code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : List[str] = logging.get_logger(__name__) a__ : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Optional[int] = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } a__ : str = {'mobilebert-uncased': 5_1_2} a__ : int = {} class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = MobileBertTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) UpperCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a ) != do_lower_case or normalizer_state.get("strip_accents" , a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a ) != tokenize_chinese_chars ): UpperCamelCase__ = getattr(a , normalizer_state.pop("type" ) ) UpperCamelCase__ = do_lower_case UpperCamelCase__ = strip_accents UpperCamelCase__ = tokenize_chinese_chars UpperCamelCase__ = normalizer_class(**a ) UpperCamelCase__ = do_lower_case def __a ( self , a , a=None ): UpperCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , a , a = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , a , a = None ): UpperCamelCase__ = self._tokenizer.model.save(a , name=a ) return tuple(a )
80
'''simple docstring''' lowercase__ : Dict = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
190
0
"""simple docstring""" from __future__ import annotations __A : Dict = 10 def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = 1 A = max(__lowerCAmelCase ) while placement <= max_digit: # declare and initialize empty buckets A = [[] for _ in range(__lowerCAmelCase )] # split list_of_ints between the buckets for i in list_of_ints: A = int((i / placement) % RADIX ) buckets[tmp].append(__lowerCAmelCase ) # put each buckets' contents into list_of_ints A = 0 for b in range(__lowerCAmelCase ): for i in buckets[b]: A = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from __future__ import annotations class __UpperCamelCase : def __init__(self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str): A , A = text, pattern A , A = len(__SCREAMING_SNAKE_CASE), len(__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str): for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : int): for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE__ (self : List[Any]): # searches pattern in text and returns index positions A = [] for i in range(self.textLen - self.patLen + 1): A = self.mismatch_in_text(__SCREAMING_SNAKE_CASE) if mismatch_index == -1: positions.append(__SCREAMING_SNAKE_CASE) else: A = self.match_in_pattern(self.text[mismatch_index]) A = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __A : int = 'ABAABA' __A : Optional[Any] = 'AB' __A : Any = BoyerMooreSearch(text, pattern) __A : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
57
0
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
89
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Any=False ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =OmegaConf.load(_UpperCamelCase ) if display: print(yaml.dump(OmegaConf.to_container(_UpperCamelCase ) ) ) return config def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Union[str, Any]=None ) -> Optional[Any]: """simple docstring""" if conf_path is None: _SCREAMING_SNAKE_CASE ='./model_checkpoints/vqgan_only.yaml' _SCREAMING_SNAKE_CASE =load_config(_UpperCamelCase , display=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =VQModel(**config.model.params ) if ckpt_path is None: _SCREAMING_SNAKE_CASE ='./model_checkpoints/vqgan_only.pt' _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) if ".ckpt" in ckpt_path: _SCREAMING_SNAKE_CASE =sd['state_dict'] model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) model.to(_UpperCamelCase ) del sd return model def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : int ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =model.encode(_UpperCamelCase ) print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}" ) _SCREAMING_SNAKE_CASE =model.decode(_UpperCamelCase ) return xrec def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[str]=False ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =string.rsplit('.' , 1 ) if reload: _SCREAMING_SNAKE_CASE =importlib.import_module(_UpperCamelCase ) importlib.reload(_UpperCamelCase ) return getattr(importlib.import_module(_UpperCamelCase , package=_UpperCamelCase ) , cls ) def _lowerCAmelCase ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=True , _UpperCamelCase : int=True ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =instantiate_from_config(_UpperCamelCase ) if sd is not None: model.load_state_dict(_UpperCamelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" if ckpt: _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location='cpu' ) _SCREAMING_SNAKE_CASE =pl_sd['global_step'] print(f"loaded model from global step {global_step}." ) else: _SCREAMING_SNAKE_CASE ={'state_dict': None} _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =load_model_from_config(config.model , pl_sd['state_dict'] , gpu=_UpperCamelCase , eval_mode=_UpperCamelCase )['model'] return model, global_step
47
0
'''simple docstring''' import argparse import json from tqdm import tqdm def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=__a , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=__a , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=__a , help='where to store parsed gold_data_path file' , ) UpperCAmelCase : Tuple = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: UpperCAmelCase : str = json.load(__a ) for dpr_record in tqdm(__a ): UpperCAmelCase : Tuple = dpr_record['question'] UpperCAmelCase : str = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(__a ) + '\n' ) if __name__ == "__main__": main()
355
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowercase__ = 3 def UpperCamelCase( UpperCAmelCase_ ): print('Generating primitive root of p' ) while True: UpperCAmelCase : Union[str, Any] = random.randrange(3 , UpperCAmelCase_ ) if pow(UpperCAmelCase_ , 2 , UpperCAmelCase_ ) == 1: continue if pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) == 1: continue return g def UpperCamelCase( UpperCAmelCase_ ): print('Generating prime p...' ) UpperCAmelCase : str = rabin_miller.generate_large_prime(UpperCAmelCase_ ) # select large prime number. UpperCAmelCase : List[str] = primitive_root(UpperCAmelCase_ ) # one primitive root on modulo p. UpperCAmelCase : List[Any] = random.randrange(3 , UpperCAmelCase_ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase : List[Any] = cryptomath.find_mod_inverse(pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) UpperCAmelCase : Tuple = (key_size, e_a, e_a, p) UpperCAmelCase : Optional[int] = (key_size, d) return public_key, private_key def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase , UpperCAmelCase : Dict = generate_key(UpperCAmelCase_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def UpperCamelCase( ): print('Making key files...' ) make_key_files('elgamal' , 20_48 ) print('Key files generation successful' ) if __name__ == "__main__": main()
280
0
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _a = 8 def __a ( __lowerCamelCase, __lowerCamelCase=BITS ): UpperCAmelCase_ : Any = x.device UpperCAmelCase_ : str = (x * 255).int().clamp(0, 255 ) UpperCAmelCase_ : Tuple = 2 ** torch.arange(bits - 1, -1, -1, device=_a ) UpperCAmelCase_ : Tuple = rearrange(_a, "d -> d 1 1" ) UpperCAmelCase_ : Any = rearrange(_a, "b c h w -> b c 1 h w" ) UpperCAmelCase_ : List[str] = ((x & mask) != 0).float() UpperCAmelCase_ : Optional[int] = rearrange(_a, "b c d h w -> b (c d) h w" ) UpperCAmelCase_ : Union[str, Any] = bits * 2 - 1 return bits def __a ( __lowerCamelCase, __lowerCamelCase=BITS ): UpperCAmelCase_ : str = x.device UpperCAmelCase_ : Any = (x > 0).int() UpperCAmelCase_ : Any = 2 ** torch.arange(bits - 1, -1, -1, device=_a, dtype=torch.intaa ) UpperCAmelCase_ : List[str] = rearrange(_a, "d -> d 1 1" ) UpperCAmelCase_ : Dict = rearrange(_a, "b (c d) h w -> b c d h w", d=8 ) UpperCAmelCase_ : Optional[Any] = reduce(x * mask, "b c d h w -> b c h w", "sum" ) return (dec / 255).clamp(0.0, 1.0 ) def __a ( self, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = 0.0, __lowerCamelCase = True, __lowerCamelCase=None, __lowerCamelCase = True, ): if self.num_inference_steps is None: raise ValueError( "Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) UpperCAmelCase_ : List[Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas UpperCAmelCase_ : int = self.alphas_cumprod[timestep] UpperCAmelCase_ : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod UpperCAmelCase_ : Tuple = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" UpperCAmelCase_ : Tuple = self.bit_scale if self.config.clip_sample: UpperCAmelCase_ : Dict = torch.clamp(_a, -scale, _a ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) UpperCAmelCase_ : Optional[int] = self._get_variance(_a, _a ) UpperCAmelCase_ : Union[str, Any] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide UpperCAmelCase_ : Union[str, Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ : Optional[int] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 UpperCAmelCase_ : List[str] = model_output.device if torch.is_tensor(_a ) else '''cpu''' UpperCAmelCase_ : Tuple = torch.randn(model_output.shape, dtype=model_output.dtype, generator=_a ).to(_a ) UpperCAmelCase_ : Optional[Any] = self._get_variance(_a, _a ) ** 0.5 * eta * noise UpperCAmelCase_ : Optional[int] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_a, pred_original_sample=_a ) def __a ( self, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase="epsilon", __lowerCamelCase=None, __lowerCamelCase = True, ): UpperCAmelCase_ : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: UpperCAmelCase_ : List[str] = torch.split(_a, sample.shape[1], dim=1 ) else: UpperCAmelCase_ : Union[str, Any] = None # 1. compute alphas, betas UpperCAmelCase_ : Union[str, Any] = self.alphas_cumprod[t] UpperCAmelCase_ : Optional[int] = self.alphas_cumprod[t - 1] if t > 0 else self.one UpperCAmelCase_ : Optional[Any] = 1 - alpha_prod_t UpperCAmelCase_ : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": UpperCAmelCase_ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": UpperCAmelCase_ : Union[str, Any] = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" UpperCAmelCase_ : Union[str, Any] = self.bit_scale if self.config.clip_sample: UpperCAmelCase_ : str = torch.clamp(_a, -scale, _a ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ : Tuple = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t UpperCAmelCase_ : Any = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase_ : str = 0 if t > 0: UpperCAmelCase_ : int = torch.randn( model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=_a ).to(model_output.device ) UpperCAmelCase_ : List[Any] = (self._get_variance(_a, predicted_variance=_a ) ** 0.5) * noise UpperCAmelCase_ : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_a, pred_original_sample=_a ) class A_ (lowerCAmelCase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ = 1.0 , ): """simple docstring""" super().__init__() UpperCAmelCase_ : Union[str, Any] = bit_scale UpperCAmelCase_ : Any = ( ddim_bit_scheduler_step if isinstance(lowercase_ , lowercase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self , lowercase_ = 256 , lowercase_ = 256 , lowercase_ = 50 , lowercase_ = None , lowercase_ = 1 , lowercase_ = "pil" , lowercase_ = True , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : int = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowercase_ , ) UpperCAmelCase_ : str = decimal_to_bits(lowercase_ ) * self.bit_scale UpperCAmelCase_ : Dict = latents.to(self.device ) self.scheduler.set_timesteps(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual UpperCAmelCase_ : Any = self.unet(lowercase_ , lowercase_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Dict = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample UpperCAmelCase_ : Tuple = bits_to_decimal(lowercase_ ) if output_type == "pil": UpperCAmelCase_ : List[Any] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
61
"""simple docstring""" import numpy as np def __lowercase ( _a ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
264
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _UpperCAmelCase = 'src/diffusers' # Matches is_xxx_available() _UpperCAmelCase = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla _UpperCAmelCase = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') _UpperCAmelCase = '\n{0} = None\n' _UpperCAmelCase = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' _UpperCAmelCase = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def lowerCAmelCase_ ( UpperCamelCase_ ) -> Dict: UpperCamelCase_ = _re_backend.findall(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 0: return None return "_and_".join(UpperCamelCase_ ) def lowerCAmelCase_ ( ) -> Tuple: with open(os.path.join(UpperCamelCase_ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase_ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase_ = 0 UpperCamelCase_ = {} # Go through the end of the file while line_index < len(UpperCamelCase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase_ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCamelCase_ = [] # Until we unindent, add backend objects to the list while line_index < len(UpperCamelCase_ ) and len(lines[line_index] ) > 1: UpperCamelCase_ = lines[line_index] UpperCamelCase_ = _re_single_line_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCamelCase_ ) > 0: UpperCamelCase_ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: if name.isupper(): return DUMMY_CONSTANT.format(UpperCamelCase_ ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCamelCase_ , UpperCamelCase_ ) else: return DUMMY_CLASS.format(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_=None ) -> Union[str, Any]: if backend_specific_objects is None: UpperCamelCase_ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase_ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase_ = "[" + ", ".join(F'''"{b}"''' for b in backend.split("_and_" ) ) + "]" UpperCamelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCamelCase_ , UpperCamelCase_ ) for o in objects] ) UpperCamelCase_ = dummy_file return dummy_files def lowerCAmelCase_ ( UpperCamelCase_=False ) -> int: UpperCamelCase_ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase_ = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCamelCase_ = os.path.join(UpperCamelCase_ , "utils" ) UpperCamelCase_ = { backend: os.path.join(UpperCamelCase_ , F'''dummy_{short_names.get(UpperCamelCase_ , UpperCamelCase_ )}_objects.py''' ) for backend in dummy_files.keys() } UpperCamelCase_ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase_ = f.read() else: UpperCamelCase_ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(UpperCamelCase_ , UpperCamelCase_ )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'''diffusers.utils.dummy_{short_names.get(UpperCamelCase_ , UpperCamelCase_ )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _UpperCAmelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
328
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCAmelCase ( A ): lowerCAmelCase_ = "markuplm" def __init__( self : Dict , __lowercase : Any=30522 , __lowercase : int=768 , __lowercase : Tuple=12 , __lowercase : Optional[int]=12 , __lowercase : Dict=3072 , __lowercase : Union[str, Any]="gelu" , __lowercase : Optional[Any]=0.1 , __lowercase : Any=0.1 , __lowercase : int=512 , __lowercase : List[Any]=2 , __lowercase : List[str]=0.0_2 , __lowercase : Union[str, Any]=1E-12 , __lowercase : List[str]=0 , __lowercase : List[Any]=0 , __lowercase : Optional[Any]=2 , __lowercase : Dict=256 , __lowercase : Optional[int]=1024 , __lowercase : List[Any]=216 , __lowercase : Any=1001 , __lowercase : Optional[int]=32 , __lowercase : Dict=50 , __lowercase : int="absolute" , __lowercase : List[Any]=True , __lowercase : Tuple=None , **__lowercase : Dict , ): """simple docstring""" super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase , ) __lowercase =vocab_size __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =num_attention_heads __lowercase =hidden_act __lowercase =intermediate_size __lowercase =hidden_dropout_prob __lowercase =attention_probs_dropout_prob __lowercase =max_position_embeddings __lowercase =type_vocab_size __lowercase =initializer_range __lowercase =layer_norm_eps __lowercase =position_embedding_type __lowercase =use_cache __lowercase =classifier_dropout # additional properties __lowercase =max_depth __lowercase =max_xpath_tag_unit_embeddings __lowercase =max_xpath_subs_unit_embeddings __lowercase =tag_pad_id __lowercase =subs_pad_id __lowercase =xpath_unit_hidden_size
141
'''simple docstring''' import datasets UpperCAmelCase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' UpperCAmelCase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' UpperCAmelCase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def __UpperCamelCase ( lowercase__ : Optional[Any], lowercase__ : List[str] ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def snake_case ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def snake_case ( self : List[str] , __lowercase : Dict , __lowercase : Optional[Any] ): """simple docstring""" return {"accuracy": simple_accuracy(__lowercase , __lowercase )}
141
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCAmelCase : '''simple docstring''' @staticmethod def __magic_name__ ( *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : int ): """simple docstring""" pass def lowerCamelCase__ ( a ) -> Optional[Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCAmelCase__ : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__ ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[int] = pipeline( '''document-question-answering''' , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) _A: int = INVOICE_URL _A: Optional[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , '''''' ) ) ) _A: List[Any] = '''What is the placebo?''' _A: List[str] = [ { '''image''': load_image(lowerCAmelCase_ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str ): """simple docstring""" _A: Optional[Any] = dqa_pipeline(lowerCAmelCase_ , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [ [ {'''score''': ANY(lowerCAmelCase_ ), '''answer''': ANY(lowerCAmelCase_ ), '''start''': ANY(lowerCAmelCase_ ), '''end''': ANY(lowerCAmelCase_ )}, {'''score''': ANY(lowerCAmelCase_ ), '''answer''': ANY(lowerCAmelCase_ ), '''start''': ANY(lowerCAmelCase_ ), '''end''': ANY(lowerCAmelCase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: int = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) _A: Optional[Any] = INVOICE_URL _A: Tuple = '''How many cats are there?''' _A: str = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 3_8, '''end''': 3_9}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 3_8, '''end''': 4_0}, ] _A: List[Any] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) _A: Union[str, Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _A: Any = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _A: List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) # We can optionnally pass directly the words and bounding boxes _A: str = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _A: Optional[int] = [] _A: Tuple = [] _A: List[Any] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , words=lowerCAmelCase_ , boxes=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) _A: str = INVOICE_URL _A: Any = '''What is the invoice number?''' _A: List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, ] , ) _A: List[Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, ] , ) _A: Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Optional[int] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=5_0 , ) _A: List[Any] = INVOICE_URL _A: Union[str, Any] = '''What is the invoice number?''' _A: Any = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 2_3, '''end''': 2_3}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, ] , ) _A: int = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 2_3, '''end''': 2_3}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, ] , ) _A: int = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 2_3, '''end''': 2_3}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Any = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase_ ) _A: int = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase_ , revision='''3dc6de3''' , ) _A: Optional[Any] = INVOICE_URL _A: List[str] = '''What is the invoice number?''' _A: Optional[Any] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 2_3, '''end''': 2_3}, ] , ) _A: Optional[Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 2_3, '''end''': 2_3}, ] , ) _A: Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 2_3, '''end''': 2_3}, ] ] * 2 , ) _A: Optional[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , '''''' ) ) ) # This model should also work if `image` is set to None _A: Any = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 2_3, '''end''': 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: List[str] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase_ ) _A: Dict = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase_ , revision='''3dc6de3''' , max_seq_len=5_0 , ) _A: List[str] = INVOICE_URL _A: Any = '''What is the invoice number?''' _A: int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, ] , ) _A: str = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, ] ] * 2 , ) _A: Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , '''''' ) ) ) # This model should also work if `image` is set to None _A: Optional[Any] = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 1_6, '''end''': 1_6}, ] , ) @slow @require_torch def __magic_name__ ( self : Dict ): """simple docstring""" _A: Any = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) _A: Tuple = INVOICE_URL _A: Tuple = '''What is the invoice number?''' _A: Optional[Any] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" pass
301
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) __UpperCamelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) __UpperCamelCase : str = "audio" __UpperCamelCase : str = "transcription" def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" if self.audio_column not in features: raise ValueError(F"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCAmelCase_ ): raise ValueError(F"""Column {self.audio_column} is not an Audio type.""" ) _A: Optional[int] = copy.deepcopy(self ) _A: str = self.input_schema.copy() _A: List[str] = features[self.audio_column] _A: Dict = input_schema return task_template @property def __magic_name__ ( self : str ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
301
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='speech_to_text' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] , a : Optional[int]=1_0000 , a : Any=12 , a : List[Any]=2048 , a : Any=4 , a : str=6 , a : List[str]=2048 , a : str=4 , a : Tuple=0.0 , a : Dict=0.0 , a : Union[str, Any]=True , a : Any=True , a : Tuple="relu" , a : int=256 , a : Dict=0.1 , a : int=0.0 , a : List[str]=0.0 , a : Dict=0.02 , a : Tuple=2 , a : Tuple=True , a : Optional[Any]=1 , a : int=0 , a : Tuple=2 , a : str=6000 , a : List[Any]=1024 , a : int=2 , a : Optional[Any]=(5, 5) , a : Dict=1024 , a : int=80 , a : Optional[int]=1 , **a : str , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : int = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : Any = decoder_layers SCREAMING_SNAKE_CASE : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = dropout SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Optional[Any] = activation_dropout SCREAMING_SNAKE_CASE : str = activation_function SCREAMING_SNAKE_CASE : Any = init_std SCREAMING_SNAKE_CASE : Any = encoder_layerdrop SCREAMING_SNAKE_CASE : int = decoder_layerdrop SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : str = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : Union[str, Any] = max_source_positions SCREAMING_SNAKE_CASE : str = max_target_positions SCREAMING_SNAKE_CASE : Optional[int] = num_conv_layers SCREAMING_SNAKE_CASE : Union[str, Any] = list(a ) SCREAMING_SNAKE_CASE : Optional[int] = conv_channels SCREAMING_SNAKE_CASE : Dict = input_feat_per_channel SCREAMING_SNAKE_CASE : Optional[Any] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , **a , )
76
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Optional[int] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
'''simple docstring''' from __future__ import annotations import math __a = '2020.9.26' __a = 'xcodz-dot, cclaus, dhruvmanila' def __UpperCAmelCase ( a_: float, a_: float, a_: float, a_: float, a_: float ): if not all(isinstance(a_, (float, int) ) for val in locals().values() ): _UpperCAmelCase : str = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(a_ ) _UpperCAmelCase : Optional[int] = ((x * distance) / (z + distance)) * scale _UpperCAmelCase : Optional[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __UpperCAmelCase ( a_: float, a_: float, a_: float, a_: str, a_: float ): if not isinstance(a_, a_ ): raise TypeError("Axis must be a str" ) _UpperCAmelCase : Optional[int] = locals() del input_variables["axis"] if not all(isinstance(a_, (float, int) ) for val in input_variables.values() ): _UpperCAmelCase : str = ( "Input values except axis must either be float or int: " f"""{list(input_variables.values() )}""" ) raise TypeError(a_ ) _UpperCAmelCase : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": _UpperCAmelCase : Optional[int] = x * math.cos(a_ ) - y * math.sin(a_ ) _UpperCAmelCase : int = y * math.cos(a_ ) + x * math.sin(a_ ) _UpperCAmelCase : List[str] = z elif axis == "x": _UpperCAmelCase : str = y * math.cos(a_ ) - z * math.sin(a_ ) _UpperCAmelCase : Union[str, Any] = z * math.cos(a_ ) + y * math.sin(a_ ) _UpperCAmelCase : Union[str, Any] = x elif axis == "y": _UpperCAmelCase : Tuple = x * math.cos(a_ ) - z * math.sin(a_ ) _UpperCAmelCase : Optional[int] = z * math.cos(a_ ) + x * math.sin(a_ ) _UpperCAmelCase : List[str] = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(f'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Any = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class _A( snake_case__ ): """simple docstring""" UpperCamelCase : Optional[int] = '''perceiver''' def __init__( self , _A=256 , _A=1280 , _A=768 , _A=1 , _A=26 , _A=8 , _A=8 , _A=None , _A=None , _A="kv" , _A=1 , _A=1 , _A="gelu" , _A=0.1 , _A=0.0_2 , _A=1e-1_2 , _A=True , _A=262 , _A=2048 , _A=56 , _A=[368, 496] , _A=16 , _A=1920 , _A=16 , _A=[1, 16, 224, 224] , **_A , ): super().__init__(**_A ) __A : Union[str, Any] = num_latents __A : int = d_latents __A : Union[str, Any] = d_model __A : int = num_blocks __A : Union[str, Any] = num_self_attends_per_block __A : Optional[int] = num_self_attention_heads __A : Optional[Any] = num_cross_attention_heads __A : List[Any] = qk_channels __A : List[Any] = v_channels __A : str = cross_attention_shape_for_attention __A : Any = self_attention_widening_factor __A : Optional[int] = cross_attention_widening_factor __A : Union[str, Any] = hidden_act __A : List[str] = attention_probs_dropout_prob __A : int = initializer_range __A : Optional[Any] = layer_norm_eps __A : Tuple = use_query_residual # masked language modeling attributes __A : Optional[Any] = vocab_size __A : Optional[Any] = max_position_embeddings # image classification attributes __A : List[str] = image_size # flow attributes __A : int = train_size # multimodal autoencoding attributes __A : List[str] = num_frames __A : Union[str, Any] = audio_samples_per_frame __A : Optional[Any] = samples_per_patch __A : Union[str, Any] = output_shape class _A( snake_case__ ): """simple docstring""" @property def UpperCAmelCase_ ( self ): if self.task == "multiple-choice": __A : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCAmelCase_ ( self ): return 1e-4 def UpperCAmelCase_ ( self , _A , _A = -1 , _A = -1 , _A = -1 , _A = False , _A = None , _A = 3 , _A = 40 , _A = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_A , _A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __A : List[str] = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __A : List[Any] = preprocessor.num_special_tokens_to_add(_A ) __A : Optional[Any] = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence __A : Optional[int] = [' '.join(['a'] ) * seq_length] * batch_size __A : Dict = dict(preprocessor(_A , return_tensors=_A ) ) __A : Any = inputs.pop('input_ids' ) return inputs elif isinstance(_A , _A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __A : str = compute_effective_axis_dimension(_A , fixed_dimension=OnnxConfig.default_fixed_batch ) __A : Dict = self._generate_dummy_images(_A , _A , _A , _A ) __A : Optional[Any] = dict(preprocessor(images=_A , return_tensors=_A ) ) __A : Any = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
280
def _SCREAMING_SNAKE_CASE ( a , a ) -> list[int]: __A : Optional[int] = int(a ) # Initialize Result __A : Optional[int] = [] # Traverse through all denomination for denomination in reversed(a ): # Find denominations while int(a ) >= int(a ): total_value -= int(a ) answer.append(a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase : List[str] = [] UpperCAmelCase : Optional[int] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): UpperCAmelCase : List[Any] = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase : Optional[int] = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCAmelCase : Tuple = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase : Optional[int] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
280
1
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A_ = logging.get_logger(__name__) A_ = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class __SCREAMING_SNAKE_CASE : def __init__( self : Any , snake_case : str=None , **snake_case : Tuple ): '''simple docstring''' logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) A__ : Optional[Any] = model A__ : Optional[int] = kwargs.get("""model_save_dir""" , snake_case ) A__ : str = kwargs.get("""latest_model_name""" , snake_case ) def __call__( self : str , **snake_case : Optional[int] ): '''simple docstring''' A__ : List[Any] = {k: np.array(snake_case ) for k, v in kwargs.items()} return self.model.run(snake_case , snake_case ) @staticmethod def _UpperCamelCase ( snake_case : Union[str, Path] , snake_case : str=None , snake_case : Any=None ): '''simple docstring''' if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) A__ : List[Any] = """CPUExecutionProvider""" return ort.InferenceSession(snake_case , providers=[provider] , sess_options=snake_case ) def _UpperCamelCase ( self : Tuple , snake_case : Union[str, Path] , snake_case : Optional[str] = None , **snake_case : Dict ): '''simple docstring''' A__ : Optional[int] = file_name if file_name is not None else ONNX_WEIGHTS_NAME A__ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) A__ : Optional[Any] = Path(snake_case ).joinpath(snake_case ) try: shutil.copyfile(snake_case , snake_case ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A__ : List[str] = self.model_save_dir.joinpath(snake_case ) if src_path.exists(): A__ : Tuple = Path(snake_case ).joinpath(snake_case ) try: shutil.copyfile(snake_case , snake_case ) except shutil.SameFileError: pass def _UpperCamelCase ( self : List[Any] , snake_case : Union[str, os.PathLike] , **snake_case : Optional[int] , ): '''simple docstring''' if os.path.isfile(snake_case ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(snake_case , exist_ok=snake_case ) # saving model weights/files self._save_pretrained(snake_case , **snake_case ) @classmethod def _UpperCamelCase ( cls : List[str] , snake_case : Union[str, Path] , snake_case : Optional[Union[bool, str, None]] = None , snake_case : Optional[Union[str, None]] = None , snake_case : bool = False , snake_case : Optional[str] = None , snake_case : Optional[str] = None , snake_case : Optional[str] = None , snake_case : Optional["ort.SessionOptions"] = None , **snake_case : str , ): '''simple docstring''' A__ : Optional[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(snake_case ): A__ : Dict = OnnxRuntimeModel.load_model( os.path.join(snake_case , snake_case ) , provider=snake_case , sess_options=snake_case ) A__ : Any = Path(snake_case ) # load model from hub else: # download model A__ : Union[str, Any] = hf_hub_download( repo_id=snake_case , filename=snake_case , use_auth_token=snake_case , revision=snake_case , cache_dir=snake_case , force_download=snake_case , ) A__ : List[Any] = Path(snake_case ).parent A__ : Optional[int] = Path(snake_case ).name A__ : Any = OnnxRuntimeModel.load_model(snake_case , provider=snake_case , sess_options=snake_case ) return cls(model=snake_case , **snake_case ) @classmethod def _UpperCamelCase ( cls : Optional[int] , snake_case : Union[str, Path] , snake_case : bool = True , snake_case : Optional[str] = None , snake_case : Optional[str] = None , **snake_case : Optional[Any] , ): '''simple docstring''' A__ : Dict = None if len(str(snake_case ).split("""@""" ) ) == 2: A__ : str = model_id.split("""@""" ) return cls._from_pretrained( model_id=snake_case , revision=snake_case , cache_dir=snake_case , force_download=snake_case , use_auth_token=snake_case , **snake_case , )
353
"""simple docstring""" import os from distutils.util import strtobool def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]: for e in env_keys: A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]: A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int: A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return value
296
