67
1
"""simple docstring""" _a = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
61
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _UpperCamelCase = '''pt''' elif is_tf_available(): _UpperCamelCase = '''tf''' else: _UpperCamelCase = '''jax''' class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = ByTaTokenizer _SCREAMING_SNAKE_CASE : List[Any] = False def __A ( self ) -> int: '''simple docstring''' super().setUp() __UpperCAmelCase : Tuple = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self ) -> Optional[int]: '''simple docstring''' return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def __A ( self , **__UpperCAmelCase ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=20 , __UpperCAmelCase=5 ) -> Tuple[str, list]: '''simple docstring''' # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __UpperCAmelCase : Optional[Any] = [] for i in range(len(__UpperCAmelCase ) ): try: __UpperCAmelCase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __UpperCAmelCase : List[Any] = list(filter(lambda __UpperCAmelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , __UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = list(filter(lambda __UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__UpperCAmelCase ) , __UpperCAmelCase ) ) if max_length is not None and len(__UpperCAmelCase ) > max_length: __UpperCAmelCase : Dict = toks[:max_length] if min_length is not None and len(__UpperCAmelCase ) < min_length and len(__UpperCAmelCase ) > 0: while len(__UpperCAmelCase ) < min_length: __UpperCAmelCase : Dict = toks + toks # toks_str = [t[1] for t in toks] __UpperCAmelCase : Tuple = [t[0] for t in toks] # Ensure consistency __UpperCAmelCase : Union[str, Any] = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) if " " not in output_txt and len(__UpperCAmelCase ) > 1: __UpperCAmelCase : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCAmelCase ) ) if with_prefix_space: __UpperCAmelCase : List[Any] = """ """ + output_txt __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) return output_txt, output_ids def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.ta_base_tokenizer __UpperCAmelCase : Optional[int] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) __UpperCAmelCase : List[str] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.ta_base_tokenizer __UpperCAmelCase : List[Any] = """Unicode €.""" __UpperCAmelCase : Dict = tokenizer(__UpperCAmelCase ) __UpperCAmelCase : Tuple = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["""input_ids"""] , __UpperCAmelCase ) # decoding __UpperCAmelCase : List[Any] = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , """Unicode €.</s>""" ) __UpperCAmelCase : Dict = tokenizer("""e è é ê ë""" ) __UpperCAmelCase : List[str] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["""input_ids"""] , __UpperCAmelCase ) # decoding __UpperCAmelCase : Union[str, Any] = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = self.ta_base_tokenizer __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __UpperCAmelCase : Optional[int] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __UpperCAmelCase : Any = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) if FRAMEWORK != "jax": __UpperCAmelCase : List[str] = list(batch.input_ids.numpy()[0] ) else: __UpperCAmelCase : Tuple = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.ta_base_tokenizer __UpperCAmelCase : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : Tuple = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , __UpperCAmelCase ) self.assertIn("""attention_mask""" , __UpperCAmelCase ) self.assertNotIn("""decoder_input_ids""" , __UpperCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , __UpperCAmelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.ta_base_tokenizer __UpperCAmelCase : Any = [ """Summary of the text.""", """Another summary.""", ] __UpperCAmelCase : List[str] = tokenizer( text_target=__UpperCAmelCase , max_length=32 , padding="""max_length""" , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.ta_base_tokenizer __UpperCAmelCase : Optional[int] = ["""A long paragraph for summarization. </s>"""] __UpperCAmelCase : Tuple = ["""Summary of the text. </s>"""] # fmt: off __UpperCAmelCase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __UpperCAmelCase : List[str] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __UpperCAmelCase : Optional[int] = tokenizer(__UpperCAmelCase , text_target=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , batch["""input_ids"""][0] ) self.assertEqual(__UpperCAmelCase , batch["""labels"""][0] ) def __A ( self ) -> List[str]: '''simple docstring''' # safety check on max_len default value so we are sure the test works __UpperCAmelCase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : Any = tempfile.mkdtemp() __UpperCAmelCase : Any = """ He is very happy, UNwant\u00E9d,running""" __UpperCAmelCase : Optional[Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = after_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) shutil.rmtree(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : str = tempfile.mkdtemp() __UpperCAmelCase : Dict = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __UpperCAmelCase : int = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __UpperCAmelCase : str = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Tuple = after_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Any = tokenizer.__class__.from_pretrained(__UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __UpperCAmelCase : Optional[Any] = json.load(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__UpperCAmelCase ) __UpperCAmelCase : Any = [f'<extra_id_{i}>' for i in range(125 )] __UpperCAmelCase : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] __UpperCAmelCase : Optional[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(__UpperCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(__UpperCAmelCase , __UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : int = tokenizer_class.from_pretrained( __UpperCAmelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : int = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=__UpperCAmelCase )] __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained( __UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCAmelCase ) __UpperCAmelCase : Any = tokenizer_class.from_pretrained(__UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == """""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' pass def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> str: '''simple docstring''' pass def __A ( self ) -> Any: '''simple docstring''' # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __UpperCAmelCase : Tuple = self.get_tokenizers(fast=__UpperCAmelCase , do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCAmelCase : Optional[int] = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] __UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_string(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCAmelCase : List[str] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Dict = tokenizer.convert_ids_to_tokens( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) for attr in attributes_list: setattr(__UpperCAmelCase , attr + """_id""" , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , attr + """_id""" ) , __UpperCAmelCase ) setattr(__UpperCAmelCase , attr + """_id""" , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(getattr(__UpperCAmelCase , attr + """_id""" ) , __UpperCAmelCase ) setattr(__UpperCAmelCase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens_ids""" ) , [] ) setattr(__UpperCAmelCase , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__UpperCAmelCase , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
254
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''The column name of the images in the files.'''} ) snake_case__ : Optional[str] = field(default=lowercase__ , metadata={'''help''': '''A folder containing the training data.'''} ) snake_case__ : Optional[str] = field(default=lowercase__ , metadata={'''help''': '''A folder containing the validation data.'''} ) snake_case__ : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) snake_case__ : Optional[int] = field( default=lowercase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) snake_case__ : Optional[int] = field( default=lowercase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : Optional[int] = {} if self.train_dir is not None: a_ : List[str] = self.train_dir if self.validation_dir is not None: a_ : Dict = self.validation_dir a_ : Dict = data_files if data_files else None @dataclass class SCREAMING_SNAKE_CASE__ : snake_case__ : str = field( default=lowercase__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) snake_case__ : Optional[str] = field( default=lowercase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) snake_case__ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) snake_case__ : str = field(default=lowercase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) snake_case__ : bool = field( default=lowercase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) snake_case__ : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) snake_case__ : bool = field( default=lowercase__ , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : float = field( default=1e-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> Optional[Any]: """simple docstring""" a_ : str = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def SCREAMING_SNAKE_CASE_ ( ) -> Dict: """simple docstring""" a_ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , __A , __A ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a_ : Optional[int] = training_args.get_process_log_level() logger.setLevel(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. a_ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a_ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. a_ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. a_ : int = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __A ) and data_args.train_val_split > 0.0: a_ : Optional[Any] = ds['train'].train_test_split(data_args.train_val_split ) a_ : Optional[int] = split['train'] a_ : int = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ : Dict = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: a_ : Optional[Any] = ViTMAEConfig.from_pretrained(model_args.config_name , **__A ) elif model_args.model_name_or_path: a_ : Any = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__A ) else: a_ : Union[str, Any] = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: a_ : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__A ) elif model_args.model_name_or_path: a_ : Optional[int] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__A ) else: a_ : Dict = ViTImageProcessor() # create model if model_args.model_name_or_path: a_ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) a_ : Tuple = ViTMAEForPreTraining(__A ) if training_args.do_train: a_ : List[str] = ds['train'].column_names else: a_ : Dict = ds['validation'].column_names if data_args.image_column_name is not None: a_ : Any = data_args.image_column_name elif "image" in column_names: a_ : Any = 'image' elif "img" in column_names: a_ : Any = 'img' else: a_ : List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: a_ : Dict = image_processor.size['shortest_edge'] else: a_ : Union[str, Any] = (image_processor.size['height'], image_processor.size['width']) a_ : Dict = Compose( [ Lambda(lambda __A : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(__A , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__A : Dict ): a_ : str = [transforms(__A ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: a_ : int = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__A ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: a_ : List[Any] = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__A ) # Compute absolute learning rate a_ : Optional[int] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: a_ : Optional[Any] = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer a_ : Dict = Trainer( model=__A , args=__A , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: a_ : Any = None if training_args.resume_from_checkpoint is not None: a_ : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: a_ : Optional[Any] = last_checkpoint a_ : Optional[int] = trainer.train(resume_from_checkpoint=__A ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a_ : Union[str, Any] = trainer.evaluate() trainer.log_metrics('eval' , __A ) trainer.save_metrics('eval' , __A ) # Write model card and (optionally) push to hub a_ : Any = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**__A ) else: trainer.create_model_card(**__A ) def SCREAMING_SNAKE_CASE_ ( __A : str ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
120
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : int = '''instructblip_vision_model''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=1_4_0_8 , SCREAMING_SNAKE_CASE__ : int=6_1_4_4 , SCREAMING_SNAKE_CASE__ : Dict=3_9 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_2_4 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_4 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=1E-6 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=1E-10 , SCREAMING_SNAKE_CASE__ : str=True , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : List[str] = hidden_size a_ : Any = intermediate_size a_ : str = num_hidden_layers a_ : Dict = num_attention_heads a_ : str = patch_size a_ : Any = image_size a_ : Dict = initializer_range a_ : List[Any] = attention_dropout a_ : Union[str, Any] = layer_norm_eps a_ : Optional[Any] = hidden_act a_ : Optional[Any] = qkv_bias @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Dict = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": a_ : List[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[Any] = '''instructblip_qformer''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : str=7_6_8 , SCREAMING_SNAKE_CASE__ : List[str]=1_2 , SCREAMING_SNAKE_CASE__ : Any=1_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : int=1E-12 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]="absolute" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : str=1_4_0_8 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = vocab_size a_ : List[str] = hidden_size a_ : Any = num_hidden_layers a_ : Dict = num_attention_heads a_ : Optional[int] = hidden_act a_ : List[str] = intermediate_size a_ : Tuple = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : List[str] = max_position_embeddings a_ : List[str] = initializer_range a_ : Any = layer_norm_eps a_ : Tuple = position_embedding_type a_ : List[str] = cross_attention_frequency a_ : Union[str, Any] = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE ( cls : str , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ ) a_ , a_ : Union[str, Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": a_ : Dict = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[str, Any] = '''instructblip''' snake_case__ : List[str] = True def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : int=3_2 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE__ ) if vision_config is None: a_ : Dict = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: a_ : List[str] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: a_ : Any = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) a_ : int = InstructBlipVisionConfig(**SCREAMING_SNAKE_CASE__ ) a_ : int = InstructBlipQFormerConfig(**SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' a_ : List[Any] = CONFIG_MAPPING[text_model_type](**SCREAMING_SNAKE_CASE__ ) a_ : Tuple = self.text_config.tie_word_embeddings a_ : List[Any] = self.text_config.is_encoder_decoder a_ : Optional[Any] = num_query_tokens a_ : int = self.vision_config.hidden_size a_ : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a_ : Optional[int] = 1.0 a_ : Any = 0.02 @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : InstructBlipVisionConfig , SCREAMING_SNAKE_CASE__ : InstructBlipQFormerConfig , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: a_ : List[Any] = copy.deepcopy(self.__dict__ ) a_ : Optional[int] = self.vision_config.to_dict() a_ : Optional[Any] = self.qformer_config.to_dict() a_ : Union[str, Any] = self.text_config.to_dict() a_ : Optional[Any] = self.__class__.model_type return output
120
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[int]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(a__ ) print('''Building PyTorch model from configuration: {}'''.format(str(a__ ) ) ) __a = RemBertModel(a__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(a__ , a__ , a__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(a__ ) ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A : Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
6
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging SCREAMING_SNAKE_CASE : Union[str, Any] = """\ """ SCREAMING_SNAKE_CASE : Any = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ SCREAMING_SNAKE_CASE : Dict = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = 16 , a_ = True , a_=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __snake_case : Optional[Any] = '''cuda''' else: __snake_case : Tuple = '''cuda''' if torch.cuda.is_available() else '''cpu''' __snake_case : int = AutoModelForCausalLM.from_pretrained(a_ ) __snake_case : Optional[int] = model.to(a_ ) __snake_case : Optional[int] = AutoTokenizer.from_pretrained(a_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __snake_case : List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(a_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __snake_case : List[Any] = model.config.max_length - 1 else: __snake_case : Dict = model.config.max_length __snake_case : Tuple = tokenizer( a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , return_tensors='''pt''' , return_attention_mask=a_ , ).to(a_ ) __snake_case : List[Any] = encodings['''input_ids'''] __snake_case : str = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __snake_case : Union[str, Any] = [] __snake_case : str = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(a_ ) , a_ ) ): __snake_case : Optional[int] = min(start_index + batch_size , len(a_ ) ) __snake_case : int = encoded_texts[start_index:end_index] __snake_case : Optional[int] = attn_masks[start_index:end_index] if add_start_token: __snake_case : List[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(a_ ) __snake_case : Union[str, Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __snake_case : int = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(a_ ), attn_mask] , dim=1 ) __snake_case : List[Any] = encoded_batch with torch.no_grad(): __snake_case : List[str] = model(a_ , attention_mask=a_ ).logits __snake_case : List[str] = out_logits[..., :-1, :].contiguous() __snake_case : int = labels[..., 1:].contiguous() __snake_case : int = attn_mask[..., 1:].contiguous() __snake_case : Tuple = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , a_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a_ )}
102
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : str = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _snake_case : ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) _snake_case : ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) _snake_case : str = "question" _snake_case : str = "context" _snake_case : str = "answers" @property def __UpperCAmelCase ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
145
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __UpperCAmelCase = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __UpperCAmelCase = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = SavedModel() UpperCAmelCase_ : Optional[Any] = [] with open(os.path.join(__snake_case , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: UpperCAmelCase_ : Optional[Any] = json.load(__snake_case )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__snake_case )] ) with open(__snake_case , 'rb' ) as f: saved_model.ParseFromString(f.read() ) UpperCAmelCase_ : List[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCAmelCase_ : Optional[int] = sorted(__snake_case ) UpperCAmelCase_ : int = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__snake_case ) if strict and len(__snake_case ) > 0: raise Exception(F"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops ) elif len(__snake_case ) > 0: print(F"Found the following incompatible ops for the opset {opset}:" ) print(*__snake_case , sep='\n' ) else: print(F"The saved model {saved_model_path} can properly be converted with ONNX." ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) __UpperCAmelCase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
145
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = """gpt_neox_japanese""" def __init__( self , lowercase_=3_2000 , lowercase_=2560 , lowercase_=32 , lowercase_=32 , lowercase_=4 , lowercase_="gelu" , lowercase_=1.00 , lowercase_=1_0000 , lowercase_=2048 , lowercase_=0.02 , lowercase_=1E-5 , lowercase_=True , lowercase_=3_1996 , lowercase_=3_1999 , lowercase_=0.1 , lowercase_=0.0 , **lowercase_ , ): """simple docstring""" super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : Any = intermediate_multiple_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : List[Any] = rotary_pct UpperCAmelCase_ : List[str] = rotary_emb_base UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = use_cache UpperCAmelCase_ : Optional[int] = attention_dropout UpperCAmelCase_ : Union[str, Any] = hidden_dropout
61
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "visual_bert" def __init__( self ,snake_case=30522 ,snake_case=768 ,snake_case=512 ,snake_case=12 ,snake_case=12 ,snake_case=3072 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=2 ,snake_case=0.02 ,snake_case=1e-12 ,snake_case=False ,snake_case=True ,snake_case=1 ,snake_case=0 ,snake_case=2 ,**snake_case ,): '''simple docstring''' super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,**snake_case ) lowercase : Tuple = vocab_size lowercase : int = max_position_embeddings lowercase : Optional[Any] = hidden_size lowercase : int = visual_embedding_dim lowercase : Tuple = num_hidden_layers lowercase : str = num_attention_heads lowercase : Optional[Any] = intermediate_size lowercase : str = hidden_act lowercase : Tuple = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : Union[str, Any] = initializer_range lowercase : int = type_vocab_size lowercase : Union[str, Any] = layer_norm_eps lowercase : Union[str, Any] = bypass_transformer lowercase : int = special_visual_initialize
20
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( __lowerCAmelCase : Namespace ) -> List[Any]: return TrainCommand(__lowerCAmelCase ) class _lowerCAmelCase ( A__ ): """simple docstring""" @staticmethod def lowerCAmelCase ( __snake_case : ArgumentParser )-> str: snake_case = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=__snake_case , required=__snake_case , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=__snake_case , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=__snake_case , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=__snake_case , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=__snake_case , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=__snake_case , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=__snake_case , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=__snake_case , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=__snake_case , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=__snake_case , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=__snake_case , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=__snake_case , default=3e-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=__snake_case , default=1e-08 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=__snake_case ) def __init__( self : str , __snake_case : Namespace )-> Any: snake_case = logging.get_logger("""transformers-cli/training""" ) snake_case = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=__snake_case ) snake_case = args.output snake_case = args.column_label snake_case = args.column_text snake_case = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": snake_case = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) snake_case = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) snake_case = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) snake_case = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) snake_case = args.validation_split snake_case = args.train_batch_size snake_case = args.valid_batch_size snake_case = args.learning_rate snake_case = args.adam_epsilon def lowerCAmelCase ( self : List[Any] )-> List[str]: if self.framework == "tf": return self.run_tf() return self.run_torch() def lowerCAmelCase ( self : Any )-> Tuple: raise NotImplementedError def lowerCAmelCase ( self : Dict )-> int: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
3
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Optional[Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( __lowerCAmelCase : dict[int, list[int]] ) -> list[tuple[int, int]]: snake_case = 0 snake_case = len(__lowerCAmelCase ) # No of vertices in graph snake_case = [0] * n snake_case = [False] * n def dfs(__lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] ): snake_case = True snake_case = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , id_ ) snake_case = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge snake_case = min(low[at] , low[to] ) snake_case = [] for i in range(__lowerCAmelCase ): if not visited[i]: dfs(__lowerCAmelCase , -1 , __lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="M-CLIP" def __init__( self : Tuple , a : Optional[int]=10_24 , a : Tuple=7_68 , **a : List[str] ): """simple docstring""" __lowerCamelCase = transformerDimSize __lowerCamelCase = imageDimSize super().__init__(**a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] =MCLIPConfig def __init__( self : str , a : List[Any] , *a : Dict , **a : str ): """simple docstring""" super().__init__(a , *a , **a ) __lowerCamelCase = XLMRobertaModel(a ) __lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int , a : List[Any] ): """simple docstring""" __lowerCamelCase = self.transformer(input_ids=a , attention_mask=a )[0] __lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a ), embs
67
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[int] =["image_processor", "tokenizer"] lowerCamelCase : Union[str, Any] ="LayoutLMv2ImageProcessor" lowerCamelCase : int =("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[int] , a : Any=None , a : Any=None , **a : Union[str, Any] ): """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a , ) __lowerCamelCase = kwargs.pop('''feature_extractor''' ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a , a ) def __call__( self : Tuple , a : Optional[int] , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , a : Union[List[List[int]], List[List[List[int]]]] = None , a : Optional[Union[List[int], List[List[int]]]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : Tuple , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor __lowerCamelCase = self.image_processor(images=a , return_tensors=a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(a , a ): __lowerCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCamelCase = features['''words'''] __lowerCamelCase = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_token_type_ids=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_length=a , verbose=a , return_tensors=a , **a , ) # add pixel values __lowerCamelCase = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __lowerCamelCase = self.get_overflowing_images(a , encoded_inputs['''overflow_to_sample_mapping'''] ) __lowerCamelCase = images return encoded_inputs def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Optional[Any] , a : str ): """simple docstring""" __lowerCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(a ) != len(a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(a )} and {len(a )}""" ) return images_with_overflow def SCREAMING_SNAKE_CASE__ ( self : List[str] , *a : Optional[Any] , **a : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , *a : Union[str, Any] , **a : Tuple ): """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a , ) return self.image_processor
67
1
import numpy class __snake_case : def __init__( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowercase : Tuple = numpy.random.rand( self.input_array.shape[1] ,4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowercase : Union[str, Any] = numpy.random.rand( 4 ,3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowercase : Any = numpy.random.rand(3 ,1 ) # Real output values provided. lowercase : Optional[Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowercase : List[Any] = numpy.zeros(output_array.shape ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = sigmoid( numpy.dot(self.input_array ,self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowercase : List[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer ,self.first_hidden_layer_and_second_hidden_layer_weights ,) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowercase : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer ,self.second_hidden_layer_and_output_layer_weights ,) ) return self.layer_between_second_hidden_layer_and_output def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T ,2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) ,) lowercase : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T ,numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) ,self.second_hidden_layer_and_output_layer_weights.T ,) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) ,) lowercase : Tuple = numpy.dot( self.input_array.T ,numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) ,self.second_hidden_layer_and_output_layer_weights.T ,) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) ,self.first_hidden_layer_and_second_hidden_layer_weights.T ,) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) ,) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' for iteration in range(1 ,iterations + 1 ): lowercase : Optional[int] = self.feedforward() self.back_propagation() if give_loss: lowercase : Optional[int] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"Iteration {iteration} Loss: {loss}" ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = input_arr lowercase : Optional[Any] = sigmoid( numpy.dot(self.array ,self.input_layer_and_first_hidden_layer_weights ) ) lowercase : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer ,self.first_hidden_layer_and_second_hidden_layer_weights ,) ) lowercase : Tuple = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer ,self.second_hidden_layer_and_output_layer_weights ,) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> numpy.ndarray: return (value) * (1 - (value)) def _snake_case( ) -> int: lowercase : Union[str, Any] = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowercase : Optional[int] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowercase : Union[str, Any] = TwoHiddenLayerNeuralNetwork( input_array=SCREAMING_SNAKE_CASE__ , output_array=SCREAMING_SNAKE_CASE__ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=SCREAMING_SNAKE_CASE__ , iterations=10 , give_loss=SCREAMING_SNAKE_CASE__ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
285
from ...processing_utils import ProcessorMixin class __snake_case ( lowerCAmelCase ): _a : Union[str, Any]= "WhisperFeatureExtractor" _a : int= "WhisperTokenizer" def __init__( self ,snake_case ,snake_case ): '''simple docstring''' super().__init__(snake_case ,snake_case ) lowercase : Optional[int] = self.feature_extractor lowercase : Tuple = False def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=None ,snake_case=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=snake_case ,language=snake_case ,no_timestamps=snake_case ) def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*snake_case ,**snake_case ) lowercase : Optional[Any] = kwargs.pop("""audio""" ,snake_case ) lowercase : str = kwargs.pop("""sampling_rate""" ,snake_case ) lowercase : Dict = kwargs.pop("""text""" ,snake_case ) if len(snake_case ) > 0: lowercase : List[Any] = args[0] lowercase : Tuple = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowercase : Any = self.feature_extractor(snake_case ,*snake_case ,sampling_rate=snake_case ,**snake_case ) if text is not None: lowercase : str = self.tokenizer(snake_case ,**snake_case ) if text is None: return inputs elif audio is None: return encodings else: lowercase : List[Any] = encodings["""input_ids"""] return inputs def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,*snake_case ,**snake_case ): '''simple docstring''' return self.tokenizer.decode(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case="np" ): '''simple docstring''' return self.tokenizer.get_prompt_ids(snake_case ,return_tensors=snake_case )
285
1
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __A : List[str] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __A : Any = logging.getLogger() def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowerCAmelCase_ : Tuple = parser.parse_args() return args.f def UpperCamelCase_ ( A__ : List[str] , A__ : int="eval" ): '''simple docstring''' lowerCAmelCase_ : str = os.path.join(A__ , f'{split}_results.json' ) if os.path.exists(A__ ): with open(A__ , """r""" ) as f: return json.load(A__ ) raise ValueError(f'can\'t find {path}' ) __A : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __lowercase ( self : Any ) -> str: lowerCAmelCase_ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : int = F'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): run_flax_glue.main() lowerCAmelCase_ : Optional[int] = get_results(lowerCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) @slow def __lowercase ( self : int ) -> Tuple: lowerCAmelCase_ : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Union[str, Any] = F'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): run_clm_flax.main() lowerCAmelCase_ : Optional[int] = get_results(lowerCamelCase ) self.assertLess(result["""eval_perplexity"""] , 1_00 ) @slow def __lowercase ( self : Tuple ) -> Optional[int]: lowerCAmelCase_ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : List[str] = F'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): run_summarization_flax.main() lowerCAmelCase_ : Optional[Any] = get_results(lowerCamelCase , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def __lowercase ( self : List[Any] ) -> List[Any]: lowerCAmelCase_ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : str = F'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): run_mlm_flax.main() lowerCAmelCase_ : Tuple = get_results(lowerCamelCase ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def __lowercase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase_ : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = F'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): run_ta_mlm_flax.main() lowerCAmelCase_ : Dict = get_results(lowerCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 ) @slow def __lowercase ( self : Any ) -> Dict: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowerCAmelCase_ : int = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase_ : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : List[str] = F'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): run_flax_ner.main() lowerCAmelCase_ : int = get_results(lowerCamelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def __lowercase ( self : str ) -> Optional[Any]: lowerCAmelCase_ : str = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Dict = F'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): run_qa.main() lowerCAmelCase_ : Optional[Any] = get_results(lowerCamelCase ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
120
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Optional[Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'gpt_neox' def __init__( self : Optional[int] , lowerCamelCase : Tuple=5_04_32 , lowerCamelCase : Optional[int]=61_44 , lowerCamelCase : Tuple=44 , lowerCamelCase : Any=64 , lowerCamelCase : List[Any]=2_45_76 , lowerCamelCase : List[Any]="gelu" , lowerCamelCase : Optional[Any]=0.25 , lowerCamelCase : Any=1_00_00 , lowerCamelCase : Any=0.0 , lowerCamelCase : str=0.0 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[Any]=20_48 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Any=1E-5 , lowerCamelCase : Dict=True , lowerCamelCase : Optional[int]=0 , lowerCamelCase : List[str]=2 , lowerCamelCase : Dict=False , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[int]=None , **lowerCamelCase : int , ) -> Optional[Any]: super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[Any] = rotary_pct lowerCAmelCase_ : Any = rotary_emb_base lowerCAmelCase_ : List[str] = attention_dropout lowerCAmelCase_ : Union[str, Any] = hidden_dropout lowerCAmelCase_ : Tuple = classifier_dropout lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Any = layer_norm_eps lowerCAmelCase_ : str = use_cache lowerCAmelCase_ : str = tie_word_embeddings lowerCAmelCase_ : str = use_parallel_residual lowerCAmelCase_ : Any = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def __lowercase ( self : List[str] ) -> List[str]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'got {self.rope_scaling}' ) lowerCAmelCase_ : Optional[Any] = self.rope_scaling.get("""type""" , lowerCamelCase ) lowerCAmelCase_ : int = self.rope_scaling.get("""factor""" , lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(lowerCamelCase , lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
120
1
"""simple docstring""" import random from typing import Any def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' for _ in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) _UpperCAmelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) _UpperCAmelCase , _UpperCAmelCase = data[b], data[a] return data if __name__ == "__main__": __A : Any = [0, 1, 2, 3, 4, 5, 6, 7] __A : List[Any] = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __a = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase ) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : str , **lowerCAmelCase__ : Union[str, Any] ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , "vision" ) self.check_model_type(lowerCAmelCase__ ) def __call__( self : Optional[Any] , lowerCAmelCase__ : Union[str, "Image.Image", List[Dict[str, Any]]] , lowerCAmelCase__ : Union[str, List[str]] = None , **lowerCAmelCase__ : Tuple , ) -> Any: """simple docstring""" if "text_queries" in kwargs: _UpperCAmelCase : int = kwargs.pop("text_queries" ) if isinstance(lowerCAmelCase__ , (str, Image.Image) ): _UpperCAmelCase : Dict = {"image": image, "candidate_labels": candidate_labels} else: _UpperCAmelCase : Dict = image _UpperCAmelCase : Optional[int] = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) return results def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : str ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = {} if "threshold" in kwargs: _UpperCAmelCase : Any = kwargs["threshold"] if "top_k" in kwargs: _UpperCAmelCase : Tuple = kwargs["top_k"] return {}, {}, postprocess_params def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = load_image(inputs["image"] ) _UpperCAmelCase : Optional[int] = inputs["candidate_labels"] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = candidate_labels.split("," ) _UpperCAmelCase : Dict = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework ) _UpperCAmelCase : str = self.image_processor(lowerCAmelCase__ , return_tensors=self.framework ) yield { "is_last": i == len(lowerCAmelCase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = model_inputs.pop("target_size" ) _UpperCAmelCase : Tuple = model_inputs.pop("candidate_label" ) _UpperCAmelCase : List[str] = model_inputs.pop("is_last" ) _UpperCAmelCase : Any = self.model(**lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Union[str, Any]=None ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = [] for model_output in model_outputs: _UpperCAmelCase : str = model_output["candidate_label"] _UpperCAmelCase : str = BaseModelOutput(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.image_processor.post_process_object_detection( outputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): _UpperCAmelCase : Union[str, Any] = outputs["scores"][index].item() _UpperCAmelCase : Optional[int] = self._get_bounding_box(outputs["boxes"][index][0] ) _UpperCAmelCase : str = {"score": score, "label": label, "box": box} results.append(lowerCAmelCase__ ) _UpperCAmelCase : str = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x["score"] , reverse=lowerCAmelCase__ ) if top_k: _UpperCAmelCase : List[str] = results[:top_k] return results def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : "torch.Tensor" ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = box.int().tolist() _UpperCAmelCase : List[Any] = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
145
'''simple docstring''' def __UpperCAmelCase ( a_: int = 50 ): _UpperCAmelCase : str = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
145
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : List[Any] = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
293
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : str , *A : Dict , A : Optional[int]=None , A : Tuple=None , **A : Optional[int] ): super().__init__(*A , **A ) __snake_case: List[Any] = eval_examples __snake_case: str = post_process_function def UpperCAmelCase__ ( self : List[Any] , A : Dict=None , A : int=None , A : List[Any]=None , A : str = "eval" ): __snake_case: int = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case: Any = self.get_eval_dataloader(A ) __snake_case: Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case: Union[str, Any] = self.compute_metrics __snake_case: List[str] = None __snake_case: Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case: Tuple = time.time() try: __snake_case: Any = eval_loop( A , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , ) finally: __snake_case: Optional[int] = compute_metrics __snake_case: Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case: List[str] = self.post_process_function(A , A , output.predictions ) __snake_case: List[Any] = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): __snake_case: str = metrics.pop(A ) metrics.update(output.metrics ) else: __snake_case: List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __snake_case: str = self.callback_handler.on_evaluate(self.args , self.state , self.control , A ) return metrics def UpperCAmelCase__ ( self : Optional[Any] , A : List[Any] , A : List[str] , A : str=None , A : str = "test" ): __snake_case: Optional[Any] = self.get_test_dataloader(A ) # Temporarily disable metric computation, we will do it in the loop here. __snake_case: Optional[int] = self.compute_metrics __snake_case: List[Any] = None __snake_case: str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case: Dict = time.time() try: __snake_case: str = eval_loop( A , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , ) finally: __snake_case: List[Any] = compute_metrics __snake_case: Dict = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case: Union[str, Any] = self.post_process_function(A , A , output.predictions , """predict""" ) __snake_case: str = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): __snake_case: List[str] = metrics.pop(A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A )
293
1