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowercase__ : Any = "src/diffusers" # Matches is_xxx_available() lowercase__ : Union[str, Any] = re.compile(R"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowercase__ : Dict = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowercase__ : str = "\n{0} = None\n" lowercase__ : str = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowercase__ : int = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def A_ ( snake_case : Optional[int] ) -> Tuple: '''simple docstring''' __UpperCamelCase = _re_backend.findall(snake_case ) if len(snake_case ) == 0: return None return "_and_".join(snake_case ) def A_ ( ) -> Optional[Any]: '''simple docstring''' with open(os.path.join(snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking __UpperCamelCase = 0 __UpperCamelCase = {} # Go through the end of the file while line_index < len(snake_case ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(snake_case ) and len(lines[line_index] ) > 1: __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_single_line_import.search(snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(snake_case ) > 0: __UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def A_ ( snake_case : List[Any] , snake_case : Dict ) -> Dict: '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(snake_case ) elif name.islower(): return DUMMY_FUNCTION.format(snake_case , snake_case ) else: return DUMMY_CLASS.format(snake_case , snake_case ) def A_ ( snake_case : str=None ) -> List[str]: '''simple docstring''' if backend_specific_objects is None: __UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename __UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): __UpperCamelCase = '''[''' + ''', '''.join(f"\"{b}\"" for b in backend.split('''_and_''' ) ) + ''']''' __UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(snake_case , snake_case ) for o in objects] ) __UpperCamelCase = dummy_file return dummy_files def A_ ( snake_case : str=False ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __UpperCamelCase = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. __UpperCamelCase = os.path.join(snake_case , '''utils''' ) __UpperCamelCase = { backend: os.path.join(snake_case , f"dummy_{short_names.get(snake_case , snake_case )}_objects.py" ) for backend in dummy_files.keys() } __UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(snake_case ): with open(snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCamelCase = f.read() else: __UpperCamelCase = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"Updating diffusers.utils.dummy_{short_names.get(snake_case , snake_case )}_objects.py as the main " '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f"diffusers.utils.dummy_{short_names.get(snake_case , snake_case )}_objects.py. Run `make fix-copies` " '''to fix this.''' ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowercase__ : Union[str, Any] = parser.parse_args() check_dummies(args.fix_and_overwrite)
328
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
1
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") lowerCamelCase_ : Tuple = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") lowerCamelCase_ : Tuple = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = CamembertTokenizer __lowerCAmelCase = CamembertTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def SCREAMING_SNAKE_CASE ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing a =CamembertTokenizer(__A ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: a ='''<pad>''' a =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__A ) , 1004 ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =CamembertTokenizer(__A ) tokenizer.save_pretrained(self.tmpdirname ) a =CamembertTokenizerFast.from_pretrained(self.tmpdirname ) a ='''I was born in 92000, and this is falsé.''' a =tokenizer.encode(__A ) a =rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) a =tokenizer.encode(__A , add_special_tokens=__A ) a =rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) a =tokenizer.convert_ids_to_tokens(__A ) a =rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return a =self.get_tokenizer() a =self.get_rust_tokenizer() a ='''I was born in 92000, and this is falsé.''' a =tokenizer.tokenize(__A ) a =rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) a =tokenizer.encode(__A , add_special_tokens=__A ) a =rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) a =self.get_rust_tokenizer() a =tokenizer.encode(__A ) a =rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> int: # fmt: off a ={'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. a =[ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__A , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=__A , )
215
"""simple docstring""" from ...processing_utils import ProcessorMixin class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "WhisperFeatureExtractor" __lowerCAmelCase = "WhisperTokenizer" def __init__( self , __A , __A ) -> Dict: super().__init__(__A , __A ) a =self.feature_extractor a =False def SCREAMING_SNAKE_CASE ( self , __A=None , __A=None , __A=True ) -> int: return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self , *__A , **__A ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) a =kwargs.pop('''audio''' , __A ) a =kwargs.pop('''sampling_rate''' , __A ) a =kwargs.pop('''text''' , __A ) if len(__A ) > 0: a =args[0] a =args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: a =self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if text is not None: a =self.tokenizer(__A , **__A ) if text is None: return inputs elif audio is None: return encodings else: a =encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Optional[Any]: return self.tokenizer.batch_decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Union[str, Any]: return self.tokenizer.decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A="np" ) -> Optional[Any]: return self.tokenizer.get_prompt_ids(__A , return_tensors=__A )
215
1
"""simple docstring""" SCREAMING_SNAKE_CASE_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): # Return True if there is node that has not iterated. __lowerCAmelCase = [False] * len(_lowerCAmelCase ) __lowerCAmelCase = [s] __lowerCAmelCase = True while queue: __lowerCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCAmelCase ) __lowerCAmelCase = True __lowerCAmelCase = u return visited[t] def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [-1] * (len(_lowerCAmelCase )) __lowerCAmelCase = 0 __lowerCAmelCase = [] __lowerCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = float("""Inf""" ) __lowerCAmelCase = sink while s != source: # Find the minimum value in select path __lowerCAmelCase = min(_lowerCAmelCase , graph[parent[s]][s] ) __lowerCAmelCase = parent[s] max_flow += path_flow __lowerCAmelCase = sink while v != source: __lowerCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowerCAmelCase = parent[v] for i in range(len(_lowerCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
301
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE_ = '''bart''' SCREAMING_SNAKE_CASE_ = True @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __lowerCAmelCase = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __lowerCAmelCase = qar_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = (None, None) if MODEL_TYPE == "bart": __lowerCAmelCase = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __lowerCAmelCase = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __lowerCAmelCase = sas_model.eval() else: __lowerCAmelCase , __lowerCAmelCase = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): if LOAD_DENSE_INDEX: __lowerCAmelCase = faiss.StandardGpuResources() __lowerCAmelCase = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __lowerCAmelCase = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) __lowerCAmelCase = faiss.index_cpu_to_gpu(_lowerCAmelCase , 1 , _lowerCAmelCase ) wikiaab_gpu_index_flat.add(_lowerCAmelCase ) # TODO fix for larger GPU else: __lowerCAmelCase , __lowerCAmelCase = (None, None) __lowerCAmelCase = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __lowerCAmelCase = elia["""train_eli5"""] __lowerCAmelCase = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __lowerCAmelCase = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCAmelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_indexes() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_models() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = load_train_data() def lowercase (_lowerCAmelCase , _lowerCAmelCase=10 ): __lowerCAmelCase = embed_questions_for_retrieval([question] , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = eli5_train_q_index.search(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = [elia_train[int(_lowerCAmelCase )] for i in I[0]] return nn_examples def lowercase (_lowerCAmelCase , _lowerCAmelCase="wiki40b" , _lowerCAmelCase="dense" , _lowerCAmelCase=10 ): if source == "none": __lowerCAmelCase , __lowerCAmelCase = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __lowerCAmelCase , __lowerCAmelCase = query_qa_dense_index( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: __lowerCAmelCase , __lowerCAmelCase = query_es_index( _lowerCAmelCase , _lowerCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCAmelCase , ) __lowerCAmelCase = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __lowerCAmelCase = """question: {} context: {}""".format(_lowerCAmelCase , _lowerCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCAmelCase : None), } ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=64 , _lowerCAmelCase=256 , _lowerCAmelCase=False , _lowerCAmelCase=2 , _lowerCAmelCase=0.95 , _lowerCAmelCase=0.8 ): with torch.no_grad(): __lowerCAmelCase = qa_sas_generate( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_answers=1 , num_beams=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase , do_sample=_lowerCAmelCase , temp=_lowerCAmelCase , top_p=_lowerCAmelCase , top_k=_lowerCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar SCREAMING_SNAKE_CASE_ = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' SCREAMING_SNAKE_CASE_ = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE_ = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE_ = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Demo options''') if demo_options: SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', action_list, index=3, ) SCREAMING_SNAKE_CASE_ = action_list.index(action_st) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) SCREAMING_SNAKE_CASE_ = show_type == '''Show full text of passages''' else: SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: SCREAMING_SNAKE_CASE_ = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: SCREAMING_SNAKE_CASE_ = '''wiki40b''' SCREAMING_SNAKE_CASE_ = '''dense''' SCREAMING_SNAKE_CASE_ = '''beam''' SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 256 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = st.sidebar.checkbox('''Generation options''') if generate_options: SCREAMING_SNAKE_CASE_ = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE_ = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE_ = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) SCREAMING_SNAKE_CASE_ = None # start main text SCREAMING_SNAKE_CASE_ = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] SCREAMING_SNAKE_CASE_ = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE_ = st.text_input('''Enter your question here:''', '''''') else: SCREAMING_SNAKE_CASE_ = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''dense''', n_results=10) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method='''sparse''', n_results=10) SCREAMING_SNAKE_CASE_ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE_ = support_list[:10] SCREAMING_SNAKE_CASE_ = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE_ = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) SCREAMING_SNAKE_CASE_ = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE_ = '''[{}]({})'''.format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE_ = sec_titles.split(''' & ''') SCREAMING_SNAKE_CASE_ = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE_ = find_nearest_training(question) SCREAMING_SNAKE_CASE_ = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) SCREAMING_SNAKE_CASE_ = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) SCREAMING_SNAKE_CASE_ = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
301
1
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class UpperCAmelCase_ ( _lowerCamelCase ): lowercase__ = '''align_text_model''' def __init__( self : Any , snake_case_ : Any=30_522 , snake_case_ : Dict=768 , snake_case_ : Tuple=12 , snake_case_ : Optional[Any]=12 , snake_case_ : Optional[int]=3_072 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Dict=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=512 , snake_case_ : Optional[int]=2 , snake_case_ : Optional[Any]=0.02 , snake_case_ : str=1e-12 , snake_case_ : Any=0 , snake_case_ : Optional[int]="absolute" , snake_case_ : Union[str, Any]=True , **snake_case_ : Dict , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase_ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = pad_token_id @classmethod def __magic_name__ ( cls : Optional[Any] , snake_case_ : Union[str, os.PathLike] , **snake_case_ : Tuple ) -> List[Any]: '''simple docstring''' cls._set_token_in_kwargs(lowercase_ ) A__, A__ = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": A__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class UpperCAmelCase_ ( _lowerCamelCase ): lowercase__ = '''align_vision_model''' def __init__( self : Tuple , snake_case_ : int = 3 , snake_case_ : int = 600 , snake_case_ : float = 2.0 , snake_case_ : float = 3.1 , snake_case_ : int = 8 , snake_case_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , snake_case_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , snake_case_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , snake_case_ : List[int] = [] , snake_case_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , snake_case_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , snake_case_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , snake_case_ : float = 0.25 , snake_case_ : str = "swish" , snake_case_ : int = 2_560 , snake_case_ : str = "mean" , snake_case_ : float = 0.02 , snake_case_ : float = 0.001 , snake_case_ : float = 0.99 , snake_case_ : float = 0.2 , **snake_case_ : List[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) A__ = num_channels A__ = image_size A__ = width_coefficient A__ = depth_coefficient A__ = depth_divisor A__ = kernel_sizes A__ = in_channels A__ = out_channels A__ = depthwise_padding A__ = strides A__ = num_block_repeats A__ = expand_ratios A__ = squeeze_expansion_ratio A__ = hidden_act A__ = hidden_dim A__ = pooling_type A__ = initializer_range A__ = batch_norm_eps A__ = batch_norm_momentum A__ = drop_connect_rate A__ = sum(lowercase_ ) * 4 @classmethod def __magic_name__ ( cls : List[str] , snake_case_ : Union[str, os.PathLike] , **snake_case_ : str ) -> List[str]: '''simple docstring''' cls._set_token_in_kwargs(lowercase_ ) A__, A__ = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": A__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class UpperCAmelCase_ ( _lowerCamelCase ): lowercase__ = '''align''' lowercase__ = True def __init__( self : int , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None , snake_case_ : List[str]=640 , snake_case_ : Any=1.0 , snake_case_ : Union[str, Any]=0.02 , **snake_case_ : int , ) -> str: '''simple docstring''' super().__init__(**lowercase_ ) if text_config is None: A__ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: A__ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) A__ = AlignTextConfig(**lowercase_ ) A__ = AlignVisionConfig(**lowercase_ ) A__ = projection_dim A__ = temperature_init_value A__ = initializer_range @classmethod def __magic_name__ ( cls : Any , snake_case_ : AlignTextConfig , snake_case_ : AlignVisionConfig , **snake_case_ : int ) -> Dict: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def __magic_name__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
356
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=10_00 ) -> Optional[Any]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd A__ = n - 1 A__ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) A__ = 0 while count < prec: A__ = random.randint(2 , n - 1 ) A__ = bin_exp_mod(lowercase_ , lowercase_ , lowercase_ ) if b != 1: A__ = True for _ in range(lowercase_ ): if b == n - 1: A__ = False break A__ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": SCREAMING_SNAKE_CASE = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
230
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase_ ( metaclass=__lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = ["keras_nlp"] def __init__( self : str , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Union[str, Any] ): requires_backends(self , ['keras_nlp'] )
315
"""simple docstring""" from math import sqrt def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = 0 for i in range(1, int(sqrt(UpperCamelCase_) + 1)): if n % i == 0 and i != sqrt(UpperCamelCase_): total += i + n // i elif i == sqrt(UpperCamelCase_): total += i return total - n def _A ( UpperCamelCase_ : int = 10000) -> int: '''simple docstring''' __lowercase = sum( i for i in range(1, UpperCamelCase_) if sum_of_divisors(sum_of_divisors(UpperCamelCase_)) == i and sum_of_divisors(UpperCamelCase_) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : str ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = [0 for i in range(len(snake_case_ ) )] # initialize interval's left pointer and right pointer UpperCAmelCase_ , UpperCAmelCase_ = 0, 0 for i in range(1 , len(snake_case_ ) ): # case when current index is inside the interval if i <= right_pointer: UpperCAmelCase_ = min(right_pointer - i + 1 , z_result[i - left_pointer] ) UpperCAmelCase_ = min_edge while go_next(snake_case_ , snake_case_ , snake_case_ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCAmelCase_ , UpperCAmelCase_ = i, i + z_result[i] - 1 return z_result def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : str ) -> bool: '''simple docstring''' return i + z_result[i] < len(snake_case_ ) and s[z_result[i]] == s[i + z_result[i]] def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCAmelCase_ = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(snake_case_ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_: Tuple =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[str] ={'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } SCREAMING_SNAKE_CASE_: Optional[int] ={ 'abeja/gpt-neox-japanese-2.7b': 20_48, } def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple ) -> Union[str, Any]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.loads(f.read() ) UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() UpperCAmelCase_ = collections.OrderedDict() with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(snake_case_ ): UpperCAmelCase_ = b UpperCAmelCase_ = idx for wd in b: UpperCAmelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class __A ( UpperCamelCase__ ): a__ : List[str] = VOCAB_FILES_NAMES a__ : Tuple = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__(self : Any , __a : List[Any] , __a : Dict , __a : int="<|endoftext|>" , __a : Union[str, Any]="<|endoftext|>" , __a : int="<|startoftext|>" , __a : Tuple="<|endoftext|>" , __a : Optional[int]=False , **__a : int , ): super().__init__( unk_token=__a , pad_token=__a , bos_token=__a , eos_token=__a , do_clean_text=__a , **__a , ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__a ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase_ = do_clean_text UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = load_vocab_and_emoji(__a , __a ) UpperCAmelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _lowercase (self : Optional[Any] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _lowercase (self : List[Any] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _lowercase (self : List[Any] , __a : int ): return self.subword_tokenizer.tokenize(__a , clean=self.do_clean_text ) def _lowercase (self : List[Any] , __a : List[str] ): return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def _lowercase (self : int , __a : List[Any] ): return self.subword_tokenizer.convert_id_to_token(__a ) def _lowercase (self : Dict , __a : str ): UpperCAmelCase_ = "".join(__a ).strip() return out_string def _lowercase (self : int , __a : "Conversation" ): UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids def _lowercase (self : int , __a : str , __a : Optional[str] = None ): UpperCAmelCase_ = 0 if os.path.isdir(__a ): UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__a , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase_ = token_index writer.write(",".join(__a ) + "\n" ) index += 1 with open(__a , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __a ) return vocab_file, emoji_file class __A ( UpperCamelCase__ ): def __init__(self : List[Any] , __a : Dict , __a : Any , __a : int ): UpperCAmelCase_ = vocab # same as swe UpperCAmelCase_ = ids_to_tokens # same as bpe UpperCAmelCase_ = emoji UpperCAmelCase_ = np.max([len(__a ) for w in self.vocab.keys()] ) UpperCAmelCase_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__(self : Dict ): return len(self.ids_to_tokens ) def _lowercase (self : str , __a : Union[str, Any] ): UpperCAmelCase_ = self.content_repattera.sub("<URL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<EMAIL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<TEL>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<DATE>" , __a ) UpperCAmelCase_ = self.content_repattera.sub("<PRICE>" , __a ) UpperCAmelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : str=False ): UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace(" " , "<SP>" ) UpperCAmelCase_ = text.replace("\r\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\n" , "<BR>" ) UpperCAmelCase_ = text.replace("\r" , "<BR>" ) UpperCAmelCase_ = text.replace("\t" , "<TAB>" ) UpperCAmelCase_ = text.replace("—" , "ー" ) UpperCAmelCase_ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase_ = text.replace(__a , __a ) if clean: UpperCAmelCase_ = self.clean_text(__a ) def check_simbol(__a : List[Any] ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 2: UpperCAmelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2_a1 and c <= 0Xc2_bf) or (c >= 0Xc7_80 and c <= 0Xc7_83) or (c >= 0Xca_b9 and c <= 0Xcb_bf) or (c >= 0Xcc_80 and c <= 0Xcd_a2) ): return True return False def checkuae(__a : Tuple ): UpperCAmelCase_ = x.encode() if len(__a ) == 1 and len(__a ) == 3: UpperCAmelCase_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_80_80 and c <= 0Xe2_b0_7f: return True return False UpperCAmelCase_ = 0 UpperCAmelCase_ = [] while pos < len(__a ): UpperCAmelCase_ = min(len(__a ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase_ = [] # (token_id, token, pos) for e in range(__a , __a , -1 ): UpperCAmelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__a ) > 2: UpperCAmelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__a ) > 0: # the smallest token_id is adopted UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = sorted(__a , key=lambda __a : x[0] )[0] result.append(__a ) UpperCAmelCase_ = e else: UpperCAmelCase_ = pos + 1 UpperCAmelCase_ = text[pos:end] if check_simbol(__a ): result.append("<KIGOU>" ) elif checkuae(__a ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase_ = end return result def _lowercase (self : int , __a : Optional[Any] , __a : Optional[int]="\n" ): UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__a ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__a ) if len(__a ) > 0: words.append(bytearray(__a ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase_ = "".join(__a ) return text
106
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _UpperCAmelCase : Optional[int] = logging.getLogger(__name__) def UpperCAmelCase__ ( lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase=16, lowerCamelCase = 10, lowerCamelCase = 2 ): def get_dataset(lowerCamelCase ): lowercase :int = torch.randn(batch_size * n_batches, 1 ) return TensorDataset(_SCREAMING_SNAKE_CASE, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) lowercase :Any = get_dataset(_SCREAMING_SNAKE_CASE ) lowercase :Any = get_dataset(_SCREAMING_SNAKE_CASE ) lowercase :List[Any] = DataLoader(_SCREAMING_SNAKE_CASE, shuffle=_SCREAMING_SNAKE_CASE, batch_size=_SCREAMING_SNAKE_CASE, num_workers=4 ) lowercase :Optional[int] = DataLoader(_SCREAMING_SNAKE_CASE, shuffle=_SCREAMING_SNAKE_CASE, batch_size=_SCREAMING_SNAKE_CASE, num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None ): lowercase :Any = [] for epoch in range(_SCREAMING_SNAKE_CASE ): # Train quickly model.train() for batch in dataloader: lowercase , lowercase :Optional[int] = batch lowercase :int = model(_SCREAMING_SNAKE_CASE ) lowercase :Dict = torch.nn.functional.mse_loss(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __lowerCAmelCase ( nn.Module): def __init__( self: int ): super().__init__() lowercase :Optional[Any] = nn.Parameter(torch.randn(1 ) ) lowercase :Tuple = nn.Parameter(torch.randn(1 ) ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: Optional[Any] ): return x * self.a + self.b class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: List[str] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase :Optional[int] = DummyModel() lowercase :Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase , lowercase :Tuple = dummy_dataloaders() lowercase :Union[str, Any] = ProjectConfiguration(total_limit=1 , project_dir=lowerCamelCase__ , automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline lowercase :List[Any] = Accelerator(project_config=lowerCamelCase__ ) lowercase , lowercase , lowercase , lowercase :int = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase :int = DummyModel() lowercase :str = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase , lowercase :List[Any] = dummy_dataloaders() # Train baseline lowercase :Union[str, Any] = Accelerator() lowercase , lowercase , lowercase , lowercase :Any = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial lowercase :Dict = os.path.join(lowerCamelCase__ , "initial" ) accelerator.save_state(lowerCamelCase__ ) ((lowercase) , (lowercase)) :int = model.a.item(), model.b.item() lowercase :Dict = optimizer.state_dict() lowercase :Any = train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((lowercase) , (lowercase)) :Union[str, Any] = model.a.item(), model.b.item() lowercase :List[Any] = optimizer.state_dict() # Train partially set_seed(42 ) lowercase :Dict = DummyModel() lowercase :int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase , lowercase :Optional[Any] = dummy_dataloaders() lowercase :Dict = Accelerator() lowercase , lowercase , lowercase , lowercase :str = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(lowerCamelCase__ ) ((lowercase) , (lowercase)) :str = model.a.item(), model.b.item() lowercase :str = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase :List[str] = train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything lowercase :Any = os.path.join(lowerCamelCase__ , "checkpoint" ) accelerator.save_state(lowerCamelCase__ ) # Load everything back in and make sure all states work accelerator.load_state(lowerCamelCase__ ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((lowercase) , (lowercase)) :List[Any] = model.a.item(), model.b.item() lowercase :str = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase :Optional[int] = DummyModel() lowercase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase , lowercase :Optional[int] = dummy_dataloaders() lowercase :Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline lowercase :int = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) lowercase , lowercase , lowercase , lowercase :str = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() ((lowercase) , (lowercase)) :str = model.a.item(), model.b.item() lowercase :Union[str, Any] = optimizer.state_dict() lowercase :Dict = train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((lowercase) , (lowercase)) :List[Any] = model.a.item(), model.b.item() lowercase :Union[str, Any] = optimizer.state_dict() # Train partially set_seed(42 ) lowercase :List[str] = DummyModel() lowercase :Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase , lowercase :int = dummy_dataloaders() lowercase :Union[str, Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCamelCase__ ) lowercase :int = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) lowercase , lowercase , lowercase , lowercase :List[str] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_0" ) ) ((lowercase) , (lowercase)) :Union[str, Any] = model.a.item(), model.b.item() lowercase :Optional[int] = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase :Union[str, Any] = train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ((lowercase) , (lowercase)) :Optional[Any] = model.a.item(), model.b.item() lowercase :Union[str, Any] = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Optional[Any] = torch.tensor([1, 2, 3] ) lowercase :Union[str, Any] = torch.tensor([2, 3, 4] ) lowercase :List[str] = DummyModel() lowercase :Dict = torch.optim.Adam(net.parameters() ) lowercase :str = Accelerator() with self.assertRaises(lowerCamelCase__ ) as ve: accelerator.register_for_checkpointing(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase :Any = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def SCREAMING_SNAKE_CASE ( self: Optional[int] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase :Optional[Any] = DummyModel() lowercase :List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase :List[str] = torch.optim.lr_scheduler.StepLR(lowerCamelCase__ , step_size=1 , gamma=0.99 ) lowercase , lowercase :Union[str, Any] = dummy_dataloaders() lowercase :int = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline lowercase :Any = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) lowercase , lowercase , lowercase , lowercase , lowercase :Tuple = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() lowercase :List[str] = scheduler.state_dict() train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(lowerCamelCase__ , scheduler.state_dict() ) def SCREAMING_SNAKE_CASE ( self: Dict ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase :Optional[Any] = DummyModel() lowercase :List[str] = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ , total_limit=2 ) # Train baseline lowercase :Any = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) lowercase :str = accelerator.prepare(lowerCamelCase__ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Optional[int] = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = "/tmp/accelerate/state_checkpointing" _UpperCAmelCase : List[str] = DummyModel() _UpperCAmelCase : Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1E-3) _UpperCAmelCase : Tuple = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) _UpperCAmelCase , _UpperCAmelCase : Any = dummy_dataloaders() _UpperCAmelCase : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _UpperCAmelCase : Any = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _UpperCAmelCase , _UpperCAmelCase : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _UpperCAmelCase : Optional[int] = group["params"][0].device break assert param_device.type == accelerator.device.type _UpperCAmelCase : Optional[Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: _UpperCAmelCase : List[Any] = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: _UpperCAmelCase : Dict = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
236
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.dummy_uncond_unet SCREAMING_SNAKE_CASE = KarrasVeScheduler() SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=lowerCamelCase__ ,scheduler=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 ,generator=lowerCamelCase__ ,output_type="""numpy""" ).images SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=2 ,generator=lowerCamelCase__ ,output_type="""numpy""" ,return_dict=lowerCamelCase__ )[0] SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = """google/ncsnpp-celebahq-256""" SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = KarrasVeScheduler() SCREAMING_SNAKE_CASE = KarrasVePipeline(unet=lowerCamelCase__ ,scheduler=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=20 ,generator=lowerCamelCase__ ,output_type="""numpy""" ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
296
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowercase_ ( __snake_case ): _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
368
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
0
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A_ : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase = None UpperCAmelCase = "utf-8" UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True # deprecated UpperCAmelCase = None # deprecated UpperCAmelCase = 10 << 20 # 10MB UpperCAmelCase = None class lowercase ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase = JsonConfig def _snake_case ( self ) -> Optional[Any]: if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) _UpperCAmelCase : str = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def _snake_case ( self ,a_ ) -> List[Any]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _UpperCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ ,(str, list, tuple) ): _UpperCAmelCase : List[Any] = data_files if isinstance(a_ ,a_ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : str = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"""files""": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(a_ ,a_ ): _UpperCAmelCase : Union[str, Any] = [files] _UpperCAmelCase : List[str] = [dl_manager.iter_files(a_ ) for file in files] splits.append(datasets.SplitGenerator(name=a_ ,gen_kwargs={"""files""": files} ) ) return splits def _snake_case ( self ,a_ ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _UpperCAmelCase : Tuple = self.config.features.arrow_schema.field(a_ ).type _UpperCAmelCase : Dict = pa_table.append_column(a_ ,pa.array([None] * len(a_ ) ,type=a_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[str] = table_cast(a_ ,self.config.features.arrow_schema ) return pa_table def _snake_case ( self ,a_ ) -> Union[str, Any]: for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(a_ ,encoding=self.config.encoding ,errors=self.config.encoding_errors ) as f: _UpperCAmelCase : Any = json.load(a_ ) # We keep only the field we are interested in _UpperCAmelCase : Any = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(a_ ,(list, tuple) ): _UpperCAmelCase : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : Dict = {col: [row.get(a_ ) for row in dataset] for col in keys} else: _UpperCAmelCase : List[Any] = dataset _UpperCAmelCase : Tuple = pa.Table.from_pydict(a_ ) yield file_idx, self._cast_table(a_ ) # If the file has one json object per line else: with open(a_ ,"""rb""" ) as f: _UpperCAmelCase : Optional[Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _UpperCAmelCase : List[Any] = max(self.config.chunksize // 32 ,16 << 10 ) _UpperCAmelCase : Dict = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: _UpperCAmelCase : int = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(a_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _UpperCAmelCase : int = batch.decode(self.config.encoding ,errors=a_ ).encode("""utf-8""" ) try: while True: try: _UpperCAmelCase : Optional[int] = paj.read_json( io.BytesIO(a_ ) ,read_options=paj.ReadOptions(block_size=a_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(a_ ,pa.ArrowInvalid ) and "straddling" not in str(a_ ) or block_size > len(a_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(a_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( a_ ,encoding=self.config.encoding ,errors=self.config.encoding_errors ) as f: _UpperCAmelCase : List[Any] = json.load(a_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(a_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(a_ ,a_ ): # list is the only sequence type supported in JSON try: _UpperCAmelCase : Any = set().union(*[row.keys() for row in dataset] ) _UpperCAmelCase : int = {col: [row.get(a_ ) for row in dataset] for col in keys} _UpperCAmelCase : Any = pa.Table.from_pydict(a_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(a_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(a_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(a_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(a_ ) batch_idx += 1
215
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A_ : Any = logging.get_logger(__name__) A_ : Optional[int] = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """longformer""" def __init__( self ,a_ = 512 ,a_ = 2 ,a_ = 1 ,a_ = 0 ,a_ = 2 ,a_ = 30_522 ,a_ = 768 ,a_ = 12 ,a_ = 12 ,a_ = 3_072 ,a_ = "gelu" ,a_ = 0.1 ,a_ = 0.1 ,a_ = 512 ,a_ = 2 ,a_ = 0.02 ,a_ = 1E-1_2 ,a_ = False ,**a_ ,) -> List[Any]: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = attention_window _UpperCAmelCase : Any = sep_token_id _UpperCAmelCase : Dict = bos_token_id _UpperCAmelCase : Tuple = eos_token_id _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Optional[int] = type_vocab_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = onnx_export class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = "default" ,a_ = None ) -> int: super().__init__(a_ ,a_ ,a_ ) _UpperCAmelCase : Tuple = True @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _UpperCAmelCase : str = super().outputs if self.task == "default": _UpperCAmelCase : int = {0: """batch"""} return outputs @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset ,14 ) def _snake_case ( self ,a_ ,a_ = -1 ,a_ = -1 ,a_ = False ,a_ = None ,) -> Mapping[str, Any]: _UpperCAmelCase : List[str] = super().generate_dummy_inputs( preprocessor=a_ ,batch_size=a_ ,seq_length=a_ ,is_pair=a_ ,framework=a_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _UpperCAmelCase : int = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global _UpperCAmelCase : List[str] = 1 return inputs
215
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _lowercase ( snake_case_ ): lowercase = 'xlm-roberta-xl' def __init__( self : List[str] , snake_case : Optional[int]=2_5_0_8_8_0 , snake_case : List[str]=2_5_6_0 , snake_case : Optional[Any]=3_6 , snake_case : Union[str, Any]=3_2 , snake_case : Optional[Any]=1_0_2_4_0 , snake_case : Any="gelu" , snake_case : Optional[Any]=0.1 , snake_case : Any=0.1 , snake_case : Any=5_1_4 , snake_case : List[Any]=1 , snake_case : int=0.02 , snake_case : List[str]=1e-05 , snake_case : List[str]=1 , snake_case : List[Any]=0 , snake_case : List[str]=2 , snake_case : int="absolute" , snake_case : str=True , snake_case : Dict=None , **snake_case : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) UpperCamelCase_ : Any = vocab_size UpperCamelCase_ : str = hidden_size UpperCamelCase_ : Union[str, Any] = num_hidden_layers UpperCamelCase_ : Optional[Any] = num_attention_heads UpperCamelCase_ : Union[str, Any] = hidden_act UpperCamelCase_ : Any = intermediate_size UpperCamelCase_ : Union[str, Any] = hidden_dropout_prob UpperCamelCase_ : List[str] = attention_probs_dropout_prob UpperCamelCase_ : List[str] = max_position_embeddings UpperCamelCase_ : Union[str, Any] = type_vocab_size UpperCamelCase_ : List[str] = initializer_range UpperCamelCase_ : Tuple = layer_norm_eps UpperCamelCase_ : List[Any] = position_embedding_type UpperCamelCase_ : Optional[Any] = use_cache UpperCamelCase_ : List[Any] = classifier_dropout class _lowercase ( snake_case_ ): @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase_ : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_ : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
50
def __lowercase ( lowerCamelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) UpperCamelCase_ : Optional[int] = sorted(string.lower() ) return len(lowerCamelCase ) == len(set(lowerCamelCase ) ) if __name__ == "__main__": a_ = input('Enter a string ').strip() a_ = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
50
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __UpperCAmelCase =logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class a__ ( UpperCAmelCase__ ): def __init__( self : str , **a : List[Any] ): """simple docstring""" super().__init__(**a ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict , a : Union[str, List[str], "Image", List["Image"]] , **a : Dict ): """simple docstring""" return super().__call__(a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , **a : Optional[Any] ): """simple docstring""" __lowerCamelCase = {} if "candidate_labels" in kwargs: __lowerCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __lowerCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : str , a : Dict=None , a : Any="This is a photo of {}." ): """simple docstring""" __lowerCamelCase = load_image(a ) __lowerCamelCase = self.image_processor(images=[image] , return_tensors=self.framework ) __lowerCamelCase = candidate_labels __lowerCamelCase = [hypothesis_template.format(a ) for x in candidate_labels] __lowerCamelCase = self.tokenizer(a , return_tensors=self.framework , padding=a ) __lowerCamelCase = [text_inputs] return inputs def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = model_inputs.pop('''candidate_labels''' ) __lowerCamelCase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , a ): __lowerCamelCase = text_inputs[0] else: # Batching case. __lowerCamelCase = text_inputs[0][0] __lowerCamelCase = self.model(**a , **a ) __lowerCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Dict , a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = model_outputs.pop('''candidate_labels''' ) __lowerCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": __lowerCamelCase = logits.softmax(dim=-1 ).squeeze(-1 ) __lowerCamelCase = probs.tolist() if not isinstance(a , a ): __lowerCamelCase = [scores] elif self.framework == "tf": __lowerCamelCase = stable_softmax(a , axis=-1 ) __lowerCamelCase = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __lowerCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(a , a ) , key=lambda a : -x[0] ) ] return result
67
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A__ = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @property def a ( self : int ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def a ( self : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase__ = self.dummy_uncond_unet lowerCAmelCase__ = PNDMScheduler() lowerCAmelCase__ = PNDMPipeline(unet=_a , scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pndm(generator=_a , num_inference_steps=20 , output_type="numpy" ).images lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pndm(generator=_a , num_inference_steps=20 , output_type="numpy" , return_dict=_a )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Union[str, Any] ) -> List[Any]: lowerCAmelCase__ = "google/ddpm-cifar10-32" lowerCAmelCase__ = UNetaDModel.from_pretrained(_a ) lowerCAmelCase__ = PNDMScheduler() lowerCAmelCase__ = PNDMPipeline(unet=_a , scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pndm(generator=_a , output_type="numpy" ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
350
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self : Dict ) -> Optional[int]: super().__init__() lowerCAmelCase__ = nn.Linear(3 , 4 ) lowerCAmelCase__ = nn.BatchNormad(4 ) lowerCAmelCase__ = nn.Linear(4 , 5 ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE__ ) ) ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def a ( self : Any , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: return (args[0] + 1,) + args[1:], kwargs class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Dict: return output + 1 class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : List[str] ) -> Tuple: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = ModelHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(test_model._hf_hook , SCREAMING_SNAKE_CASE__ ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(SCREAMING_SNAKE_CASE__ ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_hf_hook" ) ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) def a ( self : Union[str, Any] ) -> int: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = ModelHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , append=SCREAMING_SNAKE_CASE__ ) self.assertEqual(isinstance(test_model._hf_hook , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , "forward" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["x"] ) remove_hook_from_module(SCREAMING_SNAKE_CASE__ ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_hf_hook" ) ) self.assertFalse(hasattr(SCREAMING_SNAKE_CASE__ , "_old_forward" ) ) def a ( self : List[str] ) -> Any: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = test_model(x + 1 ) lowerCAmelCase__ = test_model(x + 2 ) lowerCAmelCase__ = PreForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCAmelCase__ = PreForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCAmelCase__ = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-5 ) def a ( self : Any ) -> Union[str, Any]: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain lowerCAmelCase__ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks lowerCAmelCase__ = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) assert torch.allclose(SCREAMING_SNAKE_CASE__ , output + 2 , atol=1e-5 ) def a ( self : Optional[int] ) -> int: lowerCAmelCase__ = ModelForTest() lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = PostForwardHook() add_hook_to_module(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) lowerCAmelCase__ = True lowerCAmelCase__ = test_model(SCREAMING_SNAKE_CASE__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(SCREAMING_SNAKE_CASE__ , AlignDevicesHook(io_same_device=SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.randn(2 , 3 ).to(0 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , torch.device(0 ) ) def a ( self : List[str] ) -> List[str]: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices lowerCAmelCase__ = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ = torch.device(hook_kwargs["execution_device"] ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload lowerCAmelCase__ = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**SCREAMING_SNAKE_CASE__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices lowerCAmelCase__ = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ = torch.device(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook(SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ , offload_buffers=SCREAMING_SNAKE_CASE__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) def a ( self : Optional[Any] ) -> str: lowerCAmelCase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # This will move each submodule on different devices lowerCAmelCase__ = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) # Buffers are not included in the offload by default, so are on the execution device lowerCAmelCase__ = torch.device(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.batchnorm.running_mean.device , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) # Now test with buffers included in the offload attach_align_device_hook( SCREAMING_SNAKE_CASE__ , execution_device=SCREAMING_SNAKE_CASE__ , offload=SCREAMING_SNAKE_CASE__ , weights_map=model.state_dict() , offload_buffers=SCREAMING_SNAKE_CASE__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("meta" ) ) self.assertEqual(model.lineara.weight.device , torch.device("meta" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("meta" ) ) lowerCAmelCase__ = torch.randn(2 , 3 ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.assertEqual(output.device , SCREAMING_SNAKE_CASE__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(SCREAMING_SNAKE_CASE__ ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("cpu" ) ) self.assertEqual(model.lineara.weight.device , torch.device("cpu" ) )
221
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __a = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( a_ ): A : Optional[Any] = 'sequence-classification' def __init__( self , SCREAMING_SNAKE_CASE__ ): if type(lowercase_ ) == dict: lowercase : int = Namespace(**lowercase_ ) lowercase : int = glue_output_modes[hparams.task] lowercase : List[Any] = glue_tasks_num_labels[hparams.task] super().__init__(lowercase_ , lowercase_ , self.mode ) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): return self.model(**lowercase_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase : Optional[Any] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase : Optional[int] = self(**lowercase_ ) lowercase : Union[str, Any] = outputs[0] lowercase : Union[str, Any] = self.trainer.lr_schedulers[0]['''scheduler'''] lowercase : Union[str, Any] = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __lowerCamelCase ( self ): lowercase : Tuple = self.hparams lowercase : int = processors[args.task]() lowercase : int = processor.get_labels() for mode in ["train", "dev"]: lowercase : int = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , lowercase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowercase : int = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) lowercase : Optional[int] = convert_examples_to_features( lowercase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ): lowercase : Tuple = '''dev''' if mode == '''test''' else mode lowercase : Tuple = self._feature_file(lowercase_ ) logger.info('''Loading features from cached file %s''' , lowercase_ ) lowercase : Union[str, Any] = torch.load(lowercase_ ) lowercase : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase : Dict = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowercase : Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowercase : Optional[Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowercase : List[Any] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ , shuffle=lowercase_ , ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowercase : int = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowercase : int = self(**lowercase_ ) lowercase : str = outputs[:2] lowercase : Optional[Any] = logits.detach().cpu().numpy() lowercase : Union[str, Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : int = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() lowercase : Any = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowercase : Any = np.argmax(lowercase_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowercase : Optional[Any] = np.squeeze(lowercase_ ) lowercase : Union[str, Any] = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowercase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] lowercase : str = [[] for _ in range(out_label_ids.shape[0] )] lowercase : Any = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , lowercase_ , lowercase_ )} lowercase : Optional[int] = dict(results.items() ) lowercase : Any = results return ret, preds_list, out_label_list def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = self._eval_end(lowercase_ ) lowercase : str = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = self._eval_end(lowercase_ ) lowercase : List[str] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __lowerCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( '''--max_seq_length''' , default=128 , type=lowercase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=lowercase_ , required=lowercase_ , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=lowercase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def __lowercase ( ) ->Optional[Any]: """simple docstring""" lowercase : str = argparse.ArgumentParser() add_generic_args(A_, os.getcwd() ) lowercase : int = GLUETransformer.add_model_specific_args(A_, os.getcwd() ) lowercase : Tuple = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowercase : Tuple = os.path.join( '''./results''', f"""{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}""", ) os.makedirs(args.output_dir ) lowercase : Tuple = GLUETransformer(A_ ) lowercase : Tuple = generic_train(A_, A_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowercase : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt''' ), recursive=A_ ) ) lowercase : Dict = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(A_ ) if __name__ == "__main__": main()
337
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] ,lowercase_ : Dict ,lowercase_ : Dict=7 ,lowercase_ : Optional[int]=3 ,lowercase_ : int=3_0 ,lowercase_ : Optional[Any]=4_0_0 ,lowercase_ : Any=True ,lowercase_ : List[str]=None ,lowercase_ : str=True ,lowercase_ : List[Any]=[0.5, 0.5, 0.5] ,lowercase_ : List[str]=[0.5, 0.5, 0.5] ,lowercase_ : Any=True ,lowercase_ : Union[str, Any]=1 / 2_5_5 ,lowercase_ : str=True ,): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowerCAmelCase__ : Any = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : Optional[Any] = min_resolution lowerCAmelCase__ : Union[str, Any] = max_resolution lowerCAmelCase__ : Optional[int] = do_resize lowerCAmelCase__ : str = size lowerCAmelCase__ : Union[str, Any] = do_normalize lowerCAmelCase__ : List[str] = image_mean lowerCAmelCase__ : str = image_std lowerCAmelCase__ : Optional[Any] = do_rescale lowerCAmelCase__ : Union[str, Any] = rescale_factor lowerCAmelCase__ : Optional[Any] = do_pad def __lowerCAmelCase ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowerCAmelCase ( self : List[str] ,lowercase_ : List[Any] ,lowercase_ : int=False ): if not batched: lowerCAmelCase__ : Tuple = image_inputs[0] if isinstance(lowercase_ ,Image.Image ): lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = image.size else: lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ : Any = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase__ : str = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase__ : Union[str, Any] = self.size['''shortest_edge'''] lowerCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase__ : List[str] = self.size['''shortest_edge'''] lowerCAmelCase__ : str = self.size['''shortest_edge'''] else: lowerCAmelCase__ : Optional[Any] = [] for image in image_inputs: lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ : List[str] = max(lowercase_ ,key=lambda lowercase_ : item[0] )[0] lowerCAmelCase__ : Any = max(lowercase_ ,key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = DetaImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[Any] = DetaImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase_ ,'''image_std''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_rescale''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_pad''' ) ) self.assertTrue(hasattr(lowercase_ ,'''size''' ) ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad ,lowercase_ ) def __lowerCAmelCase ( self : List[str] ): pass def __lowerCAmelCase ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,Image.Image ) # Test not batched input lowerCAmelCase__ : List[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(lowercase_ ,batched=lowercase_ ) lowerCAmelCase__ : Optional[int] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCAmelCase ( self : Dict ): # Initialize image_processing lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,np.ndarray ) # Test not batched input lowerCAmelCase__ : List[str] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : str = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(lowercase_ ,batched=lowercase_ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __lowerCAmelCase ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : List[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase__ : str = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(lowercase_ ,batched=lowercase_ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def __lowerCAmelCase ( self : Tuple ): # prepare image and target lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' ,'''r''' ) as f: lowerCAmelCase__ : Union[str, Any] = json.loads(f.read() ) lowerCAmelCase__ : str = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowerCAmelCase__ : Optional[Any] = DetaImageProcessor() lowerCAmelCase__ : Optional[int] = image_processing(images=lowercase_ ,annotations=lowercase_ ,return_tensors='''pt''' ) # verify pixel values lowerCAmelCase__ : Dict = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape ,lowercase_ ) lowerCAmelCase__ : Any = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,lowercase_ ,atol=1E-4 ) ) # verify area lowerCAmelCase__ : Tuple = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,lowercase_ ) ) # verify boxes lowerCAmelCase__ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,lowercase_ ) lowerCAmelCase__ : Tuple = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,lowercase_ ,atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Optional[int] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,lowercase_ ) ) # verify is_crowd lowerCAmelCase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,lowercase_ ) ) # verify class_labels lowerCAmelCase__ : Any = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,lowercase_ ) ) # verify orig_size lowerCAmelCase__ : int = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,lowercase_ ) ) # verify size lowerCAmelCase__ : str = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,lowercase_ ) ) @slow def __lowerCAmelCase ( self : Any ): # prepare image, target and masks_path lowerCAmelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' ,'''r''' ) as f: lowerCAmelCase__ : str = json.loads(f.read() ) lowerCAmelCase__ : Tuple = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowerCAmelCase__ : Optional[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase__ : str = DetaImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase__ : Optional[int] = image_processing(images=lowercase_ ,annotations=lowercase_ ,masks_path=lowercase_ ,return_tensors='''pt''' ) # verify pixel values lowerCAmelCase__ : Any = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape ,lowercase_ ) lowerCAmelCase__ : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,lowercase_ ,atol=1E-4 ) ) # verify area lowerCAmelCase__ : Tuple = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,lowercase_ ) ) # verify boxes lowerCAmelCase__ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,lowercase_ ) lowerCAmelCase__ : str = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,lowercase_ ,atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,lowercase_ ) ) # verify is_crowd lowerCAmelCase__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,lowercase_ ) ) # verify class_labels lowerCAmelCase__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,lowercase_ ) ) # verify masks lowerCAmelCase__ : Optional[int] = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() ,lowercase_ ) # verify orig_size lowerCAmelCase__ : List[Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,lowercase_ ) ) # verify size lowerCAmelCase__ : Optional[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,lowercase_ ) )
106
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowerCamelCase__ ( a , a=() , a=None , a="no" , a="29500" ) -> int: _A: Dict = False _A: Dict = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): _A: Any = True elif "IPython" in sys.modules: _A: Any = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: _A: Tuple = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , a ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: _A: Dict = 8 _A: Tuple = PrepareForLaunch(a , distributed_type='''TPU''' ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(a , args=a , nprocs=a , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*a ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a , master_addr='''127.0.01''' , master_port=a , mixed_precision=a ): _A: Optional[Any] = PrepareForLaunch(a , distributed_type='''MULTI_GPU''' ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(a , args=a , nprocs=a , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _A: Any = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*a ) def lowerCamelCase__ ( a , a=() , a=2 ) -> List[str]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): _A: int = PrepareForLaunch(a , debug=a ) start_processes(a , args=a , nprocs=a , start_method='''fork''' )
355
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __lt__( self : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : int , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowerCamelCase__ ( a ) -> list: _A: list[Stack] = [] # sort into stacks for element in collection: _A: Any = Stack([element] ) _A: Optional[Any] = bisect_left(a , a ) if i != len(a ): stacks[i].append(a ) else: stacks.append(a ) # use a heap-based merge to merge stack efficiently _A: Tuple = merge(*(reversed(a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
301
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : List[Any] ={ 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int =[ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __snake_case : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected', [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(lowerCAmelCase_, i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0, 4 ), range(4, 7 ), range(7, 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0, 1 ), range(1, 2 ), range(2, 3 )]), ], ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Any ): __lowerCAmelCase = _distribute_shards(**lowerCAmelCase_ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected', [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ], ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = _split_gen_kwargs(lowerCAmelCase_, lowerCAmelCase_ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected', [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ], ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Any ): if expected is RuntimeError: with pytest.raises(lowerCAmelCase_ ): _number_of_shards_in_gen_kwargs(lowerCAmelCase_ ) else: __lowerCAmelCase = _number_of_shards_in_gen_kwargs(lowerCAmelCase_ ) assert out == expected
284
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: __SCREAMING_SNAKE_CASE : Tuple = None __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Any = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE : Dict = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } __SCREAMING_SNAKE_CASE : Tuple = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } __SCREAMING_SNAKE_CASE : Any = '''▁''' # Segments (not really needed) __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : Any = 1 __SCREAMING_SNAKE_CASE : Optional[int] = 2 __SCREAMING_SNAKE_CASE : Optional[Any] = 3 __SCREAMING_SNAKE_CASE : int = 4 class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Dict = VOCAB_FILES_NAMES lowercase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Optional[Any] = 'left' lowercase__ : Dict = XLNetTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<sep>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<cls>" , lowerCamelCase__="<mask>" , lowerCamelCase__=["<eop>", "<eod>"] , **lowerCamelCase__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( vocab_file=lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , remove_space=lowerCamelCase__ , keep_accents=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) _lowerCamelCase = 3 _lowerCamelCase = do_lower_case _lowerCamelCase = remove_space _lowerCamelCase = keep_accents _lowerCamelCase = vocab_file _lowerCamelCase = False if not self.vocab_file else True def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
73
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[Any] = ['pixel_values'] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 2_5_5 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): super().__init__(**lowerCamelCase__ ) _lowerCamelCase = size if size is not None else {'''shortest_edge''': 3_8_4} _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = do_resize _lowerCamelCase = size # Default value set here for backwards compatibility where the value in config is None _lowerCamelCase = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 _lowerCamelCase = resample _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_normalize _lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ): _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) _lowerCamelCase = size['''shortest_edge'''] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _lowerCamelCase = int(shortest_edge / crop_pct ) _lowerCamelCase = get_resize_output_image_size(lowerCamelCase__ , size=lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase__ , size=(shortest_edge, shortest_edge) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase__ , size=(shortest_edge, shortest_edge) , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): _lowerCamelCase = do_resize if do_resize is not None else self.do_resize _lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct _lowerCamelCase = resample if resample is not None else self.resample _lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase = image_mean if image_mean is not None else self.image_mean _lowerCamelCase = image_std if image_std is not None else self.image_std _lowerCamelCase = size if size is not None else self.size _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , crop_pct=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_rescale: _lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: _lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] _lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] _lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
73
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
1
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def _A (__a , __a ) -> tuple: """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
368
"""simple docstring""" import argparse import os import re import packaging.version UpperCAmelCase_ : Any = """examples/""" UpperCAmelCase_ : Optional[int] = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCAmelCase_ : List[Any] = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCAmelCase_ : Optional[int] = """README.md""" def _A (__a , __a , __a ) -> int: """simple docstring""" with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a ) SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a ) with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__a ) def _A (__a ) -> int: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' ) def _A (__a , __a=False ) -> List[str]: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a , __a , __a ) if not patch: update_version_in_examples(__a ) def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?''' with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_ : Tuple = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__a ) def _A () -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.read() SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def _A (__a=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version elif patch: SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version print(f'Updating version to {version}.' ) global_version_update(__a , patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def _A () -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_version() SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0' SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version print(f'Updating version to {version}.' ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCAmelCase_ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
318
0