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters lowercase : Tuple = False lowercase : str = False def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return TrainCommand(snake_case__ ) class A ( __snake_case ): @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : List[Any] = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=SCREAMING_SNAKE_CASE , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=SCREAMING_SNAKE_CASE , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=SCREAMING_SNAKE_CASE , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=SCREAMING_SNAKE_CASE , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=SCREAMING_SNAKE_CASE , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=SCREAMING_SNAKE_CASE , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=SCREAMING_SNAKE_CASE , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=SCREAMING_SNAKE_CASE , default=32 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=SCREAMING_SNAKE_CASE , default=64 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=SCREAMING_SNAKE_CASE , default=3e-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=SCREAMING_SNAKE_CASE , default=1e-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE ) def __init__( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Any = logging.get_logger('''transformers-cli/training''' ) A : List[Any] = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE ) A : List[str] = args.output A : Any = args.column_label A : Optional[Any] = args.column_text A : Optional[Any] = args.column_id self.logger.info(F'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": A : int = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'Loading dataset from {args.train_data}' ) A : Any = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Any = None if args.validation_data: self.logger.info(F'Loading validation dataset from {args.validation_data}' ) A : Tuple = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Tuple = args.validation_split A : Optional[int] = args.train_batch_size A : Dict = args.valid_batch_size A : Any = args.learning_rate A : Any = args.adam_epsilon def __lowerCAmelCase ( self ) -> Any: """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def __lowerCAmelCase ( self ) -> Any: """simple docstring""" raise NotImplementedError def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
3
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Optional[Any] = logging.get_logger(__name__) class A ( __snake_case ): __magic_name__ = ['''pixel_values'''] def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) A : str = size if size is not None else {'''shortest_edge''': 384} A : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : str = do_resize A : List[Any] = size # Default value set here for backwards compatibility where the value in config is None A : List[Any] = crop_pct if crop_pct is not None else 224 / 256 A : Optional[int] = resample A : Union[str, Any] = do_rescale A : List[str] = rescale_factor A : Union[str, Any] = do_normalize A : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" A : str = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) A : Any = size['''shortest_edge'''] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct A : Dict = int(shortest_edge / crop_pct ) A : str = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : int = resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE , size=(shortest_edge, shortest_edge) , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" A : int = do_resize if do_resize is not None else self.do_resize A : Tuple = crop_pct if crop_pct is not None else self.crop_pct A : Optional[Any] = resample if resample is not None else self.resample A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean A : List[str] = image_std if image_std is not None else self.image_std A : Union[str, Any] = size if size is not None else self.size A : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) A : Any = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A : Optional[int] = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: A : Any = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , crop_pct=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: A : str = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: A : Dict = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] A : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] A : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
3
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Union[str, Any] = '''fnet''' def __init__( self , UpperCamelCase__=3_2000 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu_new" , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=4 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=False , UpperCamelCase__=512 , UpperCamelCase__=3 , UpperCamelCase__=1 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) snake_case : Optional[int] = vocab_size snake_case : List[Any] = max_position_embeddings snake_case : Tuple = hidden_size snake_case : Any = num_hidden_layers snake_case : Optional[int] = intermediate_size snake_case : List[str] = hidden_act snake_case : str = hidden_dropout_prob snake_case : List[Any] = initializer_range snake_case : str = type_vocab_size snake_case : Optional[Any] = layer_norm_eps snake_case : Dict = use_tpu_fourier_optimizations snake_case : Union[str, Any] = tpu_short_seq_length
361
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def lowerCamelCase ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): __UpperCAmelCase : List[Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) snake_case : int = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : str = object_detector(examples[0] , threshold=0.0 ) snake_case : str = len(UpperCamelCase__ ) self.assertGreater(UpperCamelCase__ , 0 ) self.assertEqual( UpperCamelCase__ , [ { "score": ANY(UpperCamelCase__ ), "label": ANY(UpperCamelCase__ ), "box": {"xmin": ANY(UpperCamelCase__ ), "ymin": ANY(UpperCamelCase__ ), "xmax": ANY(UpperCamelCase__ ), "ymax": ANY(UpperCamelCase__ )}, } for i in range(UpperCamelCase__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @require_torch def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Dict = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) snake_case : Optional[Any] = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) snake_case : Dict = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Optional[int] = pipeline("zero-shot-object-detection" ) snake_case : Tuple = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) snake_case : List[Any] = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowerCamelCase ( self ) -> str: '''simple docstring''' pass @require_torch @slow def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = 0.2 snake_case : List[str] = pipeline("zero-shot-object-detection" ) snake_case : List[Any] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = 2 snake_case : Optional[Any] = pipeline("zero-shot-object-detection" ) snake_case : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=UpperCamelCase__ , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
112
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : int = logging.get_logger(__name__) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: snake_case_ = [144, 192, 240] snake_case_ = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: snake_case_ = [96, 120, 144] snake_case_ = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: snake_case_ = [64, 80, 96] snake_case_ = [16, 16, 24, 48, 64, 80, 320] snake_case_ = 0.05 snake_case_ = 2.0 if mobilevit_name.startswith('deeplabv3_' ): snake_case_ = 512 snake_case_ = 16 snake_case_ = 21 snake_case_ = 'pascal-voc-id2label.json' else: snake_case_ = 1000 snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = 'huggingface/label-files' snake_case_ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' for i in range(1 , 6 ): if F'''layer_{i}.''' in name: snake_case_ = name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: snake_case_ = name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: snake_case_ = name.replace('.block.' , '.' ) if "exp_1x1" in name: snake_case_ = name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: snake_case_ = name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: snake_case_ = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: snake_case_ = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: snake_case_ = name.replace('.norm.' , '.normalization.' ) if ".conv." in name: snake_case_ = name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: snake_case_ = name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: snake_case_ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'''.{i}.{j}.''' in name: snake_case_ = name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' ) if "expand_1x1" in name: snake_case_ = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: snake_case_ = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: snake_case_ = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if F'''.global_rep.{i}.weight''' in name: snake_case_ = name.replace(F'''.global_rep.{i}.weight''' , '.layernorm.weight' ) if F'''.global_rep.{i}.bias''' in name: snake_case_ = name.replace(F'''.global_rep.{i}.bias''' , '.layernorm.bias' ) if ".global_rep." in name: snake_case_ = name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: snake_case_ = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: snake_case_ = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: snake_case_ = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: snake_case_ = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: snake_case_ = name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: snake_case_ = name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: snake_case_ = name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: snake_case_ = name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: snake_case_ = name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: snake_case_ = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: snake_case_ = name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): snake_case_ = 'mobilevit.' + name return name def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' if base_model: snake_case_ = '' else: snake_case_ = 'mobilevit.' for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(UpperCamelCase__ ) if key[:8] == "encoder.": snake_case_ = key[8:] if "qkv" in key: snake_case_ = key.split('.' ) snake_case_ = int(key_split[0][6:] ) - 1 snake_case_ = int(key_split[3] ) snake_case_ = model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' ) snake_case_ = layer.transformer.layer[transformer_num].attention.attention.all_head_size snake_case_ = ( F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = val return orig_state_dict def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): '''simple docstring''' snake_case_ = get_mobilevit_config(UpperCamelCase__ ) # load original state_dict snake_case_ = torch.load(UpperCamelCase__ , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): snake_case_ = MobileViTForSemanticSegmentation(UpperCamelCase__ ).eval() else: snake_case_ = MobileViTForImageClassification(UpperCamelCase__ ).eval() snake_case_ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor snake_case_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) snake_case_ = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case_ = model(**UpperCamelCase__ ) snake_case_ = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": snake_case_ = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": snake_case_ = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": snake_case_ = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": snake_case_ = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": snake_case_ = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": snake_case_ = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: snake_case_ = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) snake_case_ = model_mapping[mobilevit_name] image_processor.push_to_hub(UpperCamelCase__ , organization='apple' ) model.push_to_hub(UpperCamelCase__ , organization='apple' ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCAmelCase : Tuple = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
285
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = {} snake_case_ = tokenizer(example['content'] , truncation=UpperCamelCase__ )['input_ids'] snake_case_ = len(example['content'] ) / len(output['input_ids'] ) return output _UpperCAmelCase : Dict = HfArgumentParser(PretokenizationArguments) _UpperCAmelCase : List[Any] = parser.parse_args() if args.num_workers is None: _UpperCAmelCase : Union[str, Any] = multiprocessing.cpu_count() _UpperCAmelCase : int = AutoTokenizer.from_pretrained(args.tokenizer_dir) _UpperCAmelCase : Optional[int] = time.time() _UpperCAmelCase : List[str] = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') _UpperCAmelCase : Tuple = time.time() _UpperCAmelCase : Union[str, Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') _UpperCAmelCase : Dict = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
285
1
import random def UpperCAmelCase_ ( _A , _A , _A = False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {i: [] for i in range(_A )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_A ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_A ): for j in range(i + 1 , _A ): if random.random() < probability: graph[i].append(_A ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_A ) return graph def UpperCAmelCase_ ( _A ): '''simple docstring''' return { i: [j for j in range(_A ) if i != j] for i in range(_A ) } if __name__ == "__main__": import doctest doctest.testmod()
218
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = ["input_features"] def __init__( self : Dict , __lowerCamelCase : Tuple=80 , __lowerCamelCase : List[Any]=1_6000 , __lowerCamelCase : Optional[int]=160 , __lowerCamelCase : List[str]=30 , __lowerCamelCase : List[Any]=400 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : str=False , **__lowerCamelCase : List[str] , ) -> Any: super().__init__( feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = n_fft SCREAMING_SNAKE_CASE__ = hop_length SCREAMING_SNAKE_CASE__ = chunk_length SCREAMING_SNAKE_CASE__ = chunk_length * sampling_rate SCREAMING_SNAKE_CASE__ = self.n_samples // hop_length SCREAMING_SNAKE_CASE__ = sampling_rate SCREAMING_SNAKE_CASE__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCamelCase , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=__lowerCamelCase , norm='''slaney''' , mel_scale='''slaney''' , ) def lowercase_ ( self : int , __lowerCamelCase : np.array ) -> np.ndarray: SCREAMING_SNAKE_CASE__ = spectrogram( __lowerCamelCase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) SCREAMING_SNAKE_CASE__ = log_spec[:, :-1] SCREAMING_SNAKE_CASE__ = np.maximum(__lowerCamelCase , log_spec.max() - 8.0 ) SCREAMING_SNAKE_CASE__ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowercase_ ( __lowerCamelCase : List[np.ndarray] , __lowerCamelCase : List[np.ndarray] , __lowerCamelCase : float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: SCREAMING_SNAKE_CASE__ = np.array(__lowerCamelCase , np.intaa ) SCREAMING_SNAKE_CASE__ = [] for vector, length in zip(__lowerCamelCase , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE__ = padding_value normed_input_values.append(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : List[str] , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "max_length" , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : List[str] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE__ = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE__ = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): SCREAMING_SNAKE_CASE__ = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ = [np.asarray([raw_speech] ).T] SCREAMING_SNAKE_CASE__ = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding SCREAMING_SNAKE_CASE__ = self.pad( __lowerCamelCase , padding=__lowerCamelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: SCREAMING_SNAKE_CASE__ = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) SCREAMING_SNAKE_CASE__ = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format SCREAMING_SNAKE_CASE__ = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) SCREAMING_SNAKE_CASE__ = [self._np_extract_fbank_features(__lowerCamelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCamelCase ): SCREAMING_SNAKE_CASE__ = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features] else: SCREAMING_SNAKE_CASE__ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) SCREAMING_SNAKE_CASE__ = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: SCREAMING_SNAKE_CASE__ = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs def lowercase_ ( self : str ) -> Dict[str, Any]: SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
218
1
import random from typing import Any def lowerCAmelCase__( lowercase : list ) -> list[Any]: for _ in range(len(lowercase ) ): __snake_case : Union[str, Any] = random.randint(0 , len(lowercase ) - 1 ) __snake_case : Optional[int] = random.randint(0 , len(lowercase ) - 1 ) __snake_case , __snake_case : Any = data[b], data[a] return data if __name__ == "__main__": _UpperCamelCase = [0, 1, 2, 3, 4, 5, 6, 7] _UpperCamelCase = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
326
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
1
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Dict = CodeGenTokenizer SCREAMING_SNAKE_CASE_ : Any = CodeGenTokenizerFast SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : List[Any] = {"""add_prefix_space""": True} SCREAMING_SNAKE_CASE_ : List[str] = False def lowercase_ ( self : Dict)-> List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase: int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] __lowerCAmelCase: List[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__)))) __lowerCAmelCase: List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __lowerCAmelCase: Optional[int] = {"unk_token": "<unk>"} __lowerCAmelCase: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) __lowerCAmelCase: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCamelCase__) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCamelCase__)) def lowercase_ ( self : List[str] , **UpperCamelCase__ : List[str])-> Any: '''simple docstring''' kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__) def lowercase_ ( self : Dict , **UpperCamelCase__ : List[Any])-> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__) def lowercase_ ( self : str , UpperCamelCase__ : Tuple)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Any = "lower newer" __lowerCAmelCase: Dict = "lower newer" return input_text, output_text def lowercase_ ( self : Tuple)-> List[Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) __lowerCAmelCase: Union[str, Any] = "lower newer" __lowerCAmelCase: Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] __lowerCAmelCase: Tuple = tokenizer.tokenize(UpperCamelCase__ , add_prefix_space=UpperCamelCase__) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: Tuple = tokens + [tokenizer.unk_token] __lowerCAmelCase: List[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__) , UpperCamelCase__) def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCAmelCase: int = self.get_tokenizer() __lowerCAmelCase: str = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase__) __lowerCAmelCase: List[Any] = "lower newer" # Testing tokenization __lowerCAmelCase: Optional[Any] = tokenizer.tokenize(UpperCamelCase__ , add_prefix_space=UpperCamelCase__) __lowerCAmelCase: Dict = rust_tokenizer.tokenize(UpperCamelCase__) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) # Testing conversion to ids without special tokens __lowerCAmelCase: Optional[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__) __lowerCAmelCase: str = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) # Testing conversion to ids with special tokens __lowerCAmelCase: Dict = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase__) __lowerCAmelCase: List[Any] = tokenizer.encode(UpperCamelCase__ , add_prefix_space=UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = rust_tokenizer.encode(UpperCamelCase__) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__) # Testing the unknown token __lowerCAmelCase: Any = tokens + [rust_tokenizer.unk_token] __lowerCAmelCase: List[Any] = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCamelCase__) , UpperCamelCase__) def lowercase_ ( self : Optional[Any] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Union[str, Any])-> str: '''simple docstring''' pass def lowercase_ ( self : Any , UpperCamelCase__ : int=1_5)-> int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): __lowerCAmelCase: List[str] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__) # Simple input __lowerCAmelCase: Optional[int] = "This is a simple input" __lowerCAmelCase: Dict = ["This is a simple input 1", "This is a simple input 2"] __lowerCAmelCase: Tuple = ("This is a simple input", "This is a pair") __lowerCAmelCase: List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length") # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , ) def lowercase_ ( self : Optional[int])-> str: '''simple docstring''' __lowerCAmelCase: str = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>") # Simple input __lowerCAmelCase: Dict = "This is a simple input" __lowerCAmelCase: List[str] = ["This is a simple input looooooooong", "This is a simple input"] __lowerCAmelCase: str = ("This is a simple input", "This is a pair") __lowerCAmelCase: Tuple = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] __lowerCAmelCase: Union[str, Any] = tokenizer.pad_token_id __lowerCAmelCase: List[Any] = tokenizer(UpperCamelCase__ , padding="max_length" , max_length=3_0 , return_tensors="np") __lowerCAmelCase: List[Any] = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncate=UpperCamelCase__ , return_tensors="np") __lowerCAmelCase: Dict = tokenizer(*UpperCamelCase__ , padding="max_length" , max_length=6_0 , return_tensors="np") __lowerCAmelCase: Dict = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncate=UpperCamelCase__ , return_tensors="np") # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 3_0) self.assertTrue(pad_token_id in out_s["input_ids"]) self.assertTrue(0 in out_s["attention_mask"]) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 3_3) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0]) self.assertFalse(0 in out_sa["attention_mask"][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1]) self.assertTrue(0 in out_sa["attention_mask"][1]) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 6_0) self.assertTrue(pad_token_id in out_p["input_ids"]) self.assertTrue(0 in out_p["attention_mask"]) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 5_2) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0]) self.assertFalse(0 in out_pa["attention_mask"][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1]) self.assertTrue(0 in out_pa["attention_mask"][1]) def lowercase_ ( self : Any)-> str: '''simple docstring''' __lowerCAmelCase: Any = "$$$" __lowerCAmelCase: Dict = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCamelCase__ , add_bos_token=UpperCamelCase__) __lowerCAmelCase: int = "This is a simple input" __lowerCAmelCase: int = ["This is a simple input 1", "This is a simple input 2"] __lowerCAmelCase: int = tokenizer.bos_token_id __lowerCAmelCase: Optional[int] = tokenizer(UpperCamelCase__) __lowerCAmelCase: List[str] = tokenizer(UpperCamelCase__) self.assertEqual(out_s.input_ids[0] , UpperCamelCase__) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) __lowerCAmelCase: Tuple = tokenizer.decode(out_s.input_ids) __lowerCAmelCase: Optional[int] = tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0] , UpperCamelCase__) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) @slow def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") __lowerCAmelCase: List[str] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" __lowerCAmelCase: int = "\nif len_a > len_b: result = a\nelse: result = b" __lowerCAmelCase: List[Any] = tokenizer.encode(UpperCamelCase__) __lowerCAmelCase: List[Any] = ["^#", re.escape("<|endoftext|>"), "^'''", "^\"\"\"", "\n\n\n"] __lowerCAmelCase: Tuple = tokenizer.decode(UpperCamelCase__ , truncate_before_pattern=UpperCamelCase__) self.assertEqual(UpperCamelCase__ , UpperCamelCase__) def lowercase_ ( self : Dict)-> str: '''simple docstring''' pass
108
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def a__ ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
108
1
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) lowerCAmelCase__ :Dict = 'A painting of a squirrel eating a burger' lowerCAmelCase__ :List[Any] = jax.device_count() lowerCAmelCase__ :Dict = num_samples * [prompt] lowerCAmelCase__ :Tuple = sd_pipe.prepare_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = replicate(__UpperCAmelCase ) lowerCAmelCase__ :Dict = shard(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = jax.random.PRNGKey(0 ) lowerCAmelCase__ :Optional[Any] = jax.random.split(__UpperCAmelCase , jax.device_count() ) lowerCAmelCase__ :List[Any] = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=2_5 , jit=__UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase__ :str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase__ :Any = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ :Any = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = 'stabilityai/stable-diffusion-2' lowerCAmelCase__ , lowerCAmelCase__ :int = FlaxDPMSolverMultistepScheduler.from_pretrained(__UpperCAmelCase , subfolder='scheduler' ) lowerCAmelCase__ , lowerCAmelCase__ :Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( __UpperCAmelCase , scheduler=__UpperCAmelCase , revision='bf16' , dtype=jnp.bfloataa , ) lowerCAmelCase__ :Union[str, Any] = scheduler_params lowerCAmelCase__ :Dict = 'A painting of a squirrel eating a burger' lowerCAmelCase__ :Optional[Any] = jax.device_count() lowerCAmelCase__ :Dict = num_samples * [prompt] lowerCAmelCase__ :Dict = sd_pipe.prepare_inputs(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = replicate(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = shard(__UpperCAmelCase ) lowerCAmelCase__ :Dict = jax.random.PRNGKey(0 ) lowerCAmelCase__ :Optional[int] = jax.random.split(__UpperCAmelCase , jax.device_count() ) lowerCAmelCase__ :str = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=2_5 , jit=__UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) lowerCAmelCase__ :Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase__ :Dict = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCAmelCase__ :List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ :Optional[int] = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
293
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" lowerCAmelCase__ :str = BertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) lowerCAmelCase__ :int = BertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_bert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
293
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json'''} _lowercase = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } _lowercase = {'''mgp-str''': 27} class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = VOCAB_FILES_NAMES _lowerCamelCase: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] ,A_ : str ,A_ : List[Any]="[GO]" ,A_ : Any="[GO]" ,A_ : Union[str, Any]="[s]" ,A_ : Dict="[GO]" ,**A_ : Any ) -> str: super().__init__( unk_token=A_ ,bos_token=A_ ,eos_token=A_ ,pad_token=A_ ,**A_ ,) with open(A_ ,encoding='utf-8' ) as vocab_handle: A = json.load(A_ ) A = {v: k for k, v in self.vocab.items()} @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: return len(self.vocab ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return dict(self.vocab ,**self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : List[Any] ) -> Union[str, Any]: A = [] for s in text: char_tokens.extend(A_ ) return char_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ) -> List[Any]: return self.vocab.get(A_ ,self.vocab.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[int] ) -> str: return self.decoder.get(A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error('Vocabulary path ({}) should be a directory'.format(A_ ) ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(A_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.vocab ,indent=2 ,sort_keys=A_ ,ensure_ascii=A_ ) + '\n' ) return (vocab_file,)
74
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCamelCase__ : str = logging.getLogger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = '''summarization''' _A : Optional[Any] = ['''loss'''] _A : Tuple = ROUGE_KEYS _A : int = '''rouge2''' def __init__( self : int , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str] ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: __SCREAMING_SNAKE_CASE : Any = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , mode=self.mode , **lowerCAmelCase__ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE : int = Path(self.output_dir ) / """metrics.json""" __SCREAMING_SNAKE_CASE : Optional[Any] = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : List[Any] = defaultdict(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.config.model_type __SCREAMING_SNAKE_CASE : List[Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size __SCREAMING_SNAKE_CASE : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __SCREAMING_SNAKE_CASE : List[Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } __SCREAMING_SNAKE_CASE : Any = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __SCREAMING_SNAKE_CASE : Any = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], F"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __SCREAMING_SNAKE_CASE : Any = get_git_info()["""repo_sha"""] __SCREAMING_SNAKE_CASE : Any = hparams.num_workers __SCREAMING_SNAKE_CASE : Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __SCREAMING_SNAKE_CASE : Any = self.decoder_start_token_id __SCREAMING_SNAKE_CASE : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.hparams.eval_max_gen_length else: __SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.max_length __SCREAMING_SNAKE_CASE : Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Dict[str, torch.Tensor] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCAmelCase__ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) __SCREAMING_SNAKE_CASE : Optional[int] = True return readable_batch def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Any , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return self.model(lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.batch_decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) return lmap(str.strip , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.pad_token_id __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""], batch["""attention_mask"""] __SCREAMING_SNAKE_CASE : Tuple = batch["""labels"""] if isinstance(self.model , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = self.model._shift_right(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCAmelCase__ , lowerCAmelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __SCREAMING_SNAKE_CASE : Tuple = decoder_input_ids self.save_readable_batch(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __SCREAMING_SNAKE_CASE : Tuple = nn.CrossEntropyLoss(ignore_index=lowerCAmelCase__ ) assert lm_logits.shape[-1] == self.vocab_size __SCREAMING_SNAKE_CASE : List[Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.log_softmax(lowerCAmelCase__ , dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = label_smoothed_nll_loss( lowerCAmelCase__ , lowerCAmelCase__ , self.hparams.label_smoothing , ignore_index=lowerCAmelCase__ ) return (loss,) @property def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" return self.tokenizer.pad_token_id def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self._step(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = dict(zip(self.loss_names , lowerCAmelCase__ ) ) # tokens per batch __SCREAMING_SNAKE_CASE : Optional[int] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""].shape[0] __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""].eq(self.pad ).sum() __SCREAMING_SNAKE_CASE : Optional[int] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ): """simple docstring""" return self._generative_step(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]="val" ): """simple docstring""" self.step_count += 1 __SCREAMING_SNAKE_CASE : int = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __SCREAMING_SNAKE_CASE : List[Any] = losses["""loss"""] __SCREAMING_SNAKE_CASE : int = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } __SCREAMING_SNAKE_CASE : List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __SCREAMING_SNAKE_CASE : torch.FloatTensor = torch.tensor(lowerCAmelCase__ ).type_as(lowerCAmelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = {F"{prefix}_avg_{k}": x for k, x in losses.items()} __SCREAMING_SNAKE_CASE : Optional[int] = self.step_count self.metrics[prefix].append(lowerCAmelCase__ ) # callback writes this to self.metrics_save_path __SCREAMING_SNAKE_CASE : int = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"{prefix}_loss": loss, F"{prefix}_{self.val_metric}": metric_tensor, } def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ): """simple docstring""" return calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __SCREAMING_SNAKE_CASE : List[str] = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCAmelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (time.time() - ta) / batch["""input_ids"""].shape[0] __SCREAMING_SNAKE_CASE : List[str] = self.ids_to_clean_text(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.ids_to_clean_text(batch["""labels"""] ) __SCREAMING_SNAKE_CASE : Optional[Any] = self._step(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = dict(zip(self.loss_names , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = self.calc_generative_metrics(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = np.mean(lmap(lowerCAmelCase__ , lowerCAmelCase__ ) ) base_metrics.update(gen_time=lowerCAmelCase__ , gen_len=lowerCAmelCase__ , preds=lowerCAmelCase__ , target=lowerCAmelCase__ , **lowerCAmelCase__ ) return base_metrics def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return self._generative_step(lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : int ): """simple docstring""" return self.validation_epoch_end(lowerCAmelCase__ , prefix="""test""" ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.n_obs[type_path] __SCREAMING_SNAKE_CASE : str = self.target_lens[type_path] __SCREAMING_SNAKE_CASE : str = self.dataset_class( self.tokenizer , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , max_target_length=lowerCAmelCase__ , **self.dataset_kwargs , ) return dataset def UpperCamelCase__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dataset(lowerCAmelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __SCREAMING_SNAKE_CASE : Optional[int] = dataset.make_sortish_sampler(lowerCAmelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __SCREAMING_SNAKE_CASE : Any = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_sampler=lowerCAmelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCAmelCase__ ) return dataloader def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ ) add_generic_args(lowerCAmelCase__ , lowerCAmelCase__ ) parser.add_argument( """--max_source_length""" , default=1_0_2_4 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=5_6 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_4_2 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_4_2 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCAmelCase__ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCAmelCase__ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument("""--logger_name""" , type=lowerCAmelCase__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCAmelCase__ , default=5_0_0 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCAmelCase__ , default="""summarization""" , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCAmelCase__ , default=0.0 , required=lowerCAmelCase__ ) parser.add_argument("""--src_lang""" , type=lowerCAmelCase__ , default="""""" , required=lowerCAmelCase__ ) parser.add_argument("""--tgt_lang""" , type=lowerCAmelCase__ , default="""""" , required=lowerCAmelCase__ ) parser.add_argument("""--eval_beams""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( """--val_metric""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[Any] = '''translation''' _A : int = ['''loss'''] _A : Union[str, Any] = ['''bleu'''] _A : Dict = '''bleu''' def __init__( self : Any , lowerCAmelCase__ : int , **lowerCAmelCase__ : Any ): """simple docstring""" super().__init__(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = hparams.src_lang __SCREAMING_SNAKE_CASE : Dict = hparams.tgt_lang def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ): """simple docstring""" return calculate_bleu(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str=None ): Path(args.output_dir ).mkdir(exist_ok=_lowerCamelCase ) check_output_dir(_lowerCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: __SCREAMING_SNAKE_CASE : SummarizationModule = SummarizationModule(_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : SummarizationModule = TranslationModule(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): __SCREAMING_SNAKE_CASE : str = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __SCREAMING_SNAKE_CASE : Any = os.environ.get("""WANDB_PROJECT""" , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = WandbLogger(name=model.output_dir.name , project=_lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __SCREAMING_SNAKE_CASE : Optional[int] = WandbLogger(name=model.output_dir.name , project=F"hf_{dataset}" ) if args.early_stopping_patience >= 0: __SCREAMING_SNAKE_CASE : str = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = args.val_metric == """loss""" __SCREAMING_SNAKE_CASE : pl.Trainer = generic_train( _lowerCamelCase , _lowerCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowerCamelCase ) , early_stopping_callback=_lowerCamelCase , logger=_lowerCamelCase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model __SCREAMING_SNAKE_CASE : Optional[int] = """""" __SCREAMING_SNAKE_CASE : Any = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=_lowerCamelCase ) ) if checkpoints: __SCREAMING_SNAKE_CASE : List[Any] = checkpoints[-1] __SCREAMING_SNAKE_CASE : str = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() UpperCamelCase__ : Dict = pl.Trainer.add_argparse_args(parser) UpperCamelCase__ : List[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCamelCase__ : List[str] = parser.parse_args() main(args)
112
0
"""simple docstring""" import argparse from collections import defaultdict import yaml __SCREAMING_SNAKE_CASE ="docs/source/en/_toctree.yml" def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Optional[int] = defaultdict(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = [] lowercase_ : Tuple = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(__SCREAMING_SNAKE_CASE ) lowercase_ : str = new_doc_list lowercase_ : List[Any] = [key for key, value in counts.items() if value > 1] lowercase_ : Tuple = [] for duplicate_key in duplicates: lowercase_ : str = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(__SCREAMING_SNAKE_CASE ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) lowercase_ : Optional[Any] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__SCREAMING_SNAKE_CASE ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(__SCREAMING_SNAKE_CASE ) # Sort return overview_doc def lowercase__( __SCREAMING_SNAKE_CASE : Dict=False ): with open(__SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: lowercase_ : Optional[int] = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ : int = content[api_idx]['sections'] # Then to the model doc lowercase_ : str = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase_ : Union[str, Any] = api_doc[scheduler_idx]['sections'] lowercase_ : str = clean_doc_toc(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = False if new_scheduler_doc != scheduler_doc: lowercase_ : List[Any] = True if overwrite: lowercase_ : Optional[Any] = new_scheduler_doc if diff: if overwrite: lowercase_ : Tuple = api_doc with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__SCREAMING_SNAKE_CASE , allow_unicode=__SCREAMING_SNAKE_CASE ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def lowercase__( __SCREAMING_SNAKE_CASE : str=False ): with open(__SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: lowercase_ : str = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ : Optional[int] = content[api_idx]['sections'] # Then to the model doc lowercase_ : str = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase_ : List[Any] = False lowercase_ : List[str] = api_doc[pipeline_idx]['sections'] lowercase_ : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase_ : int = pipeline_doc['section'] lowercase_ : str = clean_doc_toc(__SCREAMING_SNAKE_CASE ) if overwrite: lowercase_ : Any = new_sub_pipeline_doc new_pipeline_docs.append(__SCREAMING_SNAKE_CASE ) # sort overall pipeline doc lowercase_ : Optional[Any] = clean_doc_toc(__SCREAMING_SNAKE_CASE ) if new_pipeline_docs != pipeline_docs: lowercase_ : int = True if overwrite: lowercase_ : List[Any] = new_pipeline_docs if diff: if overwrite: lowercase_ : Union[str, Any] = api_doc with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__SCREAMING_SNAKE_CASE , allow_unicode=__SCREAMING_SNAKE_CASE ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __SCREAMING_SNAKE_CASE =parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
361
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase__( *__SCREAMING_SNAKE_CASE : Tuple ): with open(__SCREAMING_SNAKE_CASE , 'r' ) as fh: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX ) try: print(*__SCREAMING_SNAKE_CASE ) finally: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) __SCREAMING_SNAKE_CASE =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __SCREAMING_SNAKE_CASE =torch.device("cuda", local_rank) __SCREAMING_SNAKE_CASE =socket.gethostname() __SCREAMING_SNAKE_CASE =F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __SCREAMING_SNAKE_CASE =dist.get_rank() __SCREAMING_SNAKE_CASE =dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
321
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Any: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> int: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
218
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCAmelCase : Union[str, Any] = 16 _lowerCAmelCase : List[str] = 32 def UpperCamelCase_( _snake_case : Accelerator , _snake_case : int = 16 ): """simple docstring""" __a =AutoTokenizer.from_pretrained('bert-base-cased' ) __a =load_dataset('glue' , 'mrpc' ) def tokenize_function(_snake_case : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __a =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_snake_case , max_length=_snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a =datasets.map( _snake_case , batched=_snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_snake_case : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __a =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a =16 elif accelerator.mixed_precision != "no": __a =8 else: __a =None return tokenizer.pad( _snake_case , padding='longest' , max_length=_snake_case , pad_to_multiple_of=_snake_case , return_tensors='pt' , ) # Instantiate dataloaders. __a =DataLoader( tokenized_datasets['train'] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=_snake_case ) __a =DataLoader( tokenized_datasets['validation'] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=_snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCAmelCase : List[Any] = mocked_dataloaders # noqa: F811 def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , _snake_case ) == "1": __a =2 # New Code # __a =int(args.gradient_accumulation_steps ) __a =int(args.local_sgd_steps ) # Initialize accelerator __a =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_snake_case ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a =config['lr'] __a =int(config['num_epochs'] ) __a =int(config['seed'] ) __a =int(config['batch_size'] ) __a =evaluate.load('glue' , 'mrpc' ) set_seed(_snake_case ) __a , __a =get_dataloaders(_snake_case , _snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a =model.to(accelerator.device ) # Instantiate optimizer __a =AdamW(params=model.parameters() , lr=_snake_case ) # Instantiate scheduler __a =get_linear_schedule_with_warmup( optimizer=_snake_case , num_warmup_steps=100 , num_training_steps=(len(_snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a =accelerator.prepare( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # Now we train the model for epoch in range(_snake_case ): model.train() with LocalSGD( accelerator=_snake_case , model=_snake_case , local_sgd_steps=_snake_case , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_snake_case ): __a =model(**_snake_case ) __a =output.loss accelerator.backward(_snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a =model(**_snake_case ) __a =outputs.logits.argmax(dim=-1 ) __a , __a =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_snake_case , references=_snake_case , ) __a =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , _snake_case ) def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_snake_case , default=_snake_case , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=_snake_case , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __a =parser.parse_args() __a ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_snake_case , _snake_case ) if __name__ == "__main__": main()
218
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def snake_case_ ( __SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" for char in word: lowercase_ : Dict = ord(__SCREAMING_SNAKE_CASE ) if not _is_chinese_char(__SCREAMING_SNAKE_CASE ): return 0 return 1 def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : str = set() for token in tokens: lowercase_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) > 1 and is_chinese(__SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = list(__SCREAMING_SNAKE_CASE ) return word_list def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens lowercase_ : Dict = max([len(__SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) lowercase_ : int = bert_tokens lowercase_ , lowercase_ : Tuple = 0, len(__SCREAMING_SNAKE_CASE ) while start < end: lowercase_ : Dict = True if is_chinese(bert_word[start] ): lowercase_ : str = min(end - start , __SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE , 1 , -1 ): lowercase_ : Any = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase_ : Tuple = '''##''' + bert_word[j] lowercase_ : List[Any] = start + i lowercase_ : Optional[int] = False break if single_word: start += 1 return bert_word def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : LTP , __SCREAMING_SNAKE_CASE : BertTokenizer ): """simple docstring""" lowercase_ : Union[str, Any] = [] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , 100 ): lowercase_ : Union[str, Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws lowercase_ : Dict = [get_chinese_word(__SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) lowercase_ : str = [] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , 100 ): lowercase_ : Any = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = [] for input_ids, chinese_word in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = [] for id in input_ids: lowercase_ : int = bert_tokenizer._convert_id_to_token(__SCREAMING_SNAKE_CASE ) input_tokens.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = add_sub_symbol(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__SCREAMING_SNAKE_CASE ): if token[:2] == "##": lowercase_ : Union[str, Any] = token[2:] # save chinese tokens' pos if len(__SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(__SCREAMING_SNAKE_CASE ) ): ref_id.append(__SCREAMING_SNAKE_CASE ) ref_ids.append(__SCREAMING_SNAKE_CASE ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) return ref_ids def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: lowercase_ : str = f.readlines() lowercase_ : str = [line.strip() for line in data if len(__SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase_ : Optional[int] = LTP(args.ltp ) # faster in GPU device lowercase_ : Optional[Any] = BertTokenizer.from_pretrained(args.bert ) lowercase_ : Optional[Any] = prepare_ref(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: lowercase_ : List[Any] = [json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids] f.writelines(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowercase : Dict = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) _lowercase : Tuple = parser.parse_args() main(args)
264
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Tuple = prime_factors(__SCREAMING_SNAKE_CASE ) if is_square_free(__SCREAMING_SNAKE_CASE ): return -1 if len(__SCREAMING_SNAKE_CASE ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
264
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return " ".join( "".join(word[::-1] ) if len(SCREAMING_SNAKE_CASE ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
108
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = tempfile.mkdtemp() lowerCAmelCase : Optional[int] = 8 # DPR tok lowerCAmelCase : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : Dict = os.path.join(snake_case__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowerCAmelCase : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowerCAmelCase : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase : str = {"unk_token": "<unk>"} lowerCAmelCase : int = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : int = os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase : Dict = os.path.join(snake_case__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def lowercase__ ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = os.path.join(self.tmpdirname , "rag_tokenizer" ) lowerCAmelCase : List[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) lowerCAmelCase : Optional[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(snake_case__ ) rag_tokenizer.save_pretrained(snake_case__ ) lowerCAmelCase : List[str] = RagTokenizer.from_pretrained(snake_case__ , config=snake_case__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , snake_case__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , snake_case__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = RagTokenizer.from_pretrained("facebook/rag-token-nq" ) lowerCAmelCase : Dict = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ ) self.assertIsNotNone(snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) lowerCAmelCase : List[str] = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowerCAmelCase : str = tokenizer(snake_case__ ) self.assertIsNotNone(snake_case__ )
108
1
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" return 10 - x * x def _a ( _snake_case , _snake_case ): """simple docstring""" if equation(lowercase__ ) * equation(lowercase__ ) >= 0: raise ValueError("""Wrong space!""" ) UpperCAmelCase = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase = (a + b) / 2 # Check if middle point is root if equation(lowercase__ ) == 0.0: break # Decide the side to repeat the steps if equation(lowercase__ ) * equation(lowercase__ ) < 0: UpperCAmelCase = c else: UpperCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
351
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _UpperCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } _UpperCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _a ( _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = create_model( """HTSAT-tiny""" , """roberta""" , _snake_case , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_snake_case , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = R""".*sequential.(\d+).*""" UpperCAmelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase = key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): # replace sequential layers with list UpperCAmelCase = re.match(_snake_case , _snake_case ).group(1 ) UpperCAmelCase = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_snake_case )//3}.linear.''' ) elif re.match(_snake_case , _snake_case ): UpperCAmelCase = int(re.match(_snake_case , _snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase = 1 if projecton_layer == 0 else 2 UpperCAmelCase = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase = value UpperCAmelCase = mixed_qkv.size(0 ) // 3 UpperCAmelCase = mixed_qkv[:qkv_dim] UpperCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase = query_layer UpperCAmelCase = key_layer UpperCAmelCase = value_layer else: UpperCAmelCase = value return model_state_dict def _a ( _snake_case , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = init_clap(_snake_case , enable_fusion=_snake_case ) clap_model.eval() UpperCAmelCase = clap_model.state_dict() UpperCAmelCase = rename_state_dict(_snake_case ) UpperCAmelCase = ClapConfig() UpperCAmelCase = enable_fusion UpperCAmelCase = ClapModel(_snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case ) model.save_pretrained(_snake_case ) transformers_config.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") _UpperCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
234
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__: Optional[int] = logging.get_logger(__name__) __magic_name__: Any = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = '''detr''' lowercase__ : Union[str, Any] = ['''past_key_values'''] lowercase__ : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=3 , lowerCAmelCase__=1_00 , lowerCAmelCase__=6 , lowerCAmelCase__=20_48 , lowerCAmelCase__=8 , lowerCAmelCase__=6 , lowerCAmelCase__=20_48 , lowerCAmelCase__=8 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1.0 , lowerCAmelCase__=False , lowerCAmelCase__="sine" , lowerCAmelCase__="resnet50" , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , **lowerCAmelCase__ , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __magic_name__ : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Optional[int] = backbone_config.get("""model_type""" ) __magic_name__ : List[str] = CONFIG_MAPPING[backbone_model_type] __magic_name__ : List[str] = config_class.from_dict(lowerCAmelCase__ ) # set timm attributes to None __magic_name__ ,__magic_name__ ,__magic_name__ : Optional[Any] = None, None, None __magic_name__ : Any = use_timm_backbone __magic_name__ : Any = backbone_config __magic_name__ : Tuple = num_channels __magic_name__ : Any = num_queries __magic_name__ : Dict = d_model __magic_name__ : int = encoder_ffn_dim __magic_name__ : Optional[int] = encoder_layers __magic_name__ : int = encoder_attention_heads __magic_name__ : List[str] = decoder_ffn_dim __magic_name__ : List[str] = decoder_layers __magic_name__ : int = decoder_attention_heads __magic_name__ : Union[str, Any] = dropout __magic_name__ : int = attention_dropout __magic_name__ : Dict = activation_dropout __magic_name__ : List[Any] = activation_function __magic_name__ : Dict = init_std __magic_name__ : Union[str, Any] = init_xavier_std __magic_name__ : int = encoder_layerdrop __magic_name__ : Union[str, Any] = decoder_layerdrop __magic_name__ : Dict = encoder_layers __magic_name__ : Any = auxiliary_loss __magic_name__ : Any = position_embedding_type __magic_name__ : List[str] = backbone __magic_name__ : Union[str, Any] = use_pretrained_backbone __magic_name__ : List[str] = dilation # Hungarian matcher __magic_name__ : Optional[int] = class_cost __magic_name__ : List[str] = bbox_cost __magic_name__ : Any = giou_cost # Loss coefficients __magic_name__ : str = mask_loss_coefficient __magic_name__ : Any = dice_loss_coefficient __magic_name__ : Dict = bbox_loss_coefficient __magic_name__ : str = giou_loss_coefficient __magic_name__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__ ( self ) -> int: return self.encoder_attention_heads @property def __magic_name__ ( self ) -> int: return self.d_model @classmethod def __magic_name__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: return cls(backbone_config=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Dict[str, any]: __magic_name__ : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __magic_name__ : List[Any] = self.backbone_config.to_dict() __magic_name__ : Union[str, Any] = self.__class__.model_type return output class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = version.parse('''1.11''' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __magic_name__ ( self ) -> float: return 1e-5 @property def __magic_name__ ( self ) -> int: return 12
342
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : List[Any] = ["image_processor", "tokenizer"] __snake_case : str = "FlavaImageProcessor" __snake_case : Dict = ("BertTokenizer", "BertTokenizerFast") def __init__( self: int , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: int=None , **UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) _SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.image_processor def __call__( self: Tuple , UpperCAmelCase_: Optional[ImageInput] = None , UpperCAmelCase_: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , UpperCAmelCase_: bool = True , UpperCAmelCase_: Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_: Union[bool, str, TruncationStrategy] = False , UpperCAmelCase_: Optional[int] = None , UpperCAmelCase_: int = 0 , UpperCAmelCase_: Optional[int] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: Optional[bool] = None , UpperCAmelCase_: bool = False , UpperCAmelCase_: bool = False , UpperCAmelCase_: bool = False , UpperCAmelCase_: bool = False , UpperCAmelCase_: bool = True , UpperCAmelCase_: Optional[Union[str, TensorType]] = None , **UpperCAmelCase_: Dict , ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _SCREAMING_SNAKE_CASE = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) if images is not None: _SCREAMING_SNAKE_CASE = self.image_processor( UpperCAmelCase_ , return_image_mask=UpperCAmelCase_ , return_codebook_pixels=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) if text is not None and images is not None: encoding.update(UpperCAmelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , *UpperCAmelCase_: List[str] , **UpperCAmelCase_: Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def UpperCamelCase ( self: str , *UpperCAmelCase_: str , **UpperCAmelCase_: int ): '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase_ , ) return self.image_processor_class @property def UpperCamelCase ( self: Any ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase_ , ) return self.image_processor
125
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCamelCase = re.compile(R'''\s+''') def __lowerCamelCase ( snake_case__ ) -> List[str]: """simple docstring""" return {"hash": hashlib.mda(re.sub(snake_case__ ,"""""" ,example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [len(snake_case__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(snake_case__ ), "line_max": max(snake_case__ )} def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def __lowerCamelCase ( snake_case__ ,snake_case__=5 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = ["""auto-generated""", """autogenerated""", """automatically generated"""] _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() for _, line in zip(range(snake_case__ ) ,snake_case__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __lowerCamelCase ( snake_case__ ,snake_case__=5 ,snake_case__=0.05 ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ["""unit tests""", """test file""", """configuration file"""] _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 0 # first test for _, line in zip(range(snake_case__ ) ,snake_case__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _SCREAMING_SNAKE_CASE = example["""content"""].count("""\n""" ) _SCREAMING_SNAKE_CASE = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = ["""def """, """class """, """for """, """while """] _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __lowerCamelCase ( snake_case__ ,snake_case__=4 ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = example["""content"""].splitlines() _SCREAMING_SNAKE_CASE = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = tokenizer(example["""content"""] ,truncation=snake_case__ )["""input_ids"""] _SCREAMING_SNAKE_CASE = len(example["""content"""] ) / len(snake_case__ ) return {"ratio": ratio} def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = {} results.update(get_hash(snake_case__ ) ) results.update(line_stats(snake_case__ ) ) results.update(alpha_stats(snake_case__ ) ) results.update(char_token_ratio(snake_case__ ) ) results.update(is_autogenerated(snake_case__ ) ) results.update(is_config_or_test(snake_case__ ) ) results.update(has_no_keywords(snake_case__ ) ) results.update(has_few_assignments(snake_case__ ) ) return results def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> int: """simple docstring""" if not check_uniques(snake_case__ ,snake_case__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" with open(snake_case__ ,"""rb""" ) as f_in: with gzip.open(str(snake_case__ ) + """.gz""" ,"""wb""" ,compresslevel=6 ) as f_out: shutil.copyfileobj(snake_case__ ,snake_case__ ) os.unlink(snake_case__ ) # Settings UpperCamelCase = HfArgumentParser(PreprocessingArguments) UpperCamelCase = parser.parse_args() if args.num_workers is None: UpperCamelCase = multiprocessing.cpu_count() UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCamelCase = time.time() UpperCamelCase = load_dataset(args.dataset_name, split='''train''') print(f"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing UpperCamelCase = time.time() UpperCamelCase = ds.map(preprocess, num_proc=args.num_workers) print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes UpperCamelCase = set(ds.unique('''hash''')) UpperCamelCase = len(uniques) / len(ds) print(f"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics UpperCamelCase = time.time() UpperCamelCase = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f"Time to filter dataset: {time.time()-t_start:.2f}") print(f"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCamelCase = time.time() UpperCamelCase , UpperCamelCase = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(f"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file UpperCamelCase = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) UpperCamelCase = output_dir / '''data''' data_dir.mkdir(exist_ok=True) UpperCamelCase = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCamelCase = str(data_dir / f"file-{file_number+1:012}.json") UpperCamelCase = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"Time to save dataset: {time.time()-t_start:.2f}")
125
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['MobileNetV2FeatureExtractor'] lowerCAmelCase_ = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a_ ( lowerCamelCase ): lowercase = (DDPMParallelScheduler,) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def A__ ( self ) -> List[str]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def A__ ( self ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = self.dummy_sample_deter + 0.1 UpperCamelCase = self.dummy_sample_deter - 0.1 UpperCamelCase = samplea.shape[0] UpperCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , _SCREAMING_SNAKE_CASE ) UpperCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) UpperCamelCase = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
321
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
360
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Union[str, Any] = logging.get_logger(__name__) A_ :Tuple = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class __A ( a ): """simple docstring""" UpperCamelCase__ : Any ="""xlnet""" UpperCamelCase__ : Tuple =["""mems"""] UpperCamelCase__ : Any ={ """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=32000 , lowerCamelCase__=1024 , lowerCamelCase__=24 , lowerCamelCase__=16 , lowerCamelCase__=4096 , lowerCamelCase__="gelu" , lowerCamelCase__=True , lowerCamelCase__="bi" , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=-1 , lowerCamelCase__=False , lowerCamelCase__="last" , lowerCamelCase__=True , lowerCamelCase__="tanh" , lowerCamelCase__=0.1 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=5 , lowerCamelCase__=1 , lowerCamelCase__=2 , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Optional[int] =vocab_size __UpperCamelCase : int =d_model __UpperCamelCase : Optional[Any] =n_layer __UpperCamelCase : str =n_head if d_model % n_head != 0: raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) __UpperCamelCase : Optional[Any] =d_model // n_head __UpperCamelCase : List[Any] =ff_activation __UpperCamelCase : Tuple =d_inner __UpperCamelCase : List[Any] =untie_r __UpperCamelCase : List[Any] =attn_type __UpperCamelCase : Dict =initializer_range __UpperCamelCase : List[str] =layer_norm_eps __UpperCamelCase : List[str] =dropout __UpperCamelCase : int =mem_len __UpperCamelCase : List[Any] =reuse_len __UpperCamelCase : Union[str, Any] =bi_data __UpperCamelCase : Optional[Any] =clamp_len __UpperCamelCase : Tuple =same_length __UpperCamelCase : int =summary_type __UpperCamelCase : Dict =summary_use_proj __UpperCamelCase : Dict =summary_activation __UpperCamelCase : str =summary_last_dropout __UpperCamelCase : Dict =start_n_top __UpperCamelCase : Optional[Any] =end_n_top __UpperCamelCase : int =bos_token_id __UpperCamelCase : Union[str, Any] =pad_token_id __UpperCamelCase : Dict =eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , lowerCamelCase__ , ) __UpperCamelCase : Dict =kwargs['use_cache'] __UpperCamelCase : Optional[int] =use_mems_eval __UpperCamelCase : Any =use_mems_train super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
245
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Union[str, Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ : Dict = 25_00_04 lowercase__ : List[str] = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : List[str] = MBartTokenizer _lowerCAmelCase : str = MBartTokenizerFast _lowerCAmelCase : Dict = True _lowerCAmelCase : Tuple = True def _snake_case ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing snake_case_ : List[str] = MBartTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Optional[int] ): snake_case_ : Union[str, Any] = MBartTokenizer(lowercase_ , keep_accents=lowercase_ ) snake_case_ : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case_ : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case_ : Tuple = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case_ : Any = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _snake_case ( self : int ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ : Optional[int] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : str = tokenizer_r.save_pretrained(lowercase_ ) snake_case_ : int = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case_ : List[str] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way snake_case_ : List[Any] = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ : List[Any] = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True snake_case_ : int = tempfile.mkdtemp() snake_case_ : Optional[int] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) snake_case_ : str = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way snake_case_ : Optional[Any] = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ : List[Any] = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False snake_case_ : List[Any] = tempfile.mkdtemp() snake_case_ : Dict = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) snake_case_ : Any = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ : Optional[int] = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ : Tuple = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase): _lowerCAmelCase : int = """facebook/mbart-large-en-ro""" _lowerCAmelCase : str = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] _lowerCAmelCase : Tuple = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] _lowerCAmelCase : List[str] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def _snake_case ( cls : List[str] ): snake_case_ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) snake_case_ : Dict = 1 return cls def _snake_case ( self : int ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) def _snake_case ( self : Optional[int] ): snake_case_ : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def _snake_case ( self : Optional[Any] ): self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) snake_case_ : str = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] snake_case_ : Dict = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) snake_case_ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def _snake_case ( self : Tuple ): snake_case_ : List[Any] = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowercase_ ) snake_case_ : Tuple = 10 snake_case_ : int = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase_ ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def _snake_case ( self : str ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] ) def _snake_case ( self : str ): snake_case_ : Any = tempfile.mkdtemp() snake_case_ : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) snake_case_ : Tuple = MBartTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def _snake_case ( self : Any ): snake_case_ : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors='''pt''' ) snake_case_ : str = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _snake_case ( self : Optional[int] ): snake_case_ : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) snake_case_ : Any = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case_ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _snake_case ( self : Optional[Any] ): snake_case_ : Union[str, Any] = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors='''pt''' ) snake_case_ : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors='''pt''' ) snake_case_ : Any = targets['''input_ids'''] snake_case_ : List[str] = shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _snake_case ( self : Union[str, Any] ): snake_case_ : Tuple = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowercase_ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 250004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
264
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowercase ( _a , _a ): # Load checkpoint snake_case_ : Optional[Any] = torch.load(_a , map_location='''cpu''' ) snake_case_ : Union[str, Any] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository snake_case_ : Dict = {} for k, v in state_dict.items(): if "pred_layer" in k: snake_case_ : Union[str, Any] = v else: snake_case_ : Dict = v snake_case_ : Union[str, Any] = chkpt['''params'''] snake_case_ : int = {n: v for n, v in config.items() if not isinstance(_a , (torch.FloatTensor, numpy.ndarray) )} snake_case_ : int = chkpt['''dico_word2id'''] snake_case_ : str = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model snake_case_ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME snake_case_ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME snake_case_ : Any = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(_a , _a ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_a , indent=2 ) + '''\n''' ) print(f"Save vocab file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_a , indent=2 ) + '''\n''' ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : List[str] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
264
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a : Dict = logging.get_logger(__name__) _a : Union[str, Any] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] ="""conditional_detr""" a : List[str] =["""past_key_values"""] a : Dict ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3_00,__SCREAMING_SNAKE_CASE=6,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=8,__SCREAMING_SNAKE_CASE=6,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=8,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE="relu",__SCREAMING_SNAKE_CASE=2_56,__SCREAMING_SNAKE_CASE=0.1,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=1.0,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE="sine",__SCREAMING_SNAKE_CASE="resnet50",__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=5,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=1,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=5,__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=0.25,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __lowerCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = backbone_config.get("""model_type""" ) __lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase = config_class.from_dict(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = use_timm_backbone __lowerCAmelCase = backbone_config __lowerCAmelCase = num_channels __lowerCAmelCase = num_queries __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = init_xavier_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = encoder_layers __lowerCAmelCase = auxiliary_loss __lowerCAmelCase = position_embedding_type __lowerCAmelCase = backbone __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = dilation # Hungarian matcher __lowerCAmelCase = class_cost __lowerCAmelCase = bbox_cost __lowerCAmelCase = giou_cost # Loss coefficients __lowerCAmelCase = mask_loss_coefficient __lowerCAmelCase = dice_loss_coefficient __lowerCAmelCase = cls_loss_coefficient __lowerCAmelCase = bbox_loss_coefficient __lowerCAmelCase = giou_loss_coefficient __lowerCAmelCase = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.d_model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowerCAmelCase = self.backbone_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] =version.parse("""1.11""" ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1e-5 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 12
46
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : str = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (__lowerCAmelCase ): if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Tuple = ["pixel_values"] def __init__( self : Optional[Any] , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[int, float] = 1 / 2_55 , lowerCamelCase__ : bool = True , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , **lowerCamelCase__ : Dict , ) ->None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCAmelCase : str = size if size is not None else {"shortest_edge": 2_56} _UpperCAmelCase : Tuple = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _UpperCAmelCase : Any = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} _UpperCAmelCase : Dict = get_size_dict(lowerCamelCase__ , param_name="crop_size" ) _UpperCAmelCase : Tuple = do_resize _UpperCAmelCase : Tuple = size _UpperCAmelCase : List[Any] = do_center_crop _UpperCAmelCase : Any = crop_size _UpperCAmelCase : Dict = resample _UpperCAmelCase : List[Any] = do_rescale _UpperCAmelCase : Any = rescale_factor _UpperCAmelCase : Dict = offset _UpperCAmelCase : Any = do_normalize _UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[int] , ) ->np.ndarray: '''simple docstring''' _UpperCAmelCase : Optional[int] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" in size: _UpperCAmelCase : Any = get_resize_output_image_size(lowerCamelCase__ , size["shortest_edge"] , default_to_square=lowerCamelCase__ ) elif "height" in size and "width" in size: _UpperCAmelCase : List[str] = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : int , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Any , ) ->np.ndarray: '''simple docstring''' _UpperCAmelCase : List[Any] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowerCamelCase__ , size=(size["height"], size["width"]) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[int, float] , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[Any] , ) ->str: '''simple docstring''' _UpperCAmelCase : List[Any] = image.astype(np.floataa ) if offset: _UpperCAmelCase : Optional[int] = image - (scale / 2) return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[Any] , ) ->np.ndarray: '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) ->np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _UpperCAmelCase : Any = to_numpy_array(lowerCamelCase__ ) if do_resize: _UpperCAmelCase : List[Any] = self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) if do_center_crop: _UpperCAmelCase : Union[str, Any] = self.center_crop(lowerCamelCase__ , size=lowerCamelCase__ ) if do_rescale: _UpperCAmelCase : Union[str, Any] = self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ , offset=lowerCamelCase__ ) if do_normalize: _UpperCAmelCase : List[Any] = self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) return image def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase__ : Optional[Any] , ) ->PIL.Image.Image: '''simple docstring''' _UpperCAmelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample _UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Optional[Any] = offset if offset is not None else self.offset _UpperCAmelCase : Any = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std _UpperCAmelCase : List[Any] = size if size is not None else self.size _UpperCAmelCase : List[Any] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : List[str] = get_size_dict(lowerCamelCase__ , param_name="crop_size" ) if not valid_images(lowerCamelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCAmelCase : str = make_batched(lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [ [ self._preprocess_image( image=lowerCamelCase__ , do_resize=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , do_center_crop=lowerCamelCase__ , crop_size=lowerCamelCase__ , do_rescale=lowerCamelCase__ , rescale_factor=lowerCamelCase__ , offset=lowerCamelCase__ , do_normalize=lowerCamelCase__ , image_mean=lowerCamelCase__ , image_std=lowerCamelCase__ , data_format=lowerCamelCase__ , ) for img in video ] for video in videos ] _UpperCAmelCase : Tuple = {"pixel_values": videos} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
234
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCamelCase__ = logging.getLogger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if metric == "rouge2": _UpperCAmelCase : List[str] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _UpperCAmelCase : int = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _UpperCAmelCase : str = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _UpperCAmelCase : List[Any] = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) _UpperCAmelCase : Any = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F"""val_{metric}""" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class lowerCAmelCase__ ( pl.Callback ): def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any]=True ) ->None: '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _UpperCAmelCase : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _UpperCAmelCase : Any = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase : List[Any] = od / "test_results.txt" _UpperCAmelCase : Union[str, Any] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase : Optional[Any] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _UpperCAmelCase : Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCamelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCamelCase__ ) with open(lowerCamelCase__ , "a+" ) as writer: for key in sorted(lowerCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase : Dict = metrics[key] if isinstance(lowerCamelCase__ , torch.Tensor ): _UpperCAmelCase : Tuple = val.item() _UpperCAmelCase : str = F"""{key}: {val:.6f}\n""" writer.write(lowerCamelCase__ ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase : Optional[int] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->Any: '''simple docstring''' try: _UpperCAmelCase : Tuple = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase : int = pl_module.model.num_parameters() _UpperCAmelCase : int = count_trainable_parameters(lowerCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule ) ->int: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCamelCase__ , lowerCamelCase__ , "test" ) @rank_zero_only def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
234
1
from pathlib import Path import fire def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = Path(__UpperCAmelCase ) UpperCamelCase = Path(__UpperCAmelCase ) dest_dir.mkdir(exist_ok=__UpperCAmelCase ) for path in src_dir.iterdir(): UpperCamelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] UpperCamelCase = dest_dir.joinpath(path.name ) print(__UpperCAmelCase ) dest_path.open('w' ).write('\n'.join(__UpperCAmelCase ) ) if __name__ == "__main__": fire.Fire(minify)
356
from __future__ import annotations def A ( lowercase , lowercase , lowercase , lowercase ) -> list: '''simple docstring''' UpperCamelCase = [] UpperCamelCase , UpperCamelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCamelCase = result + left + right return input_list def A ( lowercase ) -> list: '''simple docstring''' if len(lowercase ) <= 1: return input_list UpperCamelCase = list(lowercase ) # iteration for two-way merging UpperCamelCase = 2 while p <= len(lowercase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowercase ) , lowercase ): UpperCamelCase = i UpperCamelCase = i + p - 1 UpperCamelCase = (low + high + 1) // 2 UpperCamelCase = merge(lowercase , lowercase , lowercase , lowercase ) # final merge of last two parts if p * 2 >= len(lowercase ): UpperCamelCase = i UpperCamelCase = merge(lowercase , 0 , lowercase , len(lowercase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCAmelCase : Any = input("Enter numbers separated by a comma:\n").strip() if user_input == "": _UpperCAmelCase : Optional[Any] = [] else: _UpperCAmelCase : Any = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
110
0
'''simple docstring''' from ... import PretrainedConfig snake_case_ : List[Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class __a (lowerCamelCase ): __a : Union[str, Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __a : Optional[Any] = "nezha" def __init__( self : List[str] , __magic_name__ : Any=2_11_28 , __magic_name__ : str=7_68 , __magic_name__ : Tuple=12 , __magic_name__ : Optional[int]=12 , __magic_name__ : str=30_72 , __magic_name__ : str="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[Any]=5_12 , __magic_name__ : Any=64 , __magic_name__ : Optional[int]=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=1E-12 , __magic_name__ : int=0.1 , __magic_name__ : List[str]=0 , __magic_name__ : str=2 , __magic_name__ : Tuple=3 , __magic_name__ : List[Any]=True , **__magic_name__ : List[Any] , ) -> int: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Any = max_relative_position UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : List[Any] = layer_norm_eps UpperCAmelCase_ : Union[str, Any] = classifier_dropout UpperCAmelCase_ : Optional[Any] = use_cache
125
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class __a : def __init__( self : int , __magic_name__ : int , __magic_name__ : MutableSequence[float] ) -> None: """simple docstring""" if len(__magic_name__ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) UpperCAmelCase_ : list[float] = list(__magic_name__ ) UpperCAmelCase_ : List[str] = degree def __add__( self : List[str] , __magic_name__ : Polynomial ) -> Polynomial: """simple docstring""" if self.degree > polynomial_a.degree: UpperCAmelCase_ : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __magic_name__ ) else: UpperCAmelCase_ : List[str] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __magic_name__ ) def __sub__( self : Dict , __magic_name__ : Polynomial ) -> Polynomial: """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : List[Any] ) -> Polynomial: """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : str , __magic_name__ : Polynomial ) -> Polynomial: """simple docstring""" UpperCAmelCase_ : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __magic_name__ ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : int | float ) -> int | float: """simple docstring""" UpperCAmelCase_ : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Optional[int] ) -> str: """simple docstring""" UpperCAmelCase_ : Optional[Any] = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__magic_name__ ) return polynomial def __repr__( self : List[Any] ) -> str: """simple docstring""" return self.__str__() def UpperCAmelCase__ ( self : List[str] ) -> Polynomial: """simple docstring""" UpperCAmelCase_ : list[float] = [0] * self.degree for i in range(self.degree ): UpperCAmelCase_ : List[str] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : int | float = 0 ) -> Polynomial: """simple docstring""" UpperCAmelCase_ : list[float] = [0] * (self.degree + 2) UpperCAmelCase_ : Union[str, Any] = constant for i in range(self.degree + 1 ): UpperCAmelCase_ : Optional[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __magic_name__ ) def __eq__( self : Any , __magic_name__ : object ) -> bool: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : List[Any] , __magic_name__ : object ) -> bool: """simple docstring""" return not self.__eq__(__magic_name__ )
125
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowerCAmelCase : def __init__( self :Optional[Any] , _lowercase :str = "cpu" , _lowercase :str = "openai/clip-vit-large-patch14" ): '''simple docstring''' lowercase__ = device lowercase__ = CLIPTokenizerFast.from_pretrained(_lowercase ) lowercase__ = [0.48145466, 0.4578275, 0.40821073] lowercase__ = [0.26862954, 0.26130258, 0.27577711] lowercase__ = torchvision.transforms.Normalize(self.image_mean , self.image_std ) lowercase__ = torchvision.transforms.Resize(2_24 ) lowercase__ = torchvision.transforms.CenterCrop(2_24 ) def UpperCAmelCase ( self :Dict , _lowercase :Optional[int] ): '''simple docstring''' lowercase__ = self.resize(_lowercase ) lowercase__ = self.center_crop(_lowercase ) lowercase__ = self.normalize(_lowercase ) return images def __call__( self :Any , _lowercase :List[Any]=None , _lowercase :Any=None , **_lowercase :str ): '''simple docstring''' lowercase__ = self.tokenizer(text=_lowercase , **_lowercase ) lowercase__ = self.preprocess_img(_lowercase ) lowercase__ = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowerCAmelCase ( nn.Module ): def __init__( self :Optional[Any] , _lowercase :List[Any]=10 , _lowercase :int=0.01 , _lowercase :Tuple=None , _lowercase :Any=None , _lowercase :Optional[int]=None , _lowercase :List[Any]=None , _lowercase :Tuple=None , _lowercase :Tuple=None , _lowercase :List[Any]=False , _lowercase :Optional[Any]=True , _lowercase :Dict="image" , _lowercase :Any=True , _lowercase :Tuple=False , _lowercase :str=False , _lowercase :int=False , ): '''simple docstring''' super().__init__() lowercase__ = None lowercase__ = device if device else get_device() if vqgan: lowercase__ = vqgan else: lowercase__ = load_vqgan(self.device , conf_path=_lowercase , ckpt_path=_lowercase ) self.vqgan.eval() if clip: lowercase__ = clip else: lowercase__ = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) lowercase__ = ProcessorGradientFlow(device=self.device ) lowercase__ = iterations lowercase__ = lr lowercase__ = log lowercase__ = make_grid lowercase__ = return_val lowercase__ = quantize lowercase__ = self.vqgan.decoder.z_shape def UpperCAmelCase ( self :Optional[int] , _lowercase :Tuple=None , _lowercase :List[str]=None , _lowercase :int=5 , _lowercase :Optional[int]=True ): '''simple docstring''' lowercase__ = [] if output_path is None: lowercase__ = """./animation.gif""" if input_path is None: lowercase__ = self.save_path lowercase__ = sorted(glob(input_path + "/*" ) ) if not len(_lowercase ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(_lowercase ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) lowercase__ = total_duration / len(_lowercase ) lowercase__ = [frame_duration] * len(_lowercase ) if extend_frames: lowercase__ = 1.5 lowercase__ = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(_lowercase ) ) imageio.mimsave(_lowercase , _lowercase , duration=_lowercase ) print(f'''gif saved to {output_path}''' ) def UpperCAmelCase ( self :Optional[Any] , _lowercase :List[Any]=None , _lowercase :int=None ): '''simple docstring''' if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError lowercase__ = preprocess(Image.open(_lowercase ) , target_image_size=2_56 ).to(self.device ) lowercase__ = preprocess_vqgan(_lowercase ) lowercase__ = self.vqgan.encode(_lowercase ) return z def UpperCAmelCase ( self :Tuple , _lowercase :Union[str, Any] ): '''simple docstring''' lowercase__ = self.latent.detach().requires_grad_() lowercase__ = base_latent + transform_vector if self.quantize: lowercase__ = self.vqgan.quantize(_lowercase ) else: lowercase__ = trans_latent return self.vqgan.decode(_lowercase ) def UpperCAmelCase ( self :int , _lowercase :Dict , _lowercase :Dict , _lowercase :Tuple=None ): '''simple docstring''' lowercase__ = self.clip_preprocessor(text=_lowercase , images=_lowercase , return_tensors="pt" , padding=_lowercase ) lowercase__ = self.clip(**_lowercase ) lowercase__ = clip_outputs.logits_per_image if weights is not None: lowercase__ = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase ( self :Dict , _lowercase :Dict , _lowercase :Dict , _lowercase :Any ): '''simple docstring''' lowercase__ = self._get_clip_similarity(pos_prompts["prompts"] , _lowercase , weights=(1 / pos_prompts["weights"]) ) if neg_prompts: lowercase__ = self._get_clip_similarity(neg_prompts["prompts"] , _lowercase , weights=neg_prompts["weights"] ) else: lowercase__ = torch.tensor([1] , device=self.device ) lowercase__ = -torch.log(_lowercase ) + torch.log(_lowercase ) return loss def UpperCAmelCase ( self :Optional[Any] , _lowercase :str , _lowercase :Optional[int] , _lowercase :List[Any] ): '''simple docstring''' lowercase__ = torch.randn_like(self.latent , requires_grad=_lowercase , device=self.device ) lowercase__ = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() lowercase__ = self._add_vector(_lowercase ) lowercase__ = loop_post_process(_lowercase ) lowercase__ = self._get_CLIP_loss(_lowercase , _lowercase , _lowercase ) print("CLIP loss" , _lowercase ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=_lowercase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCAmelCase ( self :Tuple , _lowercase :Any , _lowercase :str , _lowercase :int ): '''simple docstring''' wandb.init(reinit=_lowercase , project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: lowercase__ = Image.open(_lowercase ) lowercase__ = image.resize((2_56, 2_56) ) wandb.log("Original Image" , wandb.Image(_lowercase ) ) def UpperCAmelCase ( self :Tuple , _lowercase :str ): '''simple docstring''' if not prompts: return [] lowercase__ = [] lowercase__ = [] if isinstance(_lowercase , _lowercase ): lowercase__ = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(_lowercase , (tuple, list) ): lowercase__ = prompt[0] lowercase__ = float(prompt[1] ) elif ":" in prompt: lowercase__ = prompt.split(":" ) lowercase__ = float(_lowercase ) else: lowercase__ = prompt lowercase__ = 1.0 processed_prompts.append(_lowercase ) weights.append(_lowercase ) return { "prompts": processed_prompts, "weights": torch.tensor(_lowercase , device=self.device ), } def UpperCAmelCase ( self :Optional[Any] , _lowercase :Dict , _lowercase :Tuple=None , _lowercase :int=None , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Union[str, Any]=True , _lowercase :Union[str, Any]=True , _lowercase :Dict=None , ): '''simple docstring''' if image_path: lowercase__ = self._get_latent(_lowercase ) else: lowercase__ = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(_lowercase , _lowercase , _lowercase ) assert pos_prompts, "You must provide at least one positive prompt." lowercase__ = self.process_prompts(_lowercase ) lowercase__ = self.process_prompts(_lowercase ) if save_final and save_path is None: lowercase__ = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) ) if not os.path.exists(_lowercase ): os.makedirs(_lowercase ) else: lowercase__ = save_path + """_""" + get_timestamp() os.makedirs(_lowercase ) lowercase__ = save_path lowercase__ = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(_lowercase ) ) lowercase__ = loop_post_process(_lowercase ) for iter, transformed_img in enumerate(self._optimize_CLIP(_lowercase , _lowercase , _lowercase ) ): if show_intermediate: show_pil(_lowercase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"Image": wandb.Image(_lowercase )} ) if show_final: show_pil(_lowercase ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