"""simple docstring""" def _A ( UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _A ( UpperCamelCase_ : dict[int, list[int]]) -> list[tuple[int, int]]: '''simple docstring''' __lowercase = 0 __lowercase = len(UpperCamelCase_) # No of vertices in graph __lowercase = [0] * n __lowercase = [False] * n def dfs(UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Optional[int], UpperCamelCase_ : Any, UpperCamelCase_ : Optional[Any]): __lowercase = True __lowercase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, id_) __lowercase = min(low[at], low[to]) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at)) else: # This edge is a back edge and cannot be a bridge __lowercase = min(low[at], low[to]) __lowercase = [] for i in range(UpperCamelCase_): if not visited[i]: dfs(UpperCamelCase_, -1, UpperCamelCase_, id_) return bridges if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCamelCase = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = test_results.split(' ' ) A__ = 0 A__ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A__ = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCamelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = {} A__ = None A__ = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , UpperCamelCase__ ): A__ = True A__ = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): A__ = line A__ = False return failures class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Dict: A__ = title A__ = doc_test_results['time_spent'].split(',' )[0] A__ = doc_test_results['success'] A__ = doc_test_results['failures'] A__ = self.n_success + self.n_failures # Failures and success of the modeling tests A__ = doc_test_results @property def snake_case__ ( self ) -> str: A__ = [self._time_spent] A__ = 0 for time in time_spent: A__ = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__UpperCAmelCase ) == 1: A__ = [0, 0, time_parts[0]] A__ , A__ , A__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds A__ , A__ , A__ = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f'''{int(__UpperCAmelCase )}h{int(__UpperCAmelCase )}m{int(__UpperCAmelCase )}s''' @property def snake_case__ ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case__ ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def snake_case__ ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' f''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def snake_case__ ( self ) -> Dict: A__ = 40 A__ = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(__UpperCAmelCase ,__UpperCAmelCase )} A__ = '' for category, failures in category_failures.items(): if len(__UpperCAmelCase ) == 0: continue if report != "": report += "\n\n" report += f'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__UpperCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'''The following examples had failures:\n\n\n{report}\n''', }, } @property def snake_case__ ( self ) -> str: A__ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__UpperCAmelCase ) @staticmethod def snake_case__ ( ) -> Any: A__ = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(__UpperCAmelCase )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,text='There was an issue running the tests.' ,blocks=__UpperCAmelCase ,) def snake_case__ ( self ) -> int: print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) A__ = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else 'All tests passed.' A__ = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,blocks=self.payload ,text=__UpperCAmelCase ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: A__ = '' for key, value in failures.items(): A__ = value[:2_00] + ' [Truncated]' if len(__UpperCAmelCase ) > 2_50 else value failures_text += f'''*{key}*\n_{value}_\n\n''' A__ = job_name A__ = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: A__ = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case__ ( self ) -> Dict: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) A__ = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) A__ = sorted(self.doc_test_results.items() ,key=lambda __UpperCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): A__ = f'''*Num failures* :{len(job_result["failed"] )} \n''' A__ = job_result['failures'] A__ = self.get_reply_blocks(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,text=__UpperCAmelCase ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] ,text=f'''Results for {job}''' ,blocks=__UpperCAmelCase ,thread_ts=self.thread_ts['ts'] ,) time.sleep(1 ) def UpperCAmelCase ( ): """simple docstring""" A__ = os.environ['GITHUB_RUN_ID'] A__ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' A__ = requests.get(UpperCamelCase__ ).json() A__ = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) A__ = math.ceil((result['total_count'] - 100) / 100 ) for i in range(UpperCamelCase__ ): A__ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , UpperCamelCase__ ) return {} def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = {} if os.path.exists(UpperCamelCase__ ): A__ = os.listdir(UpperCamelCase__ ) for file in files: try: with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , encoding='utf-8' ) as f: A__ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(UpperCamelCase__ , UpperCamelCase__ )}.''' ) from e return _artifact def UpperCAmelCase ( ): """simple docstring""" class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = name A__ = [] def __str__( self ) -> List[str]: return self.name def snake_case__ ( self ,__UpperCAmelCase ) -> int: self.paths.append({'name': self.name, 'path': path} ) A__ = {} A__ = filter(os.path.isdir , os.listdir() ) for directory in directories: A__ = directory if artifact_name not in _available_artifacts: A__ = Artifact(UpperCamelCase__ ) _available_artifacts[artifact_name].add_path(UpperCamelCase__ ) return _available_artifacts if __name__ == "__main__": __lowerCamelCase = get_job_links() __lowerCamelCase = retrieve_available_artifacts() __lowerCamelCase = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCamelCase = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCamelCase = github_actions_job_links.get("run_doctests") __lowerCamelCase = available_artifacts["doc_tests_gpu_test_reports"].paths[0] __lowerCamelCase = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = handle_test_results(artifact["stats"]) __lowerCamelCase = failed __lowerCamelCase = success __lowerCamelCase = time_spent[1:-1] + ", " __lowerCamelCase = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): __lowerCamelCase = line.replace("FAILED ", "") __lowerCamelCase = line.split()[0].replace("\n", "") if "::" in line: __lowerCamelCase , __lowerCamelCase = line.split("::") else: __lowerCamelCase , __lowerCamelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCamelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCamelCase = all_failures[test] if test in all_failures else "N/A" __lowerCamelCase = failure break __lowerCamelCase = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
221
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
1
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def a__ ( SCREAMING_SNAKE_CASE : int = 8 ): '''simple docstring''' lowerCAmelCase : List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' i -= len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = i // 3 lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase : Union[str, Any] = ( chars_incl + random(SCREAMING_SNAKE_CASE , quotient + remainder ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : List[Any] = list(SCREAMING_SNAKE_CASE ) shuffle(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int = 8 ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase : Optional[Any] = any(char in ascii_uppercase for char in password ) lowerCAmelCase : List[str] = any(char in ascii_lowercase for char in password ) lowerCAmelCase : Optional[int] = any(char in digits for char in password ) lowerCAmelCase : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def a__ ( ): '''simple docstring''' lowerCAmelCase : int = int(input("Please indicate the max length of your password: " ).strip() ) lowerCAmelCase : int = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(SCREAMING_SNAKE_CASE ) ) print( "Alternative Password generated:" , alternative_password_generator(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
108
"""simple docstring""" import os from pathlib import Path def lowercase (): from torch.utils.cpp_extension import load __lowerCAmelCase = Path(_lowerCAmelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __lowerCAmelCase = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _lowerCAmelCase , with_cuda=_lowerCAmelCase , extra_include_paths=[str(_lowerCAmelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
301
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class a__ ( snake_case__ ): _a : Union[str, Any] = """poolformer""" def __init__( self , _A=3 , _A=1_6 , _A=1_6 , _A=3 , _A=4.0 , _A=[2, 2, 6, 2] , _A=[6_4, 1_2_8, 3_2_0, 5_1_2] , _A=[7, 3, 3, 3] , _A=[4, 2, 2, 2] , _A=[2, 1, 1, 1] , _A=4 , _A=0.0 , _A="gelu" , _A=True , _A=1E-5 , _A=0.02 , **_A , ): """simple docstring""" __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = stride __lowerCAmelCase = padding __lowerCAmelCase = pool_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = mlp_ratio __lowerCAmelCase = depths __lowerCAmelCase = patch_sizes __lowerCAmelCase = strides __lowerCAmelCase = num_encoder_blocks __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_layer_scale __lowerCAmelCase = layer_scale_init_value __lowerCAmelCase = initializer_range super().__init__(**_A ) class a__ ( snake_case__ ): _a : Union[str, Any] = version.parse("""1.11""" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 2E-3
370
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCamelCase__ = logging.getLogger(__name__) class a__ : def __init__( self ): """simple docstring""" __lowerCAmelCase = False def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A ): """simple docstring""" if not self.initialized: __lowerCAmelCase = RagRetriever( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) __lowerCAmelCase = True def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.retriever.index.init_index() def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.retriever._main_retrieve(_A , _A ) return doc_ids, retrieved_doc_embeds class a__ ( snake_case__ ): def __init__( self , _A , _A , _A , _A , _A=None ): """simple docstring""" if index is not None and index.is_initialized() and len(_A ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , index=_A , init_retrieval=_A , ) __lowerCAmelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_A , _A , _A , _A ) for worker in self.retrieval_workers ] ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __lowerCAmelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __lowerCAmelCase , __lowerCAmelCase = ray.get(random_worker.retrieve.remote(_A , _A ) ) else: __lowerCAmelCase , __lowerCAmelCase = self._main_retrieve(_A , _A ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_A ) @classmethod def __SCREAMING_SNAKE_CASE( cls , _A , _A=None , **_A ): """simple docstring""" return super(_A , cls ).get_tokenizers(_A , _A , **_A ) @classmethod def __SCREAMING_SNAKE_CASE( cls , _A , _A , _A=None , **_A ): """simple docstring""" __lowerCAmelCase = kwargs.pop("config" , _A ) or RagConfig.from_pretrained(_A , **_A ) __lowerCAmelCase = RagTokenizer.from_pretrained(_A , config=_A ) __lowerCAmelCase = rag_tokenizer.question_encoder __lowerCAmelCase = rag_tokenizer.generator if indexed_dataset is not None: __lowerCAmelCase = "custom" __lowerCAmelCase = CustomHFIndex(config.retrieval_vector_size , _A ) else: __lowerCAmelCase = cls._build_index(_A ) return cls( _A , question_encoder_tokenizer=_A , generator_tokenizer=_A , retrieval_workers=_A , index=_A , )
102
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A_ ( unittest.TestCase ): def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[int]=3 ,SCREAMING_SNAKE_CASE__ : Dict=3_2 ,SCREAMING_SNAKE_CASE__ : Any=3 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 ,SCREAMING_SNAKE_CASE__ : Dict=[1_0, 2_0, 3_0, 4_0] ,SCREAMING_SNAKE_CASE__ : List[Any]=[1, 1, 2, 1] ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : List[str]=True ,SCREAMING_SNAKE_CASE__ : List[str]="relu" ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3 ,SCREAMING_SNAKE_CASE__ : str=None ,): __lowerCamelCase : str = parent __lowerCamelCase : List[str] = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : int = num_channels __lowerCamelCase : Optional[int] = embeddings_size __lowerCamelCase : List[Any] = hidden_sizes __lowerCamelCase : int = depths __lowerCamelCase : Any = is_training __lowerCamelCase : Any = use_labels __lowerCamelCase : Tuple = hidden_act __lowerCamelCase : List[Any] = num_labels __lowerCamelCase : List[str] = scope __lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values def lowerCAmelCase ( self : str): return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Dict = FlaxRegNetModel(config=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE__) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) ,) def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[int]): __lowerCamelCase : List[str] = self.num_labels __lowerCamelCase : str = FlaxRegNetForImageClassification(config=SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) def lowerCAmelCase ( self : str): __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase : List[Any] = config_and_inputs __lowerCamelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : str = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : List[str] = False def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : List[Any] = FlaxRegNetModelTester(self) __lowerCamelCase : str = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,has_text_modality=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : Union[str, Any]): return def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__) @unittest.skip(reason='RegNet does not use inputs_embeds') def lowerCAmelCase ( self : List[str]): pass @unittest.skip(reason='RegNet does not support input and output embeddings') def lowerCAmelCase ( self : Dict): pass def lowerCAmelCase ( self : List[Any]): __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[Any] = [*signature.parameters.keys()] __lowerCamelCase : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str]): def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase : str = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,expected_num_stages + 1) __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase , __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = model_class(SCREAMING_SNAKE_CASE__) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Optional[int]): return model(pixel_values=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) with self.subTest('JIT Enabled'): __lowerCamelCase : str = model_jitted(**SCREAMING_SNAKE_CASE__).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): __lowerCamelCase : Dict = model_jitted(**SCREAMING_SNAKE_CASE__).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__) ,len(SCREAMING_SNAKE_CASE__)) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): self.assertEqual(jitted_output.shape ,output.shape) def SCREAMING_SNAKE_CASE__ ( ) -> Any: __lowerCamelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class A_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self : Optional[Any]): return AutoImageProcessor.from_pretrained('facebook/regnet-y-040') if is_vision_available() else None @slow def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Union[str, Any] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040') __lowerCamelCase : int = self.default_image_processor __lowerCamelCase : Optional[Any] = prepare_img() __lowerCamelCase : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE__ ,return_tensors='np') __lowerCamelCase : Any = model(**SCREAMING_SNAKE_CASE__) # verify the logits __lowerCamelCase : Optional[Any] = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = jnp.array([-0.4180, -1.5051, -3.4836]) self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4))
73
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a =logging.get_logger(__name__) a ={"""vocab_file""": """spiece.model"""} a ={ """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } a ={ """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } a ="""▁""" class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : List[str]=False ,SCREAMING_SNAKE_CASE__ : Any="[CLS]" ,SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" ,SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" ,SCREAMING_SNAKE_CASE__ : Any="[SEP]" ,SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" ,SCREAMING_SNAKE_CASE__ : Any="[CLS]" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="[MASK]" ,SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None ,**SCREAMING_SNAKE_CASE__ : Dict ,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __lowerCamelCase : Dict = ( AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__ ,normalized=SCREAMING_SNAKE_CASE__) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) else mask_token ) __lowerCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ ,remove_space=SCREAMING_SNAKE_CASE__ ,keep_accents=SCREAMING_SNAKE_CASE__ ,bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,sp_model_kwargs=self.sp_model_kwargs ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Any = do_lower_case __lowerCamelCase : Union[str, Any] = remove_space __lowerCamelCase : Tuple = keep_accents __lowerCamelCase : Dict = vocab_file __lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(SCREAMING_SNAKE_CASE__) @property def lowerCAmelCase ( self : Optional[Any]): return len(self.sp_model) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Union[str, Any]): __lowerCamelCase : str = self.__dict__.copy() __lowerCamelCase : Tuple = None return state def __setstate__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : List[str] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs'): __lowerCamelCase : List[str] = {} __lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any]): if self.remove_space: __lowerCamelCase : Dict = ' '.join(inputs.strip().split()) else: __lowerCamelCase : Optional[Any] = inputs __lowerCamelCase : Tuple = outputs.replace('``' ,'"').replace('\'\'' ,'"') if not self.keep_accents: __lowerCamelCase : List[str] = unicodedata.normalize('NFKD' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = ''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE__)]) if self.do_lower_case: __lowerCamelCase : Optional[Any] = outputs.lower() return outputs def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Tuple = self.preprocess_text(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.sp_model.encode(SCREAMING_SNAKE_CASE__ ,out_type=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE__) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __lowerCamelCase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE__ ,'')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __lowerCamelCase : Union[str, Any] = cur_pieces[1:] else: __lowerCamelCase : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(SCREAMING_SNAKE_CASE__) else: new_pieces.append(SCREAMING_SNAKE_CASE__) return new_pieces def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[str]): return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Any): return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : int = '' __lowerCamelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) + token __lowerCamelCase : List[Any] = True __lowerCamelCase : Any = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) return out_string.strip() def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : Union[str, Any] = [self.sep_token_id] __lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ,SCREAMING_SNAKE_CASE__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ ,token_ids_a=SCREAMING_SNAKE_CASE__ ,already_has_special_tokens=SCREAMING_SNAKE_CASE__) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None): __lowerCamelCase : Tuple = [self.sep_token_id] __lowerCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __lowerCamelCase : List[str] = os.path.join( SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__) elif not os.path.isfile(self.vocab_file): with open(SCREAMING_SNAKE_CASE__ ,'wb') as fi: __lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__) return (out_vocab_file,)
73
1
# Lint as: python3 import itertools import os import re lowercase_ = re.compile(r"([A-Z]+)([A-Z][a-z])") lowercase_ = re.compile(r"([a-z\d])([A-Z])") lowercase_ = re.compile(r"(?<!_)_(?!_)") lowercase_ = re.compile(r"(_{2,})") lowercase_ = r"^\w+(\.\w+)*$" lowercase_ = r"<>:/\|?*" def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: '''simple docstring''' A__ = _uppercase_uppercase_re.sub(R'\1_\2' , SCREAMING_SNAKE_CASE__ ) A__ = _lowercase_uppercase_re.sub(R'\1_\2' , SCREAMING_SNAKE_CASE__ ) return name.lower() def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: '''simple docstring''' A__ = _single_underscore_re.split(SCREAMING_SNAKE_CASE__ ) A__ = [_multiple_underscores_re.split(SCREAMING_SNAKE_CASE__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) if n != '' ) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: '''simple docstring''' if os.path.basename(SCREAMING_SNAKE_CASE__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: '''simple docstring''' if os.path.basename(SCREAMING_SNAKE_CASE__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , SCREAMING_SNAKE_CASE__ ): raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return f'{filename_prefix_for_name(SCREAMING_SNAKE_CASE__ )}-{split}' def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=None ) -> str: '''simple docstring''' A__ = filename_prefix_for_split(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if filetype_suffix: prefix += f'.{filetype_suffix}' A__ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return f'{filepath}*' def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : int=None ) -> Optional[int]: '''simple docstring''' A__ = filename_prefix_for_split(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if shard_lengths: A__ = len(SCREAMING_SNAKE_CASE__ ) A__ = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(SCREAMING_SNAKE_CASE__ )] if filetype_suffix: A__ = [filename + f'.{filetype_suffix}' for filename in filenames] return filenames else: A__ = prefix if filetype_suffix: filename += f'.{filetype_suffix}' return [filename]
282
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = VideoToVideoSDPipeline lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} lowerCamelCase = PipelineTesterMixin.required_optional_params - {'latents'} lowerCamelCase = False # No `output_type`. lowerCamelCase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4),layers_per_block=2,sample_size=3_2,in_channels=4,out_channels=4,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D'),up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D'),cross_attention_dim=3_2,attention_head_dim=4,) A__ = DDIMScheduler( beta_start=0.00_085,beta_end=0.012,beta_schedule='scaled_linear',clip_sample=lowercase_,set_alpha_to_one=lowercase_,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[3_2, 6_4],in_channels=3,out_channels=3,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'],up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'],latent_channels=4,sample_size=1_2_8,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=3_2,intermediate_size=3_7,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1_0_0_0,hidden_act='gelu',projection_dim=5_1_2,) A__ = CLIPTextModel(lowercase_ ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int],lowercase_ : List[Any]=0 )-> Any: '''simple docstring''' A__ = floats_tensor((1, 3, 3, 3_2, 3_2),rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith('mps' ): A__ = torch.manual_seed(lowercase_ ) else: A__ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def snake_case__ ( self : List[Any] )-> List[Any]: '''simple docstring''' A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = VideoToVideoSDPipeline(**lowercase_ ) A__ = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) A__ = self.get_dummy_inputs(lowercase_ ) A__ = 'np' A__ = sd_pipe(**lowercase_ ).frames A__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) A__ = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case__ ( self : Optional[Any] )-> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase_,expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case__ ( self : Any )-> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case__ ( self : int )-> int: '''simple docstring''' pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case__ ( self : List[Any] )-> List[str]: '''simple docstring''' pass def snake_case__ ( self : Optional[int] )-> Optional[Any]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> Dict: '''simple docstring''' A__ = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL',torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6),generator=lowercase_ ) A__ = video.to('cuda' ) A__ = 'Spiderman is surfing' A__ = pipe(lowercase_,video=lowercase_,generator=lowercase_,num_inference_steps=3,output_type='pt' ).frames A__ = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
282
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
'''simple docstring''' import numpy as np def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase_ ( _lowercase ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
'''simple docstring''' snake_case_ : str = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on snake_case_ : Tuple = {value: key for key, value in MORSE_CODE_DICT.items()} def A__ ( UpperCAmelCase_ ): return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A__ ( UpperCAmelCase_ ): return "".join(REVERSE_DICT[char] for char in message.split() ) def A__ ( ): _UpperCamelCase : Optional[int] = 'Morse code here!' print(UpperCAmelCase_ ) _UpperCamelCase : Tuple = encrypt(UpperCAmelCase_ ) print(UpperCAmelCase_ ) _UpperCamelCase : List[str] = decrypt(UpperCAmelCase_ ) print(UpperCAmelCase_ ) if __name__ == "__main__": main()
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : Optional[int] = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
236
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy snake_case_ = logging.getLogger(__name__) def lowerCamelCase__ ( snake_case_ : torch.nn.Module , snake_case_ : BnbQuantizationConfig , snake_case_ : Union[str, os.PathLike] = None , snake_case_ : Optional[Dict[str, Union[int, str, torch.device]]] = None , snake_case_ : Optional[List[str]] = None , snake_case_ : Optional[Dict[Union[int, str], Union[int, str]]] = None , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , ) -> Optional[Any]: __snake_case = bnb_quantization_config.load_in_abit __snake_case = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) __snake_case = [] # custom device map if isinstance(snake_case_ , snake_case_ ) and len(device_map.keys() ) > 1: __snake_case = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __snake_case = get_keys_to_not_convert(snake_case_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case_ ) __snake_case = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __snake_case = [] __snake_case = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case_ ) # compatibility with peft __snake_case = load_in_abit __snake_case = load_in_abit __snake_case = get_parameter_device(snake_case_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) __snake_case = replace_with_bnb_layers(snake_case_ , snake_case_ , modules_to_not_convert=snake_case_ ) # convert param to the right dtype __snake_case = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __snake_case = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) __snake_case = getattr(snake_case_ , snake_case_ , snake_case_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(snake_case_ ): param.to(snake_case_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): __snake_case = replace_with_bnb_layers( snake_case_ , snake_case_ , modules_to_not_convert=snake_case_ ) __snake_case = get_quantized_model_device_map( snake_case_ , snake_case_ , snake_case_ , max_memory=snake_case_ , no_split_module_classes=snake_case_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __snake_case = True __snake_case = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( snake_case_ , snake_case_ , snake_case_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case_ , offload_state_dict=snake_case_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case_ , device_map=snake_case_ , offload_dir=snake_case_ ) def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : Any , snake_case_ : List[Any]=None , snake_case_ : int=None , snake_case_ : Dict=None ) -> Any: if device_map is None: if torch.cuda.is_available(): __snake_case = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(snake_case_ , snake_case_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) __snake_case = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __snake_case = {} __snake_case = special_dtypes __snake_case = no_split_module_classes __snake_case = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __snake_case = get_balanced_memory( snake_case_ , low_zero=(device_map == '''balanced_low_0''') , max_memory=snake_case_ , **snake_case_ , ) __snake_case = max_memory __snake_case = infer_auto_device_map(snake_case_ , **snake_case_ ) if isinstance(snake_case_ , snake_case_ ): # check if don't have any quantized module on the cpu __snake_case = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __snake_case = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def lowerCamelCase__ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None ) -> int: if modules_to_not_convert is None: __snake_case = [] __snake_case , __snake_case = _replace_with_bnb_layers( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def lowerCamelCase__ ( snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : str=None , snake_case_ : int=None , ) -> Any: __snake_case = False for name, module in model.named_children(): if current_key_name is None: __snake_case = [] current_key_name.append(snake_case_ ) if isinstance(snake_case_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __snake_case = '''.'''.join(snake_case_ ) __snake_case = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __snake_case = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __snake_case = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __snake_case = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) __snake_case = module.weight.data if module.bias is not None: __snake_case = module.bias.data bnb_module.requires_grad_(snake_case_ ) setattr(snake_case_ , snake_case_ , snake_case_ ) __snake_case = True if len(list(module.children() ) ) > 0: __snake_case , __snake_case = _replace_with_bnb_layers( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __snake_case = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase__ ( snake_case_ : int ) -> Dict: # Create a copy of the model with init_empty_weights(): __snake_case = deepcopy(snake_case_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __snake_case = find_tied_parameters(snake_case_ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case_ , snake_case_ ): __snake_case = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __snake_case = sum(snake_case_ , [] ) __snake_case = len(snake_case_ ) > 0 # Check if it is a base model __snake_case = False if hasattr(snake_case_ , '''base_model_prefix''' ): __snake_case = not hasattr(snake_case_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __snake_case = list(model.named_children() ) __snake_case = [list_modules[-1][0]] # add last module together with tied weights __snake_case = set(snake_case_ ) - set(snake_case_ ) __snake_case = list(set(snake_case_ ) ) + list(snake_case_ ) # remove ".weight" from the keys __snake_case = ['''.weight''', '''.bias'''] __snake_case = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __snake_case = name.replace(snake_case_ , '''''' ) filtered_module_names.append(snake_case_ ) return filtered_module_names def lowerCamelCase__ ( snake_case_ : str ) -> str: for m in model.modules(): if isinstance(snake_case_ , bnb.nn.Linearabit ): return True return False def lowerCamelCase__ ( snake_case_ : nn.Module ) -> Dict: return next(parameter.parameters() ).device def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Dict ) -> List[str]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case_ , snake_case_ , 0 , dtype=snake_case_ , value=snake_case_ ) __snake_case = param_name __snake_case = model if "." in tensor_name: __snake_case = tensor_name.split('''.''' ) for split in splits[:-1]: __snake_case = getattr(snake_case_ , snake_case_ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) __snake_case = new_module __snake_case = splits[-1] # offload weights __snake_case = False offload_weight(module._parameters[tensor_name] , snake_case_ , snake_case_ , index=snake_case_ ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , snake_case_ , index=snake_case_ , ) else: offload_weight(snake_case_ , snake_case_ , snake_case_ , index=snake_case_ ) offload_weight(snake_case_ , param_name.replace('''weight''' , '''SCB''' ) , snake_case_ , index=snake_case_ ) set_module_tensor_to_device(snake_case_ , snake_case_ , '''meta''' , dtype=snake_case_ , value=torch.empty(*param.size() ) )
24
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] ) -> list[int]: # This function is recursive __snake_case = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case = array[0] __snake_case = False __snake_case = 1 __snake_case = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case = True __snake_case = [element for element in array[i:] if element >= array[i]] __snake_case = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): __snake_case = temp_array else: i += 1 __snake_case = [element for element in array[1:] if element >= pivot] __snake_case = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
24
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _UpperCAmelCase ( ctypes.Structure ): """simple docstring""" snake_case = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def __lowercase ( ) -> Any: '''simple docstring''' if os.name == "nt": _A = CursorInfo() _A = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowerCamelCase , ctypes.byref(_lowerCamelCase ) ) _A = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowerCamelCase , ctypes.byref(_lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' if os.name == "nt": _A = CursorInfo() _A = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowerCamelCase , ctypes.byref(_lowerCamelCase ) ) _A = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowerCamelCase , ctypes.byref(_lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def __lowercase ( ) -> List[str]: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
370