356
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): __lowerCamelCase = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = (3, 32, 1_28) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowercase ) + "\n" ) lowercase__ = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 1_28}, } lowercase__ = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowercase , _lowercase ) def UpperCAmelCase ( self :Optional[Any] , **_lowercase :str ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase ( self :List[Any] , **_lowercase :List[str] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) lowercase__ = Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) return image_input def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase__ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_lowercase , return_tensors="np" ) lowercase__ = processor(images=_lowercase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = "test" lowercase__ = processor(text=_lowercase ) lowercase__ = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = "test" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(_lowercase ) lowercase__ = tokenizer.batch_decode(_lowercase ) lowercase__ = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(_lowercase , _lowercase ) def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) lowercase__ = torch.randn(1 , 27 , 38 ) lowercase__ = torch.randn(1 , 27 , 5_02_57 ) lowercase__ = torch.randn(1 , 27 , 3_05_22 ) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
201
0
"""simple docstring""" from torch import nn class lowerCamelCase__ ( nn.Module ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() snake_case : List[Any] = class_size snake_case : Optional[int] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) snake_case : Dict = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Union[str, Any] = self.mlp(UpperCAmelCase__ ) return logits
148
def __lowercase ( _A ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") UpperCAmelCase__ : Optional[int] = int(input("""Enter number: """).strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
245
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCamelCase ( unittest.TestCase ): def __init__( self : str , UpperCAmelCase__ : int , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : Union[str, Any]=7 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : List[Any]=99 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : Optional[int]=5 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Tuple=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Union[str, Any]=512 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Dict=0.0_2 , UpperCAmelCase__ : Optional[Any]=4 , ) -> Any: _a : str = parent _a : int = batch_size _a : List[str] = seq_length _a : Optional[Any] = is_training _a : List[str] = use_attention_mask _a : int = use_token_type_ids _a : int = use_labels _a : List[Any] = vocab_size _a : List[str] = hidden_size _a : Union[str, Any] = num_hidden_layers _a : str = num_attention_heads _a : str = intermediate_size _a : Optional[int] = hidden_act _a : Dict = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Optional[Any] = max_position_embeddings _a : Union[str, Any] = type_vocab_size _a : Dict = type_sequence_label_size _a : List[Any] = initializer_range _a : Tuple = num_choices def _lowercase ( self : str ) -> int: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : List[Any] = None if self.use_attention_mask: _a : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _a : Union[str, Any] = None if self.use_token_type_ids: _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Optional[Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self : Any ) -> Optional[Any]: _a : Tuple = self.prepare_config_and_inputs() _a , _a , _a , _a : Any = config_and_inputs _a : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self : Tuple ) -> Dict: _a : int = FlaxAlbertModelTester(self ) @slow def _lowercase ( self : str ) -> int: for model_class_name in self.all_model_classes: _a : Optional[int] = model_class_name.from_pretrained("""albert-base-v2""" ) _a : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase__ ) @require_flax class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: _a : List[str] = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) _a : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _a : Any = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a : Any = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] _a : List[Any] = (1, 11, 768) self.assertEqual(output.shape , UpperCAmelCase__ ) _a : Optional[int] = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) )
324
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) _a : Dict = DatasetInfosDict.from_directory(UpperCamelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = str(UpperCamelCase__ ) dataset_info.write_to_directory(UpperCamelCase__ ) _a : Any = DatasetInfo.from_directory(UpperCamelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(UpperCamelCase__ , """dataset_info.json""" ) ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Dict = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 4_2}] , download_checksums={} , download_size=1_3_3_7 , post_processing_size=4_4_2 , dataset_size=1_2_3_4 , size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 , ) _a : int = dataset_info._to_yaml_dict() assert sorted(UpperCamelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _a : List[str] = yaml.safe_dump(UpperCamelCase__ ) _a : Optional[int] = yaml.safe_load(UpperCamelCase__ ) assert dataset_info_yaml_dict == reloaded def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[Any] = DatasetInfo() _a : Any = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=4_2 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=4_2 ), """v2""": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] , ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = str(UpperCamelCase__ ) dataset_infos_dict.write_to_directory(UpperCamelCase__ ) _a : List[Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _a : str = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _a : Dict = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(UpperCamelCase__ , """README.md""" ) )
324
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets SCREAMING_SNAKE_CASE__ = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" SCREAMING_SNAKE_CASE__ = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" SCREAMING_SNAKE_CASE__ = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def _snake_case ( self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def _snake_case ( self , lowercase , lowercase , lowercase = False , lowercase = False , lowercase = False , lowercase = False , ) -> Optional[int]: lowerCAmelCase = len(references[0] ) if any(len(lowercase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowerCAmelCase = [[refs[i] for refs in references] for i in range(lowercase )] lowerCAmelCase = TER( normalized=lowercase , no_punct=lowercase , asian_support=lowercase , case_sensitive=lowercase , ) lowerCAmelCase = sb_ter.corpus_score(lowercase , lowercase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
46
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = "▁" SCREAMING_SNAKE_CASE__ = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE__ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } SCREAMING_SNAKE_CASE__ = { "google/pegasus-xsum": 512, } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase="<pad>" , lowercase="</s>" , lowercase="<unk>" , lowercase="<mask_2>" , lowercase="<mask_1>" , lowercase=None , lowercase=103 , lowercase = None , **lowercase , ) -> None: lowerCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowercase , lowercase ): raise TypeError( f'additional_special_tokens should be of type {type(lowercase )}, but is' f' {type(lowercase )}' ) lowerCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(lowercase ) , self.offset - 1 ) ] if len(set(lowercase ) ) != len(lowercase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowerCAmelCase = additional_special_tokens_extended else: lowerCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , pad_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) lowerCAmelCase = mask_token_sent lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # add special tokens to encoder dict lowerCAmelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase = {v: k for k, v in self.encoder.items()} @property def _snake_case ( self ) -> int: return len(self.sp_model ) + self.offset def _snake_case ( self ) -> Dict[str, int]: lowerCAmelCase = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , lowercase ) -> List[Any]: lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , lowercase ) -> List[str]: return self.sp_model.encode(lowercase , out_type=lowercase ) def _snake_case ( self , lowercase ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase = self.sp_model.piece_to_id(lowercase ) return sp_id + self.offset def _snake_case ( self , lowercase ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase = self.sp_model.IdToPiece(index - self.offset ) return token def _snake_case ( self , lowercase ) -> Optional[int]: lowerCAmelCase = [] lowerCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowerCAmelCase = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def _snake_case ( self , lowercase=False ) -> Tuple: return 1 def _snake_case ( self , lowercase ) -> Tuple: lowerCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _snake_case ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase ) elif token_ids_a is None: return self._special_token_mask(lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _snake_case ( self , lowercase , lowercase=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
46
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a : Optional[Any] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
from collections import defaultdict class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Optional[int] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCAmelCase_: List[Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE_ ) ) ] UpperCAmelCase_: Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCAmelCase_: List[Any] = (1 << len(SCREAMING_SNAKE_CASE_ )) - 1 def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCAmelCase_: List[Any] = self.count_ways_until(SCREAMING_SNAKE_CASE_, task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p), task_no + 1 ) # save the value. UpperCAmelCase_: List[Any] = total_ways_util return self.dp[mask][task_no] def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> str: # Store the list of persons for each task for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in task_performed[i]: self.task[j].append(SCREAMING_SNAKE_CASE_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0, 1 ) if __name__ == "__main__": a : Optional[Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. a : Optional[Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
82
0
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def UpperCAmelCase ( ) -> List[str]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(UpperCAmelCase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def UpperCAmelCase ( ) -> Dict: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def UpperCAmelCase ( ) -> List[Any]: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(UpperCAmelCase ): http_head('https://huggingface.co' )
69
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowercase_ = 256047 lowercase_ = 256145 @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = NllbTokenizer lowerCamelCase = NllbTokenizerFast lowerCamelCase = True lowerCamelCase = True lowerCamelCase = {} def snake_case__ ( self : Optional[int] )-> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = NllbTokenizer(lowercase_,keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Tuple )-> Tuple: '''simple docstring''' A__ = NllbTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ),[value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]],) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ],) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_,[ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ],) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ],) def snake_case__ ( self : List[Any] )-> List[Any]: '''simple docstring''' A__ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ ) A__ = self.tokenizer_class.from_pretrained(lowercase_,**lowercase_ ) A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(lowercase_ ) A__ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) A__ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowercase_,lowercase_ ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(lowercase_ ) A__ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_,lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(lowercase_,legacy_format=lowercase_ ) A__ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_,lowercase_ ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(lowercase_ ) A__ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_,lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False A__ = tempfile.mkdtemp() A__ = tokenizer_r.save_pretrained(lowercase_,legacy_format=lowercase_ ) A__ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A__ = tokenizer_r.from_pretrained(lowercase_ ) A__ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_,lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch def snake_case__ ( self : Optional[Any] )-> str: '''simple docstring''' if not self.test_seqaseq: return A__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. A__ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] A__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: A__ = tokenizer.prepare_seqaseq_batch( src_texts=lowercase_,tgt_texts=lowercase_,max_length=3,max_target_length=1_0,return_tensors='pt',src_lang='eng_Latn',tgt_lang='ron_Latn',) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1],3 ) self.assertEqual(batch.labels.shape[1],1_0 ) # max_target_length will default to max_length if not specified A__ = tokenizer.prepare_seqaseq_batch( lowercase_,tgt_texts=lowercase_,max_length=3,return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1],3 ) self.assertEqual(batch.labels.shape[1],3 ) A__ = tokenizer.prepare_seqaseq_batch( src_texts=lowercase_,max_length=3,max_target_length=1_0,return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1],3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1],3 ) self.assertNotIn('decoder_input_ids',lowercase_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def snake_case__ ( self : Tuple )-> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Any )-> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = [AddedToken('<special>',lstrip=lowercase_ )] A__ = self.rust_tokenizer_class.from_pretrained( lowercase_,additional_special_tokens=lowercase_,**lowercase_ ) A__ = tokenizer_r.encode('Hey this is a <special> token' ) A__ = tokenizer_r.encode('<special>',add_special_tokens=lowercase_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: A__ = self.rust_tokenizer_class.from_pretrained( lowercase_,additional_special_tokens=lowercase_,**lowercase_,) A__ = self.tokenizer_class.from_pretrained( lowercase_,additional_special_tokens=lowercase_,**lowercase_ ) A__ = tokenizer_p.encode('Hey this is a <special> token' ) A__ = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(lowercase_,lowercase_ ) self.assertEqual(lowercase_,lowercase_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): """simple docstring""" lowerCamelCase = 'facebook/nllb-200-distilled-600M' lowerCamelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCamelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCamelCase = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def snake_case__ ( cls : Tuple )-> List[str]: '''simple docstring''' A__ = NllbTokenizer.from_pretrained( cls.checkpoint_name,src_lang='eng_Latn',tgt_lang='ron_Latn' ) A__ = 1 return cls def snake_case__ ( self : Optional[int] )-> Any: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'],2_5_6_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'],2_5_6_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'],2_5_6_0_5_7 ) def snake_case__ ( self : Optional[Any] )-> List[str]: '''simple docstring''' A__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens,lowercase_ ) def snake_case__ ( self : Tuple )-> List[str]: '''simple docstring''' self.assertIn(lowercase_,self.tokenizer.all_special_ids ) # fmt: off A__ = [RO_CODE, 4_2_5_4, 9_8_0_6_8, 1_1_2_9_2_3, 3_9_0_7_2, 3_9_0_9, 7_1_3, 1_0_2_7_6_7, 2_6, 1_7_3_1_4, 3_5_6_4_2, 1_4_6_8_3, 3_3_1_1_8, 2_0_2_2, 6_6_9_8_7, 2, 2_5_6_0_4_7] # fmt: on A__ = self.tokenizer.decode(lowercase_,skip_special_tokens=lowercase_ ) A__ = self.tokenizer.decode(generated_ids[1:],skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_,lowercase_ ) self.assertNotIn(self.tokenizer.eos_token,lowercase_ ) def snake_case__ ( self : Tuple )-> Dict: '''simple docstring''' A__ = ['this is gunna be a long sentence ' * 2_0] assert isinstance(src_text[0],lowercase_ ) A__ = 1_0 A__ = self.tokenizer(lowercase_,max_length=lowercase_,truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[-1],2 ) self.assertEqual(ids[0],lowercase_ ) self.assertEqual(len(lowercase_ ),lowercase_ ) def snake_case__ ( self : Dict )-> Optional[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ),[2_5_6_2_0_3, 3] ) def snake_case__ ( self : str )-> Optional[Any]: '''simple docstring''' A__ = tempfile.mkdtemp() A__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) A__ = NllbTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids,lowercase_ ) @require_torch def snake_case__ ( self : Tuple )-> Dict: '''simple docstring''' A__ = self.tokenizer( self.src_text,text_target=self.tgt_text,padding=lowercase_,truncation=lowercase_,max_length=len(self.expected_src_tokens ),return_tensors='pt',) A__ = shift_tokens_right( batch['labels'],self.tokenizer.pad_token_id,self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(lowercase_,lowercase_ ) self.assertEqual((2, 1_5),batch.input_ids.shape ) self.assertEqual((2, 1_5),batch.attention_mask.shape ) A__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens,lowercase_ ) self.assertEqual(lowercase_,batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens,[EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens,[self.tokenizer.eos_token_id] ) def snake_case__ ( self : List[str] )-> Tuple: '''simple docstring''' A__ = self.tokenizer(self.src_text,padding=lowercase_,truncation=lowercase_,max_length=3,return_tensors='pt' ) A__ = self.tokenizer( text_target=self.tgt_text,padding=lowercase_,truncation=lowercase_,max_length=1_0,return_tensors='pt' ) A__ = targets['input_ids'] A__ = shift_tokens_right( lowercase_,self.tokenizer.pad_token_id,decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang],) self.assertEqual(batch.input_ids.shape[1],3 ) self.assertEqual(batch.decoder_input_ids.shape[1],1_0 ) @require_torch def snake_case__ ( self : Optional[Any] )-> Dict: '''simple docstring''' A__ = self.tokenizer._build_translation_inputs( 'A test',return_tensors='pt',src_lang='eng_Latn',tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(lowercase_ ),{ # A, test, EOS, en_XX 'input_ids': [[2_5_6_0_4_7, 7_0, 7_3_5_6, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 2_5_6_0_5_7, },) @require_torch def snake_case__ ( self : Tuple )-> Dict: '''simple docstring''' A__ = True A__ = self.tokenizer( 'UN Chief says there is no military solution in Syria',src_lang='eng_Latn',tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids,[1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2, 2_5_6_0_4_7] ) A__ = False A__ = self.tokenizer( 'UN Chief says there is no military solution in Syria',src_lang='eng_Latn',tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids,[2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2] )
282
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowercase_ = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) lowercase_ = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} lowercase_ = "zero2" lowercase_ = "zero3" lowercase_ = [ZEROa, ZEROa] def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: '''simple docstring''' A__ = parameterized.to_safe_name('_'.join(str(SCREAMING_SNAKE_CASE__ ) for x in param.args ) ) return f'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test lowercase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class A ( _UpperCAmelCase ): """simple docstring""" @parameterized.expand(lowercase_,name_func=lowercase_ ) def snake_case__ ( self : int,lowercase_ : str,lowercase_ : Any )-> Optional[int]: '''simple docstring''' self.run_and_check( stage=lowercase_,model=lowercase_,distributed=lowercase_,fpaa=lowercase_,) @require_torch_multi_gpu @parameterized.expand(lowercase_,name_func=lowercase_ ) def snake_case__ ( self : Union[str, Any],lowercase_ : Optional[Any],lowercase_ : List[Any] )-> int: '''simple docstring''' self.run_and_check( stage=lowercase_,model=lowercase_,distributed=lowercase_,fpaa=lowercase_,) @parameterized.expand(lowercase_,name_func=lowercase_ ) def snake_case__ ( self : List[str],lowercase_ : List[str],lowercase_ : List[Any] )-> Any: '''simple docstring''' self.run_and_check( stage=lowercase_,model=lowercase_,distributed=lowercase_,fpaa=lowercase_,) @require_torch_multi_gpu @parameterized.expand(lowercase_,name_func=lowercase_ ) def snake_case__ ( self : Dict,lowercase_ : Optional[Any],lowercase_ : List[Any] )-> Optional[int]: '''simple docstring''' self.run_and_check( stage=lowercase_,model=lowercase_,distributed=lowercase_,fpaa=lowercase_,) def snake_case__ ( self : Tuple,lowercase_ : Any )-> Union[str, Any]: '''simple docstring''' pass def snake_case__ ( self : int,lowercase_ : str,lowercase_ : str,lowercase_ : int = 1_0,lowercase_ : bool = True,lowercase_ : bool = True,lowercase_ : bool = True,)-> Union[str, Any]: '''simple docstring''' A__ = models[model] A__ = self.run_trainer( stage=lowercase_,model_name=lowercase_,eval_steps=lowercase_,num_train_epochs=1,distributed=lowercase_,fpaa=lowercase_,) self.do_checks(lowercase_ ) return output_dir def snake_case__ ( self : Union[str, Any],lowercase_ : str,lowercase_ : str,lowercase_ : int = 1_0,lowercase_ : int = 1,lowercase_ : bool = True,lowercase_ : bool = True,)-> Any: '''simple docstring''' A__ = self.get_auto_remove_tmp_dir('./xxx',after=lowercase_ ) A__ = F'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowercase_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A__ = F'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() A__ = [F'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] A__ = self.get_launcher(lowercase_ ) A__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowercase_,env=self.get_env() ) return output_dir def snake_case__ ( self : Any,lowercase_ : int=False )-> Tuple: '''simple docstring''' A__ = min(2,get_gpu_count() ) if distributed else 1 return F'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
282
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCamelCase__ ( snake_case_ : Tuple=None ) -> Optional[int]: __snake_case = argparse.ArgumentParser(add_help=snake_case_ , allow_abbrev=snake_case_ ) # The main config parser __snake_case = config_command_parser(snake_case_ ) # The subparser to add commands to __snake_case = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(snake_case_ , parents=[parent_parser] ) update_command_parser(snake_case_ , parents=[parent_parser] ) return config_parser def lowerCamelCase__ ( ) -> Optional[int]: __snake_case = get_config_parser() __snake_case = config_parser.parse_args() if not hasattr(snake_case_ , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(snake_case_ ) if __name__ == "__main__": main()
24
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__ = "cpu", __magic_name__ = "openai/clip-vit-large-patch14" ) -> None: """simple docstring""" UpperCamelCase__ : List[str] = device UpperCamelCase__ : Union[str, Any] = CLIPTokenizerFast.from_pretrained(__magic_name__ ) UpperCamelCase__ : Tuple = [0.4814_5466, 0.457_8275, 0.4082_1073] UpperCamelCase__ : Union[str, Any] = [0.2686_2954, 0.2613_0258, 0.2757_7711] UpperCamelCase__ : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std ) UpperCamelCase__ : List[str] = torchvision.transforms.Resize(224 ) UpperCamelCase__ : Union[str, Any] = torchvision.transforms.CenterCrop(224 ) def UpperCamelCase__ ( self, __magic_name__ ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.resize(__magic_name__ ) UpperCamelCase__ : Dict = self.center_crop(__magic_name__ ) UpperCamelCase__ : List[str] = self.normalize(__magic_name__ ) return images def __call__( self, __magic_name__=None, __magic_name__=None, **__magic_name__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.tokenizer(text=__magic_name__, **__magic_name__ ) UpperCamelCase__ : List[Any] = self.preprocess_img(__magic_name__ ) UpperCamelCase__ : Optional[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self, __magic_name__=10, __magic_name__=0.01, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__=False, __magic_name__=True, __magic_name__="image", __magic_name__=True, __magic_name__=False, __magic_name__=False, __magic_name__=False, ) -> None: """simple docstring""" super().__init__() UpperCamelCase__ : Dict = None UpperCamelCase__ : Tuple = device if device else get_device() if vqgan: UpperCamelCase__ : Union[str, Any] = vqgan else: UpperCamelCase__ : Any = load_vqgan(self.device, conf_path=__magic_name__, ckpt_path=__magic_name__ ) self.vqgan.eval() if clip: UpperCamelCase__ : Optional[Any] = clip else: UpperCamelCase__ : Any = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) UpperCamelCase__ : str = ProcessorGradientFlow(device=self.device ) UpperCamelCase__ : Union[str, Any] = iterations UpperCamelCase__ : Tuple = lr UpperCamelCase__ : Optional[int] = log UpperCamelCase__ : List[Any] = make_grid UpperCamelCase__ : Optional[Any] = return_val UpperCamelCase__ : str = quantize UpperCamelCase__ : int = self.vqgan.decoder.z_shape def UpperCamelCase__ ( self, __magic_name__=None, __magic_name__=None, __magic_name__=5, __magic_name__=True ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = [] if output_path is None: UpperCamelCase__ : List[str] = '''./animation.gif''' if input_path is None: UpperCamelCase__ : Union[str, Any] = self.save_path UpperCamelCase__ : Tuple = sorted(glob(input_path + '''/*''' ) ) if not len(__magic_name__ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(__magic_name__ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) UpperCamelCase__ : Dict = total_duration / len(__magic_name__ ) UpperCamelCase__ : List[Any] = [frame_duration] * len(__magic_name__ ) if extend_frames: UpperCamelCase__ : List[Any] = 1.5 UpperCamelCase__ : Any = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(__magic_name__ ) ) imageio.mimsave(__magic_name__, __magic_name__, duration=__magic_name__ ) print(f"gif saved to {output_path}" ) def UpperCamelCase__ ( self, __magic_name__=None, __magic_name__=None ) -> Any: """simple docstring""" if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError UpperCamelCase__ : List[Any] = preprocess(Image.open(__magic_name__ ), target_image_size=256 ).to(self.device ) UpperCamelCase__ : str = preprocess_vqgan(__magic_name__ ) UpperCamelCase__ ,*UpperCamelCase__ : Union[str, Any] = self.vqgan.encode(__magic_name__ ) return z def UpperCamelCase__ ( self, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.latent.detach().requires_grad_() UpperCamelCase__ : Any = base_latent + transform_vector if self.quantize: UpperCamelCase__ ,*UpperCamelCase__ : int = self.vqgan.quantize(__magic_name__ ) else: UpperCamelCase__ : Optional[int] = trans_latent return self.vqgan.decode(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__=None ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = self.clip_preprocessor(text=__magic_name__, images=__magic_name__, return_tensors='''pt''', padding=__magic_name__ ) UpperCamelCase__ : Optional[int] = self.clip(**__magic_name__ ) UpperCamelCase__ : Tuple = clip_outputs.logits_per_image if weights is not None: UpperCamelCase__ : List[Any] = similarity_logits * weights return similarity_logits.sum() def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = self._get_clip_similarity(pos_prompts['''prompts'''], __magic_name__, weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: UpperCamelCase__ : Tuple = self._get_clip_similarity(neg_prompts['''prompts'''], __magic_name__, weights=neg_prompts['''weights'''] ) else: UpperCamelCase__ : Optional[int] = torch.tensor([1], device=self.device ) UpperCamelCase__ : Tuple = -torch.log(__magic_name__ ) + torch.log(__magic_name__ ) return loss def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = torch.randn_like(self.latent, requires_grad=__magic_name__, device=self.device ) UpperCamelCase__ : Optional[int] = torch.optim.Adam([vector], lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCamelCase__ : Tuple = self._add_vector(__magic_name__ ) UpperCamelCase__ : Any = loop_post_process(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self._get_CLIP_loss(__magic_name__, __magic_name__, __magic_name__ ) print('''CLIP loss''', __magic_name__ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=__magic_name__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" wandb.init(reinit=__magic_name__, project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: UpperCamelCase__ : List[str] = Image.open(__magic_name__ ) UpperCamelCase__ : List[Any] = image.resize((256, 256) ) wandb.log('''Original Image''', wandb.Image(__magic_name__ ) ) def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[int]: """simple docstring""" if not prompts: return [] UpperCamelCase__ : int = [] UpperCamelCase__ : str = [] if isinstance(__magic_name__, __magic_name__ ): UpperCamelCase__ : Optional[Any] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(__magic_name__, (tuple, list) ): UpperCamelCase__ : Optional[int] = prompt[0] UpperCamelCase__ : Dict = float(prompt[1] ) elif ":" in prompt: UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = prompt.split(''':''' ) UpperCamelCase__ : List[Any] = float(__magic_name__ ) else: UpperCamelCase__ : List[str] = prompt UpperCamelCase__ : Any = 1.0 processed_prompts.append(__magic_name__ ) weights.append(__magic_name__ ) return { "prompts": processed_prompts, "weights": torch.tensor(__magic_name__, device=self.device ), } def UpperCamelCase__ ( self, __magic_name__, __magic_name__=None, __magic_name__=None, __magic_name__=True, __magic_name__=False, __magic_name__=True, __magic_name__=True, __magic_name__=None, ) -> str: """simple docstring""" if image_path: UpperCamelCase__ : Union[str, Any] = self._get_latent(__magic_name__ ) else: UpperCamelCase__ : Dict = torch.randn(self.latent_dim, device=self.device ) if self.log: self._init_logging(__magic_name__, __magic_name__, __magic_name__ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCamelCase__ : Optional[Any] = self.process_prompts(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = self.process_prompts(__magic_name__ ) if save_final and save_path is None: UpperCamelCase__ : str = os.path.join('''./outputs/''', '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(__magic_name__ ): os.makedirs(__magic_name__ ) else: UpperCamelCase__ : int = save_path + '''_''' + get_timestamp() os.makedirs(__magic_name__ ) UpperCamelCase__ : Optional[Any] = save_path UpperCamelCase__ : str = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(__magic_name__ ) ) UpperCamelCase__ : Optional[Any] = loop_post_process(__magic_name__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(__magic_name__, __magic_name__, __magic_name__ ) ): if show_intermediate: show_pil(__magic_name__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png" ) ) if self.log: wandb.log({'''Image''': wandb.Image(__magic_name__ )} ) if show_final: show_pil(__magic_name__ ) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png" ) )
201
0
UpperCAmelCase_ : List[Any] = 0 # The first color of the flag. UpperCAmelCase_ : List[Any] = 1 # The second color of the flag. UpperCAmelCase_ : Union[str, Any] = 2 # The third color of the flag. UpperCAmelCase_ : List[str] = (red, white, blue) def SCREAMING_SNAKE_CASE_ ( __A : list ) -> list: """simple docstring""" if not sequence: return [] if len(__A ) == 1: return list(__A ) a_ : Optional[int] = 0 a_ : Tuple = len(__A ) - 1 a_ : Optional[int] = 0 while mid <= high: if sequence[mid] == colors[0]: a_ , a_ : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: a_ , a_ : Union[str, Any] = sequence[high], sequence[mid] high -= 1 else: a_ : Optional[Any] = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = input('Enter numbers separated by commas:\n').strip() UpperCAmelCase_ : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(F'{dutch_national_flag_sort(unsorted)}')
120
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Dict = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
120
1
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaxAlbertModelTester(self ) @slow def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' ) _UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] _UpperCamelCase = (1, 11, 768) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCamelCase = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
324
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaxAlbertModelTester(self ) @slow def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' ) _UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] _UpperCamelCase = (1, 11, 768) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCamelCase = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
324
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = tempfile.mkdtemp() a = BlipImageProcessor() a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) a = BlipaProcessor(__lowerCamelCase ,__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowerCamelCase ).tokenizer def SCREAMING_SNAKE_CASE_ ( self : Dict ,**__lowerCamelCase : Tuple ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowerCamelCase ).image_processor def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__lowerCamelCase ,padding_value=1.0 ) a = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=__lowerCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,__lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = BlipaProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) a = self.prepare_image_inputs() a = image_processor(__lowerCamelCase ,return_tensors='''np''' ) a = processor(images=__lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = BlipaProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) a = '''lower newer''' a = processor(text=__lowerCamelCase ) a = tokenizer(__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = BlipaProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__lowerCamelCase ,images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = BlipaProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__lowerCamelCase ) a = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = BlipaProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__lowerCamelCase ,images=__lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] )
330
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): a = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = '''a''' * 1_0_0_0 + '''.lock''' a = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 a = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
330
1
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _SCREAMING_SNAKE_CASE : Optional[Any] = "." if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = os.path.join(REPO_PATH, "utils/documentation_tests.txt") _SCREAMING_SNAKE_CASE : str = [] _SCREAMING_SNAKE_CASE : Optional[Any] = [] with open(doctest_file_path) as fp: for line in fp: _SCREAMING_SNAKE_CASE : Optional[int] = line.strip() _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _SCREAMING_SNAKE_CASE : List[str] = "\n".join(non_existent_paths) raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
85
A__ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} A__ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(snake_case , snake_case , snake_case ) order.append(snake_case ) return order def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(snake_case , snake_case , snake_case ) return component def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = len(snake_case ) * [False] _lowerCAmelCase = {vert: [] for vert in range(len(snake_case ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(snake_case ) _lowerCAmelCase = [] for i, was_visited in enumerate(snake_case ): if not was_visited: order += topology_sort(snake_case , snake_case , snake_case ) _lowerCAmelCase = [] _lowerCAmelCase = len(snake_case ) * [False] for i in range(len(snake_case ) ): _lowerCAmelCase = order[len(snake_case ) - i - 1] if not visited[vert]: _lowerCAmelCase = find_components(snake_case , snake_case , snake_case ) components_list.append(snake_case ) return components_list
82
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) class _A ( lowerCAmelCase ): snake_case__ : Tuple = ['pixel_values'] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PIL.Image.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowercase = size if size is not None else {"""height""": 256, """width""": 256} lowercase = get_size_dict(lowerCamelCase_ ) lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase = get_size_dict(lowerCamelCase_ , param_name="""crop_size""" ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_center_crop lowercase = crop_size lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PIL.Image.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( lowerCamelCase_ , size=(size["""height"""], size["""width"""]) , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" lowercase = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): """simple docstring""" lowercase = do_resize if do_resize is not None else self.do_resize lowercase = resample if resample is not None else self.resample lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = size if size is not None else self.size lowercase = get_size_dict(lowerCamelCase_ ) lowercase = crop_size if crop_size is not None else self.crop_size lowercase = get_size_dict(lowerCamelCase_ , param_name="""crop_size""" ) lowercase = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: lowercase = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: lowercase = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: lowercase = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowercase = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowercase = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowercase = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
354
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: '''simple docstring''' lowercase = Mock() lowercase = conn, Mock() lowercase = iter([1, None] ) lowercase = lambda lowerCAmelCase__ : next(lowerCAmelCase__ ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCAmelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
32
0
import comet # From: unbabel-comet import torch import datasets _lowerCamelCase : Union[str, Any] = datasets.logging.get_logger(__name__) _lowerCamelCase : List[Any] = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' _lowerCamelCase : Tuple = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' _lowerCamelCase : Any = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://unbabel.github.io/COMET/html/index.html' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'sources': datasets.Value('string' , id='sequence' ), 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/Unbabel/COMET'] , reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] , ) def A ( self : Optional[int] , lowercase : List[str] ): '''simple docstring''' if self.config_name == "default": _snake_case = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: _snake_case = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def A ( self : Any , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : str=None , lowercase : str=False ): '''simple docstring''' if gpus is None: _snake_case = 1 if torch.cuda.is_available() else 0 _snake_case = {'src': sources, 'mt': predictions, 'ref': references} _snake_case = [dict(zip(lowercase , lowercase ) ) for t in zip(*data.values() )] _snake_case , _snake_case = self.scorer.predict(lowercase , gpus=lowercase , progress_bar=lowercase ) return {"mean_score": mean_score, "scores": scores}
282
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def a_ ( __lowercase : Sequence[float] , __lowercase : int , __lowercase : int ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] _snake_case = (low + high) // 2 _snake_case , _snake_case , _snake_case = max_subarray(__lowercase , __lowercase , __lowercase ) _snake_case , _snake_case , _snake_case = max_subarray(__lowercase , mid + 1 , __lowercase ) _snake_case , _snake_case , _snake_case = max_cross_sum(__lowercase , __lowercase , __lowercase , __lowercase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def a_ ( __lowercase : Sequence[float] , __lowercase : int , __lowercase : int , __lowercase : int ) -> tuple[int, int, float]: _snake_case , _snake_case = float('-inf' ), -1 _snake_case , _snake_case = float('-inf' ), -1 _snake_case = 0 for i in range(__lowercase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _snake_case = summ _snake_case = i _snake_case = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _snake_case = summ _snake_case = i return max_left, max_right, (left_sum + right_sum) def a_ ( __lowercase : int ) -> float: _snake_case = [randint(1 , __lowercase ) for _ in range(__lowercase )] _snake_case = time.time() max_subarray(__lowercase , 0 , input_size - 1 ) _snake_case = time.time() return end - start def a_ ( ) -> None: _snake_case = [10, 100, 1_000, 10_000, 50_000, 100_000, 200_000, 300_000, 400_000, 500_000] _snake_case = [time_max_subarray(__lowercase ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(__lowercase , __lowercase ): print(__lowercase , '\t\t' , __lowercase ) plt.plot(__lowercase , __lowercase ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
282
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __lowerCamelCase : Dict = flax_key_tuple[:-1] + ('weight',) __lowerCamelCase : Any = torch.permute(_A , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_A ): # linear layer __lowerCamelCase : Optional[Any] = flax_key_tuple[:-1] + ('weight',) __lowerCamelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCamelCase : Dict = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: if "metadata" in layer: __lowerCamelCase : int = layer.split('metadata' ) __lowerCamelCase : int = ''.join(split_layer[0] )[:-1] __lowerCamelCase : Union[str, Any] = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: __lowerCamelCase : Optional[int] = layer.split('kvstore' ) __lowerCamelCase : Optional[Any] = ''.join(split_layer[0] )[:-1] __lowerCamelCase : Dict = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: __lowerCamelCase : str = layer.split('/' ) __lowerCamelCase : Union[str, Any] = '/'.join(split_layer[:-1] ) __lowerCamelCase : Any = (split_layer[-1],) if "kvstore/path" in layer: __lowerCamelCase : str = F"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: __lowerCamelCase : int = 'file' else: __lowerCamelCase : Any = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : Optional[int] = rename_keys(_A ) __lowerCamelCase : Optional[Any] = {} for k, v in current_block.items(): __lowerCamelCase : Optional[int] = v __lowerCamelCase : Union[str, Any] = new_current_block torch.save(_A , _A ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = WEIGHTS_NAME ) -> Union[str, Any]: __lowerCamelCase : Any = convert_file_size_to_int(_A ) __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Tuple = {} __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : int = 0 os.makedirs(_A , exist_ok=_A ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: __lowerCamelCase : Optional[int] = serialization.msgpack_restore(fp.read() )['optimizer']['target'] __lowerCamelCase : Optional[int] = flatten_dict(_A , sep='/' ) __lowerCamelCase : Optional[int] = {} for layer in checkpoint_info.keys(): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = get_key_and_tensorstore_dict( _A , _A , _A ) if curr_real_layer_name in all_layers: __lowerCamelCase : List[Any] = content else: __lowerCamelCase : Any = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __lowerCamelCase : Union[str, Any] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __lowerCamelCase : Dict = torch.tensor(_A ) __lowerCamelCase : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __lowerCamelCase , __lowerCamelCase : Any = rename_base_flax_keys(tuple(key.split('/' ) ) , _A ) __lowerCamelCase : str = '/'.join(_A ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __lowerCamelCase : Optional[Any] = os.path.join( _A , weights_name.replace('.bin' , F"-{len(_A )+1:05d}-of-???.bin" ) ) rename_and_save_block(_A , _A ) sharded_state_dicts.append(current_block.keys() ) del current_block __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : List[str] = 0 __lowerCamelCase : Optional[Any] = raw_weights.to(getattr(_A , _A ) ) current_block_size += weight_size total_size += weight_size # Add the last block __lowerCamelCase : List[str] = os.path.join(_A , weights_name.replace('.bin' , F"-{len(_A )+1:05d}-of-???.bin" ) ) rename_and_save_block(_A , _A ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_A ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __lowerCamelCase : int = {} __lowerCamelCase : Tuple = {} for idx, shard in enumerate(_A ): __lowerCamelCase : List[Any] = weights_name.replace( '.bin' , F"-{idx+1:05d}-of-{len(_A ):05d}.bin" ) # len(sharded_state_dicts):05d} __lowerCamelCase : int = os.path.join(_A , weights_name.replace('.bin' , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(_A , os.path.join(_A , _A ) ) __lowerCamelCase : Optional[int] = shard for key in shard: __lowerCamelCase : Dict = shard_file # Add the metadata __lowerCamelCase : Tuple = {'total_size': total_size} __lowerCamelCase : Optional[int] = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(_A , _A ) , 'w' , encoding='utf-8' ) as f: __lowerCamelCase : Tuple = json.dumps(_A , indent=2 , sort_keys=_A ) + '\n' f.write(_A ) return metadata, index if __name__ == "__main__": a : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) a : Optional[int] =parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def SCREAMING_SNAKE_CASE__ ( ) -> int: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __lowerCamelCase : str = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) __lowerCamelCase : Optional[int] = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) __lowerCamelCase : str = TaTokenizer.from_pretrained('t5-small' ) __lowerCamelCase : Dict = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __lowerCamelCase : Any = tokenizer(_A , return_tensors='pt' ).input_ids __lowerCamelCase : str = model.generate(_A , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
355
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : List[Any] = logging.get_logger() # the current default level is logging.WARNING __lowerCamelCase : Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) # restore to the original level logging.set_verbosity(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[int] = logging.get_verbosity() __lowerCamelCase : str = logging.get_logger('transformers.models.bart.tokenization_bart') __lowerCamelCase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,msg + '\n') # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,'') # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,msg + '\n') # restore to the original level logging.set_verbosity(SCREAMING_SNAKE_CASE__) @mockenv(TRANSFORMERS_VERBOSITY='error') def lowerCAmelCase ( self : Tuple): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __lowerCamelCase : int = logging.get_logger('transformers.models.bart.tokenization_bart') __lowerCamelCase : int = os.getenv('TRANSFORMERS_VERBOSITY' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = logging.log_levels[env_level_str] __lowerCamelCase : Tuple = logging.get_verbosity() self.assertEqual( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,F"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" ,) # restore to the original level __lowerCamelCase : List[str] = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error') def lowerCAmelCase ( self : List[Any]): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __lowerCamelCase : List[str] = logging.logging.getLogger() with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart') self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' ,cl.out) # no need to restore as nothing was changed def lowerCAmelCase ( self : Any): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __lowerCamelCase : Tuple = logging.get_logger('transformers.models.bart.tokenization_bart') __lowerCamelCase : Optional[int] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1'): # nothing should be logged as env var disables this method with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning_advice(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,'') with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS=''): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning_advice(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,msg + '\n') def SCREAMING_SNAKE_CASE__ ( ) -> Any: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
113
0
'''simple docstring''' import torch def UpperCamelCase_ ( ): '''simple docstring''' if torch.cuda.is_available(): lowerCAmelCase_ : Optional[int] = torch.cuda.device_count() else: lowerCAmelCase_ : Union[str, Any] = 0 print(f'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
120
'''simple docstring''' from __future__ import annotations from typing import Any class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" pass class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Any ) -> None: lowerCAmelCase_ : Any = data lowerCAmelCase_ : Node | None = None def __iter__( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase_ : Union[str, Any] = self lowerCAmelCase_ : Any = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase ) yield node.data lowerCAmelCase_ : int = node.next_node @property def __lowercase ( self : str ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __A : Dict = Node(1) __A : Optional[Any] = Node(2) __A : int = Node(3) __A : Optional[Any] = Node(4) print(root_node.has_loop) # False __A : Any = root_node.next_node print(root_node.has_loop) # True __A : List[Any] = Node(5) __A : Dict = Node(6) __A : str = Node(5) __A : Dict = Node(6) print(root_node.has_loop) # False __A : Optional[int] = Node(1) print(root_node.has_loop) # False
120
1
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): if not is_accelerate_available(): return method snake_case__ : List[Any] = version.parse(accelerate.__version__ ).base_version if version.parse(snake_case_ ) < version.parse("0.17.0" ): return method def wrapper(self : str , *snake_case_ : Tuple , **snake_case_ : int ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *snake_case_ , **snake_case_ ) return wrapper
286
import os import pytest from attr import dataclass __lowerCamelCase : Any = """us-east-1""" # defaults region @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = 42 a_ = "arn:aws:iam::558105141721:role/sagemaker_execution_role" a_ = { "task_name": "mnli", "per_device_train_batch_size": 1_6, "per_device_eval_batch_size": 1_6, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_0_0, "save_steps": 5_5_0_0, } a_ = {**hyperparameters, "max_steps": 1_0_0_0} @property def _lowercase ( self : List[Any] ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowercase ( self : Any ): return f'''{self.framework}-transfromers-test''' @property def _lowercase ( self : Optional[Any] ): return f'''./tests/sagemaker/scripts/{self.framework}''' @property def _lowercase ( self : Union[str, Any] ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): snake_case__ : Optional[int] = SageMakerTestEnvironment(framework=request.cls.framework )
286
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = BlipImageProcessor() __lowerCamelCase = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) __lowerCamelCase = BlipaProcessor(__UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def lowerCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowerCamelCase = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __lowerCamelCase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(__UpperCAmelCase , return_tensors='''np''' ) __lowerCamelCase = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = processor(text=__UpperCAmelCase ) __lowerCamelCase = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.batch_decode(__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __lowerCamelCase = '''lower newer''' __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
330
from string import ascii_lowercase, ascii_uppercase def a__ ( _UpperCamelCase : str ): if not sentence: return "" __lowerCamelCase = dict(zip(_UpperCamelCase ,_UpperCamelCase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
330
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 1000 ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = -1 lowerCAmelCase__ : Optional[Any] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCAmelCase__ : Optional[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCAmelCase__ : Tuple = n - a - b if c * c == (a * a + b * b): lowerCAmelCase__ : int = a * b * c if candidate >= product: lowerCAmelCase__ : Any = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
184
0
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: Union[str, Any] = BarthezTokenizer _lowercase: List[str] = BarthezTokenizerFast _lowercase: Tuple = True _lowercase: str = True def lowercase__ ( self : Optional[int] ) -> Any: super().setUp() _lowerCAmelCase = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__snake_case ) _lowerCAmelCase = tokenizer def lowercase__ ( self : Optional[int] ) -> int: _lowerCAmelCase = """<pad>""" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowercase__ ( self : List[str] ) -> Optional[int]: _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_11_22 ) def lowercase__ ( self : Any ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 ) @require_torch def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowerCAmelCase = [0, 57, 30_18, 7_03_07, 91, 2] _lowerCAmelCase = self.tokenizer( __snake_case , max_length=len(__snake_case ) , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) def lowercase__ ( self : List[Any] ) -> Any: if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = """I was born in 92000, and this is falsé.""" _lowerCAmelCase = tokenizer.tokenize(__snake_case ) _lowerCAmelCase = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _lowerCAmelCase = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) _lowerCAmelCase = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _lowerCAmelCase = self.get_rust_tokenizer() _lowerCAmelCase = tokenizer.encode(__snake_case ) _lowerCAmelCase = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowercase__ ( self : str ) -> List[str]: # fmt: off _lowerCAmelCase = {"""input_ids""": [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _lowerCAmelCase = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=__snake_case , )
70
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple=1_3 , SCREAMING_SNAKE_CASE__ : str=7 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=9_9 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_2 , SCREAMING_SNAKE_CASE__ : List[str]=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Tuple=3_7 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=5_1_2 , SCREAMING_SNAKE_CASE__ : int=1_6 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ) -> Any: a_ : Tuple = parent a_ : int = batch_size a_ : Tuple = seq_length a_ : List[Any] = is_training a_ : List[str] = use_token_type_ids a_ : Dict = use_labels a_ : Any = vocab_size a_ : List[str] = hidden_size a_ : Tuple = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : Dict = intermediate_size a_ : Any = hidden_act a_ : List[str] = hidden_dropout_prob a_ : Tuple = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : List[Any] = type_vocab_size a_ : int = type_sequence_label_size a_ : List[Any] = initializer_range a_ : List[str] = num_labels a_ : Union[str, Any] = num_choices a_ : str = scope a_ : Tuple = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: a_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Any = None if self.use_token_type_ids: a_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : List[Any] = None a_ : Union[str, Any] = None a_ : List[Any] = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) a_ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) a_ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: a_ : Dict = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: a_ : str = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict: a_ : int = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : str = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : str ) -> List[str]: a_ : Any = self.num_labels a_ : Dict = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Any = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: a_ : Optional[Any] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Optional[Any] = config_and_inputs a_ : Optional[int] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Tuple = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case__ : List[str] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case__ : Dict = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any=False ) -> List[str]: a_ : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) a_ : str = inputs_dict['labels'] a_ : Optional[int] = inputs_dict['labels'] a_ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) a_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: a_ : str = OpenAIGPTModelTester(self ) a_ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , n_embd=3_7 ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: a_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: a_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : str = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: a_ : Dict = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) # the president is a_ : Tuple = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the a_ : Dict = model.generate(SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE__ )
32
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCamelCase_ ( __a ): @slow @require_torch def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) UpperCAmelCase__ : Optional[int] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase__ : Optional[int] = bertabert.config.encoder.vocab_size UpperCAmelCase__ : str = tokenizer.sep_token_id UpperCAmelCase__ : Any = tokenizer.cls_token_id UpperCAmelCase__ : List[Any] = 128 UpperCAmelCase__ : Tuple = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) UpperCAmelCase__ : Any = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) UpperCAmelCase__ : Any = train_dataset.select(range(32 ) ) UpperCAmelCase__ : Any = val_dataset.select(range(16 ) ) UpperCAmelCase__ : Dict = 4 def _map_to_encoder_decoder_inputs(_A : Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase__ : List[Any] = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) UpperCAmelCase__ : List[str] = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) UpperCAmelCase__ : str = inputs.input_ids UpperCAmelCase__ : List[Any] = inputs.attention_mask UpperCAmelCase__ : List[Any] = outputs.input_ids UpperCAmelCase__ : Union[str, Any] = outputs.input_ids.copy() UpperCAmelCase__ : str = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] UpperCAmelCase__ : Optional[Any] = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_A : int ): UpperCAmelCase__ : Any = pred.label_ids UpperCAmelCase__ : Optional[int] = pred.predictions # all unnecessary tokens are removed UpperCAmelCase__ : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ : List[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase__ : Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset UpperCAmelCase__ : Optional[int] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) UpperCAmelCase__ : Optional[Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Optional[Any] = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase__ : int = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
354
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE__ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowercase : def __init__( self , lowercase , lowercase=16 , lowercase=13 , lowercase=7 , lowercase=14 , lowercase=10 , lowercase=19 , lowercase=5 , lowercase=4 , lowercase=True , lowercase=16 , lowercase=2 , lowercase=4 , lowercase=4 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=[1, 2, 3, 4, 5] , lowercase=25 , lowercase=5 , ) -> Any: lowerCAmelCase = d_model lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = prediction_length lowerCAmelCase = context_length lowerCAmelCase = cardinality lowerCAmelCase = num_time_features lowerCAmelCase = lags_sequence lowerCAmelCase = embedding_dimension lowerCAmelCase = is_training lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = context_length lowerCAmelCase = prediction_length + label_length lowerCAmelCase = label_length lowerCAmelCase = moving_average lowerCAmelCase = autocorrelation_factor def _snake_case ( self ) -> Optional[int]: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _snake_case ( self , lowercase ) -> Optional[int]: lowerCAmelCase = config.context_length + max(config.lags_sequence ) lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) lowerCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def _snake_case ( self ) -> str: lowerCAmelCase = self.get_config() lowerCAmelCase = self.prepare_autoformer_inputs_dict(lowercase ) return config, inputs_dict def _snake_case ( self ) -> Any: lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self , lowercase , lowercase ) -> Union[str, Any]: lowerCAmelCase = AutoformerModel(config=lowercase ).to(lowercase ).eval() lowerCAmelCase = model(**lowercase ) lowerCAmelCase = outputs.encoder_last_hidden_state lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = model.get_encoder() encoder.save_pretrained(lowercase ) lowerCAmelCase = AutoformerEncoder.from_pretrained(lowercase ).to(lowercase ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = model.create_network_inputs(**lowercase ) lowerCAmelCase , lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCAmelCase = encoder(inputs_embeds=lowercase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = model.get_decoder() decoder.save_pretrained(lowercase ) lowerCAmelCase = AutoformerDecoder.from_pretrained(lowercase ).to(lowercase ) lowerCAmelCase = decoder( trend=lowercase , inputs_embeds=lowercase , encoder_hidden_states=lowercase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _SCREAMING_SNAKE_CASE = (AutoformerForPrediction,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = {'feature-extraction': AutoformerModel} if is_torch_available() else {} _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = AutoformerModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase ) def _snake_case ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _snake_case ( self ) -> str: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase ) lowerCAmelCase , lowerCAmelCase = model_class.from_pretrained(lowercase , output_loading_info=lowercase ) self.assertEqual(info["""missing_keys"""] , [] ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowercase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def _snake_case ( self ) -> str: pass def _snake_case ( self ) -> int: lowerCAmelCase = inspect.signature(getattr(lowercase , """forward""" ) ) # The main input is the name of the argument after `self` lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowercase ) def _snake_case ( self ) -> int: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowercase ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(lowercase )] , lowercase ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , """seq_length""" , lowercase ) lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , lowercase ) lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , lowercase ) lowerCAmelCase = getattr(self.model_tester , """d_model""" , lowercase ) lowerCAmelCase = getattr(self.model_tester , """num_attention_heads""" , lowercase ) lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase = True lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCAmelCase = len(lowercase ) lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowercase , lowercase ) # decoder attentions lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(lowercase , (list, tuple) ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(lowercase , (list, tuple) ) self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 2 , len(lowercase ) ) lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _snake_case ( self ) -> Any: super().test_retain_grad_hidden_states_attentions() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[str]="train-batch.pt" ): '''simple docstring''' lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowercase ) lowerCAmelCase = prepare_batch() with torch.no_grad(): lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] lowerCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowercase ) lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=lowercase ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowercase , atol=lowercase ) ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowercase ) lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowerCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state lowerCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowercase ) lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=lowercase ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowercase , atol=lowercase ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowercase ) lowerCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowerCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) lowerCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowercase ) lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=lowercase ) lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowercase , rtol=1e-1 ) )
46
"""simple docstring""" __UpperCamelCase = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset(['''image''']) __UpperCamelCase = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''image''']) __UpperCamelCase = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''image''', '''negative_prompt''']) __UpperCamelCase = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) __UpperCamelCase = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''image''', '''mask_image''']) __UpperCamelCase = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''example_image''', '''image''', '''mask_image''']) __UpperCamelCase = frozenset(['''class_labels''']) __UpperCamelCase = frozenset(['''class_labels''']) __UpperCamelCase = frozenset(['''batch_size''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset(['''batch_size''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) __UpperCamelCase = frozenset(['''input_tokens''']) __UpperCamelCase = frozenset(['''input_tokens'''])
113
0
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def a ( lowerCamelCase__ , lowerCamelCase__=() , lowerCamelCase__=None , lowerCamelCase__="no" , lowerCamelCase__="29500" ): '''simple docstring''' A_ : List[Any] = False A_ : Tuple = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): A_ : List[str] = True elif "IPython" in sys.modules: A_ : str = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: A_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , lowerCamelCase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: A_ : str = 8 A_ : List[str] = PrepareForLaunch(lowerCamelCase__ , distributed_type="""TPU""" ) print(f'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase__ , args=lowerCamelCase__ , nprocs=lowerCamelCase__ , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*lowerCamelCase__ ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase__ , master_addr="""127.0.01""" , master_port=lowerCamelCase__ , mixed_precision=lowerCamelCase__ ): A_ : Union[str, Any] = PrepareForLaunch(lowerCamelCase__ , distributed_type="""MULTI_GPU""" ) print(f'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase__ , args=lowerCamelCase__ , nprocs=lowerCamelCase__ , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): A_ : List[Any] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__=() , lowerCamelCase__=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase__ , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): A_ : int = PrepareForLaunch(lowerCamelCase__ , debug=lowerCamelCase__ ) start_processes(lowerCamelCase__ , args=lowerCamelCase__ , nprocs=lowerCamelCase__ , start_method="""fork""" )
135
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCamelCase :str = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Tuple = ['pixel_values'] def __init__(self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = None , lowercase = True , **lowercase , ): super().__init__(**lowercase ) A_ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 224} A_ : Union[str, Any] = get_size_dict(lowercase , default_to_square=lowercase ) A_ : Optional[Any] = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} A_ : Tuple = get_size_dict(lowercase , param_name="""crop_size""" ) A_ : List[Any] = do_resize A_ : List[str] = size A_ : Dict = resample A_ : int = do_rescale A_ : str = rescale_factor A_ : Tuple = do_center_crop A_ : Tuple = crop_size A_ : List[str] = do_flip_channel_order def _a (self , lowercase , lowercase , lowercase = PIL.Image.BILINEAR , lowercase = None , **lowercase , ): A_ : Any = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) A_ : Any = get_resize_output_image_size(lowercase , size=size["""shortest_edge"""] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def _a (self , lowercase , lowercase , lowercase = None , **lowercase , ): A_ : Tuple = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(lowercase , size=(size["""height"""], size["""width"""]) , data_format=lowercase , **lowercase ) def _a (self , lowercase , lowercase , lowercase = None , **lowercase , ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def _a (self , lowercase , lowercase = None ): return flip_channel_order(lowercase , data_format=lowercase ) def _a (self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): A_ : str = do_resize if do_resize is not None else self.do_resize A_ : Optional[int] = resample if resample is not None else self.resample A_ : str = do_rescale if do_rescale is not None else self.do_rescale A_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : Dict = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) A_ : Union[str, Any] = size if size is not None else self.size A_ : Dict = get_size_dict(lowercase , default_to_square=lowercase ) A_ : Any = crop_size if crop_size is not None else self.crop_size A_ : Union[str, Any] = get_size_dict(lowercase , param_name="""crop_size""" ) A_ : Union[str, Any] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. A_ : Optional[Any] = [to_numpy_array(lowercase ) for image in images] if do_resize: A_ : List[Any] = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: A_ : str = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: A_ : Dict = [self.rescale(image=lowercase , scale=lowercase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: A_ : List[str] = [self.flip_channel_order(image=lowercase ) for image in images] A_ : List[str] = [to_channel_dimension_format(lowercase , lowercase ) for image in images] A_ : str = {"""pixel_values""": images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def _a (self , lowercase , lowercase = None ): A_ : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowercase ): A_ : Dict = target_sizes.numpy() A_ : Union[str, Any] = [] for idx in range(len(lowercase ) ): A_ : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowercase ) A_ : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: A_ : str = logits.argmax(dim=1 ) A_ : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
135
1
"""simple docstring""" import argparse from collections import defaultdict def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Optional[int] = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(_UpperCAmelCase , 'r' ) as f: A_ : Any = f.readlines() A_ : int = f"""class {class_name}(""" A_ : List[str] = f"""{4 * " "}def {test_name}(""" A_ : Optional[int] = f"""{8 * " "}{correct_line.split()[0]}""" A_ : int = f"""{16 * " "}{correct_line.split()[0]}""" A_ : Optional[int] = False A_ : Tuple = False A_ : Any = False A_ : Tuple = False A_ : Any = 0 A_ : int = 0 A_ : int = [] for line in lines: if line.startswith(_UpperCAmelCase ): A_ : Optional[int] = True elif in_class and line.startswith(_UpperCAmelCase ): A_ : Optional[int] = True elif in_class and in_func and (line.startswith(_UpperCAmelCase ) or line.startswith(_UpperCAmelCase )): A_ : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: A_ : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: A_ : Tuple = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) A_ : Dict = False else: new_lines.append(_UpperCAmelCase ) with open(_UpperCAmelCase , 'w' ) as f: for line in new_lines: f.write(_UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=None ): """simple docstring""" if fail is not None: with open(_UpperCAmelCase , 'r' ) as f: A_ : str = {l.strip() for l in f.readlines()} else: A_ : List[str] = None with open(_UpperCAmelCase , 'r' ) as f: A_ : int = f.readlines() A_ : Optional[Any] = defaultdict(_UpperCAmelCase ) for line in correct_lines: A_ , A_ , A_ , A_ : Any = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) lowerCamelCase_ : Optional[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
286
"""simple docstring""" import os def UpperCAmelCase__ ( ): """simple docstring""" A_ : Any = os.path.join(os.path.dirname(_UpperCAmelCase ) , 'num.txt' ) with open(_UpperCAmelCase ) as file_hand: return str(sum(int(_UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
286
1
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = [] A__ = [] A__ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator A__ = len(UpperCamelCase__ ) if (len(UpperCamelCase__ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(UpperCamelCase__ ) , '''Postfix'''.center(UpperCamelCase__ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCamelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCamelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCamelCase__ ) == 0: stack.append(UpperCamelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCamelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCamelCase__ ) # push x to stack print( x.center(8 ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , sep=''' | ''' , ) # Output in tabular format while len(UpperCamelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , sep=''' | ''' , ) # Output in tabular format return "".join(UpperCamelCase__ ) # return Postfix as str def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCamelCase__ ) ): if infix[i] == "(": A__ = ''')''' # change "(" to ")" elif infix[i] == ")": A__ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(UpperCamelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowerCamelCase : Optional[Any] = input("""\nEnter an Infix Equation = """) # Input an Infix equation _lowerCamelCase : int = ''.join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
367
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = FlaxAutoModelForSeqaSeqLM.from_config(config=lowercase_ ) A__ = checkpoints.load_tax_checkpoint(lowercase_ ) A__ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": A__ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": A__ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): A__ = f"""layers_{str(lowercase_ )}""" # Self-Attention A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization A__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] A__ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning A__ = flax_model.params['''encoder''']['''block'''][str(lowercase_ )]['''layer'''] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_global_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = tax_mlp_layer_norm A__ = flax_model_encoder_layer_block # Only for layer 0: A__ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T A__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A__ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T A__ = tax_encoder_global_rel_embedding # Assigning A__ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] A__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): A__ = f"""layers_{str(lowercase_ )}""" # Self-Attention A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention A__ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] A__ = tax_enc_dec_attention_module['''key''']['''kernel'''] A__ = tax_enc_dec_attention_module['''out''']['''kernel'''] A__ = tax_enc_dec_attention_module['''query''']['''kernel'''] A__ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] A__ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization A__ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning A__ = flax_model.params['''decoder''']['''block'''][str(lowercase_ )]['''layer'''] A__ = tax_attention_key A__ = tax_attention_out A__ = tax_attention_query A__ = tax_attention_value A__ = tax_pre_attention_layer_norm A__ = tax_enc_dec_attention_key A__ = tax_enc_dec_attention_out A__ = tax_enc_dec_attention_query A__ = tax_enc_dec_attention_value A__ = tax_cross_layer_norm if split_mlp_wi: A__ = tax_mlp_wi_a A__ = tax_mlp_wi_a else: A__ = tax_mlp_wi A__ = tax_mlp_wo A__ = txa_mlp_layer_norm A__ = flax_model_decoder_layer_block # Decoder Normalization A__ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] A__ = txa_decoder_norm # Only for layer 0: A__ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T A__ = tax_decoder_rel_embedding # Token Embeddings A__ = tax_model['''target''']['''token_embedder''']['''embedding'''] A__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: A__ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(lowercase_ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) _lowerCamelCase : Tuple = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
231
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "spiece.model"} UpperCamelCase = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } UpperCamelCase = { "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class __UpperCAmelCase (lowercase__ ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = ["input_ids", "attention_mask"] def __init__( self: List[str] , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Tuple=False , UpperCAmelCase_: int=False , UpperCAmelCase_: str=False , UpperCAmelCase_: Optional[Any]=None , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: Union[str, Any]=None , UpperCAmelCase_: List[str]=None , UpperCAmelCase_: Optional[Dict[str, Any]] = None , **UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs _SCREAMING_SNAKE_CASE = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) _SCREAMING_SNAKE_CASE = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing _SCREAMING_SNAKE_CASE = "<|endoftext|>" if eos_token is None else eos_token _SCREAMING_SNAKE_CASE = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: _SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token _SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token else: _SCREAMING_SNAKE_CASE = "<pad>" if pad_token is None else pad_token _SCREAMING_SNAKE_CASE = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = do_lower_case _SCREAMING_SNAKE_CASE = remove_space _SCREAMING_SNAKE_CASE = keep_accents _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) # Used for whitespace normalization in input texts # fmt : off _SCREAMING_SNAKE_CASE = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing _SCREAMING_SNAKE_CASE = re.compile( F'[{"".join(map(__lowerCamelCase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]' ) def __getstate__( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self: Dict , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase ( self: Dict ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub("""""" , __lowerCamelCase ) # Normalize whitespaces _SCREAMING_SNAKE_CASE = "".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization _SCREAMING_SNAKE_CASE = unicodedata.normalize("""NFC""" , __lowerCamelCase ) return text def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: str , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.preprocess_text(__lowerCamelCase ) return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def UpperCamelCase ( self: Any , UpperCAmelCase_: str ): '''simple docstring''' return self.sp_model.PieceToId(__lowerCamelCase ) def UpperCamelCase ( self: Any , UpperCAmelCase_: int ): '''simple docstring''' return self.sp_model.IdToPiece(__lowerCamelCase ) @staticmethod def UpperCamelCase ( UpperCAmelCase_: str ): '''simple docstring''' return out_string def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = "" _SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self: str , UpperCAmelCase_: str , UpperCAmelCase_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Union[str, List[str]] , UpperCAmelCase_: Union[str, bool] = False ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): _SCREAMING_SNAKE_CASE = self.preprocess_text(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.sp_model.encode(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = [self.preprocess_text(__lowerCamelCase ) for t in text] _SCREAMING_SNAKE_CASE = self.sp_model.encode(__lowerCamelCase ) if return_tensors is True or return_tensors == "pt": _SCREAMING_SNAKE_CASE = torch.tensor(__lowerCamelCase ) return token_ids def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(__lowerCamelCase ) def UpperCamelCase ( self: Any , UpperCAmelCase_: "Conversation" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] _SCREAMING_SNAKE_CASE = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(__lowerCamelCase ) + F'{self.bos_token}Bot:' ) return self.encode(text=__lowerCamelCase )
306
import datasets from .evaluate import evaluate A : Dict = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" A : Any = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" A : str = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : int = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} lowerCamelCase__ : Any = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] lowerCamelCase__ : Optional[int] = evaluate(dataset=__lowerCamelCase , predictions=__lowerCamelCase ) return score
184
0
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
359
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = "T5Config" class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig class A__ ( A__ ): A__ = 'mt5' A__ = MTaConfig
114
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={ '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __magic_name__ ( snake_case ): UpperCamelCase_ :int = 0 UpperCamelCase_ :bool = False UpperCamelCase_ :float = 3.0 class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Union[str, Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=_A ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def UpperCAmelCase_ ( self )-> int: # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase_ = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase_ = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase_ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _A ) @require_multi_gpu def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = ['torchrun', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_A , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Any = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) SCREAMING_SNAKE_CASE :Any = Accelerator(kwargs_handlers=[ddp_scaler]) SCREAMING_SNAKE_CASE :List[str] = torch.nn.Linear(100, 200) SCREAMING_SNAKE_CASE :int = accelerator.prepare(model) # Check the values changed in kwargs SCREAMING_SNAKE_CASE :int = "" SCREAMING_SNAKE_CASE :Tuple = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
356