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = ['''vqvae'''] def __init__( self : List[str] , __UpperCAmelCase : AutoencoderKL , __UpperCAmelCase : UNetaDConditionModel , __UpperCAmelCase : Mel , __UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , mel=__UpperCAmelCase , vqvae=__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return 50 if isinstance(self.scheduler , __UpperCAmelCase ) else 1000 @torch.no_grad() def __call__( self : str , __UpperCAmelCase : int = 1 , __UpperCAmelCase : str = None , __UpperCAmelCase : np.ndarray = None , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = None , __UpperCAmelCase : torch.Generator = None , __UpperCAmelCase : float = 0 , __UpperCAmelCase : float = 0 , __UpperCAmelCase : torch.Generator = None , __UpperCAmelCase : float = 0 , __UpperCAmelCase : torch.Tensor = None , __UpperCAmelCase : torch.Tensor = None , __UpperCAmelCase : Dict=True , ): '''simple docstring''' _A = steps or self.get_default_steps() self.scheduler.set_timesteps(__UpperCAmelCase ) _A = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _A = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _A = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__UpperCAmelCase , device=self.device , ) _A = noise _A = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__UpperCAmelCase , __UpperCAmelCase ) _A = self.mel.audio_slice_to_image(__UpperCAmelCase ) _A = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) _A = (input_image / 255) * 2 - 1 _A = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _A = self.vqvae.encode(torch.unsqueeze(__UpperCAmelCase , 0 ) ).latent_dist.sample( generator=__UpperCAmelCase )[0] _A = self.vqvae.config.scaling_factor * input_images if start_step > 0: _A = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) _A = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _A = int(mask_start_secs * pixels_per_second ) _A = int(mask_end_secs * pixels_per_second ) _A = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __UpperCAmelCase ): _A = self.unet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )["sample"] else: _A = self.unet(__UpperCAmelCase , __UpperCAmelCase )["sample"] if isinstance(self.scheduler , __UpperCAmelCase ): _A = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , )["prev_sample"] else: _A = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase , )["prev_sample"] if mask is not None: if mask_start > 0: _A = mask[:, step, :, :mask_start] if mask_end > 0: _A = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _A = 1 / self.vqvae.config.scaling_factor * images _A = self.vqvae.decode(__UpperCAmelCase )["sample"] _A = (images / 2 + 0.5).clamp(0 , 1 ) _A = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _A = (images * 255).round().astype("uint8" ) _A = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__UpperCAmelCase , mode="RGB" ).convert("L" ) for _ in images) ) _A = [self.mel.image_to_audio(__UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__UpperCAmelCase ) ) @torch.no_grad() def lowerCAmelCase ( self : str , __UpperCAmelCase : List[Image.Image] , __UpperCAmelCase : int = 50 ): '''simple docstring''' assert isinstance(self.scheduler , __UpperCAmelCase ) self.scheduler.set_timesteps(__UpperCAmelCase ) _A = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) _A = (sample / 255) * 2 - 1 _A = torch.Tensor(__UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _A = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _A = self.scheduler.alphas_cumprod[t] _A = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _A = 1 - alpha_prod_t _A = self.unet(__UpperCAmelCase , __UpperCAmelCase )["sample"] _A = (1 - alpha_prod_t_prev) ** 0.5 * model_output _A = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _A = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCAmelCase ( __UpperCAmelCase : torch.Tensor , __UpperCAmelCase : torch.Tensor , __UpperCAmelCase : float ): '''simple docstring''' _A = acos(torch.dot(torch.flatten(__UpperCAmelCase ) , torch.flatten(__UpperCAmelCase ) ) / torch.norm(__UpperCAmelCase ) / torch.norm(__UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(__UpperCAmelCase )
174
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : str = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class __a (__snake_case ): __a : Optional[int] = "fnet" def __init__( self : Dict , __magic_name__ : Optional[int]=3_20_00 , __magic_name__ : Dict=7_68 , __magic_name__ : Any=12 , __magic_name__ : Union[str, Any]=30_72 , __magic_name__ : List[Any]="gelu_new" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : int=5_12 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : str=0.0_2 , __magic_name__ : Any=1E-12 , __magic_name__ : str=False , __magic_name__ : List[str]=5_12 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=1 , __magic_name__ : Dict=2 , **__magic_name__ : int , ) -> int: """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) UpperCAmelCase_ : Optional[int] = vocab_size UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Any = type_vocab_size UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : str = use_tpu_fourier_optimizations UpperCAmelCase_ : Union[str, Any] = tpu_short_seq_length
125
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( _snake_case : Any ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] __snake_case : Dict = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __snake_case : Tuple = [3, 3, 3, 3] __snake_case : Dict = [5, 5, 5, 5] elif "fl4" in model_name: __snake_case : Any = [4, 4, 4, 4] __snake_case : List[str] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __snake_case : Optional[int] = [3, 3, 3, 3] if "lrf" in model_name: __snake_case : Any = [3, 3, 3, 3] else: __snake_case : int = [2, 2, 2, 2] if "tiny" in model_name: __snake_case : str = 96 elif "small" in model_name: __snake_case : Optional[int] = 96 elif "base" in model_name: __snake_case : Any = 128 elif "large" in model_name: __snake_case : Optional[Any] = 192 elif "xlarge" in model_name: __snake_case : List[Any] = 256 elif "huge" in model_name: __snake_case : Union[str, Any] = 352 # set label information __snake_case : Union[str, Any] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __snake_case : int = '''imagenet-22k-id2label.json''' else: __snake_case : Optional[Any] = '''imagenet-1k-id2label.json''' __snake_case : int = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) __snake_case : Dict = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} __snake_case : Optional[Any] = FocalNetConfig( embed_dim=_snake_case , depths=_snake_case , focal_levels=_snake_case , focal_windows=_snake_case , use_conv_embed=_snake_case , idalabel=_snake_case , labelaid=_snake_case , use_post_layernorm=_snake_case , use_layerscale=_snake_case , ) return config def lowercase ( _snake_case : Dict ) ->List[Any]: """simple docstring""" if "patch_embed.proj" in name: __snake_case : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __snake_case : Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __snake_case : List[Any] = '''encoder.''' + name if "encoder.layers" in name: __snake_case : Optional[Any] = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: __snake_case : Any = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: __snake_case : List[str] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __snake_case : Any = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __snake_case : List[Any] = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __snake_case : int = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": __snake_case : Optional[Any] = '''layernorm.weight''' if name == "norm.bias": __snake_case : List[str] = '''layernorm.bias''' if "head" in name: __snake_case : Union[str, Any] = name.replace('''head''' , '''classifier''' ) else: __snake_case : int = '''focalnet.''' + name return name def lowercase ( _snake_case : Tuple , _snake_case : Dict , _snake_case : List[str]=False ) ->Any: """simple docstring""" __snake_case : List[Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __snake_case : int = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _snake_case ) __snake_case : int = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): __snake_case : str = state_dict.pop(_snake_case ) __snake_case : Tuple = val __snake_case : Any = get_focalnet_config(_snake_case ) __snake_case : List[Any] = FocalNetForImageClassification(_snake_case ) model.eval() # load state dict model.load_state_dict(_snake_case ) # verify conversion __snake_case : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case : Any = BitImageProcessor( do_resize=_snake_case , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_snake_case , crop_size=224 , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , ) __snake_case : List[str] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) __snake_case : int = processor(images=_snake_case , return_tensors='''pt''' ) __snake_case : Optional[int] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case : Optional[Any] = image_transforms(_snake_case ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _snake_case , atol=1e-4 ) __snake_case : Tuple = model(**_snake_case ) __snake_case : str = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __snake_case : Any = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __snake_case : int = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __snake_case : Optional[int] = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __snake_case : List[Any] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __snake_case : Union[str, Any] = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __snake_case : List[str] = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
102
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Union[str, Any] = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE_ ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) # Let's go lowerCAmelCase__ : Optional[int] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , 'func' ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
307
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
1
def a_ ( __lowercase : int , __lowercase : int ) -> int: return x if y == 0 else greatest_common_divisor(__lowercase , x % y ) def a_ ( __lowercase : int , __lowercase : int ) -> int: return (x * y) // greatest_common_divisor(__lowercase , __lowercase ) def a_ ( __lowercase : int = 20 ) -> int: _snake_case = 1 for i in range(1 , n + 1 ): _snake_case = lcm(__lowercase , __lowercase ) return g if __name__ == "__main__": print(F'{solution() = }')
282
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class SCREAMING_SNAKE_CASE__ : '''simple docstring''' @property def A ( self : List[str] ): '''simple docstring''' return self.get_dummy_input() @property def A ( self : Any ): '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def A ( self : Union[str, Any] , lowercase : Any=True , lowercase : List[Any]=False , lowercase : List[str]=False , lowercase : Dict=False , ): '''simple docstring''' _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowercase ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowercase , generator=lowercase , device=lowercase ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowercase , device=lowercase ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowercase , generator=lowercase , device=lowercase ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowercase ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowercase , device=lowercase ) return dummy_input def A ( self : Any ): '''simple docstring''' _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def A ( self : Dict , lowercase : Optional[int] ): '''simple docstring''' _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowercase ) unet_block.to(lowercase ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowercase ) if isinstance(lowercase , lowercase ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowercase ).to(lowercase ) assert torch_all_close(output_slice.flatten() , lowercase , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def A ( self : Dict ): '''simple docstring''' _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowercase ) model.to(lowercase ) model.train() _snake_case = model(**lowercase ) if isinstance(lowercase , lowercase ): _snake_case = output[0] _snake_case = torch.device(lowercase ) _snake_case = randn_tensor(output.shape , device=lowercase ) _snake_case = torch.nn.functional.mse_loss(lowercase , lowercase ) loss.backward()
282
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) __A = logging.getLogger(__name__) __A = {'facebook/bart-base': BartForConditionalGeneration} __A = {'facebook/bart-base': BartTokenizer} def lowerCAmelCase_ ( ) -> int: """simple docstring""" lowerCamelCase__: Dict =argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=lowerCamelCase_ , default=lowerCamelCase_ , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=lowerCamelCase_ , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=lowerCamelCase_ , default=lowerCamelCase_ , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=lowerCamelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowerCamelCase_ , ) parser.add_argument( "--config_name" , type=lowerCamelCase_ , default=lowerCamelCase_ , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=lowerCamelCase_ , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=lowerCamelCase_ , default=lowerCamelCase_ , help="Where to store the final ONNX file." ) lowerCamelCase__: List[Any] =parser.parse_args() return args def lowerCAmelCase_ ( __a , __a="cpu" ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =model_dict[model_name].from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) lowerCamelCase__: Dict =tokenizer_dict[model_name].from_pretrained(lowerCamelCase_ ) if model_name in ["facebook/bart-base"]: lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[int] =None lowerCamelCase__: int =0 return huggingface_model, tokenizer def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Any: """simple docstring""" model.eval() lowerCamelCase__: Tuple =None lowerCamelCase__: Optional[int] =torch.jit.script(BARTBeamSearchGenerator(lowerCamelCase_ ) ) with torch.no_grad(): lowerCamelCase__: Any ='''My friends are cool but they eat too many carbs.''' lowerCamelCase__: List[Any] =tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device ) lowerCamelCase__: Tuple =model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=lowerCamelCase_ , max_length=lowerCamelCase_ , early_stopping=lowerCamelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowerCamelCase_ , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , lowerCamelCase_ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=lowerCamelCase_ , ) logger.info("Model exported to {}".format(lowerCamelCase_ ) ) lowerCamelCase__: int =remove_dup_initializers(os.path.abspath(lowerCamelCase_ ) ) logger.info("Deduplicated and optimized model written to {}".format(lowerCamelCase_ ) ) lowerCamelCase__: List[str] =onnxruntime.InferenceSession(lowerCamelCase_ ) lowerCamelCase__: Dict =ort_sess.run( lowerCamelCase_ , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(lowerCamelCase_ ), "max_length": np.array(lowerCamelCase_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =parse_args() lowerCamelCase__: Union[str, Any] =5 lowerCamelCase__: int =4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowerCamelCase__: Any =torch.device(args.device ) lowerCamelCase__: Dict =load_model_tokenizer(args.model_name_or_path , lowerCamelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(lowerCamelCase_ ) if args.max_length: lowerCamelCase__: int =args.max_length if args.num_beams: lowerCamelCase__: Optional[Any] =args.num_beams if args.output_file_path: lowerCamelCase__: Dict =args.output_file_path else: lowerCamelCase__: Union[str, Any] ='''BART.onnx''' logger.info("Exporting model to ONNX" ) export_and_validate_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
356
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") __A = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowercase_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "The input training data file (a text file)."} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' if self.train_file is not None: lowerCamelCase__: List[Any] =self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase__: List[Any] =self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 lowercase_ = True lowercase_ = None lowercase_ = None def __call__(self : Any , UpperCAmelCase_ : Dict) ->List[Any]: '''simple docstring''' lowerCamelCase__: str ="label" if "label" in features[0].keys() else "labels" lowerCamelCase__: Union[str, Any] =[feature.pop(UpperCAmelCase_) for feature in features] lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: int =len(features[0]["input_ids"]) lowerCamelCase__: List[Any] =[ [{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase_)] for feature in features ] lowerCamelCase__: Dict =list(chain(*UpperCAmelCase_)) lowerCamelCase__: Tuple =self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten lowerCamelCase__: Optional[Any] ={k: v.view(UpperCAmelCase_ , UpperCAmelCase_ , -1) for k, v in batch.items()} # Add back labels lowerCamelCase__: Optional[Any] =torch.tensor(UpperCAmelCase_ , dtype=torch.intaa) return batch def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__: str =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[str] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , __a , __a ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__: Dict =training_args.get_process_log_level() logger.setLevel(__a ) datasets.utils.logging.set_verbosity(__a ) transformers.utils.logging.set_verbosity(__a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase__: List[str] =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__: Any =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase__: List[Any] ={} if data_args.train_file is not None: lowerCamelCase__: List[str] =data_args.train_file if data_args.validation_file is not None: lowerCamelCase__: Optional[Any] =data_args.validation_file lowerCamelCase__: List[Any] =data_args.train_file.split("." )[-1] lowerCamelCase__: int =load_dataset( __a , data_files=__a , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase__: List[Any] =load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__: int =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__: List[str] =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__: Dict =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase__: Optional[int] =[F"""ending{i}""" for i in range(4 )] lowerCamelCase__: List[str] ="sent1" lowerCamelCase__: List[str] ="sent2" if data_args.max_seq_length is None: lowerCamelCase__: Optional[int] =tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) lowerCamelCase__: Optional[int] =1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase__: Any =min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__a ): lowerCamelCase__: Tuple =[[context] * 4 for context in examples[context_name]] lowerCamelCase__: List[Any] =examples[question_header_name] lowerCamelCase__: Dict =[ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__a ) ] # Flatten out lowerCamelCase__: str =list(chain(*__a ) ) lowerCamelCase__: str =list(chain(*__a ) ) # Tokenize lowerCamelCase__: List[Any] =tokenizer( __a , __a , truncation=__a , max_length=__a , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__a ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) lowerCamelCase__: List[Any] =raw_datasets["train"] if data_args.max_train_samples is not None: lowerCamelCase__: Dict =min(len(__a ) , data_args.max_train_samples ) lowerCamelCase__: Any =train_dataset.select(range(__a ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCamelCase__: Optional[Any] =train_dataset.map( __a , batched=__a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) lowerCamelCase__: str =raw_datasets["validation"] if data_args.max_eval_samples is not None: lowerCamelCase__: Any =min(len(__a ) , data_args.max_eval_samples ) lowerCamelCase__: List[Any] =eval_dataset.select(range(__a ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCamelCase__: Tuple =eval_dataset.map( __a , batched=__a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase__: Any =( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__a , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__a ): lowerCamelCase__ , lowerCamelCase__: List[str] =eval_predictions lowerCamelCase__: Optional[int] =np.argmax(__a , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase__: Dict =Trainer( model=__a , args=__a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__a , data_collator=__a , compute_metrics=__a , ) # Training if training_args.do_train: lowerCamelCase__: List[Any] =None if training_args.resume_from_checkpoint is not None: lowerCamelCase__: int =training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__: str =last_checkpoint lowerCamelCase__: Any =trainer.train(resume_from_checkpoint=__a ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase__: int =train_result.metrics lowerCamelCase__: Optional[int] =( data_args.max_train_samples if data_args.max_train_samples is not None else len(__a ) ) lowerCamelCase__: Optional[int] =min(__a , len(__a ) ) trainer.log_metrics("train" , __a ) trainer.save_metrics("train" , __a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase__: int =trainer.evaluate() lowerCamelCase__: Dict =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__a ) lowerCamelCase__: Tuple =min(__a , len(__a ) ) trainer.log_metrics("eval" , __a ) trainer.save_metrics("eval" , __a ) lowerCamelCase__: str ={ "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**__a ) else: trainer.create_model_card(**__a ) def lowerCAmelCase_ ( __a ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
273
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None ): if start is None: UpperCAmelCase : Any = 0 if end is None: UpperCAmelCase : Any = len(UpperCAmelCase_ ) - 1 if start >= end: return UpperCAmelCase : Optional[Any] = (start + end) // 2 slowsort(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) slowsort(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) if sequence[end] < sequence[mid]: UpperCAmelCase : List[str] = sequence[mid], sequence[end] slowsort(UpperCAmelCase_ , UpperCAmelCase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
151
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : List[str] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
236
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _snake_case ( _A , unittest.TestCase): UpperCamelCase__ : Any ="""hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def A__ ( self : str, __lowercase : int=0 ): lowercase__ = floats_tensor((1, 3, 128, 128), rng=random.Random(__SCREAMING_SNAKE_CASE ) ) lowercase__ = np.random.RandomState(__SCREAMING_SNAKE_CASE ) lowercase__ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def A__ ( self : Any ): lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**__SCREAMING_SNAKE_CASE ).images lowercase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def A__ ( self : Union[str, Any] ): lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) lowercase__ = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**__SCREAMING_SNAKE_CASE ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A__ ( self : Union[str, Any] ): lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) lowercase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) # warmup pass to apply optimizations lowercase__ = pipe(**self.get_dummy_inputs() ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**__SCREAMING_SNAKE_CASE ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A__ ( self : Tuple ): lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) lowercase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**__SCREAMING_SNAKE_CASE ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A__ ( self : List[str] ): lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) lowercase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**__SCREAMING_SNAKE_CASE ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A__ ( self : str ): lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider" ) lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**__SCREAMING_SNAKE_CASE ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase__ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _snake_case ( unittest.TestCase): @property def A__ ( self : Any ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A__ ( self : Any ): lowercase__ = ort.SessionOptions() lowercase__ = False return options def A__ ( self : Dict ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase__ = init_image.resize((768, 512) ) # using the PNDM scheduler by default lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", safety_checker=__SCREAMING_SNAKE_CASE, feature_extractor=__SCREAMING_SNAKE_CASE, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase__ = "A fantasy landscape, trending on artstation" lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=__SCREAMING_SNAKE_CASE, image=__SCREAMING_SNAKE_CASE, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=__SCREAMING_SNAKE_CASE, output_type="np", ) lowercase__ = output.images lowercase__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowercase__ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def A__ ( self : str ): lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase__ = init_image.resize((768, 512) ) lowercase__ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", revision="onnx" ) lowercase__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="onnx", scheduler=__SCREAMING_SNAKE_CASE, safety_checker=__SCREAMING_SNAKE_CASE, feature_extractor=__SCREAMING_SNAKE_CASE, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowercase__ = "A fantasy landscape, trending on artstation" lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=__SCREAMING_SNAKE_CASE, image=__SCREAMING_SNAKE_CASE, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=__SCREAMING_SNAKE_CASE, output_type="np", ) lowercase__ = output.images lowercase__ = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowercase__ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
363
import argparse import json import subprocess def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = [] lowercase__ = ( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) lowercase__ = subprocess.run(SCREAMING_SNAKE_CASE_ , shell=SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode("utf-8" ) lowercase__ = json.loads(SCREAMING_SNAKE_CASE_ ) lowercase__ = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE_ ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowercase__ = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return values.split("," ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
224
0
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _a = '.' if __name__ == "__main__": _a = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') _a = [] _a = [] with open(doctest_file_path) as fp: for line in fp: _a = line.strip() _a = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _a = '\n'.join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
61
'''simple docstring''' import argparse import os import re _UpperCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. _UpperCAmelCase : Any = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _UpperCAmelCase : List[Any] = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _UpperCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _UpperCAmelCase : Tuple = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _UpperCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def __magic_name__( lowerCamelCase): __lowerCAmelCase = _re_indent.search(lowerCamelCase) return "" if search is None else search.groups()[0] def __magic_name__( lowerCamelCase, lowerCamelCase="", lowerCamelCase=None, lowerCamelCase=None): __lowerCAmelCase = 0 __lowerCAmelCase = code.split('''\n''') if start_prompt is not None: while not lines[index].startswith(lowerCamelCase): index += 1 __lowerCAmelCase = ['''\n'''.join(lines[:index])] else: __lowerCAmelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowerCAmelCase = [lines[index]] index += 1 while index < len(lowerCamelCase) and (end_prompt is None or not lines[index].startswith(lowerCamelCase)): if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level: if len(lowerCamelCase) > 0 and get_indent(current_block[-1]).startswith(indent_level + ''' '''): current_block.append(lines[index]) blocks.append('''\n'''.join(lowerCamelCase)) if index < len(lowerCamelCase) - 1: __lowerCAmelCase = [lines[index + 1]] index += 1 else: __lowerCAmelCase = [] else: blocks.append('''\n'''.join(lowerCamelCase)) __lowerCAmelCase = [lines[index]] else: current_block.append(lines[index]) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase) > 0: blocks.append('''\n'''.join(lowerCamelCase)) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase): blocks.append('''\n'''.join(lines[index:])) return blocks def __magic_name__( lowerCamelCase): def _inner(lowerCamelCase): return key(lowerCamelCase).lower().replace('''_''', '''''') return _inner def __magic_name__( lowerCamelCase, lowerCamelCase=None): # If no key is provided, we use a noop. def noop(lowerCamelCase): return x if key is None: __lowerCAmelCase = noop # Constants are all uppercase, they go first. __lowerCAmelCase = [obj for obj in objects if key(lowerCamelCase).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowerCAmelCase = [obj for obj in objects if key(lowerCamelCase)[0].isupper() and not key(lowerCamelCase).isupper()] # Functions begin with a lowercase, they go last. __lowerCAmelCase = [obj for obj in objects if not key(lowerCamelCase)[0].isupper()] __lowerCAmelCase = ignore_underscore(lowerCamelCase) return sorted(lowerCamelCase, key=lowerCamelCase) + sorted(lowerCamelCase, key=lowerCamelCase) + sorted(lowerCamelCase, key=lowerCamelCase) def __magic_name__( lowerCamelCase): # This inner function sort imports between [ ]. def _replace(lowerCamelCase): __lowerCAmelCase = match.groups()[0] if "," not in imports: return F"""[{imports}]""" __lowerCAmelCase = [part.strip().replace('''"''', '''''') for part in imports.split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: __lowerCAmelCase = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase)]) + "]" __lowerCAmelCase = import_statement.split('''\n''') if len(lowerCamelCase) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowerCAmelCase = 2 if lines[1].strip() == '''[''' else 1 __lowerCAmelCase = [(i, _re_strip_line.search(lowerCamelCase).groups()[0]) for i, line in enumerate(lines[idx:-idx])] __lowerCAmelCase = sort_objects(lowerCamelCase, key=lambda lowerCamelCase: x[1]) __lowerCAmelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:]) elif len(lowerCamelCase) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1]) is not None: __lowerCAmelCase = _re_bracket_content.sub(_replace, lines[1]) else: __lowerCAmelCase = [part.strip().replace('''"''', '''''') for part in lines[1].split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: __lowerCAmelCase = keys[:-1] __lowerCAmelCase = get_indent(lines[1]) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(lowerCamelCase)]) return "\n".join(lowerCamelCase) else: # Finally we have to deal with imports fitting on one line __lowerCAmelCase = _re_bracket_content.sub(_replace, lowerCamelCase) return import_statement def __magic_name__( lowerCamelCase, lowerCamelCase=True): with open(lowerCamelCase, encoding='''utf-8''') as f: __lowerCAmelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowerCAmelCase = split_code_in_indented_blocks( lowerCamelCase, start_prompt='''_import_structure = {''', end_prompt='''if TYPE_CHECKING:''') # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1, len(lowerCamelCase) - 1): # Check if the block contains some `_import_structure`s thingy to sort. __lowerCAmelCase = main_blocks[block_idx] __lowerCAmelCase = block.split('''\n''') # Get to the start of the imports. __lowerCAmelCase = 0 while line_idx < len(lowerCamelCase) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowerCAmelCase = len(lowerCamelCase) else: line_idx += 1 if line_idx >= len(lowerCamelCase): continue # Ignore beginning and last line: they don't contain anything. __lowerCAmelCase = '''\n'''.join(block_lines[line_idx:-1]) __lowerCAmelCase = get_indent(block_lines[1]) # Slit the internal block into blocks of indent level 1. __lowerCAmelCase = split_code_in_indented_blocks(lowerCamelCase, indent_level=lowerCamelCase) # We have two categories of import key: list or _import_structure[key].append/extend __lowerCAmelCase = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowerCAmelCase = [(pattern.search(lowerCamelCase).groups()[0] if pattern.search(lowerCamelCase) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowerCAmelCase = [(i, key) for i, key in enumerate(lowerCamelCase) if key is not None] __lowerCAmelCase = [x[0] for x in sorted(lowerCamelCase, key=lambda lowerCamelCase: x[1])] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowerCAmelCase = 0 __lowerCAmelCase = [] for i in range(len(lowerCamelCase)): if keys[i] is None: reorderded_blocks.append(internal_blocks[i]) else: __lowerCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]]) reorderded_blocks.append(lowerCamelCase) count += 1 # And we put our main block back together with its first and last line. __lowerCAmelCase = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]]) if code != "\n".join(lowerCamelCase): if check_only: return True else: print(F"""Overwriting {file}.""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write('''\n'''.join(lowerCamelCase)) def __magic_name__( lowerCamelCase=True): __lowerCAmelCase = [] for root, _, files in os.walk(lowerCamelCase): if "__init__.py" in files: __lowerCAmelCase = sort_imports(os.path.join(lowerCamelCase, '''__init__.py'''), check_only=lowerCamelCase) if result: __lowerCAmelCase = [os.path.join(lowerCamelCase, '''__init__.py''')] if len(lowerCamelCase) > 0: raise ValueError(F"""Would overwrite {len(lowerCamelCase)} files, run `make style`.""") if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _UpperCAmelCase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
174
0
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowercase__ : List[Any] = parse(importlib.metadata.version('torch')) def a__ ( lowercase : Union[str, Version], lowercase : str, lowercase : str ) -> List[str]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) _UpperCamelCase = STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase, lowercase ): _UpperCamelCase = parse(importlib.metadata.version(lowercase ) ) return operation(lowercase, parse(lowercase ) ) def a__ ( lowercase : str, lowercase : str ) -> List[Any]: """simple docstring""" return compare_versions(lowercase, lowercase, lowercase )
287
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : List[Any] = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Union[str, Any] = 'biogpt' def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=42384 , lowerCAmelCase__ : Optional[int]=1024 , lowerCAmelCase__ : List[str]=24 , lowerCAmelCase__ : List[Any]=16 , lowerCAmelCase__ : Optional[int]=4096 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Tuple=1e-1_2 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Optional[Any]=2 , **lowerCAmelCase__ : Optional[Any] , ) -> Tuple: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = scale_embedding _UpperCamelCase = use_cache _UpperCamelCase = layerdrop _UpperCamelCase = activation_dropout super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