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( snake_case ): def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , )-> Optional[Any]: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=_lowercase , speech_processor=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , scheduler=_lowercase , feature_extractor=_lowercase , ) def UpperCAmelCase_ ( self , _lowercase = "auto" )-> str: if slice_size == "auto": UpperCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowercase ) def UpperCAmelCase_ ( self )-> Optional[int]: self.enable_attention_slicing(_lowercase ) @torch.no_grad() def __call__( self , _lowercase , _lowercase=16_000 , _lowercase = 512 , _lowercase = 512 , _lowercase = 50 , _lowercase = 7.5 , _lowercase = None , _lowercase = 1 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , _lowercase = "pil" , _lowercase = True , _lowercase = None , _lowercase = 1 , **_lowercase , )-> str: UpperCamelCase_ = self.speech_processor.feature_extractor( _lowercase , return_tensors="pt" , sampling_rate=_lowercase ).input_features.to(self.device ) UpperCamelCase_ = self.speech_model.generate(_lowercase , max_length=480_000 ) UpperCamelCase_ = self.speech_processor.tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase , normalize=_lowercase )[ 0 ] if isinstance(_lowercase , _lowercase ): UpperCamelCase_ = 1 elif isinstance(_lowercase , _lowercase ): UpperCamelCase_ = len(_lowercase ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(_lowercase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(_lowercase )}." ) # get prompt text embeddings UpperCamelCase_ = self.tokenizer( _lowercase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCamelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = text_embeddings.shape UpperCamelCase_ = text_embeddings.repeat(1 , _lowercase , 1 ) UpperCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , _lowercase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase_ = 42 if negative_prompt is None: UpperCamelCase_ = [""] * batch_size elif type(_lowercase ) is not type(_lowercase ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(_lowercase )} !=" F" {type(_lowercase )}." ) elif isinstance(_lowercase , _lowercase ): UpperCamelCase_ = [negative_prompt] elif batch_size != len(_lowercase ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(_lowercase )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: UpperCamelCase_ = negative_prompt UpperCamelCase_ = text_input_ids.shape[-1] UpperCamelCase_ = self.tokenizer( _lowercase , padding="max_length" , max_length=_lowercase , truncation=_lowercase , return_tensors="pt" , ) UpperCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase_ = uncond_embeddings.shape[1] UpperCamelCase_ = uncond_embeddings.repeat(1 , _lowercase , 1 ) UpperCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase_ = torch.randn(_lowercase , generator=_lowercase , device="cpu" , dtype=_lowercase ).to( self.device ) else: UpperCamelCase_ = torch.randn(_lowercase , generator=_lowercase , device=self.device , dtype=_lowercase ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase_ = {} if accepts_eta: UpperCamelCase_ = eta for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase_ = self.scheduler.scale_model_input(_lowercase , _lowercase ) # predict the noise residual UpperCamelCase_ = self.unet(_lowercase , _lowercase , encoder_hidden_states=_lowercase ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase_ , UpperCamelCase_ = noise_pred.chunk(2 ) UpperCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) UpperCamelCase_ = 1 / 0.18_215 * latents UpperCamelCase_ = self.vae.decode(_lowercase ).sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_lowercase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_lowercase , nsfw_content_detected=_lowercase )
60
0
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __A = logging.getLogger(__name__) class _snake_case ( a__ ): snake_case__ = "token-classification" def __init__( self : Optional[Any] , UpperCAmelCase : Tuple ): if type(UpperCAmelCase ) == dict: __lowerCamelCase : int = Namespace(**UpperCAmelCase ) __lowerCamelCase : int = import_module("tasks" ) try: __lowerCamelCase : Any = getattr(UpperCAmelCase , hparams.task_type ) __lowerCamelCase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) __lowerCamelCase : List[str] = self.token_classification_task.get_labels(hparams.labels ) __lowerCamelCase : Optional[int] = CrossEntropyLoss().ignore_index super().__init__(UpperCAmelCase , len(self.labels ) , self.mode ) def lowerCamelCase__ ( self : Dict , **UpperCAmelCase : List[Any] ): return self.model(**UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Any ): __lowerCamelCase : Optional[int] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": __lowerCamelCase : Any = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids __lowerCamelCase : Optional[Any] = self(**UpperCAmelCase ) __lowerCamelCase : int = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCamelCase__ ( self : int ): __lowerCamelCase : Any = self.hparams for mode in ["train", "dev", "test"]: __lowerCamelCase : Optional[Any] = self._feature_file(UpperCAmelCase ) if os.path.exists(UpperCAmelCase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , UpperCAmelCase ) __lowerCamelCase : int = torch.load(UpperCAmelCase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __lowerCamelCase : Dict = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCAmelCase ) __lowerCamelCase : Dict = self.token_classification_task.convert_examples_to_features( UpperCAmelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCAmelCase , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , UpperCAmelCase ) torch.save(UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase__ ( self : str , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : bool = False ): __lowerCamelCase : str = self._feature_file(UpperCAmelCase ) logger.info("Loading features from cached file %s" , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = torch.load(UpperCAmelCase ) __lowerCamelCase : Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __lowerCamelCase : List[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __lowerCamelCase : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __lowerCamelCase : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __lowerCamelCase : Tuple = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , batch_size=UpperCAmelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Any ): """Compute validation""" "" __lowerCamelCase : Tuple = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": __lowerCamelCase : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids __lowerCamelCase : Any = self(**UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = outputs[:2] __lowerCamelCase : str = logits.detach().cpu().numpy() __lowerCamelCase : List[Any] = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : Tuple ): __lowerCamelCase : Union[str, Any] = torch.stack([x["val_loss"] for x in outputs] ).mean() __lowerCamelCase : List[Any] = np.concatenate([x["pred"] for x in outputs] , axis=0 ) __lowerCamelCase : List[str] = np.argmax(UpperCAmelCase , axis=2 ) __lowerCamelCase : Dict = np.concatenate([x["target"] for x in outputs] , axis=0 ) __lowerCamelCase : int = dict(enumerate(self.labels ) ) __lowerCamelCase : Dict = [[] for _ in range(out_label_ids.shape[0] )] __lowerCamelCase : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __lowerCamelCase : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(UpperCAmelCase , UpperCAmelCase ), "precision": precision_score(UpperCAmelCase , UpperCAmelCase ), "recall": recall_score(UpperCAmelCase , UpperCAmelCase ), "f1": fa_score(UpperCAmelCase , UpperCAmelCase ), } __lowerCamelCase : Tuple = dict(results.items() ) __lowerCamelCase : Union[str, Any] = results return ret, preds_list, out_label_list def lowerCamelCase__ ( self : int , UpperCAmelCase : str ): # when stable __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = self._eval_end(UpperCAmelCase ) __lowerCamelCase : List[Any] = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : List[str] ): # updating to test_epoch_end instead of deprecated test_end __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = self._eval_end(UpperCAmelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __lowerCamelCase : str = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCamelCase__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Any ): # Add NER specific options BaseTransformer.add_model_specific_args(UpperCAmelCase , UpperCAmelCase ) parser.add_argument( "--task_type" , default="NER" , type=UpperCAmelCase , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=128 , type=UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=UpperCAmelCase , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=UpperCAmelCase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": __A = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __A = NERTransformer.add_model_specific_args(parser, os.getcwd()) __A = parser.parse_args() __A = NERTransformer(args) __A = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __A = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __A = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
135
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( a__ , unittest.TestCase ): snake_case__ = CTRLTokenizer snake_case__ = False snake_case__ = False def lowerCamelCase__ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase : Optional[int] = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] __lowerCamelCase : str = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __lowerCamelCase : Any = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] __lowerCamelCase : Dict = {"unk_token": "<unk>"} __lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def lowerCamelCase__ ( self : Tuple , **UpperCAmelCase : List[str] ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Dict ): __lowerCamelCase : Any = "adapt react readapt apt" __lowerCamelCase : Dict = "adapt react readapt apt" return input_text, output_text def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase : Dict = "adapt react readapt apt" __lowerCamelCase : Dict = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() __lowerCamelCase : List[str] = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Any = tokens + [tokenizer.unk_token] __lowerCamelCase : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
135
1
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _snake_case = 'facebook/wmt19-en-de' _snake_case = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _snake_case = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _snake_case = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _snake_case = tokenizer(['Making tiny model'], return_tensors='pt') _snake_case = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save _snake_case = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
324
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _snake_case = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _snake_case = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _snake_case = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _snake_case = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _snake_case = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Dict = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCamelCase__ ) return [m.group(0 ) for m in matches] def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a : Optional[int] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _a : List[Any] = collections.defaultdict(UpperCamelCase__ ) _a : List[str] = collections.defaultdict(UpperCamelCase__ ) _a : Tuple = collections.defaultdict(UpperCamelCase__ ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(UpperCamelCase__ ): _a : str = None if _re_tf_models.match(UpperCamelCase__ ) is not None: _a : List[Any] = tf_models _a : int = _re_tf_models.match(UpperCamelCase__ ).groups()[0] elif _re_flax_models.match(UpperCamelCase__ ) is not None: _a : Any = flax_models _a : Any = _re_flax_models.match(UpperCamelCase__ ).groups()[0] elif _re_pt_models.match(UpperCamelCase__ ) is not None: _a : int = pt_models _a : int = _re_pt_models.match(UpperCamelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCamelCase__ ) > 0: if attr_name in model_prefix_to_model_type: _a : Optional[int] = True break # Try again after removing the last word in the name _a : List[Any] = """""".join(camel_case_split(UpperCamelCase__ )[:-1] ) _a : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _a : Dict = list(UpperCamelCase__ ) all_models.sort() _a : str = {"""model_type""": all_models} _a : List[Any] = [pt_models[t] for t in all_models] _a : str = [tf_models[t] for t in all_models] _a : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _a : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _a : List[str] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _a : str = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _a : int = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _a : int = """AutoTokenizer""" _a : Any = [processors[t] for t in all_models] return pd.DataFrame(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _a : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _a : Union[str, Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # The type of pipeline may not exist in this framework if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): continue # First extract all model_names _a : str = [] for name in getattr(UpperCamelCase__ , UpperCamelCase__ ).values(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): model_names.append(UpperCamelCase__ ) else: model_names.extend(list(UpperCamelCase__ ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = get_frameworks_table() _a : Optional[Any] = Dataset.from_pandas(UpperCamelCase__ ) _a : Any = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=UpperCamelCase__ ) _a : List[Any] = Dataset.from_json(UpperCamelCase__ ) _a : List[str] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(UpperCamelCase__ ) ) } _a : str = update_pipeline_and_auto_class_table(UpperCamelCase__ ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _a : int = sorted(table.keys() ) _a : Union[str, Any] = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) _a : Dict = Dataset.from_pandas(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(UpperCamelCase__ , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(UpperCamelCase__ , """pipeline_tags.json""" ) ) if commit_sha is not None: _a : List[str] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _a : Optional[Any] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=UpperCamelCase__ , repo_type="""dataset""" , token=UpperCamelCase__ , commit_message=UpperCamelCase__ , ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : List[str] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _a : Any = transformers_module.pipelines.SUPPORTED_TASKS _a : List[str] = [] for key in pipeline_tasks: if key not in in_table: _a : Tuple = pipeline_tasks[key]["""pt"""] if isinstance(UpperCamelCase__ , (list, tuple) ): _a : Dict = model[0] _a : List[str] = model.__name__ if model not in in_table.values(): missing.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: _a : Union[str, Any] = """, """.join(UpperCamelCase__ ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
324
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __A : Optional[int] = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __A : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) lowerCAmelCase_ = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(__lowerCAmelCase ) DownloadCommand.register_subcommand(__lowerCAmelCase ) EnvironmentCommand.register_subcommand(__lowerCAmelCase ) RunCommand.register_subcommand(__lowerCAmelCase ) ServeCommand.register_subcommand(__lowerCAmelCase ) UserCommands.register_subcommand(__lowerCAmelCase ) AddNewModelCommand.register_subcommand(__lowerCAmelCase ) AddNewModelLikeCommand.register_subcommand(__lowerCAmelCase ) LfsCommands.register_subcommand(__lowerCAmelCase ) PTtoTFCommand.register_subcommand(__lowerCAmelCase ) # Let's go lowerCAmelCase_ = parser.parse_args() if not hasattr(__lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run lowerCAmelCase_ = args.func(__lowerCAmelCase ) service.run() if __name__ == "__main__": main()
231
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCAmelCase_ = logging.getLogger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Optional[int]: super().__init__( lowerCAmelCase_ , question_encoder_tokenizer=lowerCAmelCase_ , generator_tokenizer=lowerCAmelCase_ , index=lowerCAmelCase_ , init_retrieval=lowerCAmelCase_ , ) _snake_case = None def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: logger.info('initializing retrieval' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized' ) # needs to be set manually _snake_case = self._infer_socket_ifname() # avoid clash with the NCCL port _snake_case = str(distributed_port + 1 ) _snake_case = dist.new_group(ranks=lowerCAmelCase_ , backend='gloo' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCAmelCase ( self ) -> Tuple: return dist.get_rank(group=self.process_group ) == 0 def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=torch.floataa ) -> List[str]: _snake_case = torch.empty(lowerCAmelCase_ , dtype=lowerCAmelCase_ ) dist.scatter(lowerCAmelCase_ , src=0 , scatter_list=lowerCAmelCase_ , group=self.process_group ) return target_tensor def lowerCAmelCase ( self ) -> Dict: _snake_case = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _snake_case = next((addr for addr in addrs if addr.startswith('e' )) , lowerCAmelCase_ ) return ifname def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _snake_case , _snake_case = self._main_retrieve(lowerCAmelCase_ , lowerCAmelCase_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase_ ) # distributed training _snake_case = dist.get_world_size(group=self.process_group ) # gather logic _snake_case = None if self._is_main(): _snake_case = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCAmelCase_ )] dist.gather(torch.tensor(lowerCAmelCase_ ) , dst=0 , gather_list=lowerCAmelCase_ , group=self.process_group ) # scatter logic _snake_case = question_hidden_states.shape[0] _snake_case = [] _snake_case = [] if self._is_main(): assert len(lowerCAmelCase_ ) == world_size _snake_case , _snake_case = self._main_retrieve(torch.cat(lowerCAmelCase_ ).numpy() , lowerCAmelCase_ ) _snake_case , _snake_case = torch.tensor(lowerCAmelCase_ ), torch.tensor(lowerCAmelCase_ ) _snake_case = self._chunk_tensor(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._chunk_tensor(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self._scattered(lowerCAmelCase_ , [n_queries, n_docs] , target_type=torch.intaa ) _snake_case = self._scattered(lowerCAmelCase_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase_ )
368
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCamelCase__( lowercase__ , lowercase__ ): lowerCAmelCase__ : List[Any] = 'focalnet' def __init__( self ,__UpperCAmelCase=2_24 ,__UpperCAmelCase=4 ,__UpperCAmelCase=3 ,__UpperCAmelCase=96 ,__UpperCAmelCase=False ,__UpperCAmelCase=[1_92, 3_84, 7_68, 7_68] ,__UpperCAmelCase=[2, 2, 6, 2] ,__UpperCAmelCase=[2, 2, 2, 2] ,__UpperCAmelCase=[3, 3, 3, 3] ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=4.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=False ,__UpperCAmelCase=1e-4 ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1e-5 ,__UpperCAmelCase=32 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Union[str, Any]: super().__init__(**__lowercase ) A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = use_conv_embed A__ = hidden_sizes A__ = depths A__ = focal_levels A__ = focal_windows A__ = hidden_act A__ = mlp_ratio A__ = hidden_dropout_prob A__ = drop_path_rate A__ = use_layerscale A__ = layerscale_value A__ = use_post_layernorm A__ = use_post_layernorm_in_modulation A__ = normalize_modulator A__ = initializer_range A__ = layer_norm_eps A__ = encoder_stride A__ = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 ,len(self.depths ) + 1 )] A__ = get_aligned_output_features_output_indices( out_features=__lowercase ,out_indices=__lowercase ,stage_names=self.stage_names )
221
from math import log from scipy.constants import Boltzmann, physical_constants a : Any = 300 # TEMPERATURE (unit = K) def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
114
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = ["image_processor", "tokenizer"] snake_case = "CLIPImageProcessor" snake_case = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _SCREAMING_SNAKE_CASE , ) A_ : Tuple = kwargs.pop('''feature_extractor''' ) A_ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->int: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: A_ : List[str] = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: A_ : List[Any] = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: A_ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self )->Dict: '''simple docstring''' A_ : List[Any] = self.tokenizer.model_input_names A_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
65
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = ["image_processor"] snake_case = "SamImageProcessor" def __init__( self , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE ) A_ : Any = self.image_processor A_ : Optional[int] = -10 A_ : List[Any] = self.image_processor.size['''longest_edge'''] def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->BatchEncoding: '''simple docstring''' A_ : Union[str, Any] = self.image_processor( _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # pop arguments that are not used in the foward but used nevertheless A_ : Tuple = encoding_image_processor['''original_sizes'''] if hasattr(_SCREAMING_SNAKE_CASE , '''numpy''' ): # Checks if Torch or TF tensor A_ : int = original_sizes.numpy() A_ , A_ , A_ : str = self._check_and_preprocess_points( input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , input_boxes=_SCREAMING_SNAKE_CASE , ) A_ : Optional[Any] = self._normalize_and_convert( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , input_boxes=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , ) return encoding_image_processor def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="pt" , )->Dict: '''simple docstring''' if input_points is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , original_sizes[0] ) for point in input_points ] else: A_ : str = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for point, original_size in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: A_ , A_ : Optional[Any] = self._pad_points_and_labels(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[str] = np.array(_SCREAMING_SNAKE_CASE ) if input_labels is not None: A_ : Dict = np.array(_SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): A_ : Tuple = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , original_sizes[0] , is_bounding_box=_SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: A_ : List[Any] = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , is_bounding_box=_SCREAMING_SNAKE_CASE ) for box, original_size in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] A_ : Union[str, Any] = np.array(_SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": A_ : Dict = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default A_ : Optional[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": A_ : Optional[int] = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default A_ : List[Any] = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": A_ : Union[str, Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default A_ : Union[str, Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": A_ : List[str] = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default A_ : Union[str, Any] = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": A_ : Optional[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default A_ : List[Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": A_ : int = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default A_ : List[Any] = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : Optional[Any] = max([point.shape[0] for point in input_points] ) A_ : int = [] for i, point in enumerate(_SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: A_ : Optional[int] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) A_ : int = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = processed_input_points return input_points, input_labels def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )->np.ndarray: '''simple docstring''' A_ , A_ : str = original_size A_ , A_ : Dict = self.image_processor._get_preprocess_shape(_SCREAMING_SNAKE_CASE , longest_edge=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = deepcopy(_SCREAMING_SNAKE_CASE ).astype(_SCREAMING_SNAKE_CASE ) if is_bounding_box: A_ : Union[str, Any] = coords.reshape(-1 , 2 , 2 ) A_ : Any = coords[..., 0] * (new_w / old_w) A_ : List[str] = coords[..., 1] * (new_h / old_h) if is_bounding_box: A_ : str = coords.reshape(-1 , 4 ) return coords def _snake_case ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , )->str: '''simple docstring''' if input_points is not None: if hasattr(_SCREAMING_SNAKE_CASE , '''numpy''' ): # Checks for TF or Torch tensor A_ : List[str] = input_points.numpy().tolist() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0] , _SCREAMING_SNAKE_CASE ): raise ValueError('''Input points must be a list of list of floating points.''' ) A_ : Optional[Any] = [np.array(_SCREAMING_SNAKE_CASE ) for input_point in input_points] else: A_ : Tuple = None if input_labels is not None: if hasattr(_SCREAMING_SNAKE_CASE , '''numpy''' ): A_ : Dict = input_labels.numpy().tolist() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0] , _SCREAMING_SNAKE_CASE ): raise ValueError('''Input labels must be a list of list integers.''' ) A_ : Union[str, Any] = [np.array(_SCREAMING_SNAKE_CASE ) for label in input_labels] else: A_ : str = None if input_boxes is not None: if hasattr(_SCREAMING_SNAKE_CASE , '''numpy''' ): A_ : str = input_boxes.numpy().tolist() if ( not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0] , _SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0] , _SCREAMING_SNAKE_CASE ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) A_ : Tuple = [np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: A_ : Dict = None return input_points, input_labels, input_boxes @property def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(_SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' return self.image_processor.post_process_masks(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
65
1
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Union[str, Any] = int(__SCREAMING_SNAKE_CASE ) if n_element < 1: lowercase_ : str = ValueError('''a should be a positive number''' ) raise my_error lowercase_ : str = [1] lowercase_ , lowercase_ , lowercase_ : Any = (0, 0, 0) lowercase_ : Any = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _lowercase : str = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") _lowercase : List[Any] = hamming(int(n)) print("-----------------------------------------------------") print(f"""The list with nth numbers is: {hamming_numbers}""") print("-----------------------------------------------------")
93
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ : int = logging.get_logger(__name__) def _snake_case ( _snake_case : Union[str, Any] ): lowerCAmelCase : Dict = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): lowerCAmelCase : Union[str, Any] = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): lowerCAmelCase : str = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase : Union[str, Any] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowerCAmelCase : str = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(_snake_case )-1}''' ) if "norm" in key: lowerCAmelCase : str = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase : Optional[int] = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] lowerCAmelCase : List[str] = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(_snake_case )-1}''' ) if "layer_norm1" in key: lowerCAmelCase : Union[str, Any] = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowerCAmelCase : Any = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase : Tuple = key[key.find('''block''' ) + len('''block''' )] lowerCAmelCase : Tuple = key.replace(f'''block{idx}''' , f'''block.{int(_snake_case )-1}''' ) if "attn.q" in key: lowerCAmelCase : Optional[Any] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowerCAmelCase : Dict = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowerCAmelCase : List[str] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowerCAmelCase : List[Any] = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowerCAmelCase : Optional[Any] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowerCAmelCase : List[Any] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowerCAmelCase : Optional[Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowerCAmelCase : int = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase : Optional[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowerCAmelCase : int = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(_snake_case )-1}''' ) if "bot_conv" in key: lowerCAmelCase : str = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: lowerCAmelCase : int = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: lowerCAmelCase : str = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: lowerCAmelCase : Union[str, Any] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: lowerCAmelCase : Any = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: lowerCAmelCase : List[Any] = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: lowerCAmelCase : Union[str, Any] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): lowerCAmelCase : Optional[Any] = key.replace('''module.last_layer_depth''' , '''head.head''' ) lowerCAmelCase : Union[str, Any] = value return new_state_dict def _snake_case ( _snake_case : Optional[Any] , _snake_case : str ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase : int = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowerCAmelCase : Optional[int] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase : str = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase : Union[str, Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase : Dict = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase : List[str] = kv_bias[config.hidden_sizes[i] :] def _snake_case ( ): lowerCAmelCase : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : str = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def _snake_case ( _snake_case : Dict , _snake_case : Dict , _snake_case : Union[str, Any]=False , _snake_case : List[str]=None ): lowerCAmelCase : Optional[int] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : Dict = image_processor(images=_snake_case , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict lowerCAmelCase : List[str] = torch.load(_snake_case , map_location=torch.device('''cpu''' ) ) # rename keys lowerCAmelCase : Tuple = rename_keys(_snake_case ) # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict lowerCAmelCase : str = GLPNForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass lowerCAmelCase : Union[str, Any] = model(_snake_case ) lowerCAmelCase : int = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase : str = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: lowerCAmelCase : str = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCAmelCase : List[Any] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _snake_case , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case , _snake_case ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_snake_case , ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) snake_case__ : List[str] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
60
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase_ ( __lowercase ): UpperCamelCase_ : Tuple = "xmod" def __init__( self : Tuple , A__ : Dict=30522 , A__ : Tuple=768 , A__ : int=12 , A__ : Dict=12 , A__ : Any=3072 , A__ : Tuple="gelu" , A__ : Any=0.1 , A__ : List[Any]=0.1 , A__ : Union[str, Any]=512 , A__ : Dict=2 , A__ : str=0.02 , A__ : Optional[Any]=1e-12 , A__ : List[Any]=1 , A__ : Optional[Any]=0 , A__ : Any=2 , A__ : Tuple="absolute" , A__ : Optional[int]=True , A__ : Tuple=None , A__ : Optional[int]=False , A__ : Union[str, Any]=2 , A__ : Any=False , A__ : str=True , A__ : Optional[Any]=True , A__ : int=("en_XX",) , A__ : str=None , **A__ : Tuple , ) -> Dict: super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache _snake_case = classifier_dropout _snake_case = pre_norm _snake_case = adapter_reduction_factor _snake_case = adapter_layer_norm _snake_case = adapter_reuse_layer_norm _snake_case = ln_before_adapter _snake_case = list(A__ ) _snake_case = default_language class lowercase_ ( __lowercase ): @property def UpperCamelCase_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _snake_case = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
278
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __A = logging.getLogger(__name__) @dataclass class lowercase_ : UpperCamelCase_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether tp freeze the encoder."} ) UpperCamelCase_ : bool = field(default=__lowercase , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class lowercase_ : UpperCamelCase_ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCamelCase_ : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) UpperCamelCase_ : Optional[int] = field( default=1_0_2_4 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_2_8 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) UpperCamelCase_ : Optional[int] = field( default=1_4_2 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) UpperCamelCase_ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Source language id for translation."} ) UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Target language id for translation."} ) UpperCamelCase_ : Optional[int] = field(default=__lowercase , metadata={"help": "# num_beams to use for evaluation."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(_UpperCamelCase , os.path.join(_UpperCamelCase , F"""{split}_results.json""" ) ) def snake_case_() -> List[Any]: """simple docstring""" _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case, _snake_case, _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case, _snake_case, _snake_case = parser.parse_args_into_dataclasses() check_output_dir(_UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): assert hasattr(_UpperCamelCase , _UpperCamelCase ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(_UpperCamelCase , _UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) _snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_UpperCamelCase , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_UpperCamelCase , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_UpperCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _snake_case = SeqaSeqDataset # Get datasets _snake_case = ( dataset_class( _UpperCamelCase , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) _snake_case = ( dataset_class( _UpperCamelCase , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _snake_case = ( dataset_class( _UpperCamelCase , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer _snake_case = ( build_compute_metrics_fn(data_args.task , _UpperCamelCase ) if training_args.predict_with_generate else None ) _snake_case = SeqaSeqTrainer( model=_UpperCamelCase , args=_UpperCamelCase , data_args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , data_collator=SeqaSeqDataCollator( _UpperCamelCase , _UpperCamelCase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) _snake_case = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) _snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _snake_case = train_result.metrics _snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _snake_case = trainer.evaluate(metric_key_prefix='''val''' ) _snake_case = data_args.n_val _snake_case = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) _snake_case = trainer.predict(test_dataset=_UpperCamelCase , metric_key_prefix='''test''' ) _snake_case = test_output.metrics _snake_case = data_args.n_test if trainer.is_world_process_zero(): _snake_case = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , _UpperCamelCase , training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.predict_with_generate: _snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) _snake_case = lmap(str.strip , _UpperCamelCase ) write_txt_file(_UpperCamelCase , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(_UpperCamelCase , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def snake_case_(_UpperCamelCase ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
278
1
from collections.abc import Sequence from queue import Queue class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None )-> str: '''simple docstring''' lowerCAmelCase__ = start lowerCAmelCase__ = end lowerCAmelCase__ = val lowerCAmelCase__ = (start + end) // 2 lowerCAmelCase__ = left lowerCAmelCase__ = right def __repr__( self )-> Tuple: '''simple docstring''' return F"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> Dict: '''simple docstring''' lowerCAmelCase__ = collection lowerCAmelCase__ = function if self.collection: lowerCAmelCase__ = self._build_tree(0 , len(__UpperCAmelCase ) - 1 ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> Tuple: '''simple docstring''' self._update_tree(self.root , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> str: '''simple docstring''' return self._query_range(self.root , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> List[str]: '''simple docstring''' if start == end: return SegmentTreeNode(__UpperCAmelCase , __UpperCAmelCase , self.collection[start] ) lowerCAmelCase__ = (start + end) // 2 lowerCAmelCase__ = self._build_tree(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = self._build_tree(mid + 1 , __UpperCAmelCase ) return SegmentTreeNode(__UpperCAmelCase , __UpperCAmelCase , self.fn(left.val , right.val ) , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Dict: '''simple docstring''' if node.start == i and node.end == i: lowerCAmelCase__ = val return if i <= node.mid: self._update_tree(node.left , __UpperCAmelCase , __UpperCAmelCase ) else: self._update_tree(node.right , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ = self.fn(node.left.val , node.right.val ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __UpperCAmelCase , __UpperCAmelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __UpperCAmelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , __UpperCAmelCase ) , ) else: # range in right child tree return self._query_range(node.right , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' if self.root is not None: lowerCAmelCase__ = Queue() queue.put(self.root ) while not queue.empty(): lowerCAmelCase__ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) a_ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
340
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ = (3, 9, -11, 0, 7, 5, 1, -1) a_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase__ : a_ =42 a_ =42 class lowercase__ : def __init__( self , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = None for i in sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ): lowerCAmelCase__ = Node(__UpperCAmelCase , self.head ) def __iter__( self )-> Iterator[int]: '''simple docstring''' lowerCAmelCase__ = self.head while node: yield node.data lowerCAmelCase__ = node.next_node def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self )-> str: '''simple docstring''' return " -> ".join([str(__UpperCAmelCase ) for node in self] ) def _a ( UpperCamelCase_ : SortedLinkedList , UpperCamelCase_ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
340
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class lowerCAmelCase__ ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization a__ : str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a__ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) a__ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) a__ : str = "question" a__ : str = "context" a__ : str = "answers" @property def __A ( self : str ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
369
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ : List[Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } SCREAMING_SNAKE_CASE__ : Dict = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCAmelCase__ ( __lowercase ): a__ : Optional[int] = VOCAB_FILES_NAMES a__ : Any = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION a__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = SqueezeBertTokenizer def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[PAD]" , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = do_lower_case def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> str: __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: __lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
339
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _A ( A__ , A__=0.9_9_9 , A__="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A__ ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __lowercase = [] for i in range(lowercase__ ): __lowercase = i / num_diffusion_timesteps __lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class lowercase_ (A_ , A_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE : int = 2 @register_to_config def __init__( self : Optional[int] ,lowercase__ : Optional[Any] = 1_0_0_0 ,lowercase__ : Any = 0.0_0_0_8_5 ,lowercase__ : str = 0.0_1_2 ,lowercase__ : Tuple = "linear" ,lowercase__ : Optional[Any] = None ,lowercase__ : Optional[Any] = "epsilon" ,lowercase__ : Dict = "linspace" ,lowercase__ : Dict = 0 ,): if trained_betas is not None: __lowercase = torch.tensor(lowercase__ ,dtype=torch.floataa ) elif beta_schedule == "linear": __lowercase = torch.linspace(lowercase__ ,lowercase__ ,lowercase__ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,lowercase__ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase = betas_for_alpha_bar(lowercase__ ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) __lowercase = 1.0 - self.betas __lowercase = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(lowercase__ ,lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Tuple ,lowercase__ : Optional[int]=None ): if schedule_timesteps is None: __lowercase = self.timesteps __lowercase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowercase = 1 if len(lowercase__ ) > 1 else 0 else: __lowercase = timestep.cpu().item() if torch.is_tensor(lowercase__ ) else timestep __lowercase = self._index_counter[timestep_int] return indices[pos].item() @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Any ,lowercase__ : List[str] ,): __lowercase = self.index_for_timestep(lowercase__ ) if self.state_in_first_order: __lowercase = self.sigmas[step_index] else: __lowercase = self.sigmas_interpol[step_index] __lowercase = sample / ((sigma**2 + 1) ** 0.5) return sample def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ,lowercase__ : Union[str, Any] = None ,lowercase__ : Dict = None ,): __lowercase = num_inference_steps __lowercase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowercase = np.linspace(0 ,num_train_timesteps - 1 ,lowercase__ ,dtype=lowercase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowercase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase = (np.arange(0 ,lowercase__ ) * step_ratio).round()[::-1].copy().astype(lowercase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowercase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase = (np.arange(lowercase__ ,0 ,-step_ratio )).round().copy().astype(lowercase__ ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'." ) __lowercase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowercase = torch.from_numpy(np.log(lowercase__ ) ).to(lowercase__ ) __lowercase = np.interp(lowercase__ ,np.arange(0 ,len(lowercase__ ) ) ,lowercase__ ) __lowercase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowercase = torch.from_numpy(lowercase__ ).to(device=lowercase__ ) # interpolate sigmas __lowercase = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() __lowercase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowercase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowercase__ ).startswith('''mps''' ): # mps does not support float64 __lowercase = torch.from_numpy(lowercase__ ).to(lowercase__ ,dtype=torch.floataa ) else: __lowercase = torch.from_numpy(lowercase__ ).to(lowercase__ ) # interpolate timesteps __lowercase = self.sigma_to_t(lowercase__ ).to(lowercase__ ,dtype=timesteps.dtype ) __lowercase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() __lowercase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowercase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowercase = defaultdict(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): # get log sigma __lowercase = sigma.log() # get distribution __lowercase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowercase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowercase = low_idx + 1 __lowercase = self.log_sigmas[low_idx] __lowercase = self.log_sigmas[high_idx] # interpolate sigmas __lowercase = (low - log_sigma) / (low - high) __lowercase = w.clamp(0 ,1 ) # transform interpolation to time range __lowercase = (1 - w) * low_idx + w * high_idx __lowercase = t.view(sigma.shape ) return t @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.sample is None def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple = True ,): __lowercase = self.index_for_timestep(lowercase__ ) # advance index counter by 1 __lowercase = timestep.cpu().item() if torch.is_tensor(lowercase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowercase = self.sigmas[step_index] __lowercase = self.sigmas_interpol[step_index + 1] __lowercase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowercase = self.sigmas[step_index - 1] __lowercase = self.sigmas_interpol[step_index] __lowercase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowercase = 0 __lowercase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowercase = sigma_hat if self.state_in_first_order else sigma_interpol __lowercase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowercase = sigma_hat if self.state_in_first_order else sigma_interpol __lowercase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowercase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowercase = sigma_interpol - sigma_hat # store for 2nd order step __lowercase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowercase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowercase = sigma_next - sigma_hat __lowercase = self.sample __lowercase = None __lowercase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : str ,lowercase__ : Optional[int] ,lowercase__ : str ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowercase__ ): # mps does not support float64 __lowercase = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) __lowercase = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: __lowercase = self.timesteps.to(original_samples.device ) __lowercase = timesteps.to(original_samples.device ) __lowercase = [self.index_for_timestep(lowercase__ ,lowercase__ ) for t in timesteps] __lowercase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowercase = sigma.unsqueeze(-1 ) __lowercase = original_samples + noise * sigma return noisy_samples def __len__( self : Any ): return self.config.num_train_timesteps
104
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> bool: '''simple docstring''' __lowercase= get_failure_array(lowercase__ ) # 2) Step through text searching for pattern __lowercase, __lowercase= 0, 0 # index into text, pattern while i < len(lowercase__ ): if pattern[j] == text[i]: if j == (len(lowercase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase= failure[j - 1] continue i += 1 return False def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= [0] __lowercase= 0 __lowercase= 1 while j < len(lowercase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase= failure[i - 1] continue j += 1 failure.append(lowercase__ ) return failure if __name__ == "__main__": # Test 1) lowerCAmelCase = '''abc1abc12''' lowerCAmelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCAmelCase = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCAmelCase = '''ABABX''' lowerCAmelCase = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCAmelCase = '''AAAB''' lowerCAmelCase = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCAmelCase = '''abcdabcy''' lowerCAmelCase = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCAmelCase = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
295
0
from __future__ import annotations import os from typing import Any import requests _UpperCAmelCase : int = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _UpperCAmelCase : Dict = BASE_URL + """/user""" # https://github.com/settings/tokens _UpperCAmelCase : Optional[Any] = os.environ.get("""USER_TOKEN""", """""") def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = { 'Authorization': F'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
200
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowercase : def __init__( self , snake_case , snake_case=99 , snake_case=13 , snake_case=7 , snake_case=9 , snake_case=True , snake_case=True , snake_case=False , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case=8 , snake_case=0.1 , snake_case=0.0_02 , snake_case=1 , snake_case=0 , snake_case=0 , snake_case=None , snake_case=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = encoder_seq_length snake_case_ = decoder_seq_length # For common tests snake_case_ = self.decoder_seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = d_ff snake_case_ = relative_attention_num_buckets snake_case_ = dropout_rate snake_case_ = initializer_factor snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = decoder_start_token_id snake_case_ = None snake_case_ = decoder_layers def a ( self ): return TaConfig.from_pretrained('google/umt5-base' ) def a ( self , snake_case , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ): if attention_mask is None: snake_case_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=snake_case ) if decoder_head_mask is None: snake_case_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=snake_case ) if cross_attn_head_mask is None: snake_case_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def a ( self ): snake_case_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case_ = input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = self.get_config() snake_case_ = config.num_attention_heads snake_case_ = self.prepare_inputs_dict(snake_case , snake_case , snake_case ) return config, input_dict def a ( self ): snake_case_ , snake_case_ = self.prepare_config_and_inputs() return config, inputs_dict def a ( self ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def a ( self ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = UMTaModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = model( input_ids=snake_case , decoder_input_ids=snake_case , attention_mask=snake_case , decoder_attention_mask=snake_case , ) snake_case_ = model(input_ids=snake_case , decoder_input_ids=snake_case ) snake_case_ = result.last_hidden_state snake_case_ = result.past_key_values snake_case_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = UMTaModel(config=snake_case ).get_decoder().to(snake_case ).eval() # first forward pass snake_case_ = model(snake_case , use_cache=snake_case ) snake_case_ = model(snake_case ) snake_case_ = model(snake_case , use_cache=snake_case ) self.parent.assertTrue(len(snake_case ) == len(snake_case ) ) self.parent.assertTrue(len(snake_case ) == len(snake_case ) + 1 ) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = model(snake_case )['last_hidden_state'] snake_case_ = model(snake_case , past_key_values=snake_case )['last_hidden_state'] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def a ( self , snake_case , snake_case , ): snake_case_ = UMTaModel(config=snake_case ).to(snake_case ).half().eval() snake_case_ = model(**snake_case )['last_hidden_state'] self.parent.assertFalse(torch.isnan(snake_case ).any().item() ) @require_torch class lowercase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : int = (UMTaForConditionalGeneration,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[int] = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[str] = True __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : Any = True # The small UMT5 model needs higher percentages for CPU/MP tests __SCREAMING_SNAKE_CASE : List[str] = [0.8, 0.9] def a ( self ): snake_case_ = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = UMTaModel(config_and_inputs[0] ).to(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=snake_case , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*snake_case ) def a ( self ): snake_case_ = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = config_and_inputs[0] snake_case_ = UMTaForConditionalGeneration(snake_case ).eval() model.to(snake_case ) snake_case_ = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=snake_case ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ), } for attn_name, (name, mask) in zip(snake_case , head_masking.items() ): snake_case_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": snake_case_ = torch.ones( config.num_decoder_layers , config.num_heads , device=snake_case ) snake_case_ = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=snake_case , return_dict_in_generate=snake_case , **snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step snake_case_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def a ( self ): pass @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def a ( self ): snake_case_ = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=snake_case ).to(snake_case ) snake_case_ = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=snake_case , legacy=snake_case ) snake_case_ = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] snake_case_ = tokenizer(snake_case , return_tensors='pt' , padding=snake_case ).input_ids # fmt: off snake_case_ = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(snake_case , snake_case ) snake_case_ = model.generate(input_ids.to(snake_case ) ) snake_case_ = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] snake_case_ = tokenizer.batch_decode(snake_case ) self.assertEqual(snake_case , snake_case )
200
1
from __future__ import annotations from math import pow, sqrt def lowerCAmelCase_ ( __A, __A, __A ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__A, 2 ) - pow(__A, 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__A, 2 ) - pow(__A, 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__A, 2 ) + pow(__A, 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
65
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A ( UpperCAmelCase_ ): __UpperCAmelCase : torch.FloatTensor __UpperCAmelCase : Optional[torch.FloatTensor] = None def lowerCAmelCase_ ( __A, __A=0.999, __A="cosine", ) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__A ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase__ = [] for i in range(__A ): UpperCAmelCase__ = i / num_diffusion_timesteps UpperCAmelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__A ) / alpha_bar_fn(__A ), __A ) ) return torch.tensor(__A, dtype=torch.floataa ) class A ( UpperCAmelCase_ , UpperCAmelCase_ ): @register_to_config def __init__(self : List[str] , __UpperCAmelCase : int = 1_0_0_0 , __UpperCAmelCase : str = "fixed_small_log" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[float] = 1.0 , __UpperCAmelCase : str = "epsilon" , __UpperCAmelCase : str = "squaredcos_cap_v2" , ) -> Optional[int]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) UpperCAmelCase__ = betas_for_alpha_bar(__UpperCAmelCase ) UpperCAmelCase__ = 1.0 - self.betas UpperCAmelCase__ = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase__ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase__ = 1.0 # setable values UpperCAmelCase__ = None UpperCAmelCase__ = torch.from_numpy(np.arange(0 , __UpperCAmelCase )[::-1].copy() ) UpperCAmelCase__ = variance_type def lowercase_ (self : List[str] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, torch.device] = None ) -> Any: """simple docstring""" UpperCAmelCase__ = num_inference_steps UpperCAmelCase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase__ = (np.arange(0 , __UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase ) def lowercase_ (self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[str]=None ) -> Tuple: """simple docstring""" if prev_timestep is None: UpperCAmelCase__ = t - 1 UpperCAmelCase__ = self.alphas_cumprod[t] UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ = self.betas[t] else: UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase__ = torch.log(torch.clamp(__UpperCAmelCase , min=1E-20 ) ) UpperCAmelCase__ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase__ = variance.log() UpperCAmelCase__ = beta.log() UpperCAmelCase__ = (predicted_variance + 1) / 2 UpperCAmelCase__ = frac * max_log + (1 - frac) * min_log return variance def lowercase_ (self : Optional[int] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : int , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" UpperCAmelCase__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase__ , UpperCAmelCase__ = torch.split(__UpperCAmelCase , sample.shape[1] , dim=1 ) else: UpperCAmelCase__ = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase__ = t - 1 UpperCAmelCase__ = self.alphas_cumprod[t] UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ = self.betas[t] UpperCAmelCase__ = self.alphas[t] else: UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase__ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ = torch.clamp( __UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase__ = 0 if t > 0: UpperCAmelCase__ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__UpperCAmelCase , device=model_output.device ) UpperCAmelCase__ = self._get_variance( __UpperCAmelCase , predicted_variance=__UpperCAmelCase , prev_timestep=__UpperCAmelCase , ) if self.variance_type == "fixed_small_log": UpperCAmelCase__ = variance elif self.variance_type == "learned_range": UpperCAmelCase__ = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) UpperCAmelCase__ = variance * variance_noise UpperCAmelCase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.IntTensor , ) -> torch.FloatTensor: """simple docstring""" UpperCAmelCase__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase__ = timesteps.to(original_samples.device ) UpperCAmelCase__ = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase__ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase__ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
65
1
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase__ : Dict = get_tests_dir("fixtures/dummy-config.json") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : str = 0 def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : List[str] = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Tuple = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : Any = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = AutoConfig.for_model("roberta" ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCAmelCase : int = os.path.join(UpperCAmelCase_ , "fake-roberta" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(os.path.join(UpperCAmelCase_ , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(type(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register("custom" , UpperCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register("model" , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoConfig.register("bert" , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : List[str] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , "bert-base is not a local folder and is not a valid model identifier" ): __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base" ) def lowerCamelCase_ ( self : int ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __UpperCAmelCase : int = AutoConfig.from_pretrained(UpperCAmelCase_ , revision="aaaaaa" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( UpperCAmelCase_ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): __UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): __UpperCAmelCase : int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): __UpperCAmelCase : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_ , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = '''new-model''' try: AutoConfig.register("new-model" , UpperCAmelCase_ ) # If remote code is not set, the default is to use local __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. __UpperCAmelCase : int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub __UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
37
1
from __future__ import annotations from random import random class A : def __init__( self, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = value lowerCAmelCase_ = random() lowerCAmelCase_ = None lowerCAmelCase_ = None def __repr__( self ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)}, indent=1 ) def __str__( self ): """simple docstring""" lowerCAmelCase_ = str(self.value ) + ''' ''' lowerCAmelCase_ = str(self.left or '''''' ) lowerCAmelCase_ = str(self.right or '''''' ) return value + left + right def __UpperCamelCase ( _A , _A ): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ = split(root.left , _A ) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ = split(root.right , _A ) return root, right def __UpperCamelCase ( _A , _A ): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ = merge(left.right , _A ) return left else: lowerCAmelCase_ = merge(_A , right.left ) return right def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = Node(_A ) lowerCAmelCase_ , lowerCAmelCase_ = split(_A , _A ) return merge(merge(_A , _A ) , _A ) def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ , lowerCAmelCase_ = split(_A , value - 1 ) lowerCAmelCase_ , lowerCAmelCase_ = split(_A , _A ) return merge(_A , _A ) def __UpperCamelCase ( _A ): if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def __UpperCamelCase ( _A , _A ): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ = insert(_A , int(arg[1:] ) ) elif arg[0] == "-": lowerCAmelCase_ = erase(_A , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def __UpperCamelCase ( ): lowerCAmelCase_ = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) lowerCAmelCase_ = input() while args != "q": lowerCAmelCase_ = interact_treap(_A , _A ) print(_A ) lowerCAmelCase_ = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
278
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCamelCase ( _A , _A ): assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase_ = JsonDatasetReader(_A , cache_dir=_A , keep_in_memory=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase_ = features.copy() if features else default_expected_features lowerCAmelCase_ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} lowerCAmelCase_ = features.copy() if features else default_expected_features lowerCAmelCase_ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __UpperCamelCase ( _A , _A ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowerCAmelCase_ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} lowerCAmelCase_ = features.copy() lowerCAmelCase_ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase_ = JsonDatasetReader(_A , cache_dir=_A , split=_A ).read() _check_json_dataset(_A , _A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __UpperCamelCase ( _A , _A , _A ): if issubclass(_A , _A ): lowerCAmelCase_ = jsonl_path elif issubclass(_A , _A ): lowerCAmelCase_ = [jsonl_path] lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase_ = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) def __UpperCamelCase ( _A , _A , _A=("train",) ): assert isinstance(_A , _A ) for split in splits: lowerCAmelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase_ = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=_A , keep_in_memory=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase_ = features.copy() if features else default_expected_features lowerCAmelCase_ = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase_ = JsonDatasetReader({'''train''': jsonl_path} , features=_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCamelCase ( _A , _A , _A ): if split: lowerCAmelCase_ = {split: jsonl_path} else: lowerCAmelCase_ = '''train''' lowerCAmelCase_ = {'''train''': jsonl_path, '''test''': jsonl_path} lowerCAmelCase_ = tmp_path / '''cache''' lowerCAmelCase_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase_ = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __UpperCamelCase ( _A ): return json.load(_A ) def __UpperCamelCase ( _A ): return [json.loads(_A ) for line in buffer] class A : @pytest.mark.parametrize('''lines, load_json_function''', [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__ ).write() buffer.seek(0 ) lowerCAmelCase_ = load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) assert isinstance(exported_content[0], UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''', [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ], ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__, orient=UpperCamelCase__ ).write() buffer.seek(0 ) lowerCAmelCase_ = load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__, '''keys''' ) and not hasattr(exported_content[0], '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize('''lines, load_json_function''', [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__, num_proc=2 ).write() buffer.seek(0 ) lowerCAmelCase_ = load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) assert isinstance(exported_content[0], UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''', [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ], ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__, orient=UpperCamelCase__, num_proc=2 ).write() buffer.seek(0 ) lowerCAmelCase_ = load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__, '''keys''' ) and not hasattr(exported_content[0], '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" with pytest.raises(UpperCamelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, num_proc=0 ) @pytest.mark.parametrize('''compression, extension''', [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = tmp_path_factory.mktemp('''data''' ) / f"test.json.{extension}" lowerCAmelCase_ = str(shared_datadir / f"test_file.json.{extension}" ) JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, compression=UpperCamelCase__ ).write() with fsspec.open(UpperCamelCase__, '''rb''', compression='''infer''' ) as f: lowerCAmelCase_ = f.read() with fsspec.open(UpperCamelCase__, '''rb''', compression='''infer''' ) as f: lowerCAmelCase_ = f.read() assert exported_content == original_content
278
1
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __snake_case ={ """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : str = '''ernie_m''' lowerCamelCase : Any = {'''dropout''': '''classifier_dropout''', '''num_classes''': '''num_labels'''} def __init__( self : Optional[Any] , UpperCAmelCase__ : int = 2_5_0_0_0_2 , UpperCAmelCase__ : int = 7_6_8 , UpperCAmelCase__ : int = 1_2 , UpperCAmelCase__ : int = 1_2 , UpperCAmelCase__ : int = 3_0_7_2 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 5_1_4 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : float = 1E-05 , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Any=0.0 , **UpperCAmelCase__ : Optional[int] , ) -> str: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = classifier_dropout lowerCAmelCase = is_decoder lowerCAmelCase = act_dropout
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __snake_case ( unittest.TestCase ): def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on SCREAMING_SNAKE_CASE__ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] SCREAMING_SNAKE_CASE__ = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowercase ) ) SCREAMING_SNAKE_CASE__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_lowercase , _lowercase ) def __a ( self : Union[str, Any] , **_lowercase : Optional[Any] ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def __a ( self : Optional[int] , **_lowercase : Tuple ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def __a ( self : Union[str, Any] , **_lowercase : Any ): """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def __a ( self : Dict ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowercase ) self.assertIsInstance(processor_fast.tokenizer , _lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowercase ) self.assertIsInstance(processor_fast.image_processor , _lowercase ) def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(_lowercase , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processor(images=_lowercase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = """lower newer""" SCREAMING_SNAKE_CASE__ = processor(text=_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = """lower newer""" SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.batch_decode(_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = """lower newer""" SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
219
import sys from collections import defaultdict class __lowerCAmelCase : def __init__( self : int) -> str: """simple docstring""" _UpperCAmelCase = [] def _lowerCamelCase ( self : Any , A : List[str]) -> int: """simple docstring""" return self.node_position[vertex] def _lowerCamelCase ( self : Optional[Any] , A : Optional[int] , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = pos def _lowerCamelCase ( self : Tuple , A : Tuple , A : Dict , A : List[str] , A : Optional[Any]) -> Dict: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCAmelCase = 2 * start + 1 else: _UpperCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCAmelCase , _UpperCAmelCase = heap[smallest_child], positions[smallest_child] _UpperCAmelCase , _UpperCAmelCase = ( heap[start], positions[start], ) _UpperCAmelCase , _UpperCAmelCase = temp, tempa _UpperCAmelCase = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , A) self.top_to_bottom(A , A , A , A) def _lowerCamelCase ( self : Optional[int] , A : str , A : Optional[Any] , A : Optional[int] , A : str) -> Any: """simple docstring""" _UpperCAmelCase = position[index] while index != 0: _UpperCAmelCase = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: _UpperCAmelCase = heap[parent] _UpperCAmelCase = position[parent] self.set_position(position[parent] , A) else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(A , A) break _UpperCAmelCase = parent else: _UpperCAmelCase = val _UpperCAmelCase = temp self.set_position(A , 0) def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int] , A : Tuple) -> str: """simple docstring""" _UpperCAmelCase = len(A) // 2 - 1 for i in range(A , -1 , -1): self.top_to_bottom(A , A , len(A) , A) def _lowerCamelCase ( self : Optional[int] , A : int , A : str) -> List[str]: """simple docstring""" _UpperCAmelCase = positions[0] _UpperCAmelCase = sys.maxsize self.top_to_bottom(A , 0 , len(A) , A) return temp def A ( _UpperCAmelCase : int ) -> Any: '''simple docstring''' _UpperCAmelCase = Heap() _UpperCAmelCase = [0] * len(_UpperCAmelCase ) _UpperCAmelCase = [-1] * len(_UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCAmelCase = [] for vertex in range(len(_UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCAmelCase ) heap.node_position.append(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = 1 _UpperCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCAmelCase = 0 _UpperCAmelCase = distance heap.heapify(_UpperCAmelCase , _UpperCAmelCase ) for _ in range(1 , len(_UpperCAmelCase ) ): _UpperCAmelCase = heap.delete_minimum(_UpperCAmelCase , _UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCAmelCase )] ): _UpperCAmelCase = distance heap.bottom_to_top( _UpperCAmelCase , heap.get_position(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase__ = int(input("Enter number of edges: ").strip()) UpperCAmelCase__ = defaultdict(list) for _ in range(edges_number): UpperCAmelCase__ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
339
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class __magic_name__ : def __init__( self : Union[str, Any] , lowercase_ : list[tuple[float, float]] ): lowercase_ : int = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase_ : Dict = len(lowercase_ ) - 1 def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase_ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , lowercase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowercase_ ) , 5 ) == 1 return output_values def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase_ : List[str] = self.basis_function(lowercase_ ) lowercase_ : Tuple = 0.0 lowercase_ : Dict = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore lowercase_ : list[float] = [] # x coordinates of points to plot lowercase_ : list[float] = [] # y coordinates of points to plot lowercase_ : Tuple = 0.0 while t <= 1: lowercase_ : Any = self.bezier_curve_function(lowercase_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase_ : Any = [i[0] for i in self.list_of_points] lowercase_ : List[str] = [i[1] for i in self.list_of_points] plt.plot( lowercase_ , lowercase_ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(lowercase_ , lowercase_ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
21
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowercase__ : '''simple docstring''' def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=32 , __snake_case=2 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=16 , __snake_case=2 , __snake_case=0.02 , __snake_case=3 , __snake_case=4 , __snake_case=None , __snake_case=1000 , ): _SCREAMING_SNAKE_CASE : Any = parent _SCREAMING_SNAKE_CASE : Dict = batch_size _SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length _SCREAMING_SNAKE_CASE : Union[str, Any] = is_training _SCREAMING_SNAKE_CASE : Union[str, Any] = use_input_mask _SCREAMING_SNAKE_CASE : Any = use_token_type_ids _SCREAMING_SNAKE_CASE : List[str] = use_labels _SCREAMING_SNAKE_CASE : Any = vocab_size _SCREAMING_SNAKE_CASE : Tuple = hidden_size _SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers _SCREAMING_SNAKE_CASE : Dict = num_attention_heads _SCREAMING_SNAKE_CASE : Tuple = intermediate_size _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : str = max_position_embeddings _SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size _SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : Dict = num_labels _SCREAMING_SNAKE_CASE : int = num_choices _SCREAMING_SNAKE_CASE : Any = scope _SCREAMING_SNAKE_CASE : str = range_bbox def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _SCREAMING_SNAKE_CASE : str = bbox[i, j, 3] _SCREAMING_SNAKE_CASE : List[Any] = bbox[i, j, 1] _SCREAMING_SNAKE_CASE : str = t if bbox[i, j, 2] < bbox[i, j, 0]: _SCREAMING_SNAKE_CASE : Optional[Any] = bbox[i, j, 2] _SCREAMING_SNAKE_CASE : Optional[int] = bbox[i, j, 0] _SCREAMING_SNAKE_CASE : Dict = t _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor(__snake_case ) _SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : str = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : Dict = None _SCREAMING_SNAKE_CASE : Tuple = None _SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Dict = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : List[str] = TFLayoutLMModel(config=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(__snake_case , __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = model(__snake_case , __snake_case , token_type_ids=__snake_case ) _SCREAMING_SNAKE_CASE : str = model(__snake_case , __snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Any = TFLayoutLMForMaskedLM(config=__snake_case ) _SCREAMING_SNAKE_CASE : str = model(__snake_case , __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : str = self.num_labels _SCREAMING_SNAKE_CASE : Dict = TFLayoutLMForSequenceClassification(config=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = model(__snake_case , __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Tuple = self.num_labels _SCREAMING_SNAKE_CASE : List[str] = TFLayoutLMForTokenClassification(config=__snake_case ) _SCREAMING_SNAKE_CASE : Dict = model(__snake_case , __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): _SCREAMING_SNAKE_CASE : Optional[int] = TFLayoutLMForQuestionAnswering(config=__snake_case ) _SCREAMING_SNAKE_CASE : Any = model(__snake_case , __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Any = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowercase__ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Any = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) A_ : Union[str, Any] = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) A_ : Union[str, Any] = False A_ : int = True A_ : Optional[int] = 10 def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = TFLayoutLMModelTester(self ) _SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) @slow def UpperCAmelCase_ ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : int = TFLayoutLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip("""Onnx compliancy broke with TF 2.10""" ) def UpperCAmelCase_ ( self ): pass def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 _SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 _SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowercase__ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE : List[str] = model(input_ids=__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) # test the sequence output on [0, :3, :3] _SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] _SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , __snake_case , atol=1e-3 ) ) @slow def UpperCAmelCase_ ( self ): # initialize model with randomly initialized sequence classification head _SCREAMING_SNAKE_CASE : int = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE : List[str] = model( input_ids=__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _SCREAMING_SNAKE_CASE : Tuple = outputs.loss _SCREAMING_SNAKE_CASE : Optional[int] = (2,) self.assertEqual(loss.shape , __snake_case ) # test the shape of the logits _SCREAMING_SNAKE_CASE : List[Any] = outputs.logits _SCREAMING_SNAKE_CASE : Tuple = (2, 2) self.assertEqual(logits.shape , __snake_case ) @slow def UpperCAmelCase_ ( self ): # initialize model with randomly initialized token classification head _SCREAMING_SNAKE_CASE : List[str] = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE : Tuple = model( input_ids=__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) # test the shape of the logits _SCREAMING_SNAKE_CASE : int = outputs.logits _SCREAMING_SNAKE_CASE : Tuple = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , __snake_case ) @slow def UpperCAmelCase_ ( self ): # initialize model with randomly initialized token classification head _SCREAMING_SNAKE_CASE : Optional[int] = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = prepare_layoutlm_batch_inputs() # forward pass _SCREAMING_SNAKE_CASE : Any = model(input_ids=__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) # test the shape of the logits _SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , __snake_case ) self.assertEqual(outputs.end_logits.shape , __snake_case )
200
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowercase__ ( ctypes.Structure ): '''simple docstring''' A_ : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): """simple docstring""" if os.name == "nt": _SCREAMING_SNAKE_CASE : Tuple = CursorInfo() _SCREAMING_SNAKE_CASE : Tuple = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def snake_case_ ( ): """simple docstring""" if os.name == "nt": _SCREAMING_SNAKE_CASE : int = CursorInfo() _SCREAMING_SNAKE_CASE : List[str] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) _SCREAMING_SNAKE_CASE : Tuple = True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): """simple docstring""" try: hide_cursor() yield finally: show_cursor()
200
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _A : """simple docstring""" def __init__( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any]=13 , __UpperCAmelCase : Optional[int]=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Optional[Any]=99 , __UpperCAmelCase : str=[1, 1, 2] , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : int=32 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : List[Any]=8 , __UpperCAmelCase : Optional[int]=37 , __UpperCAmelCase : Tuple="gelu_new" , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : List[Any]=512 , __UpperCAmelCase : str=3 , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Tuple=False , ): a : Any = parent a : Tuple = batch_size a : List[str] = seq_length a : Any = is_training a : Union[str, Any] = use_input_mask a : Dict = use_token_type_ids a : Tuple = use_labels a : Union[str, Any] = vocab_size a : str = block_sizes a : str = num_decoder_layers a : List[Any] = d_model a : Optional[Any] = n_head a : Optional[Any] = d_head a : Any = d_inner a : Optional[int] = hidden_act a : List[Any] = hidden_dropout a : Dict = attention_dropout a : Tuple = activation_dropout a : int = max_position_embeddings a : Optional[int] = type_vocab_size a : str = 2 a : Optional[int] = num_labels a : List[Any] = num_choices a : List[Any] = scope a : str = initializer_std # Used in the tests to check the size of the first attention layer a : Tuple = n_head # Used in the tests to check the size of the first hidden state a : Union[str, Any] = self.d_model # Used in the tests to check the number of output hidden states/attentions a : str = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: a : str = self.num_hidden_layers + 2 def __snake_case ( self : Union[str, Any]): a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : Dict = None if self.use_input_mask: a : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) a : Tuple = None if self.use_token_type_ids: a : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a : Any = None a : Tuple = None a : Optional[Any] = None if self.use_labels: a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a : int = ids_tensor([self.batch_size] , self.num_choices) a : Any = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : str , ): a : Optional[int] = TFFunnelModel(config=__UpperCAmelCase) a : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : int = model(__UpperCAmelCase) a : List[str] = [input_ids, input_mask] a : Optional[int] = model(__UpperCAmelCase) a : List[Any] = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) a : Optional[int] = False a : Dict = TFFunnelModel(config=__UpperCAmelCase) a : Any = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) a : List[str] = False a : Optional[Any] = TFFunnelModel(config=__UpperCAmelCase) a : int = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , ): a : str = TFFunnelBaseModel(config=__UpperCAmelCase) a : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : Optional[int] = model(__UpperCAmelCase) a : int = [input_ids, input_mask] a : Any = model(__UpperCAmelCase) a : Any = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) a : List[Any] = False a : int = TFFunnelBaseModel(config=__UpperCAmelCase) a : List[str] = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) a : Union[str, Any] = False a : Optional[int] = TFFunnelBaseModel(config=__UpperCAmelCase) a : List[Any] = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def __snake_case ( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , ): a : Tuple = TFFunnelForPreTraining(config=__UpperCAmelCase) a : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : Optional[Any] = model(__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def __snake_case ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Any , ): a : Union[str, Any] = TFFunnelForMaskedLM(config=__UpperCAmelCase) a : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : Dict = model(__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __snake_case ( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , ): a : Union[str, Any] = self.num_labels a : List[Any] = TFFunnelForSequenceClassification(config=__UpperCAmelCase) a : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : Union[str, Any] = model(__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , ): a : Dict = self.num_choices a : Optional[int] = TFFunnelForMultipleChoice(config=__UpperCAmelCase) a : str = tf.tile(tf.expand_dims(__UpperCAmelCase , 1) , (1, self.num_choices, 1)) a : Optional[Any] = tf.tile(tf.expand_dims(__UpperCAmelCase , 1) , (1, self.num_choices, 1)) a : Union[str, Any] = tf.tile(tf.expand_dims(__UpperCAmelCase , 1) , (1, self.num_choices, 1)) a : Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } a : List[str] = model(__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __snake_case ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , ): a : Union[str, Any] = self.num_labels a : Union[str, Any] = TFFunnelForTokenClassification(config=__UpperCAmelCase) a : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : Optional[int] = model(__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __snake_case ( self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , ): a : Dict = TFFunnelForQuestionAnswering(config=__UpperCAmelCase) a : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a : int = model(__UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __snake_case ( self : Any): a : int = self.prepare_config_and_inputs() ( a ) : int = config_and_inputs a : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _A ( _a ,_a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Optional[int] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase : Optional[int] = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase : List[str] = False UpperCAmelCase : Any = False def __snake_case ( self : Dict): a : Optional[int] = TFFunnelModelTester(self) a : str = ConfigTester(self , config_class=__UpperCAmelCase) def __snake_case ( self : List[Any]): self.config_tester.run_common_tests() def __snake_case ( self : Optional[int]): a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def __snake_case ( self : Tuple): a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase) def __snake_case ( self : List[Any]): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase) def __snake_case ( self : Tuple): a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def __snake_case ( self : List[Any]): a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @require_tf class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : List[Any] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCAmelCase : Tuple = False UpperCAmelCase : Dict = False def __snake_case ( self : Union[str, Any]): a : Optional[Any] = TFFunnelModelTester(self , base=__UpperCAmelCase) a : int = ConfigTester(self , config_class=__UpperCAmelCase) def __snake_case ( self : Optional[int]): self.config_tester.run_common_tests() def __snake_case ( self : Tuple): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__UpperCAmelCase) def __snake_case ( self : List[str]): a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase) def __snake_case ( self : Union[str, Any]): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase)
364
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowercase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowercase = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowercase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowercase = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def lowercase ( A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' a : List[str] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): a : str = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , A_ , ) is not None ): a : List[Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: a : str = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files a : Tuple = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] a : str = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed a : int = True if not attribute_used: a : Dict = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: a : Optional[int] = True elif attribute in ["tie_word_embeddings"] and default_value is False: a : List[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: a : str = True elif attribute.endswith("_token_id" ): a : str = True # configuration class specific cases if not case_allowed: a : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) a : Optional[Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowercase ( A_ )-> Tuple: '''simple docstring''' a : Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters ) a : Any = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] a : str = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass a : Dict = {} if len(config_class.attribute_map ) > 0: a : int = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files a : int = inspect.getsourcefile(A_ ) a : Union[str, Any] = os.path.dirname(A_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. a : Optional[Any] = [os.path.join(A_ , A_ ) for fn in os.listdir(A_ ) if fn.startswith("modeling_" )] # Get the source code strings a : Tuple = [] for path in modeling_paths: if os.path.isfile(A_ ): with open(A_ ) as fp: modeling_sources.append(fp.read() ) a : Optional[Any] = [] for config_param, default_value in zip(A_ , A_ ): # `attributes` here is all the variant names for `config_param` a : str = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(A_ , A_ , A_ , A_ ): unused_attributes.append(attributes[0] ) return sorted(A_ ) def lowercase ( )-> str: '''simple docstring''' a : List[Any] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) a : str = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda A_ : inspect.isclass(A_ ) and issubclass(A_ , A_ ) and inspect.getmodule(A_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: a : Union[str, Any] = check_config_attributes_being_used(A_ ) if len(A_ ) > 0: a : Dict = unused_attributes if len(A_ ) > 0: a : Union[str, Any] = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(A_ ) if __name__ == "__main__": check_config_attributes()