287
1
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __UpperCamelCase : str = TypeVar("""T""") class __SCREAMING_SNAKE_CASE( Generic[T] ): def __init__( self: str , UpperCamelCase: bool = True ) -> None: snake_case__ = {} # dictionary of lists snake_case__ = directed def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: T , UpperCamelCase: T ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCamelCase ) self.adj_list[destination_vertex].append(UpperCamelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCamelCase ) snake_case__ = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(UpperCamelCase ) snake_case__ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: snake_case__ = [destination_vertex] snake_case__ = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCamelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(UpperCamelCase ) snake_case__ = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: snake_case__ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: snake_case__ = [destination_vertex] snake_case__ = [] return self def __repr__( self: List[Any] ) -> str: return pformat(self.adj_list )
307
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" lowercase__ = SpeechTaTokenizer lowercase__ = False lowercase__ = True def __lowerCAmelCase ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : Any = SpeechTaTokenizer(UpperCamelCase_ ) lowerCAmelCase__ : int = AddedToken('''<mask>''' ,lstrip=UpperCamelCase_ ,rstrip=UpperCamelCase_ ) lowerCAmelCase__ : str = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : str ): lowerCAmelCase__ : Optional[Any] = '''this is a test''' lowerCAmelCase__ : Optional[int] = '''this is a test''' return input_text, output_text def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : List[Any] ,lowercase_ : List[str]=False ,lowercase_ : Any=2_0 ,lowercase_ : Tuple=5 ): lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = self.get_input_output_texts(UpperCamelCase_ ) lowerCAmelCase__ : Any = tokenizer.encode(UpperCamelCase_ ,add_special_tokens=UpperCamelCase_ ) lowerCAmelCase__ : Optional[Any] = tokenizer.decode(UpperCamelCase_ ,clean_up_tokenization_spaces=UpperCamelCase_ ) return text, ids def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : int = '''<pad>''' lowerCAmelCase__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) ,UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) ,UpperCamelCase_ ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(vocab_keys[-4] ,'''œ''' ) self.assertEqual(vocab_keys[-2] ,'''<mask>''' ) self.assertEqual(vocab_keys[-1] ,'''<ctc_blank>''' ) self.assertEqual(len(UpperCamelCase_ ) ,8_1 ) def __lowerCAmelCase ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size ,7_9 ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : List[str] = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCAmelCase__ : Optional[Any] = tokenizer.vocab_size lowerCAmelCase__ : Optional[int] = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase__ : Tuple = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] lowerCAmelCase__ : Dict = tokenizer.add_tokens(UpperCamelCase_ ) lowerCAmelCase__ : Union[str, Any] = tokenizer.vocab_size lowerCAmelCase__ : List[str] = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ ,0 ) self.assertEqual(UpperCamelCase_ ,UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ ,len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ ,all_size + len(UpperCamelCase_ ) ) lowerCAmelCase__ : Union[str, Any] = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' ,add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) lowerCAmelCase__ : Optional[Any] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} lowerCAmelCase__ : Dict = tokenizer.add_special_tokens(UpperCamelCase_ ) lowerCAmelCase__ : List[str] = tokenizer.vocab_size lowerCAmelCase__ : List[Any] = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ ,0 ) self.assertEqual(UpperCamelCase_ ,UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ ,len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ ,all_size_a + len(UpperCamelCase_ ) ) lowerCAmelCase__ : List[str] = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' ,add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def __lowerCAmelCase ( self : Union[str, Any] ): pass def __lowerCAmelCase ( self : str ): pass def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Dict = self.get_tokenizer() lowerCAmelCase__ : str = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(UpperCamelCase_ ,[SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) ,[4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] ,) lowerCAmelCase__ : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase_ ,[SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) lowerCAmelCase__ : str = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) # fmt: off self.assertListEqual(UpperCamelCase_ ,[4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on lowerCAmelCase__ : List[str] = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ ,[SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def __lowerCAmelCase ( self : str ): # Use custom sequence because this tokenizer does not handle numbers. lowerCAmelCase__ : Any = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off lowerCAmelCase__ : str = { '''input_ids''': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ ,model_name='''microsoft/speecht5_asr''' ,revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' ,sequences=UpperCamelCase_ ,)
357
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
74
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class snake_case_ ( __A ): __A : Union[str, Any] = "visual_bert" def __init__( self : Any , lowercase_ : Any=3_05_22 , lowercase_ : List[Any]=7_68 , lowercase_ : List[str]=5_12 , lowercase_ : Dict=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : List[Any]=30_72 , lowercase_ : Dict="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : int=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : int=2 , lowercase_ : List[Any]=0.02 , lowercase_ : List[Any]=1E-12 , lowercase_ : str=False , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=1 , lowercase_ : List[str]=0 , lowercase_ : str=2 , **lowercase_ : Dict , ) -> List[str]: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = max_position_embeddings lowercase__ : List[str] = hidden_size lowercase__ : str = visual_embedding_dim lowercase__ : List[Any] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Any = hidden_act lowercase__ : int = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Dict = initializer_range lowercase__ : str = type_vocab_size lowercase__ : Any = layer_norm_eps lowercase__ : Tuple = bypass_transformer lowercase__ : Tuple = special_visual_initialize
87
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : int = logging.get_logger(__name__) __A : Tuple = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A_ (a_ ): UpperCAmelCase__ = '''big_bird''' def __init__( self , _A=5_0_3_5_8 , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu_new" , _A=0.1 , _A=0.1 , _A=4_0_9_6 , _A=2 , _A=0.02 , _A=1E-12 , _A=True , _A=0 , _A=1 , _A=2 , _A=6_6 , _A="block_sparse" , _A=True , _A=False , _A=6_4 , _A=3 , _A=None , **_A , ): '''simple docstring''' super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , sep_token_id=_A , **_A , ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = use_cache UpperCAmelCase = rescale_embeddings UpperCAmelCase = attention_type UpperCAmelCase = use_bias UpperCAmelCase = block_size UpperCAmelCase = num_random_blocks UpperCAmelCase = classifier_dropout class A_ (a_ ): @property def _lowercase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
273
0
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _snake_case ( lowerCamelCase__ : Union[str, Any] ) -> int: return 1.0 / (1.0 + np.exp(-_outputs )) def _snake_case ( lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: lowerCamelCase_ : Any =np.max(_outputs , axis=-1 , keepdims=_lowerCamelCase ) lowerCamelCase_ : Dict =np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCamelCase ) class snake_case__ ( __lowercase ): _UpperCAmelCase :Optional[Any] = '''sigmoid''' _UpperCAmelCase :Tuple = '''softmax''' _UpperCAmelCase :Any = '''none''' @add_end_docstrings( __lowercase, R"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n ", ) class snake_case__ ( __lowercase ): _UpperCAmelCase :Union[str, Any] = False _UpperCAmelCase :List[str] = ClassificationFunction.NONE def __init__( self : int , **snake_case__ : int ): super().__init__(**snake_case__ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def UpperCAmelCase__ ( self : Dict , snake_case__ : Dict=None , snake_case__ : Tuple=None , snake_case__ : List[str]="" , **snake_case__ : int ): lowerCamelCase_ : List[Any] =tokenizer_kwargs lowerCamelCase_ : Union[str, Any] ={} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: lowerCamelCase_ : Tuple =self.model.config.return_all_scores if isinstance(snake_case__ , snake_case__ ) or top_k is None: lowerCamelCase_ : Optional[Any] =top_k lowerCamelCase_ : Tuple =False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , snake_case__ , ) if return_all_scores: lowerCamelCase_ : Any =None else: lowerCamelCase_ : Optional[Any] =1 if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : Any =ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowerCamelCase_ : List[Any] =function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : List[str] , *snake_case__ : Optional[Any] , **snake_case__ : Optional[Any] ): lowerCamelCase_ : List[Any] =super().__call__(*snake_case__ , **snake_case__ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowerCamelCase_ : str ="""top_k""" not in kwargs if isinstance(args[0] , snake_case__ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def UpperCAmelCase__ ( self : str , snake_case__ : int , **snake_case__ : List[str] ): lowerCamelCase_ : str =self.framework if isinstance(snake_case__ , snake_case__ ): return self.tokenizer(**snake_case__ , return_tensors=snake_case__ , **snake_case__ ) elif isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) == 1 and isinstance(inputs[0] , snake_case__ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=snake_case__ , **snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : str ): return self.model(**snake_case__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : Dict , snake_case__ : int=None , snake_case__ : Tuple=1 , snake_case__ : int=True ): if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowerCamelCase_ : Optional[Any] =ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowerCamelCase_ : int =ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: lowerCamelCase_ : Optional[int] =self.model.config.function_to_apply else: lowerCamelCase_ : Dict =ClassificationFunction.NONE lowerCamelCase_ : int =model_outputs["""logits"""][0] lowerCamelCase_ : List[str] =outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowerCamelCase_ : Optional[int] =sigmoid(snake_case__ ) elif function_to_apply == ClassificationFunction.SOFTMAX: lowerCamelCase_ : Optional[Any] =softmax(snake_case__ ) elif function_to_apply == ClassificationFunction.NONE: lowerCamelCase_ : List[str] =outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowerCamelCase_ : Optional[int] =[ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(snake_case__ ) ] if not _legacy: dict_scores.sort(key=lambda snake_case__ : x["score"] , reverse=snake_case__ ) if top_k is not None: lowerCamelCase_ : str =dict_scores[:top_k] return dict_scores
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A__ : Optional[int] = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
0
def A_ ( _lowerCAmelCase ) -> str: if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) UpperCamelCase : List[str] = "" while len(_lowerCAmelCase ) % 3 != 0: UpperCamelCase : int = "0" + bin_string UpperCamelCase : Optional[int] = [ bin_string[index : index + 3] for index in range(len(_lowerCAmelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase : Any = 0 for index, val in enumerate(_lowerCAmelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCAmelCase ) ) oct_string += str(_lowerCAmelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
52
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for a, b in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , delta=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : int = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Optional[int] = None ops.enable_eager_execution_internal() lowerCAmelCase_ : str = tf.config.list_physical_devices('CPU' ) if len(SCREAMING_SNAKE_CASE_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCAmelCase_ : Dict = tf.config.list_logical_devices(device_type='CPU' ) lowerCAmelCase_ : Optional[int] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCAmelCase_ : Union[str, Any] = GradientAccumulator() lowerCAmelCase_ : int = tf.Variable([4.0, 3.0] ) lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = create_optimizer(5E-5 , 1_0 , 5 ) lowerCAmelCase_ : Union[str, Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE_ ) def accumulate_on_replica(SCREAMING_SNAKE_CASE_ : Optional[int] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): with strategy.scope(): lowerCAmelCase_ : Tuple = strategy.experimental_local_results(SCREAMING_SNAKE_CASE_ ) local_variables[0].assign(SCREAMING_SNAKE_CASE_ ) local_variables[1].assign(SCREAMING_SNAKE_CASE_ ) strategy.run(SCREAMING_SNAKE_CASE_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(SCREAMING_SNAKE_CASE_ ) def _check_local_values(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCAmelCase_ : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
224
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): def __init__( self : Any , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Any ): """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
165
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = TypeVar("""DatasetType""", Dataset, IterableDataset) def lowercase( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(UpperCamelCase_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase_ ).__name__}.""" ) if i == 0: UpperCamelCase , UpperCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , stopping_strategy=UpperCamelCase_ ) else: return _interleave_iterable_datasets( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , stopping_strategy=UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , (Dataset, IterableDataset) ): if isinstance(UpperCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(UpperCamelCase_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(UpperCamelCase_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCamelCase_ ).__name__}.""" ) if i == 0: UpperCamelCase , UpperCamelCase = ( (Dataset, IterableDataset) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , axis=UpperCamelCase_ ) else: return _concatenate_iterable_datasets(UpperCamelCase_ , info=UpperCamelCase_ , split=UpperCamelCase_ , axis=UpperCamelCase_ )
165
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCamelCase ={ """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =["""OwlViTFeatureExtractor"""] _lowerCamelCase =["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
287
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCamelCase : Any = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase : str = model(__magic_name__ )["""last_hidden_state"""] lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. lowerCamelCase : Dict = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
287
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
111
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCamelCase_ = '<<<<<<< This should probably be modified because it mentions: ' lowerCamelCase_ = '=======\n>>>>>>>\n' lowerCamelCase_ = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCamelCase_ = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def SCREAMING_SNAKE_CASE_ ( __A : Namespace ) -> List[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase_ ( A ): """simple docstring""" @staticmethod def lowerCAmelCase_ ( __lowerCamelCase : ArgumentParser ): """simple docstring""" _SCREAMING_SNAKE_CASE = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__lowerCamelCase ) def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : str , *__lowerCamelCase : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = get_logger("datasets-cli/converting" ) _SCREAMING_SNAKE_CASE = tfds_path _SCREAMING_SNAKE_CASE = datasets_directory def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" if os.path.isdir(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) _SCREAMING_SNAKE_CASE = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = {} if os.path.isdir(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.listdir(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) if not os.path.isfile(__lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__lowerCamelCase , encoding="utf-8" ) as f: _SCREAMING_SNAKE_CASE = f.readlines() _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = [] for line in lines: _SCREAMING_SNAKE_CASE = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _SCREAMING_SNAKE_CASE = "import datasets\n" elif "import tensorflow" in out_line: # order is important here _SCREAMING_SNAKE_CASE = "" continue elif "from absl import logging" in out_line: _SCREAMING_SNAKE_CASE = "from datasets import logging\n" elif "getLogger" in out_line: _SCREAMING_SNAKE_CASE = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = list(filter(lambda __lowerCamelCase : e in out_line , __lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCamelCase ) + "\n" ) out_lines.append(__lowerCamelCase ) out_lines.append(__lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: _SCREAMING_SNAKE_CASE = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _SCREAMING_SNAKE_CASE = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , __lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) _SCREAMING_SNAKE_CASE = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _SCREAMING_SNAKE_CASE = True out_lines.append(__lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _SCREAMING_SNAKE_CASE = f_name.replace(".py" , "" ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowerCamelCase ) if needs_manual_update: with_manual_update.append(__lowerCamelCase ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.writelines(__lowerCamelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: _SCREAMING_SNAKE_CASE = os.path.basename(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(__lowerCamelCase , __lowerCamelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
111
1
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "char" A_ = "bpe" A_ = "wp" __lowercase : Dict = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __UpperCamelCase ( lowerCAmelCase_ ): A_ = ["image_processor", "char_tokenizer"] A_ = "ViTImageProcessor" A_ = "MgpstrTokenizer" def __init__( self , __a=None , __a=None , **__a ): '''simple docstring''' __a : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __a , ) __a : Any = kwargs.pop('feature_extractor' ) __a : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) __a : Any = tokenizer __a : int = AutoTokenizer.from_pretrained('gpt2' ) __a : List[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(__a , __a ) def __call__( self , __a=None , __a=None , __a=None , **__a ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __a : List[str] = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None: __a : Optional[int] = self.char_tokenizer(__a , return_tensors=__a , **__a ) if text is None: return inputs elif images is None: return encodings else: __a : Dict = encodings['input_ids'] return inputs def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a , __a , __a : Optional[int] = sequences __a : List[Any] = char_preds.size(0 ) __a , __a : int = self._decode_helper(__a , 'char' ) __a , __a : List[str] = self._decode_helper(__a , 'bpe' ) __a , __a : Dict = self._decode_helper(__a , 'wp' ) __a : Dict = [] __a : Optional[Any] = [] for i in range(__a ): __a : Dict = [char_scores[i], bpe_scores[i], wp_scores[i]] __a : Union[str, Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] __a : int = scores.index(max(__a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __a : Union[str, Any] = {} __a : Optional[Any] = final_strs __a : List[Any] = final_scores __a : Tuple = char_strs __a : Optional[int] = bpe_strs __a : Optional[Any] = wp_strs return out def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' if format == DecodeType.CHARACTER: __a : str = self.char_decode __a : Tuple = 1 __a : Optional[int] = '[s]' elif format == DecodeType.BPE: __a : str = self.bpe_decode __a : Optional[int] = 2 __a : Tuple = '#' elif format == DecodeType.WORDPIECE: __a : List[str] = self.wp_decode __a : str = 102 __a : Any = '[SEP]' else: raise ValueError(f"""Format {format} is not supported.""" ) __a , __a : Tuple = [], [] __a : Union[str, Any] = pred_logits.size(0 ) __a : Union[str, Any] = pred_logits.size(1 ) __a , __a : Optional[Any] = pred_logits.topk(1 , dim=-1 , largest=__a , sorted=__a ) __a : str = preds_index.view(-1 , __a )[:, 1:] __a : Optional[int] = decoder(__a ) __a , __a : Tuple = torch.nn.functional.softmax(__a , dim=2 ).max(dim=2 ) __a : List[str] = preds_max_prob[:, 1:] for index in range(__a ): __a : int = preds_str[index].find(__a ) __a : Dict = preds_str[index][:pred_eos] __a : List[str] = preds_index[index].cpu().tolist() __a : List[Any] = pred_index.index(__a ) if eos_token in pred_index else -1 __a : Optional[int] = preds_max_prob[index][: pred_eos_index + 1] __a : List[str] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__a ) conf_scores.append(__a ) return dec_strs, conf_scores def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Union[str, Any] = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(__a )] return decode_strs def __UpperCAmelCase ( self , __a ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : str = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(__a )] return decode_strs
27
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int ,A_ : int ) -> Union[str, Any]: A = n A = [None] * self.n A = 0 # index of the first element A = 0 A = 0 def __len__( self : int ) -> int: return self.size def _SCREAMING_SNAKE_CASE ( self : Any ) -> bool: return self.size == 0 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: return False if self.is_empty() else self.array[self.front] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ) -> int: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) A = data A = (self.rear + 1) % self.n self.size += 1 return self def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: if self.size == 0: raise Exception('UNDERFLOW' ) A = self.array[self.front] A = None A = (self.front + 1) % self.n self.size -= 1 return temp
74
0
import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _snake_case = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def A ( _lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase_ ) def A ( _lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main _lowerCAmelCase : Tuple = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase_ , id=UpperCAmelCase_ )
353
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _snake_case = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class UpperCAmelCase_ ( unittest.TestCase): lowerCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowerCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowerCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = ZeroShotClassificationPipeline( model=__a, tokenizer=__a, candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # No kwarg _lowerCAmelCase : int = classifier("Who are you voting for in 2020?", ["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : Tuple = classifier("Who are you voting for in 2020?", candidate_labels=["politics"]) self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) _lowerCAmelCase : List[Any] = classifier("Who are you voting for in 2020?", candidate_labels="politics, public health") self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[str] = classifier("Who are you voting for in 2020?", candidate_labels=["politics", "public health"]) self.assertEqual( __a, {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])), 1.0) _lowerCAmelCase : List[Any] = classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="This text is about {}") self.assertEqual(__a, {"sequence": ANY(__a), "labels": [ANY(__a)], "scores": [ANY(__a)]}) # https://github.com/huggingface/transformers/issues/13846 _lowerCAmelCase : Optional[int] = classifier(["I am happy"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(1) ], ) _lowerCAmelCase : Any = classifier(["I am happy", "I am sad"], ["positive", "negative"]) self.assertEqual( __a, [ {"sequence": ANY(__a), "labels": [ANY(__a), ANY(__a)], "scores": [ANY(__a), ANY(__a)]} for i in range(2) ], ) with self.assertRaises(__a): classifier("", candidate_labels="politics") with self.assertRaises(__a): classifier(__a, candidate_labels="politics") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels="") with self.assertRaises(__a): classifier("Who are you voting for in 2020?", candidate_labels=__a) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template="Not formatting template", ) with self.assertRaises(__a): classifier( "Who are you voting for in 2020?", candidate_labels="politics", hypothesis_template=__a, ) self.run_entailment_id(__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Tuple = zero_shot_classifier.model.config _lowerCAmelCase : Optional[Any] = config.labelaid _lowerCAmelCase : Union[str, Any] = zero_shot_classifier.entailment_id _lowerCAmelCase : Any = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1) _lowerCAmelCase : Optional[int] = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[int] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0) _lowerCAmelCase : Optional[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2) _lowerCAmelCase : List[str] = original_labelaid self.assertEqual(__a, zero_shot_classifier.entailment_id) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100, candidate_labels=["politics", "public health", "science"]) @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="pt", ) _lowerCAmelCase : List[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = pipeline( "zero-shot-classification", model="sshleifer/tiny-distilbert-base-cased-distilled-squad", framework="tf", ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], }, ) @slow @require_torch def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="pt") _lowerCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : Union[str, Any] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = pipeline("zero-shot-classification", model="roberta-large-mnli", framework="tf") _lowerCAmelCase : Dict = zero_shot_classifier( "Who are you voting for in 2020?", candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(__a), { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], }, ) _lowerCAmelCase : str = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data.", candidate_labels=["machine learning", "statistics", "translation", "vision"], multi_label=__a, ) self.assertEqual( nested_simplify(__a), { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], }, )
300
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 snake_case_ = torch.tensor(tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) ).unsqueeze(0 ) # Batch size 1 snake_case_ = model(SCREAMING_SNAKE_CASE__ )[0] # The last hidden-state is the first element of the output tuple snake_case_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() snake_case_ = logits[0, masked_index, :] snake_case_ = logits.softmax(dim=0 ) snake_case_, snake_case_ = prob.topk(k=SCREAMING_SNAKE_CASE__ , dim=0 ) snake_case_ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) snake_case_ = tokenizer.mask_token snake_case_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): snake_case_ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(SCREAMING_SNAKE_CASE__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowerCAmelCase_ = CamembertTokenizer.from_pretrained('''camembert-base''') lowerCAmelCase_ = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowerCAmelCase_ = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
8
def lowerCAmelCase__(__snake_case ) -> str: '''simple docstring''' return "".join(chr(ord(__snake_case ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
209
0
from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Any = """dandelin/vilt-b32-finetuned-vqa""" a_ : Optional[int] = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) a_ : Tuple = """image_qa""" a_ : Optional[int] = AutoProcessor a_ : Dict = AutoModelForVisualQuestionAnswering a_ : int = ["""image""", """text"""] a_ : Optional[Any] = ["""text"""] def __init__( self : List[str] , *a_ : Optional[Any] , **a_ : Dict ): requires_backends(self , ["vision"] ) super().__init__(*__a , **__a ) def lowerCamelCase ( self : int , a_ : Dict , a_ : Optional[Any] ): return self.pre_processor(__a , __a , return_tensors="pt" ) def lowerCamelCase ( self : str , a_ : Dict ): with torch.no_grad(): return self.model(**__a ).logits def lowerCamelCase ( self : Dict , a_ : str ): lowerCAmelCase_ : Any = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase__ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
161
0
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument A_ : Tuple = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE__ = R""".*/layers_(\d+)""" SCREAMING_SNAKE_CASE__ = key if re.match(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE__ = re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = R"""(encoder|decoder)\/""" if re.match(snake_case__ , snake_case__ ): SCREAMING_SNAKE_CASE__ = re.match(snake_case__ , snake_case__ ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE__ = re.sub(R"""/mlp/""" , R"""/1/mlp/""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , snake_case__ ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE__ = re.sub(R"""/mlp/""" , R"""/2/mlp/""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , snake_case__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE__ = new_key.replace(snake_case__ , snake_case__ ) print(f"""{key} -> {new_key}""" ) SCREAMING_SNAKE_CASE__ = s_dict.pop(snake_case__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE__ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE__ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE__ = s_dict[key].shape[0] SCREAMING_SNAKE_CASE__ = s_dict[key] for idx in range(snake_case__ ): SCREAMING_SNAKE_CASE__ = expert_weihts[idx] print(f"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(snake_case__ ) return s_dict A_ : str = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def A ( snake_case__ , snake_case__ ): '''simple docstring''' import regex as re with open(snake_case__ , """r""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() SCREAMING_SNAKE_CASE__ = re.findall(R"""(.*) = ([0-9.]*)""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE__ = float(snake_case__ ) if """.""" in value else int(snake_case__ ) SCREAMING_SNAKE_CASE__ = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , snake_case__ )[0] SCREAMING_SNAKE_CASE__ = str(activation[1] ) SCREAMING_SNAKE_CASE__ = num_experts SCREAMING_SNAKE_CASE__ = SwitchTransformersConfig(**snake_case__ ) return config def A ( snake_case__ , snake_case__ , snake_case__=None , snake_case__="./" , snake_case__=8 ): '''simple docstring''' print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) SCREAMING_SNAKE_CASE__ = checkpoints.load_tax_checkpoint(snake_case__ ) if gin_file is not None: SCREAMING_SNAKE_CASE__ = convert_gin_to_config(snake_case__ , snake_case__ ) else: SCREAMING_SNAKE_CASE__ = SwitchTransformersConfig.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE__ = SwitchTransformersForConditionalGeneration(snake_case__ ) SCREAMING_SNAKE_CASE__ = flax_params["""target"""] SCREAMING_SNAKE_CASE__ = flatten_dict(snake_case__ , sep="""/""" ) SCREAMING_SNAKE_CASE__ = rename_keys(snake_case__ ) SCREAMING_SNAKE_CASE__ = unflatten_dict(snake_case__ , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") A_ : Dict = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
165