226
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = abs(UpperCamelCase ) lowerCAmelCase__ : List[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = abs(UpperCamelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return sum(int(UpperCamelCase ) for c in str(abs(UpperCamelCase ) ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase , UpperCamelCase ) -> None: lowerCAmelCase__ : str = f"""{func.__name__}({value})""" lowerCAmelCase__ : str = timeit(f"""__main__.{call}""" , setup="""import __main__""" ) print(f"""{call:56} = {func(UpperCamelCase )} -- {timing:.4f} seconds""" ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCamelCase , UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
37
'''simple docstring''' from maths.prime_factors import prime_factors def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
37
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase__ : Any = '''src/diffusers''' lowercase__ : List[str] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowercase__ : List[str] = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase__ : List[Any] = spec.loader.load_module() def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> Dict: return line.startswith(__snake_case ) or len(__snake_case ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , __snake_case ) is not None def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> List[Any]: __A : List[Any] = object_name.split('.' ) __A : Optional[int] = 0 # First let's find the module where our object lives. __A : str = parts[i] while i < len(__snake_case ) and not os.path.isfile(os.path.join(__snake_case , f'{module}.py' ) ): i += 1 if i < len(__snake_case ): __A : int = os.path.join(__snake_case , parts[i] ) if i >= len(__snake_case ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__snake_case , f'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __A : Union[str, Any] = f.readlines() # Now let's find the class / func in the code! __A : str = '' __A : int = 0 for name in parts[i + 1 :]: while ( line_index < len(__snake_case ) and re.search(rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__snake_case ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __A : Tuple = line_index while line_index < len(__snake_case ) and _should_continue(lines[line_index] , __snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __A : List[str] = lines[start_index:line_index] return "".join(__snake_case ) lowercase__ : Optional[Any] = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowercase__ : int = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowercase__ : List[str] = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( __snake_case : Dict ) -> List[str]: __A : int = code.split('\n' ) __A : Any = 0 while idx < len(__snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__snake_case ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( __snake_case : Tuple ) -> Dict: __A : Tuple = len(get_indent(__snake_case ) ) > 0 if has_indent: __A : int = f'class Bla:\n{code}' __A : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=__snake_case ) __A : Optional[Any] = black.format_str(__snake_case , mode=__snake_case ) __A : Optional[Any] = style_docstrings_in_code(__snake_case ) return result[len('class Bla:\n' ) :] if has_indent else result def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Optional[Any]=False ) -> Dict: with open(__snake_case , 'r' , encoding='utf-8' , newline='\n' ) as f: __A : List[Any] = f.readlines() __A : Optional[Any] = [] __A : Union[str, Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__snake_case ): __A : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __A : str = search.groups() __A : Dict = find_code_in_diffusers(__snake_case ) __A : List[str] = get_indent(__snake_case ) __A : Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 __A : Dict = theoretical_indent __A : List[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __A : Optional[Any] = True while line_index < len(__snake_case ) and should_continue: line_index += 1 if line_index >= len(__snake_case ): break __A : int = lines[line_index] __A : List[Any] = _should_continue(__snake_case , __snake_case ) and re.search(f'^{indent}# End copy' , __snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __A : Dict = lines[start_index:line_index] __A : Optional[Any] = ''.join(__snake_case ) # Remove any nested `Copied from` comments to avoid circular copies __A : int = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(__snake_case ) is None] __A : Optional[Any] = '\n'.join(__snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(__snake_case ) > 0: __A : int = replace_pattern.replace('with' , '' ).split(',' ) __A : str = [_re_replace_pattern.search(__snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue __A : str = pattern.groups() __A : Optional[int] = re.sub(__snake_case , __snake_case , __snake_case ) if option.strip() == "all-casing": __A : Optional[Any] = re.sub(obja.lower() , obja.lower() , __snake_case ) __A : List[str] = re.sub(obja.upper() , obja.upper() , __snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __A : Optional[Any] = blackify(lines[start_index - 1] + theoretical_code ) __A : Any = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __A : Any = lines[:start_index] + [theoretical_code] + lines[line_index:] __A : Optional[int] = start_index + 1 if overwrite and len(__snake_case ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(__snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__snake_case ) return diffs def _lowerCAmelCase ( __snake_case : bool = False ) -> Union[str, Any]: __A : int = glob.glob(os.path.join(__snake_case , '**/*.py' ) , recursive=__snake_case ) __A : List[str] = [] for filename in all_files: __A : Any = is_copy_consistent(__snake_case , __snake_case ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__snake_case ) > 0: __A : Dict = '\n'.join(__snake_case ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowercase__ : Optional[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
361
'''simple docstring''' from __future__ import annotations from math import gcd def _lowerCAmelCase ( __snake_case : int , __snake_case : int = 2 , __snake_case : int = 1 , __snake_case : int = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__snake_case : int , __snake_case : int , __snake_case : int ) -> int: return (pow(__snake_case , 2 ) + step) % modulus for _ in range(__snake_case ): # These track the position within the cycle detection logic. __A : int = seed __A : Union[str, Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __A : List[Any] = rand_fn(__snake_case , __snake_case , __snake_case ) __A : Optional[Any] = rand_fn(__snake_case , __snake_case , __snake_case ) __A : Any = rand_fn(__snake_case , __snake_case , __snake_case ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __A : Optional[int] = gcd(hare - tortoise , __snake_case ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __A : Union[str, Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowercase__ : str = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) lowercase__ : Optional[int] = parser.parse_args() lowercase__ : int = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: lowercase__ : List[str] = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
190
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable snake_case_ = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['DPTFeatureExtractor'] snake_case_ = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
24
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar a_ : List[str] = TypeVar("""T""") class snake_case ( Generic[T] ): """simple docstring""" def __init__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = data lowerCamelCase_ = self lowerCamelCase_ = 0 class snake_case ( Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" # map from node name to the node object lowerCamelCase_ = {} def snake_case ( self , UpperCamelCase ): """simple docstring""" # create a new set with x as its member lowerCamelCase_ = DisjointSetTreeNode(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" # find the set x belongs to (with path-compression) lowerCamelCase_ = self.map[data] if elem_ref != elem_ref.parent: lowerCamelCase_ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" # helper function for union operation if nodea.rank > nodea.rank: lowerCamelCase_ = nodea else: lowerCamelCase_ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" # merge 2 disjoint sets self.link(self.find_set(UpperCamelCase ) , self.find_set(UpperCamelCase ) ) class snake_case ( Generic[T] ): """simple docstring""" def __init__( self ): """simple docstring""" # connections: map from the node to the neighbouring nodes (with weights) lowerCamelCase_ = {} def snake_case ( self , UpperCamelCase ): """simple docstring""" # add a node ONLY if its not present in the graph if node not in self.connections: lowerCamelCase_ = {} def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" # add an edge with the given weight self.add_node(UpperCamelCase ) self.add_node(UpperCamelCase ) lowerCamelCase_ = weight lowerCamelCase_ = weight def snake_case ( self ): """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda UpperCamelCase : x[2] ) # creating the disjoint set lowerCamelCase_ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(UpperCamelCase ) # MST generation lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = edges[index] index += 1 lowerCamelCase_ = disjoint_set.find_set(UpperCamelCase ) lowerCamelCase_ = disjoint_set.find_set(UpperCamelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(UpperCamelCase , UpperCamelCase , UpperCamelCase ) disjoint_set.union(UpperCamelCase , UpperCamelCase ) return graph
55
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class a__ ( unittest.TestCase ): _a : Dict = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a : Optional[int] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TextaTextGenerationPipeline(model=_A , tokenizer=_A ) return generator, ["Something to write", "Something else"] def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = generator("Something there" ) self.assertEqual(_A , [{"generated_text": ANY(_A )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) __lowerCAmelCase = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{"generated_text": ANY(_A )}, {"generated_text": ANY(_A )}], [{"generated_text": ANY(_A )}, {"generated_text": ANY(_A )}], ] , ) __lowerCAmelCase = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{"generated_text": ANY(_A )}, {"generated_text": ANY(_A )}], [{"generated_text": ANY(_A )}, {"generated_text": ANY(_A )}], ] , ) with self.assertRaises(_A ): generator(4 ) @require_torch def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility __lowerCAmelCase = generator("Something there" , do_sample=_A ) self.assertEqual(_A , [{"generated_text": ""}] ) __lowerCAmelCase = 3 __lowerCAmelCase = generator( "Something there" , num_return_sequences=_A , num_beams=_A , ) __lowerCAmelCase = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(_A , _A ) __lowerCAmelCase = generator("This is a test" , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) __lowerCAmelCase = generator.model.config.eos_token_id __lowerCAmelCase = "<pad>" __lowerCAmelCase = generator( ["This is a test", "This is a second test"] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility __lowerCAmelCase = generator("Something there" , do_sample=_A ) self.assertEqual(_A , [{"generated_text": ""}] )
102
from sklearn.metrics import mean_squared_error import datasets UpperCamelCase__ = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ UpperCamelCase__ = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ UpperCamelCase__ = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=None , _A="uniform_average" , _A=True ): """simple docstring""" __lowerCAmelCase = mean_squared_error( _A , _A , sample_weight=_A , multioutput=_A , squared=_A ) return {"mse": mse}
102
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE : Optional[int] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> bool: if len(lowerCamelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) _lowercase : Tuple = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : List[str] = 'mobilenet_v1' def __init__( self , lowerCamelCase=3 , lowerCamelCase=224 , lowerCamelCase=1.0 , lowerCamelCase=8 , lowerCamelCase="relu6" , lowerCamelCase=True , lowerCamelCase=0.999 , lowerCamelCase=0.02 , lowerCamelCase=0.001 , **lowerCamelCase , ) -> List[str]: super().__init__(**lowerCamelCase ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) snake_case_ = num_channels snake_case_ = image_size snake_case_ = depth_multiplier snake_case_ = min_depth snake_case_ = hidden_act snake_case_ = tf_padding snake_case_ = classifier_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : str = version.parse('1.11' ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def lowerCAmelCase_ ( self ) -> float: return 1e-4
34
import argparse import collections import json import os import re import string import sys import numpy as np lowerCamelCase_ = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) lowerCamelCase_ = None def UpperCamelCase( ) -> List[Any]: '''simple docstring''' snake_case_ = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=lowercase_ , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=lowercase_ , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def UpperCamelCase( lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case_ = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def UpperCamelCase( lowercase_ ) -> Tuple: '''simple docstring''' def remove_articles(lowercase_ ): return ARTICLES_REGEX.sub(""" """ , lowercase_ ) def white_space_fix(lowercase_ ): return " ".join(text.split() ) def remove_punc(lowercase_ ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def UpperCamelCase( lowercase_ ) -> Dict: '''simple docstring''' if not s: return [] return normalize_answer(lowercase_ ).split() def UpperCamelCase( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' return int(normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) ) def UpperCamelCase( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ = get_tokens(lowercase_ ) snake_case_ = get_tokens(lowercase_ ) snake_case_ = collections.Counter(lowercase_ ) & collections.Counter(lowercase_ ) snake_case_ = sum(common.values() ) if len(lowercase_ ) == 0 or len(lowercase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(lowercase_ ) snake_case_ = 1.0 * num_same / len(lowercase_ ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase( lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' snake_case_ = {} snake_case_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case_ = qa["""id"""] snake_case_ = [t for t in qa["""answers"""]["""text"""] if normalize_answer(lowercase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string snake_case_ = [""""""] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue snake_case_ = preds[qid] # Take max over all gold answers snake_case_ = max(compute_exact(lowercase_ , lowercase_ ) for a in gold_answers ) snake_case_ = max(compute_fa(lowercase_ , lowercase_ ) for a in gold_answers ) return exact_scores, fa_scores def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = {} for qid, s in scores.items(): snake_case_ = na_probs[qid] > na_prob_thresh if pred_na: snake_case_ = float(not qid_to_has_ans[qid] ) else: snake_case_ = s return new_scores def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=None ) -> Dict: '''simple docstring''' if not qid_list: snake_case_ = len(lowercase_ ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores.values() ) / total), ("""f1""", 1_00.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: snake_case_ = len(lowercase_ ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' for k in new_eval: snake_case_ = new_eval[k] def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' plt.step(lowercase_ , lowercase_ , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(lowercase_ , lowercase_ , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowercase_ ) plt.savefig(lowercase_ ) plt.clf() def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Dict: '''simple docstring''' snake_case_ = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] ) snake_case_ = 0.0 snake_case_ = 1.0 snake_case_ = 0.0 snake_case_ = [1.0] snake_case_ = [0.0] snake_case_ = 0.0 for i, qid in enumerate(lowercase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] snake_case_ = true_pos / float(i + 1 ) snake_case_ = true_pos / float(lowercase_ ) if i == len(lowercase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase_ ) recalls.append(lowercase_ ) if out_image: plot_pr_curve(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return {"ap": 1_00.0 * avg_prec} def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' if out_image_dir and not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) snake_case_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return snake_case_ = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) snake_case_ = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) snake_case_ = {k: float(lowercase_ ) for k, v in qid_to_has_ans.items()} snake_case_ = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(lowercase_ , lowercase_ , """pr_exact""" ) merge_eval(lowercase_ , lowercase_ , """pr_f1""" ) merge_eval(lowercase_ , lowercase_ , """pr_oracle""" ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if not qid_list: return snake_case_ = [na_probs[k] for k in qid_list] snake_case_ = np.ones_like(lowercase_ ) / float(len(lowercase_ ) ) plt.hist(lowercase_ , weights=lowercase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(lowercase_ , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' snake_case_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) snake_case_ = num_no_ans snake_case_ = cur_score snake_case_ = 0.0 snake_case_ = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] ) for i, qid in enumerate(lowercase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: snake_case_ = scores[qid] else: if preds[qid]: snake_case_ = -1 else: snake_case_ = 0 cur_score += diff if cur_score > best_score: snake_case_ = cur_score snake_case_ = na_probs[qid] return 1_00.0 * best_score / len(lowercase_ ), best_thresh def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ , snake_case_ = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ , snake_case_ = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ = best_exact snake_case_ = exact_thresh snake_case_ = best_fa snake_case_ = fa_thresh def UpperCamelCase( ) -> Union[str, Any]: '''simple docstring''' with open(OPTS.data_file ) as f: snake_case_ = json.load(lowercase_ ) snake_case_ = dataset_json["""data"""] with open(OPTS.pred_file ) as f: snake_case_ = json.load(lowercase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: snake_case_ = json.load(lowercase_ ) else: snake_case_ = {k: 0.0 for k in preds} snake_case_ = make_qid_to_has_ans(lowercase_ ) # maps qid to True/False snake_case_ = [k for k, v in qid_to_has_ans.items() if v] snake_case_ = [k for k, v in qid_to_has_ans.items() if not v] snake_case_ , snake_case_ = get_raw_scores(lowercase_ , lowercase_ ) snake_case_ = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) snake_case_ = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) snake_case_ = make_eval_dict(lowercase_ , lowercase_ ) if has_ans_qids: snake_case_ = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , """HasAns""" ) if no_ans_qids: snake_case_ = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , OPTS.out_image_dir ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) else: print(json.dumps(lowercase_ , indent=2 ) ) if __name__ == "__main__": lowerCamelCase_ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
34
1
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore UpperCAmelCase__ : Tuple = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" UpperCAmelCase__ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') UpperCAmelCase__ : Union[str, Any] = [file for file in filepaths if ' ' in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') UpperCAmelCase__ : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') UpperCAmelCase__ : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') UpperCAmelCase__ : List[str] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
25
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' def snake_case__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a_ , '''width_multiplier''' ) ) class UpperCAmelCase__ : '''simple docstring''' def __init__( self : str , a_ : Any , a_ : Tuple=13 , a_ : Tuple=64 , a_ : Optional[int]=2 , a_ : List[str]=3 , a_ : Optional[Any]="swish" , a_ : Optional[Any]=3 , a_ : str=32 , a_ : Dict=0.1 , a_ : int=0.0_2 , a_ : Tuple=True , a_ : List[Any]=True , a_ : Optional[int]=10 , a_ : Optional[int]=None , a_ : Dict=0.2_5 , a_ : Tuple=0.0 , a_ : List[Any]=0.0 , ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : List[Any] = patch_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : Any = make_divisible(5_12 * width_multiplier , divisor=8 ) __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Dict = conv_kernel_size __UpperCAmelCase : Optional[Any] = output_stride __UpperCAmelCase : Dict = classifier_dropout_prob __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : Tuple = num_labels __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Optional[Any] = scope __UpperCAmelCase : Optional[Any] = width_multiplier __UpperCAmelCase : List[str] = ffn_dropout __UpperCAmelCase : Dict = attn_dropout def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def snake_case__ ( self : Optional[Any] , a_ : Dict , a_ : List[Any] , a_ : Dict , a_ : Tuple ): '''simple docstring''' __UpperCAmelCase : List[str] = MobileViTVaModel(config=a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : Tuple = model(a_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : Union[str, Any] , a_ : Dict , a_ : Union[str, Any] , a_ : str , a_ : List[str] ): '''simple docstring''' __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : List[str] = MobileViTVaForImageClassification(a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : List[Any] = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : str , a_ : List[str] , a_ : Optional[Any] , a_ : List[str] , a_ : int ): '''simple docstring''' __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : List[Any] = MobileViTVaForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __UpperCAmelCase : Tuple = model(a_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __UpperCAmelCase : List[str] = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = config_and_inputs __UpperCAmelCase : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = MobileViTVaModelTester(self ) __UpperCAmelCase : Union[str, Any] = MobileViTVaConfigTester(self , config_class=a_ , has_text_modality=a_ ) def snake_case__ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def snake_case__ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def snake_case__ ( self : Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def snake_case__ ( self : Dict ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' pass def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(a_ ) __UpperCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Any = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def snake_case__ ( self : int ): '''simple docstring''' def check_hidden_states_output(a_ : List[Any] , a_ : List[Any] , a_ : Union[str, Any] ): __UpperCAmelCase : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(a_ , a_ ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : str = 5 self.assertEqual(len(a_ ) , a_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __UpperCAmelCase : Any = 2 for i in range(len(a_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(a_ , a_ , a_ ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) @slow def snake_case__ ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = MobileViTVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def a ( ): '''simple docstring''' __UpperCAmelCase : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self : Optional[int] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( a_ ) __UpperCAmelCase : Optional[int] = self.default_image_processor __UpperCAmelCase : int = prepare_img() __UpperCAmelCase : Union[str, Any] = image_processor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**a_ ) # verify the logits __UpperCAmelCase : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a_ ) __UpperCAmelCase : Any = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) ) @slow def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : int = model.to(a_ ) __UpperCAmelCase : str = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Tuple = image_processor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**a_ ) __UpperCAmelCase : int = outputs.logits # verify the logits __UpperCAmelCase : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , a_ ) __UpperCAmelCase : List[Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=a_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1e-4 ) ) @slow def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : Optional[int] = model.to(a_ ) __UpperCAmelCase : List[Any] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Dict = image_processor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**a_ ) __UpperCAmelCase : Optional[Any] = outputs.logits.detach().cpu() __UpperCAmelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=a_ , target_sizes=[(50, 60)] ) __UpperCAmelCase : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , a_ ) __UpperCAmelCase : List[Any] = image_processor.post_process_semantic_segmentation(outputs=a_ ) __UpperCAmelCase : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , a_ )
226
0
import math def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = sum(i * i for i in range(1, n + 1 ) ) lowerCAmelCase : str = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
323
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
1
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> float: def get_matched_characters(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> str: _snake_case : Union[str, Any] = [] _snake_case : List[Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _snake_case : List[str] = int(max(0 , i - limit ) ) _snake_case : List[Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__snake_case ) _snake_case : int = F'''{_stra[0:_stra.index(__snake_case )]} {_stra[_stra.index(__snake_case ) + 1:]}''' return "".join(__snake_case ) # matching characters _snake_case : Union[str, Any] = get_matched_characters(__snake_case , __snake_case ) _snake_case : str = get_matched_characters(__snake_case , __snake_case ) _snake_case : Tuple = len(__snake_case ) # transposition _snake_case : Optional[int] = ( len([(ca, ca) for ca, ca in zip(__snake_case , __snake_case ) if ca != ca] ) // 2 ) if not match_count: _snake_case : List[Any] = 0.0 else: _snake_case : int = ( 1 / 3 * ( match_count / len(__snake_case ) + match_count / len(__snake_case ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _snake_case : Any = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
317
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : int = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''roberta-prelayernorm''' def __init__( self , _UpperCAmelCase=5_0265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = vocab_size __A : List[Any] = hidden_size __A : Optional[int] = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : List[str] = hidden_act __A : Dict = intermediate_size __A : Optional[int] = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : Tuple = max_position_embeddings __A : Union[str, Any] = type_vocab_size __A : Any = initializer_range __A : str = layer_norm_eps __A : int = position_embedding_type __A : Optional[Any] = use_cache __A : Any = classifier_dropout class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
190
0
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase ( a_, a_ ): '''simple docstring''' lowerCamelCase : Dict = old_name if "patch_embed" in old_name: lowerCamelCase : Dict = old_name.split('.' ) if layer == "0": lowerCamelCase : int = old_name.replace('0', 'convolution1' ) elif layer == "1": lowerCamelCase : int = old_name.replace('1', 'batchnorm_before' ) elif layer == "3": lowerCamelCase : str = old_name.replace('3', 'convolution2' ) else: lowerCamelCase : str = old_name.replace('4', 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d', a_ ): lowerCamelCase : Dict = r'\b\d{2}\b' if bool(re.search(a_, a_ ) ): lowerCamelCase : str = re.search(r'\d\.\d\d.', a_ ).group() else: lowerCamelCase : str = re.search(r'\d\.\d.', a_ ).group() if int(match[0] ) < 6: lowerCamelCase : Any = old_name.replace(a_, '' ) lowerCamelCase : Dict = trimmed_name.replace('network', match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) lowerCamelCase : List[str] = 'intermediate_stages.' + trimmed_name else: lowerCamelCase : Union[str, Any] = old_name.replace(a_, '' ) if int(match[2] ) < num_meta4D_last_stage: lowerCamelCase : Tuple = trimmed_name.replace('network', 'meta4D_layers.blocks.' + match[2] ) else: lowerCamelCase : List[Any] = str(int(match[2] ) - num_meta4D_last_stage ) lowerCamelCase : Tuple = trimmed_name.replace('network', 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: lowerCamelCase : str = trimmed_name.replace('norm1', 'layernorm1' ) elif "norm2" in old_name: lowerCamelCase : Dict = trimmed_name.replace('norm2', 'layernorm2' ) elif "fc1" in old_name: lowerCamelCase : Tuple = trimmed_name.replace('fc1', 'linear_in' ) elif "fc2" in old_name: lowerCamelCase : int = trimmed_name.replace('fc2', 'linear_out' ) lowerCamelCase : List[Any] = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.', a_ ): lowerCamelCase : Optional[int] = old_name.replace('network', 'intermediate_stages' ) if "fc" in new_name: lowerCamelCase : str = new_name.replace('fc', 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowerCamelCase : List[str] = new_name.replace('norm1', 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowerCamelCase : List[str] = new_name.replace('norm2', 'batchnorm_after' ) if "proj" in new_name: lowerCamelCase : int = new_name.replace('proj', 'projection' ) if "dist_head" in new_name: lowerCamelCase : Optional[int] = new_name.replace('dist_head', 'distillation_classifier' ) elif "head" in new_name: lowerCamelCase : str = new_name.replace('head', 'classifier' ) elif "patch_embed" in new_name: lowerCamelCase : str = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowerCamelCase : Tuple = new_name.replace('norm', 'layernorm' ) lowerCamelCase : Tuple = 'efficientformer.' + new_name else: lowerCamelCase : List[Any] = 'efficientformer.encoder.' + new_name return new_name def UpperCAmelCase ( a_, a_ ): '''simple docstring''' for key in checkpoint.copy().keys(): lowerCamelCase : Dict = checkpoint.pop(a_ ) lowerCamelCase : str = val return checkpoint def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image def UpperCAmelCase ( a_, a_, a_, a_ ): '''simple docstring''' lowerCamelCase : Any = torch.load(a_, map_location='cpu' )['model'] lowerCamelCase : int = EfficientFormerConfig.from_json_file(a_ ) lowerCamelCase : int = EfficientFormerForImageClassificationWithTeacher(a_ ) lowerCamelCase : List[Any] = '_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) lowerCamelCase : List[str] = config.depths[-1] - config.num_metaad_blocks + 1 lowerCamelCase : Optional[int] = convert_torch_checkpoint(a_, a_ ) model.load_state_dict(a_ ) model.eval() lowerCamelCase : str = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image lowerCamelCase : List[Any] = prepare_img() lowerCamelCase : Optional[Any] = 256 lowerCamelCase : Optional[Any] = 224 lowerCamelCase : List[str] = EfficientFormerImageProcessor( size={'shortest_edge': image_size}, crop_size={'height': crop_size, 'width': crop_size}, resample=pillow_resamplings['bicubic'], ) lowerCamelCase : Any = processor(images=a_, return_tensors='pt' ).pixel_values # original processing pipeline lowerCamelCase : Optional[int] = Compose( [ Resize(a_, interpolation=pillow_resamplings['bicubic'] ), CenterCrop(a_ ), ToTensor(), Normalize(a_, a_ ), ] ) lowerCamelCase : Tuple = image_transforms(a_ ).unsqueeze(0 ) assert torch.allclose(a_, a_ ) lowerCamelCase : Tuple = model(a_ ) lowerCamelCase : int = outputs.logits lowerCamelCase : int = (1, 1000) if "l1" in model_name: lowerCamelCase : Any = torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :10], a_, atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowerCamelCase : Dict = torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :10], a_, atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowerCamelCase : Optional[int] = torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(a_ ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='Add model', use_temp_dir=a_, ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""", commit_message='Add image processor', use_temp_dir=a_, ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) _A = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
355
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _A = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : str = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(a_, a_ ) _A = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Tuple = list(s_dict.keys() ) for key in keys: lowerCamelCase : List[Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: lowerCamelCase : Optional[int] = new_key.replace(a_, a_ ) print(F"""{key} -> {new_key}""" ) lowerCamelCase : Any = s_dict.pop(a_ ) return s_dict def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase , lowerCamelCase : int = emb.weight.shape lowerCamelCase : Dict = nn.Linear(a_, a_, bias=a_ ) lowerCamelCase : Union[str, Any] = emb.weight.data return lin_layer def UpperCAmelCase ( a_, a_ ): '''simple docstring''' os.makedirs(a_, exist_ok=a_ ) lowerCamelCase : Union[str, Any] = os.path.basename(a_ ) lowerCamelCase : Any = url.split('/' )[-2] lowerCamelCase : Tuple = os.path.join(a_, a_ ) if os.path.exists(a_ ) and not os.path.isfile(a_ ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(a_ ): lowerCamelCase : Union[str, Any] = open(a_, 'rb' ).read() if hashlib.shaaaa(a_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(a_ ) as source, open(a_, 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ), ncols=80, unit='iB', unit_scale=a_, unit_divisor=1024 ) as loop: while True: lowerCamelCase : Union[str, Any] = source.read(8192 ) if not buffer: break output.write(a_ ) loop.update(len(a_ ) ) lowerCamelCase : int = open(a_, 'rb' ).read() if hashlib.shaaaa(a_ ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def UpperCAmelCase ( a_, a_ ): '''simple docstring''' if ".pt" not in checkpoint_path: lowerCamelCase : str = _download(_MODELS[checkpoint_path] ) else: lowerCamelCase : Any = torch.load(a_, map_location='cpu' ) lowerCamelCase : List[str] = original_checkpoint['dims'] lowerCamelCase : Any = original_checkpoint['model_state_dict'] lowerCamelCase : Tuple = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(a_ ) rename_keys(a_ ) lowerCamelCase : List[Any] = True lowerCamelCase : str = state_dict['decoder.layers.0.fc1.weight'].shape[0] lowerCamelCase : Optional[int] = WhisperConfig( vocab_size=dimensions['n_vocab'], encoder_ffn_dim=a_, decoder_ffn_dim=a_, num_mel_bins=dimensions['n_mels'], d_model=dimensions['n_audio_state'], max_target_positions=dimensions['n_text_ctx'], encoder_layers=dimensions['n_audio_layer'], encoder_attention_heads=dimensions['n_audio_head'], decoder_layers=dimensions['n_text_layer'], decoder_attention_heads=dimensions['n_text_state'], max_source_positions=dimensions['n_audio_ctx'], ) lowerCamelCase : Union[str, Any] = WhisperForConditionalGeneration(a_ ) lowerCamelCase , lowerCamelCase : Optional[int] = model.model.load_state_dict(a_, strict=a_ ) if len(a_ ) > 0 and not set(a_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F""" but all the following weights are missing {missing}""" ) if tie_embeds: lowerCamelCase : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase : Tuple = proj_out_weights model.save_pretrained(a_ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _A = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
205
0
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
102
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) SCREAMING_SNAKE_CASE : List[str] = getLogger(__name__) def lowercase ( _snake_case : Tuple , _snake_case : str , _snake_case : str , _snake_case : int = 8 , _snake_case : int = 1_024 , _snake_case : Any="val" , _snake_case : Tuple=None , _snake_case : Any=False , _snake_case : str="summarization" , _snake_case : Dict=None , _snake_case : Optional[Any]=1 , _snake_case : Dict = None , _snake_case : List[Any]="" , **_snake_case : int , ) ->Dict: """simple docstring""" __snake_case : int = str(_snake_case ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=_snake_case ) __snake_case : Optional[Any] = Path(_snake_case ) __snake_case : str = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(_snake_case ) __snake_case : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).cuda() if fpaa: __snake_case : List[str] = model.half() # determine if we need to increase num_beams use_task_specific_params(_snake_case , _snake_case ) # update config with task specific params __snake_case : Dict = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __snake_case : Optional[Any] = num_return_sequences __snake_case : Dict = AutoTokenizer.from_pretrained(_snake_case ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: __snake_case : List[str] = tokenizer.model_max_length if prefix is None: __snake_case : List[str] = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __snake_case : List[str] = SeqaSeqDataset( _snake_case , _snake_case , _snake_case , max_target_length=1_024 , type_path=_snake_case , n_obs=_snake_case , prefix=_snake_case , **_snake_case , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __snake_case : Union[str, Any] = ds.make_sortish_sampler(_snake_case , distributed=_snake_case , add_extra_examples=_snake_case , shuffle=_snake_case ) __snake_case : List[Any] = DataLoader(_snake_case , sampler=_snake_case , batch_size=_snake_case , collate_fn=ds.collate_fn ) __snake_case : Union[str, Any] = [] for batch in tqdm(_snake_case ): __snake_case : Tuple = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=_snake_case , num_beams=_snake_case , **_snake_case , ) __snake_case : List[Any] = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) __snake_case : List[str] = batch['''ids'''] if num_return_sequences > 1: __snake_case : Dict = chunks(_snake_case , _snake_case ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_snake_case ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(_snake_case , _snake_case ) return results, sampler.num_replicas def lowercase ( ) ->int: """simple docstring""" __snake_case : Any = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=_snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=_snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=_snake_case , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=_snake_case , default=_snake_case ) parser.add_argument( '''--type_path''' , type=_snake_case , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=_snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=_snake_case , default=8 , required=_snake_case , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=_snake_case , default=-1 , required=_snake_case , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=_snake_case , default=_snake_case , required=_snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=_snake_case , default=1 , required=_snake_case , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=_snake_case , default=600 , required=_snake_case , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=_snake_case , default=_snake_case , required=_snake_case ) parser.add_argument('''--tgt_lang''' , type=_snake_case , default=_snake_case , required=_snake_case ) parser.add_argument( '''--prefix''' , type=_snake_case , required=_snake_case , default=_snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __snake_case : str = time.time() __snake_case , __snake_case : Any = parser.parse_known_args() __snake_case : List[Any] = parse_numeric_n_bool_cl_kwargs(_snake_case ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) __snake_case : List[Any] = Path(args.save_dir + '''_tmp''' ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) # this handles locking. __snake_case : Optional[int] = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __snake_case : Dict = {} if args.src_lang is not None: __snake_case : Dict = args.src_lang if args.tgt_lang is not None: __snake_case : Dict = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_snake_case ) __snake_case , __snake_case : List[Any] = eval_data_dir( args.data_dir , _snake_case , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_snake_case , **_snake_case , ) if args.local_rank <= 0: __snake_case : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=_snake_case ) __snake_case : Optional[Any] = gather_results_from_each_node(_snake_case , _snake_case , args.sync_timeout ) __snake_case : str = combine_partial_results(_snake_case ) if args.num_return_sequences > 1: __snake_case : List[Any] = save_dir.joinpath('''pseudolabel_results.json''' ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(_snake_case , _snake_case ) return __snake_case : Tuple = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(_snake_case ) as f: __snake_case : Optional[Any] = [x.rstrip() for x in f.readlines()][: len(_snake_case )] # Calculate metrics, save metrics, and save _generations.txt __snake_case : List[str] = '''translation''' in args.task __snake_case : List[Any] = calculate_bleu if calc_bleu else calculate_rouge __snake_case : Dict = '''bleu''' if calc_bleu else '''rouge''' __snake_case : Dict = score_fn(_snake_case , _snake_case ) __snake_case : int = len(_snake_case ) __snake_case : Dict = time.time() - start_time __snake_case : Optional[Any] = round(runtime / metrics['''n_obs'''] , 4 ) __snake_case : List[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics __snake_case : int = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(_snake_case , _snake_case , indent=_snake_case ) print(_snake_case ) write_txt_file(_snake_case , save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(_snake_case , save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(_snake_case ) def lowercase ( _snake_case : Union[str, Any] ) ->List: """simple docstring""" __snake_case : List[Any] = [] for partial_result in partial_results: records.extend(_snake_case ) __snake_case : List[str] = sorted(_snake_case , key=lambda _snake_case : x["id"] ) __snake_case : Tuple = [x['''pred'''] for x in records] return preds def lowercase ( _snake_case : int , _snake_case : List[str] , _snake_case : List[Any] ) ->List[Dict[str, List]]: """simple docstring""" __snake_case : List[str] = time.time() logger.info('''waiting for all nodes to finish''' ) __snake_case : List[str] = None while (time.time() - start_wait) < timeout: __snake_case : Any = list(save_dir.glob('''rank_*.json''' ) ) if len(_snake_case ) < num_replicas: continue try: # make sure all json files are fully saved __snake_case : Tuple = lmap(_snake_case , _snake_case ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
102
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _lowercase : Optional[int] = str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" _lowercase : Any = str(bin(__UpperCAmelCase ) )[2:] _lowercase : str = max(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCAmelCase ) , b_binary.zfill(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
336
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
1