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__="attention" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) SCREAMING_SNAKE_CASE__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) SCREAMING_SNAKE_CASE__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) SCREAMING_SNAKE_CASE__ = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' if split_mlp_wi: SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] SCREAMING_SNAKE_CASE__ = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def A ( snake_case__ , *, snake_case__ , snake_case__ , snake_case__ = False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(variables["""target"""] ) SCREAMING_SNAKE_CASE__ = {"""/""".join(snake_case__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE__ = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE__ = old["""token_embedder/embedding"""] # Encoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_attention_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_attention_lookup(snake_case__ , snake_case__ , """encoder""" , """attention""" ) SCREAMING_SNAKE_CASE__ = layer_norm SCREAMING_SNAKE_CASE__ = k.T SCREAMING_SNAKE_CASE__ = o.T SCREAMING_SNAKE_CASE__ = q.T SCREAMING_SNAKE_CASE__ = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(snake_case__ , snake_case__ , """encoder""" , """pre_mlp_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_mlp_lookup(snake_case__ , snake_case__ , """encoder""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = wi[0].T SCREAMING_SNAKE_CASE__ = wi[1].T else: SCREAMING_SNAKE_CASE__ = wi.T SCREAMING_SNAKE_CASE__ = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE__ = tax_relpos_bias_lookup( snake_case__ , snake_case__ , """encoder""" ).T SCREAMING_SNAKE_CASE__ = old["""encoder/encoder_norm/scale"""] if not scalable_attention: SCREAMING_SNAKE_CASE__ = tax_relpos_bias_lookup( snake_case__ , 0 , """encoder""" ).T SCREAMING_SNAKE_CASE__ = tax_relpos_bias_lookup( snake_case__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(snake_case__ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_self_attention_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """self_attention""" ) SCREAMING_SNAKE_CASE__ = layer_norm SCREAMING_SNAKE_CASE__ = k.T SCREAMING_SNAKE_CASE__ = o.T SCREAMING_SNAKE_CASE__ = q.T SCREAMING_SNAKE_CASE__ = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_cross_attention_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_attention_lookup(snake_case__ , snake_case__ , """decoder""" , """encoder_decoder_attention""" ) SCREAMING_SNAKE_CASE__ = layer_norm SCREAMING_SNAKE_CASE__ = k.T SCREAMING_SNAKE_CASE__ = o.T SCREAMING_SNAKE_CASE__ = q.T SCREAMING_SNAKE_CASE__ = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(snake_case__ , snake_case__ , """decoder""" , """pre_mlp_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_mlp_lookup(snake_case__ , snake_case__ , """decoder""" , snake_case__ ) SCREAMING_SNAKE_CASE__ = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = wi[0].T SCREAMING_SNAKE_CASE__ = wi[1].T else: SCREAMING_SNAKE_CASE__ = wi.T SCREAMING_SNAKE_CASE__ = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE__ = tax_relpos_bias_lookup(snake_case__ , snake_case__ , """decoder""" ).T SCREAMING_SNAKE_CASE__ = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE__ = old["""decoder/logits_dense/kernel"""].T return new def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE__ = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE__ = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) SCREAMING_SNAKE_CASE__ = state_dict["""shared.weight"""] return state_dict def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = checkpoints.load_tax_checkpoint(snake_case__ ) SCREAMING_SNAKE_CASE__ = convert_tax_to_pytorch( snake_case__ , num_layers=config.num_layers , is_encoder_only=snake_case__ , scalable_attention=snake_case__ ) SCREAMING_SNAKE_CASE__ = make_state_dict(snake_case__ , snake_case__ ) model.load_state_dict(snake_case__ , strict=snake_case__ ) def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = MTaConfig.from_json_file(snake_case__ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE__ = UMTaEncoderModel(snake_case__ ) else: SCREAMING_SNAKE_CASE__ = UMTaForConditionalGeneration(snake_case__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(snake_case__ ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case__ ) print("""Done""" ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) A_ : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
165
1
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Any ) -> Optional[int]: _UpperCAmelCase : Dict = "" for i in table: res += inp[i - 1] return res def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> Dict: return data[1:] + data[0] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: str ) -> Optional[int]: _UpperCAmelCase : int = "" for i in range(len(lowerCAmelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: List[str] ) -> Tuple: _UpperCAmelCase : Optional[Any] = int("0b" + data[0] + data[-1] , 2 ) _UpperCAmelCase : Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: Tuple , lowerCAmelCase: Tuple , lowerCAmelCase: str , lowerCAmelCase: Union[str, Any] ) -> int: _UpperCAmelCase : str = message[:4] _UpperCAmelCase : Optional[int] = message[4:] _UpperCAmelCase : int = apply_table(lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Any = xor(lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = apply_sbox(lowerCAmelCase , temp[:4] ) # noqa: E741 _UpperCAmelCase : Dict = apply_sbox(lowerCAmelCase , temp[4:] ) _UpperCAmelCase : Any = "0" * (2 - len(lowerCAmelCase )) + l # noqa: E741 _UpperCAmelCase : Optional[Any] = "0" * (2 - len(lowerCAmelCase )) + r _UpperCAmelCase : Tuple = apply_table(l + r , lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = xor(lowerCAmelCase , lowerCAmelCase ) return temp + right if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter 10 bit key: ') SCREAMING_SNAKE_CASE_ = input('Enter 8 bit message: ') SCREAMING_SNAKE_CASE_ = [6, 3, 7, 4, 8, 5, 10, 9] SCREAMING_SNAKE_CASE_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] SCREAMING_SNAKE_CASE_ = [2, 4, 3, 1] SCREAMING_SNAKE_CASE_ = [2, 6, 3, 1, 4, 8, 5, 7] SCREAMING_SNAKE_CASE_ = [4, 1, 3, 5, 7, 2, 8, 6] SCREAMING_SNAKE_CASE_ = [4, 1, 2, 3, 2, 3, 4, 1] SCREAMING_SNAKE_CASE_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] SCREAMING_SNAKE_CASE_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation SCREAMING_SNAKE_CASE_ = apply_table(key, paa_table) SCREAMING_SNAKE_CASE_ = temp[:5] SCREAMING_SNAKE_CASE_ = temp[5:] SCREAMING_SNAKE_CASE_ = left_shift(left) SCREAMING_SNAKE_CASE_ = left_shift(right) SCREAMING_SNAKE_CASE_ = apply_table(left + right, pa_table) SCREAMING_SNAKE_CASE_ = left_shift(left) SCREAMING_SNAKE_CASE_ = left_shift(right) SCREAMING_SNAKE_CASE_ = left_shift(left) SCREAMING_SNAKE_CASE_ = left_shift(right) SCREAMING_SNAKE_CASE_ = apply_table(left + right, pa_table) # encryption SCREAMING_SNAKE_CASE_ = apply_table(message, IP) SCREAMING_SNAKE_CASE_ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE_ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE_ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE_ = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption SCREAMING_SNAKE_CASE_ = apply_table(CT, IP) SCREAMING_SNAKE_CASE_ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE_ = temp[4:] + temp[:4] SCREAMING_SNAKE_CASE_ = function(expansion, sa, sa, keya, temp) SCREAMING_SNAKE_CASE_ = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
189
from __future__ import annotations class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = order # a_{0} ... a_{k} _UpperCAmelCase : Tuple = [1.0] + [0.0] * order # b_{0} ... b_{k} _UpperCAmelCase : int = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _UpperCAmelCase : Optional[Any] = [0.0] * self.order # y[n-1] ... y[n-k] _UpperCAmelCase : Dict = [0.0] * self.order def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if len(A_ ) < self.order: _UpperCAmelCase : List[str] = [1.0, *a_coeffs] if len(A_ ) != self.order + 1: _UpperCAmelCase : List[Any] = ( f'Expected a_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(A_ )}' ) raise ValueError(A_ ) if len(A_ ) != self.order + 1: _UpperCAmelCase : int = ( f'Expected b_coeffs to have {self.order + 1} elements ' f'for {self.order}-order filter, got {len(A_ )}' ) raise ValueError(A_ ) _UpperCAmelCase : Optional[Any] = a_coeffs _UpperCAmelCase : Union[str, Any] = b_coeffs def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _UpperCAmelCase : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _UpperCAmelCase : Optional[Any] = self.input_history[:-1] _UpperCAmelCase : Optional[int] = self.output_history[:-1] _UpperCAmelCase : Optional[Any] = sample _UpperCAmelCase : str = result return result
189
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = RoCBertTokenizer lowerCAmelCase__ = None lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = filter_non_english def UpperCAmelCase__ ( self : Any ): super().setUp() __snake_case: Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] __snake_case: Any = {} __snake_case: List[str] = {} for i, value in enumerate(A ): __snake_case: List[str] = i __snake_case: Optional[Any] = i __snake_case: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) __snake_case: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(A , A , ensure_ascii=A ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(A , A , ensure_ascii=A ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Any = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __snake_case: Union[str, Any] = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(A , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: Dict = RoCBertBasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Optional[Any] = RoCBertBasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Optional[int] = RoCBertBasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCAmelCase__ ( self : Any ): __snake_case: Optional[Any] = RoCBertBasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Dict = RoCBertBasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: List[str] = RoCBertBasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase__ ( self : Any ): __snake_case: List[str] = RoCBertBasicTokenizer(do_lower_case=A , strip_accents=A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCAmelCase__ ( self : Tuple ): __snake_case: Dict = RoCBertBasicTokenizer(do_lower_case=A , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: int = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __snake_case: Optional[Any] = {} for i, token in enumerate(A ): __snake_case: List[str] = i __snake_case: Optional[Any] = RoCBertWordpieceTokenizer(vocab=A , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def UpperCAmelCase__ ( self : Any ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCAmelCase__ ( self : List[Any] ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Dict = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: __snake_case: Union[str, Any] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def UpperCAmelCase__ ( self : List[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case: Dict = self.rust_tokenizer_class.from_pretrained(A , **A ) __snake_case: Any = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __snake_case: Tuple = tokenizer_r.encode_plus( A , return_attention_mask=A , return_token_type_ids=A , return_offsets_mapping=A , add_special_tokens=A , ) __snake_case: Dict = tokenizer_r.do_lower_case if hasattr(A , """do_lower_case""" ) else False __snake_case: Any = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Any = ["""的""", """人""", """有"""] __snake_case: int = """""".join(A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case: Optional[Any] = True __snake_case: Optional[int] = self.tokenizer_class.from_pretrained(A , **A ) __snake_case: Dict = self.rust_tokenizer_class.from_pretrained(A , **A ) __snake_case: List[str] = tokenizer_p.encode(A , add_special_tokens=A ) __snake_case: str = tokenizer_r.encode(A , add_special_tokens=A ) __snake_case: Dict = tokenizer_r.convert_ids_to_tokens(A ) __snake_case: Tuple = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A , A ) self.assertListEqual(A , A ) __snake_case: Union[str, Any] = False __snake_case: Any = self.rust_tokenizer_class.from_pretrained(A , **A ) __snake_case: Dict = self.tokenizer_class.from_pretrained(A , **A ) __snake_case: str = tokenizer_r.encode(A , add_special_tokens=A ) __snake_case: Optional[int] = tokenizer_p.encode(A , add_special_tokens=A ) __snake_case: Optional[int] = tokenizer_r.convert_ids_to_tokens(A ) __snake_case: int = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that only the first Chinese character is not preceded by "##". __snake_case: Tuple = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(A ) ] self.assertListEqual(A , A ) self.assertListEqual(A , A ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: List[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __snake_case: int = tokenizer.encode("""你好""" , add_special_tokens=A ) __snake_case: Optional[int] = tokenizer.encode("""你是谁""" , add_special_tokens=A ) __snake_case: Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) __snake_case: Tuple = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self : Tuple ): __snake_case: Union[str, Any] = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case: List[Any] = """你好,你是谁""" __snake_case: int = tokenizer.tokenize(A ) __snake_case: Dict = tokenizer.convert_tokens_to_ids(A ) __snake_case: Tuple = tokenizer.convert_tokens_to_shape_ids(A ) __snake_case: Tuple = tokenizer.convert_tokens_to_pronunciation_ids(A ) __snake_case: List[Any] = tokenizer.prepare_for_model( A , A , A , add_special_tokens=A ) __snake_case: Tuple = tokenizer.encode_plus(A , add_special_tokens=A ) self.assertEqual(A , A )
111
import math def A__ ( SCREAMING_SNAKE_CASE__) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( SCREAMING_SNAKE_CASE__ = 1_0001) -> int: try: __snake_case: List[str] = int(SCREAMING_SNAKE_CASE__) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""") from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""") __snake_case: list[int] = [] __snake_case: List[str] = 2 while len(SCREAMING_SNAKE_CASE__) < nth: if is_prime(SCREAMING_SNAKE_CASE__): primes.append(SCREAMING_SNAKE_CASE__) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__) - 1] if __name__ == "__main__": print(f'{solution() = }')
111
1
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __snake_case = logging.getLogger(__name__) class lowercase ( A__ ): """simple docstring""" _a = 'token-classification' def __init__( self , UpperCamelCase_ ): '''simple docstring''' if type(UpperCamelCase_ ) == dict: UpperCamelCase__ :List[str] = Namespace(**UpperCamelCase_ ) UpperCamelCase__ :Any = import_module('''tasks''' ) try: UpperCamelCase__ :int = getattr(UpperCamelCase_ , hparams.task_type ) UpperCamelCase__ :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCamelCase__ :Dict = self.token_classification_task.get_labels(hparams.labels ) UpperCamelCase__ :Dict = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase_ , len(self.labels ) , self.mode ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return self.model(**UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ :str = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ :Union[str, Any] = self(**UpperCamelCase_ ) UpperCamelCase__ :str = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase__ :Dict = self._feature_file(UpperCamelCase_ ) if os.path.exists(UpperCamelCase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) UpperCamelCase__ :Dict = torch.load(UpperCamelCase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCamelCase__ :int = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.token_classification_task.convert_examples_to_features( UpperCamelCase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase_ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , UpperCamelCase_ ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self._feature_file(UpperCamelCase_ ) logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) UpperCamelCase__ :Dict = torch.load(UpperCamelCase_ ) UpperCamelCase__ :int = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase__ :str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCamelCase__ :Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCamelCase__ :Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCamelCase__ :Any = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , batch_size=UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' """Compute validation""" "" UpperCamelCase__ :int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ :str = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ :Union[str, Any] = self(**UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :Dict = outputs[:2] UpperCamelCase__ :List[Any] = logits.detach().cpu().numpy() UpperCamelCase__ :List[str] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCamelCase__ :Optional[int] = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCamelCase__ :str = np.argmax(UpperCamelCase_ , axis=2 ) UpperCamelCase__ :Union[str, Any] = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCamelCase__ :Dict = dict(enumerate(self.labels ) ) UpperCamelCase__ :Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase__ :int = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCamelCase__ :str = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(UpperCamelCase_ , UpperCamelCase_ ), '''precision''': precision_score(UpperCamelCase_ , UpperCamelCase_ ), '''recall''': recall_score(UpperCamelCase_ , UpperCamelCase_ ), '''f1''': fa_score(UpperCamelCase_ , UpperCamelCase_ ), } UpperCamelCase__ :Optional[Any] = dict(results.items() ) UpperCamelCase__ :Optional[int] = results return ret, preds_list, out_label_list def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Dict = self._eval_end(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = self._eval_end(UpperCamelCase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase__ :Union[str, Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCAmelCase__ ( UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=UpperCamelCase_ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=UpperCamelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=UpperCamelCase_ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=UpperCamelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __snake_case = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __snake_case = NERTransformer.add_model_specific_args(parser, os.getcwd()) __snake_case = parser.parse_args() __snake_case = NERTransformer(args) __snake_case = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __snake_case = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) __snake_case = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
219
'''simple docstring''' from __future__ import annotations from typing import Any def a ( __a ) -> None: '''simple docstring''' create_state_space_tree(__a , [] , 0 ) def a ( __a , __a , __a ) -> None: '''simple docstring''' if index == len(__a ): print(__a ) return create_state_space_tree(__a , __a , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__a , __a , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __snake_case = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
219
1
import os import time import numpy as np import onnxruntime as ort _A = '1' _A = '0' _A = '1' _A = ort.SessionOptions() _A = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') _A = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] _A = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) _A = ort.RunOptions() _A = 128 _A = 1 _A = np.ones((batch, sequence), dtype=np.intaa) _A = np.ones((batch, sequence), dtype=np.intaa) _A = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') _A = time.time() _A = 2000 _A = {} for iter in range(max_iters): _A = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1000 / max_iters))
62
from __future__ import annotations def __snake_case ( _lowerCAmelCase : list[float] ) -> bool: if len(_lowerCAmelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) A_ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
300
0
import os __UpperCAmelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def __lowerCamelCase ( __magic_name__ : str ): a__: str =0 a__: Any =0 while index < len(__magic_name__ ) - 1: a__: str =SYMBOLS[numerals[index]] a__: int =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __lowerCamelCase ( __magic_name__ : int ): a__: Optional[Any] ="" a__: int =num // 1_000 numerals += m_count * "M" num %= 1_000 a__: Any =num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 a__: str =num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __lowerCamelCase ( __magic_name__ : str = "/p089_roman.txt" ): a__: Dict =0 with open(os.path.dirname(__magic_name__ ) + roman_numerals_filename ) as filea: a__: Dict =filea.readlines() for line in lines: a__: List[Any] =line.strip() a__: Union[str, Any] =parse_roman_numerals(__magic_name__ ) a__: Optional[Any] =generate_roman_numerals(__magic_name__ ) savings += len(__magic_name__ ) - len(__magic_name__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
365
from __future__ import annotations from math import gcd def __lowerCamelCase ( __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 1 , __magic_name__ : int = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> int: return (pow(__magic_name__ , 2 ) + step) % modulus for _ in range(__magic_name__ ): # These track the position within the cycle detection logic. a__: List[Any] =seed a__: Optional[int] =seed while True: # At each iteration, the tortoise moves one step and the hare moves two. a__: List[Any] =rand_fn(__magic_name__ , __magic_name__ , __magic_name__ ) a__: Tuple =rand_fn(__magic_name__ , __magic_name__ , __magic_name__ ) a__: Tuple =rand_fn(__magic_name__ , __magic_name__ , __magic_name__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. a__: Optional[Any] =gcd(hare - tortoise , __magic_name__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. a__: Dict =hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: __UpperCAmelCase = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
42
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=30 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.02 , UpperCamelCase_=3 , UpperCamelCase_=0.6 , UpperCamelCase_=None , ): '''simple docstring''' UpperCamelCase__ :int = parent UpperCamelCase__ :List[str] = batch_size UpperCamelCase__ :Optional[int] = image_size UpperCamelCase__ :List[str] = patch_size UpperCamelCase__ :int = num_channels UpperCamelCase__ :Tuple = is_training UpperCamelCase__ :Optional[int] = use_labels UpperCamelCase__ :Optional[Any] = hidden_size UpperCamelCase__ :List[str] = num_hidden_layers UpperCamelCase__ :Optional[int] = num_attention_heads UpperCamelCase__ :Optional[Any] = intermediate_size UpperCamelCase__ :Tuple = hidden_act UpperCamelCase__ :str = hidden_dropout_prob UpperCamelCase__ :List[str] = attention_probs_dropout_prob UpperCamelCase__ :Optional[Any] = type_sequence_label_size UpperCamelCase__ :Tuple = initializer_range UpperCamelCase__ :int = mask_ratio UpperCamelCase__ :Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ :Union[str, Any] = (image_size // patch_size) ** 2 UpperCamelCase__ :List[str] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ :Optional[Any] = None if self.use_labels: UpperCamelCase__ :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ :Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = ViTMAEModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Tuple = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = ViTMAEForPreTraining(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Optional[Any] = model(UpperCamelCase_ ) UpperCamelCase__ :str = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ :List[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase__ :str = 1 UpperCamelCase__ :Dict = ViTMAEForPreTraining(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCamelCase__ :Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__ :str = model(UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = config_and_inputs UpperCamelCase__ :str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( A__ , A__ , unittest.TestCase ): """simple docstring""" _a = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _a = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} _a = False _a = False _a = False _a = False def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = ViTMAEModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Tuple = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__ :Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :Optional[int] = model_class(UpperCamelCase_ ) UpperCamelCase__ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ :Tuple = [*signature.parameters.keys()] UpperCamelCase__ :Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ :Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase__ :List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase__ :int = torch.from_numpy(UpperCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ :List[Any] = pt_noise super().check_pt_tf_models(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ :List[str] = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ :List[str] = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase__ :Optional[Any] = outputs[0].cpu().numpy() UpperCamelCase__ :Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ ) UpperCamelCase__ :List[str] = model_class.from_pretrained(UpperCamelCase_ ) model.to(UpperCamelCase_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase__ :Any = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) # Make sure we don't have nans UpperCamelCase__ :int = after_outputs[0].cpu().numpy() UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1e-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass @slow def lowerCAmelCase__ ( self ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :Any = ViTMAEModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def a ( ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self ): '''simple docstring''' np.random.seed(2 ) UpperCamelCase__ :Tuple = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.default_image_processor UpperCamelCase__ :Dict = prepare_img() UpperCamelCase__ :Tuple = image_processor(images=UpperCamelCase_ , return_tensors='''pt''' ).to(UpperCamelCase_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ :Optional[int] = ViTMAEConfig() UpperCamelCase__ :List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase__ :Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase__ :Dict = model(**UpperCamelCase_ , noise=torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) ) # verify the logits UpperCamelCase__ :str = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) UpperCamelCase__ :Dict = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCamelCase_ ) , atol=1e-4 ) )
97
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() a__ : Any = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] a__ : Dict = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def snake_case ( UpperCAmelCase , UpperCAmelCase )-> List[str]: """simple docstring""" __A = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __A = int(re.match(R'.*layer_(\d*).*' , UpperCAmelCase )[1] ) layer_number -= 3 return f'h.{layer_number}.' + key def snake_case ( UpperCAmelCase )-> Any: """simple docstring""" if dtype == torch.bool: return 1 / 8 __A = re.search(R'[^\d](\d+)$' , str(UpperCAmelCase ) ) if bit_search is None: raise ValueError(f'`dtype` is not a valid dtype: {dtype}.' ) __A = int(bit_search.groups()[0] ) return bit_size // 8 def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> str: """simple docstring""" # Construct model if bloom_config_file == "": __A = BloomConfig() else: __A = BloomConfig.from_json_file(UpperCAmelCase ) if shard_model: __A = os.listdir(UpperCAmelCase ) __A = sorted(filter(lambda UpperCAmelCase : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase ) ) __A = {'weight_map': {}, 'metadata': {}} __A = 0 __A = None __A = BloomConfig() for j, file in enumerate(UpperCAmelCase ): print('Processing file: {}'.format(UpperCAmelCase ) ) __A = None for i in range(UpperCAmelCase ): # load all TP files __A = file.replace('model_00' , f'model_0{i}' ) __A = torch.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names __A = list(temp.keys() ) for key in keys: __A = temp.pop(UpperCAmelCase ) if tensors is None: __A = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __A = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __A = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __A = tensors[key] / pretraining_tp torch.save( UpperCAmelCase , os.path.join( UpperCAmelCase , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __A = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __A = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase ) ).zfill(5 ) ) __A = BloomConfig() __A = pytorch_dump_folder_path + '/' + CONFIG_NAME __A = total_size with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: __A = json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + '\n' f.write(UpperCAmelCase ) else: __A = BloomModel(UpperCAmelCase ) __A = os.listdir(UpperCAmelCase ) __A = sorted(filter(lambda UpperCAmelCase : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase ) ) __A = None for i, file in enumerate(UpperCAmelCase ): __A = None for i in range(UpperCAmelCase ): # load all TP files __A = file.replace('model_00' , f'model_0{i}' ) __A = torch.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) , map_location='cpu' ) # Rename keys in the transformers names __A = list(temp.keys() ) for key in keys: __A = temp.pop(UpperCAmelCase ) if tensors is None: __A = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __A = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __A = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __A = tensors[key] / pretraining_tp __A = model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) assert not other_keys.unexpected_keys, f'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: __A = set(other_keys.missing_keys ) else: __A = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) __A = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __A = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: __A = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) a__ : Tuple = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
161
0
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = IFImgaImgSuperResolutionPipeline _SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} _SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) _SCREAMING_SNAKE_CASE : Optional[int] = PipelineTesterMixin.required_optional_params - {'latents'} def _lowerCamelCase ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=0 ): """simple docstring""" if str(_UpperCamelCase ).startswith("mps" ): _lowercase : Tuple = torch.manual_seed(_UpperCamelCase ) else: _lowercase : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _lowercase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCamelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCamelCase ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_save_load_local() def _lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
199
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _snake_case = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' _snake_case = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' _snake_case = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _A ( snake_case , snake_case ) -> int: return float((preds == labels).mean() ) def _A ( snake_case , snake_case ) -> Union[str, Any]: _lowercase : Any = simple_accuracy(snake_case , snake_case ) _lowercase : List[Any] = float(fa_score(y_true=snake_case , y_pred=snake_case ) ) return { "accuracy": acc, "f1": fa, } def _A ( snake_case , snake_case ) -> List[str]: _lowercase : Any = np.array(snake_case ) _lowercase : Any = np.array(snake_case ) _lowercase : str = en_sentvecs.shape[0] # mean centering _lowercase : List[Any] = en_sentvecs - np.mean(snake_case , axis=0 ) _lowercase : Tuple = in_sentvecs - np.mean(snake_case , axis=0 ) _lowercase : Any = cdist(snake_case , snake_case , "cosine" ) _lowercase : Any = np.array(range(snake_case ) ) _lowercase : Dict = sim.argsort(axis=1 )[:, :10] _lowercase : List[str] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def _lowerCamelCase ( self ): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_UpperCamelCase , _UpperCamelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_UpperCamelCase , _UpperCamelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_UpperCamelCase , _UpperCamelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
199
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowerCamelCase : Optional[int] =logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase : Any =''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class __a ( A__ ): _lowerCAmelCase : Union[PIL.Image.Image, np.ndarray] class __a ( A__ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE : PriorTransformer , SCREAMING_SNAKE_CASE : CLIPVisionModel , SCREAMING_SNAKE_CASE : CLIPImageProcessor , SCREAMING_SNAKE_CASE : HeunDiscreteScheduler , SCREAMING_SNAKE_CASE : ShapERenderer , ): '''simple docstring''' super().__init__() self.register_modules( prior=SCREAMING_SNAKE_CASE , image_encoder=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , renderer=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if latents is None: UpperCamelCase__ : int = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) UpperCamelCase__ : Optional[Any] = latents.to(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = latents * scheduler.init_noise_sigma return latents def __lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Any=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase__ : Dict = torch.device(F'cuda:{gpu_id}' ) UpperCamelCase__ : Union[str, Any] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property def __lowercase ( self : int ): '''simple docstring''' if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(SCREAMING_SNAKE_CASE , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(image[0] , torch.Tensor ): UpperCamelCase__ : List[Any] = torch.cat(SCREAMING_SNAKE_CASE , axis=0 ) if image[0].ndim == 4 else torch.stack(SCREAMING_SNAKE_CASE , axis=0 ) if not isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCamelCase__ : Any = self.image_processor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) UpperCamelCase__ : Optional[int] = image.to(dtype=self.image_encoder.dtype , device=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = self.image_encoder(SCREAMING_SNAKE_CASE )["last_hidden_state"] UpperCamelCase__ : Optional[int] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCamelCase__ : Any = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: UpperCamelCase__ : Tuple = torch.zeros_like(SCREAMING_SNAKE_CASE ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ : Tuple = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE : Union[PIL.Image.Image, List[PIL.Image.Image]] , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 25 , SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : float = 4.0 , SCREAMING_SNAKE_CASE : int = 64 , SCREAMING_SNAKE_CASE : Optional[str] = "pil" , SCREAMING_SNAKE_CASE : bool = True , ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCamelCase__ : str = 1 elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCamelCase__ : Tuple = image.shape[0] elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCamelCase__ : Tuple = len(SCREAMING_SNAKE_CASE ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(SCREAMING_SNAKE_CASE )}' ) UpperCamelCase__ : Tuple = self._execution_device UpperCamelCase__ : List[str] = batch_size * num_images_per_prompt UpperCamelCase__ : List[Any] = guidance_scale > 1.0 UpperCamelCase__ : Any = self._encode_image(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # prior self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = self.scheduler.timesteps UpperCamelCase__ : Any = self.prior.config.num_embeddings UpperCamelCase__ : Union[str, Any] = self.prior.config.embedding_dim UpperCamelCase__ : Dict = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCamelCase__ : Dict = latents.reshape(latents.shape[0] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ : Dict = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.prior( SCREAMING_SNAKE_CASE , timestep=SCREAMING_SNAKE_CASE , proj_embedding=SCREAMING_SNAKE_CASE , ).predicted_image_embedding # remove the variance UpperCamelCase__ , UpperCamelCase__ : Tuple = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCamelCase__ , UpperCamelCase__ : str = noise_pred.chunk(2 ) UpperCamelCase__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCamelCase__ : List[Any] = self.scheduler.step( SCREAMING_SNAKE_CASE , timestep=SCREAMING_SNAKE_CASE , sample=SCREAMING_SNAKE_CASE , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = [] for i, latent in enumerate(SCREAMING_SNAKE_CASE ): print() UpperCamelCase__ : Any = self.renderer.decode( latent[None, :] , SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = torch.stack(SCREAMING_SNAKE_CASE ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) UpperCamelCase__ : Tuple = images.cpu().numpy() if output_type == "pil": UpperCamelCase__ : Optional[Any] = [self.numpy_to_pil(SCREAMING_SNAKE_CASE ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE )
189
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase="shi-labs/oneformer_demo" ) -> Tuple: with open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: UpperCamelCase__ : Optional[Any] = json.load(__lowerCAmelCase ) UpperCamelCase__ : str = {} UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = [] for key, info in class_info.items(): UpperCamelCase__ : List[str] = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(__lowerCAmelCase ) ) UpperCamelCase__ : Dict = thing_ids UpperCamelCase__ : Optional[int] = class_names return metadata class __a ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str]=7 , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : Tuple=30 , SCREAMING_SNAKE_CASE : Dict=4_00 , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : List[str]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : Optional[Any]=10 , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : int=2_55 , SCREAMING_SNAKE_CASE : str="shi-labs/oneformer_demo" , SCREAMING_SNAKE_CASE : List[Any]="ade20k_panoptic.json" , SCREAMING_SNAKE_CASE : Tuple=10 , ): '''simple docstring''' UpperCamelCase__ : Tuple = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : Any = num_channels UpperCamelCase__ : Optional[int] = min_resolution UpperCamelCase__ : Union[str, Any] = max_resolution UpperCamelCase__ : Optional[int] = do_resize UpperCamelCase__ : List[Any] = {"shortest_edge": 32, "longest_edge": 13_33} if size is None else size UpperCamelCase__ : Dict = do_normalize UpperCamelCase__ : Optional[int] = image_mean UpperCamelCase__ : Union[str, Any] = image_std UpperCamelCase__ : Union[str, Any] = class_info_file UpperCamelCase__ : Tuple = prepare_metadata(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = num_text UpperCamelCase__ : int = repo_path # for the post_process_functions UpperCamelCase__ : int = 2 UpperCamelCase__ : str = 10 UpperCamelCase__ : Any = 10 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : List[Any] = 4 UpperCamelCase__ : Optional[int] = num_labels UpperCamelCase__ : Tuple = do_reduce_labels UpperCamelCase__ : List[str] = ignore_index def __lowercase ( self : int ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str]=False ): '''simple docstring''' if not batched: UpperCamelCase__ : str = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE , Image.Image ): UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = image.size else: UpperCamelCase__ , UpperCamelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ : Any = int(self.size["shortest_edge"] * h / w ) UpperCamelCase__ : Union[str, Any] = self.size["shortest_edge"] elif w > h: UpperCamelCase__ : Union[str, Any] = self.size["shortest_edge"] UpperCamelCase__ : int = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase__ : Optional[Any] = self.size["shortest_edge"] UpperCamelCase__ : str = self.size["shortest_edge"] else: UpperCamelCase__ : Tuple = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ : List[str] = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[0] )[0] UpperCamelCase__ : int = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width def __lowercase ( self : Any ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : Tuple = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _lowerCAmelCase : List[str] = image_processing_class def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "ignore_index" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "class_info_file" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "num_text" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "repo_path" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "metadata" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_reduce_labels" ) ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase__ : Optional[int] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : Dict = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase__ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase__ : List[Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCamelCase__ , UpperCamelCase__ : Tuple = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.image_processing_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Any="np" ): '''simple docstring''' UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCamelCase__ : Any = self.image_processing_tester.num_labels UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=SCREAMING_SNAKE_CASE ) if with_segmentation_maps: UpperCamelCase__ : Tuple = num_labels if is_instance_map: UpperCamelCase__ : List[str] = list(range(SCREAMING_SNAKE_CASE ) ) * 2 UpperCamelCase__ : Optional[Any] = dict(enumerate(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCamelCase__ : List[str] = [Image.fromarray(SCREAMING_SNAKE_CASE ) for annotation in annotations] UpperCamelCase__ : Optional[int] = image_processor( SCREAMING_SNAKE_CASE , ["semantic"] * len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , return_tensors="pt" , instance_id_to_semantic_id=SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE , ) return inputs def __lowercase ( self : int ): '''simple docstring''' pass def __lowercase ( self : str ): '''simple docstring''' def common(SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : str=None ): UpperCamelCase__ : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=SCREAMING_SNAKE_CASE , is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = inputs["mask_labels"] UpperCamelCase__ : Optional[Any] = inputs["class_labels"] UpperCamelCase__ : List[str] = inputs["pixel_values"] UpperCamelCase__ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text ) common() common(is_instance_map=SCREAMING_SNAKE_CASE ) common(is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type="pil" ) common(is_instance_map=SCREAMING_SNAKE_CASE , segmentation_type="pil" ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = np.zeros((20, 50) ) UpperCamelCase__ : int = 1 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : int = binary_mask_to_rle(SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : int = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(SCREAMING_SNAKE_CASE ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCamelCase__ : List[str] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCamelCase__ : Optional[Any] = fature_extractor.post_process_semantic_segmentation(SCREAMING_SNAKE_CASE , target_sizes=SCREAMING_SNAKE_CASE ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : List[str] = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Optional[int] = image_processor.post_process_instance_segmentation(SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCamelCase__ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase__ : Tuple = image_processor.post_process_panoptic_segmentation(SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
189
1
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> float: """simple docstring""" lowerCamelCase__: Tuple =[redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowerCamelCase__: List[str] =1 - (matter_density + radiation_density + dark_energy) lowerCamelCase__: List[str] =( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCamelCase__: int =hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __A = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
273
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __A = logging.get_logger(__name__) # General docstring __A = "ResNetConfig" # Base docstring __A = "microsoft/resnet-50" __A = [1, 2048, 7, 7] # Image classification docstring __A = "microsoft/resnet-50" __A = "tiger cat" __A = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu") ->Any: '''simple docstring''' super().__init__() lowerCamelCase__: Dict =nn.Convad( UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=kernel_size // 2 , bias=UpperCAmelCase_) lowerCamelCase__: Any =nn.BatchNormad(UpperCAmelCase_) lowerCamelCase__: Optional[int] =ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tensor) ->Tensor: '''simple docstring''' lowerCamelCase__: List[Any] =self.convolution(UpperCAmelCase_) lowerCamelCase__: List[str] =self.normalization(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =self.activation(UpperCAmelCase_) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : ResNetConfig) ->str: '''simple docstring''' super().__init__() lowerCamelCase__: Tuple =ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act) lowerCamelCase__: Optional[int] =nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1) lowerCamelCase__: Optional[Any] =config.num_channels def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Tensor) ->Tensor: '''simple docstring''' lowerCamelCase__: Optional[Any] =pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration.") lowerCamelCase__: Dict =self.embedder(UpperCAmelCase_) lowerCamelCase__: str =self.pooler(UpperCAmelCase_) return embedding class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2) ->Any: '''simple docstring''' super().__init__() lowerCamelCase__: Optional[Any] =nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , stride=UpperCAmelCase_ , bias=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =nn.BatchNormad(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tensor) ->Tensor: '''simple docstring''' lowerCamelCase__: Optional[int] =self.convolution(UpperCAmelCase_) lowerCamelCase__: Any =self.normalization(UpperCAmelCase_) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu") ->Tuple: '''simple docstring''' super().__init__() lowerCamelCase__: Tuple =in_channels != out_channels or stride != 1 lowerCamelCase__: str =( ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_) if should_apply_shortcut else nn.Identity() ) lowerCamelCase__: Tuple =nn.Sequential( ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , activation=UpperCAmelCase_) , ) lowerCamelCase__: Optional[Any] =ACTaFN[activation] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Any) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =hidden_state lowerCamelCase__: List[str] =self.layer(UpperCAmelCase_) lowerCamelCase__: str =self.shortcut(UpperCAmelCase_) hidden_state += residual lowerCamelCase__: Dict =self.activation(UpperCAmelCase_) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" , UpperCAmelCase_ : int = 4) ->Tuple: '''simple docstring''' super().__init__() lowerCamelCase__: Union[str, Any] =in_channels != out_channels or stride != 1 lowerCamelCase__: List[str] =out_channels // reduction lowerCamelCase__: Optional[Any] =( ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_) if should_apply_shortcut else nn.Identity() ) lowerCamelCase__: Dict =nn.Sequential( ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , activation=UpperCAmelCase_) , ) lowerCamelCase__: Tuple =ACTaFN[activation] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' lowerCamelCase__: str =hidden_state lowerCamelCase__: Optional[Any] =self.layer(UpperCAmelCase_) lowerCamelCase__: List[Any] =self.shortcut(UpperCAmelCase_) hidden_state += residual lowerCamelCase__: Tuple =self.activation(UpperCAmelCase_) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : ResNetConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , ) ->Dict: '''simple docstring''' super().__init__() lowerCamelCase__: List[Any] =ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer lowerCamelCase__: List[str] =nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ , activation=config.hidden_act) , *[layer(UpperCAmelCase_ , UpperCAmelCase_ , activation=config.hidden_act) for _ in range(depth - 1)] , ) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tensor) ->Tensor: '''simple docstring''' lowerCamelCase__: List[Any] =input for layer in self.layers: lowerCamelCase__: Any =layer(UpperCAmelCase_) return hidden_state class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : ResNetConfig) ->Any: '''simple docstring''' super().__init__() lowerCamelCase__: Tuple =nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) lowerCamelCase__: int =zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(UpperCAmelCase_ , config.depths[1:]): self.stages.append(ResNetStage(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , depth=UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True) ->BaseModelOutputWithNoAttention: '''simple docstring''' lowerCamelCase__: str =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCamelCase__: Union[str, Any] =hidden_states + (hidden_state,) lowerCamelCase__: str =stage_module(UpperCAmelCase_) if output_hidden_states: lowerCamelCase__: Optional[int] =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ResNetConfig lowercase_ = "resnet" lowercase_ = "pixel_values" lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->Any: '''simple docstring''' if isinstance(UpperCAmelCase_ , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu") elif isinstance(UpperCAmelCase_ , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]=False) ->Any: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: List[str] =value __A = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare ResNet model outputting raw features without any specific head on top." , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Union[str, Any] , UpperCAmelCase_ : str) ->int: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: str =config lowerCamelCase__: str =ResNetEmbeddings(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =ResNetEncoder(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None) ->BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' lowerCamelCase__: Optional[int] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__: Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__: int =self.embedder(UpperCAmelCase_) lowerCamelCase__: int =self.encoder( UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_) lowerCamelCase__: int =encoder_outputs[0] lowerCamelCase__: Tuple =self.pooler(UpperCAmelCase_) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Any: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: int =config.num_labels lowerCamelCase__: Optional[Any] =ResNetModel(UpperCAmelCase_) # classification head lowerCamelCase__: Optional[Any] =nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->ImageClassifierOutputWithNoAttention: '''simple docstring''' lowerCamelCase__: Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__: List[Any] =self.resnet(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_) lowerCamelCase__: int =outputs.pooler_output if return_dict else outputs[1] lowerCamelCase__: Dict =self.classifier(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase__: Dict ="regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase__: Tuple ="single_label_classification" else: lowerCamelCase__: Optional[int] ="multi_label_classification" if self.config.problem_type == "regression": lowerCamelCase__: Dict =MSELoss() if self.num_labels == 1: lowerCamelCase__: str =loss_fct(logits.squeeze() , labels.squeeze()) else: lowerCamelCase__: int =loss_fct(UpperCAmelCase_ , UpperCAmelCase_) elif self.config.problem_type == "single_label_classification": lowerCamelCase__: List[Any] =CrossEntropyLoss() lowerCamelCase__: int =loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": lowerCamelCase__: List[str] =BCEWithLogitsLoss() lowerCamelCase__: int =loss_fct(UpperCAmelCase_ , UpperCAmelCase_) if not return_dict: lowerCamelCase__: List[str] =(logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states) @add_start_docstrings( "\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n " , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : List[Any]) ->Dict: '''simple docstring''' super().__init__(UpperCAmelCase_) super()._init_backbone(UpperCAmelCase_) lowerCamelCase__: int =[config.embedding_size] + config.hidden_sizes lowerCamelCase__: List[Any] =ResNetEmbeddings(UpperCAmelCase_) lowerCamelCase__: Optional[int] =ResNetEncoder(UpperCAmelCase_) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_) @replace_return_docstrings(output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None) ->BackboneOutput: '''simple docstring''' lowerCamelCase__: Optional[Any] =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__: Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__: int =self.embedder(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =self.encoder(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_) lowerCamelCase__: Any =outputs.hidden_states lowerCamelCase__: int =() for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowerCamelCase__: Dict =(feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase_ , )
273
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __lowerCamelCase : Optional[Any] = get_logger(__name__) __lowerCamelCase : Union[str, Any] = Path(__file__).parent / '''model_card_template.md''' __lowerCamelCase : Any = uuida().hex __lowerCamelCase : str = os.getenv('''HF_HUB_OFFLINE''', '''''').upper() in ENV_VARS_TRUE_VALUES __lowerCamelCase : int = os.getenv('''DISABLE_TELEMETRY''', '''''').upper() in ENV_VARS_TRUE_VALUES __lowerCamelCase : List[str] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[Dict, str, None] = None ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase , __UpperCamelCase ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): ua += "; " + user_agent return ua def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[str] = None ) -> Optional[Any]: """simple docstring""" if token is None: SCREAMING_SNAKE_CASE__ = HfFolder.get_token() if organization is None: SCREAMING_SNAKE_CASE__ = whoami(__UpperCamelCase )["""name"""] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ) -> Any: """simple docstring""" if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(__UpperCamelCase , """local_rank""" ) and args.local_rank not in [-1, 0]: return SCREAMING_SNAKE_CASE__ = args.hub_token if hasattr(__UpperCamelCase , """hub_token""" ) else None SCREAMING_SNAKE_CASE__ = get_full_repo_name(__UpperCamelCase , token=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__UpperCamelCase , model_name=__UpperCamelCase , repo_name=__UpperCamelCase , dataset_name=args.dataset_name if hasattr(__UpperCamelCase , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(__UpperCamelCase , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) SCREAMING_SNAKE_CASE__ = os.path.join(args.output_dir , """README.md""" ) model_card.save(__UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[str] , __UpperCamelCase : Optional[str] = None ) -> Union[str, Any]: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash SCREAMING_SNAKE_CASE__ = str(Path(__UpperCamelCase ).as_posix() ) SCREAMING_SNAKE_CASE__ = re.search(r"""snapshots/([^/]+)/""" , __UpperCamelCase ) if search is None: return None SCREAMING_SNAKE_CASE__ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __lowerCamelCase : int = os.path.expanduser( os.getenv('''HF_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''huggingface''')) ) __lowerCamelCase : str = os.path.join(hf_cache_home, '''diffusers''') def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[str] = None ) -> None: """simple docstring""" if new_cache_dir is None: SCREAMING_SNAKE_CASE__ = DIFFUSERS_CACHE if old_cache_dir is None: SCREAMING_SNAKE_CASE__ = old_diffusers_cache SCREAMING_SNAKE_CASE__ = Path(__UpperCamelCase ).expanduser() SCREAMING_SNAKE_CASE__ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): SCREAMING_SNAKE_CASE__ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase , __UpperCamelCase ) try: os.symlink(__UpperCamelCase , __UpperCamelCase ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __lowerCamelCase : List[str] = os.path.join(DIFFUSERS_CACHE, '''version_diffusers_cache.txt''') if not os.path.isfile(cache_version_file): __lowerCamelCase : List[str] = 0 else: with open(cache_version_file) as f: try: __lowerCamelCase : Dict = int(f.read()) except ValueError: __lowerCamelCase : Tuple = 0 if cache_version < 1: __lowerCamelCase : Union[str, Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( '''The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ''' '''existing cached models. This is a one-time operation, you can interrupt it or run it ''' '''later by calling `diffusers.utils.hub_utils.move_cache()`.''' ) try: move_cache() except Exception as e: __lowerCamelCase : Tuple = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ '''file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ''' '''message and we will do our best to help.''' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, '''w''') as f: f.write('''1''') except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ '''the directory exists and can be written to.''' ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> str: """simple docstring""" if variant is not None: SCREAMING_SNAKE_CASE__ = weights_name.split(""".""" ) SCREAMING_SNAKE_CASE__ = splits[:-1] + [variant] + splits[-1:] SCREAMING_SNAKE_CASE__ = """.""".join(__UpperCamelCase ) return weights_name def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , *, __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) ): # Load from a PyTorch checkpoint SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ): SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("""0.20.0""" ) ): try: SCREAMING_SNAKE_CASE__ = hf_hub_download( __UpperCamelCase , filename=_add_variant(__UpperCamelCase , __UpperCamelCase ) , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , user_agent=__UpperCamelCase , subfolder=__UpperCamelCase , revision=revision or commit_hash , ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __UpperCamelCase , ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase , __UpperCamelCase )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase , __UpperCamelCase )}' so that the correct variant file can be added.""" , __UpperCamelCase , ) try: # 2. Load model file as usual SCREAMING_SNAKE_CASE__ = hf_hub_download( __UpperCamelCase , filename=__UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , user_agent=__UpperCamelCase , subfolder=__UpperCamelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ """this model name. Check the model page at """ f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
219
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__UpperCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__UpperCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__UpperCamelCase ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE__ = script_fpath.stem SCREAMING_SNAKE_CASE__ = importlib.import_module(__UpperCamelCase ) # Patch sys.argv SCREAMING_SNAKE_CASE__ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
219
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _a : List[str] = True except (ImportError, AttributeError): _a : List[str] = object def _A ( *UpperCamelCase_ : Tuple, **UpperCamelCase_ : Tuple) -> Dict: '''simple docstring''' pass _a : str = False _a : Any = logging.get_logger('transformers-cli/serving') def _A ( UpperCamelCase_ : Namespace) -> Any: '''simple docstring''' __lowercase = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(UpperCamelCase_, args.host, args.port, args.workers) class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : dict class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : List[str] __UpperCAmelCase : Optional[List[int]] class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : str class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any class _lowerCAmelCase ( lowercase ): """simple docstring""" @staticmethod def _lowercase ( UpperCAmelCase__ : ArgumentParser ): __lowercase = parser.add_parser( "serve", help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task", type=UpperCAmelCase__, choices=get_supported_tasks(), help="The task to run the pipeline on", ) serve_parser.add_argument("--host", type=UpperCAmelCase__, default="localhost", help="Interface the server will listen on." ) serve_parser.add_argument("--port", type=UpperCAmelCase__, default=8_8_8_8, help="Port the serving will listen to." ) serve_parser.add_argument("--workers", type=UpperCAmelCase__, default=1, help="Number of http workers" ) serve_parser.add_argument("--model", type=UpperCAmelCase__, help="Model's name or path to stored model." ) serve_parser.add_argument("--config", type=UpperCAmelCase__, help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer", type=UpperCAmelCase__, help="Tokenizer name to use." ) serve_parser.add_argument( "--device", type=UpperCAmelCase__, default=-1, help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)", ) serve_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self : str, UpperCAmelCase__ : Pipeline, UpperCAmelCase__ : str, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): __lowercase = pipeline __lowercase = host __lowercase = port __lowercase = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(F"""Serving model over {host}:{port}""" ) __lowercase = FastAPI( routes=[ APIRoute( "/", self.model_info, response_model=UpperCAmelCase__, response_class=UpperCAmelCase__, methods=["GET"], ), APIRoute( "/tokenize", self.tokenize, response_model=UpperCAmelCase__, response_class=UpperCAmelCase__, methods=["POST"], ), APIRoute( "/detokenize", self.detokenize, response_model=UpperCAmelCase__, response_class=UpperCAmelCase__, methods=["POST"], ), APIRoute( "/forward", self.forward, response_model=UpperCAmelCase__, response_class=UpperCAmelCase__, methods=["POST"], ), ], timeout=6_0_0, ) def _lowercase ( self : int ): run(self._app, host=self.host, port=self.port, workers=self.workers ) def _lowercase ( self : Any ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _lowercase ( self : Dict, UpperCAmelCase__ : str = Body(UpperCAmelCase__, embed=UpperCAmelCase__ ), UpperCAmelCase__ : bool = Body(UpperCAmelCase__, embed=UpperCAmelCase__ ) ): try: __lowercase = self._pipeline.tokenizer.tokenize(UpperCAmelCase__ ) if return_ids: __lowercase = self._pipeline.tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) return ServeTokenizeResult(tokens=UpperCAmelCase__, tokens_ids=UpperCAmelCase__ ) else: return ServeTokenizeResult(tokens=UpperCAmelCase__ ) except Exception as e: raise HTTPException(status_code=5_0_0, detail={"model": "", "error": str(UpperCAmelCase__ )} ) def _lowercase ( self : Tuple, UpperCAmelCase__ : List[int] = Body(UpperCAmelCase__, embed=UpperCAmelCase__ ), UpperCAmelCase__ : bool = Body(UpperCAmelCase__, embed=UpperCAmelCase__ ), UpperCAmelCase__ : bool = Body(UpperCAmelCase__, embed=UpperCAmelCase__ ), ): try: __lowercase = self._pipeline.tokenizer.decode(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return ServeDeTokenizeResult(model="", text=UpperCAmelCase__ ) except Exception as e: raise HTTPException(status_code=5_0_0, detail={"model": "", "error": str(UpperCAmelCase__ )} ) async def _lowercase ( self : Tuple, UpperCAmelCase__ : str=Body(UpperCAmelCase__, embed=UpperCAmelCase__ ) ): # Check we don't have empty string if len(UpperCAmelCase__ ) == 0: return ServeForwardResult(output=[], attention=[] ) try: # Forward through the model __lowercase = self._pipeline(UpperCAmelCase__ ) return ServeForwardResult(output=UpperCAmelCase__ ) except Exception as e: raise HTTPException(5_0_0, {"error": str(UpperCAmelCase__ )} )
363
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any], UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Dict, UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : Dict, UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : str, UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Tuple ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
144
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class snake_case_ ( _lowerCamelCase ): __A : Union[str, Any] = 42 __A : Union[str, Any] = 42 __A : Tuple = None class snake_case_ ( _lowerCamelCase ,_lowerCamelCase ): __A : str = 2 @register_to_config def __init__( self : int , lowercase_ : List[Any] = 0.02 , lowercase_ : str = 1_00 , lowercase_ : Tuple = 1.0_07 , lowercase_ : Optional[int] = 80 , lowercase_ : Dict = 0.05 , lowercase_ : Any = 50 , ) -> List[str]: lowercase__ : List[str] = sigma_max # setable values lowercase__ : str = None lowercase__ : Union[str, Any] = None lowercase__ : Dict = None # sigma(t_i) def __UpperCamelCase ( self : List[str] , lowercase_ : List[str] , lowercase_ : Union[str, Any] = None ) -> Optional[Any]: return sample def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Any = None ) -> Union[str, Any]: lowercase__ : Any = num_inference_steps lowercase__ : Optional[int] = np.arange(0 , self.num_inference_steps )[::-1].copy() lowercase__ : Tuple = torch.from_numpy(lowerCAmelCase_ ).to(lowerCAmelCase_ ) lowercase__ : Optional[int] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowercase__ : List[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa , device=lowerCAmelCase_ ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : int , lowercase_ : List[Any] = None ) -> Optional[int]: if self.config.s_min <= sigma <= self.config.s_max: lowercase__ : int = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowercase__ : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) lowercase__ : Tuple = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCAmelCase_ ).to(sample.device ) lowercase__ : str = sigma + gamma * sigma lowercase__ : Optional[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __UpperCamelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Tuple = True , ) -> Union[str, Any]: lowercase__ : Any = sample_hat + sigma_hat * model_output lowercase__ : List[Any] = (sample_hat - pred_original_sample) / sigma_hat lowercase__ : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : int , lowercase_ : int , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Any = True , ) -> Tuple: lowercase__ : Dict = sample_prev + sigma_prev * model_output lowercase__ : Tuple = (sample_prev - pred_original_sample) / sigma_prev lowercase__ : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : str ) -> Optional[Any]: raise NotImplementedError()
87
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase : Optional[Any] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") lowercase : Tuple = parser.parse_args() lowercase : Optional[int] = "cpu" lowercase : Optional[Any] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" lowercase : Optional[int] = "path-to-your-trained-model" lowercase : List[str] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase : Dict = pipe.to(device) # to channels last lowercase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) lowercase : int = pipe.vae.to(memory_format=torch.channels_last) lowercase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase : Optional[int] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase : Any = torch.randn(2, 4, 64, 64) lowercase : Optional[int] = torch.rand(1) * 999 lowercase : Optional[Any] = torch.randn(2, 77, 768) lowercase : Optional[Any] = (sample, timestep, encoder_hidden_status) try: lowercase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase : Tuple = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase : Optional[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase : Tuple = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase : List[str] = 666 lowercase : Tuple = torch.Generator(device).manual_seed(seed) lowercase : Union[str, Any] = {"generator": generator} if args.steps is not None: lowercase : Dict = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase : List[str] = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
42
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = TextToVideoSDPipeline snake_case__ : int = TEXT_TO_IMAGE_PARAMS snake_case__ : Any = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. snake_case__ : Union[str, Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase = CLIPTextModel(__lowerCAmelCase ) lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=0 ): """simple docstring""" if str(__lowerCAmelCase ).startswith("""mps""" ): lowercase = torch.manual_seed(__lowerCAmelCase ) else: lowercase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def A__ ( self ): """simple docstring""" lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = TextToVideoSDPipeline(**__lowerCAmelCase ) lowercase = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = self.get_dummy_inputs(__lowerCAmelCase ) lowercase = """np""" lowercase = sd_pipe(**__lowerCAmelCase ).frames lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowercase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowerCAmelCase , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowerCAmelCase , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) lowercase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase = pipe.to("""cuda""" ) lowercase = """Spiderman is surfing""" lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=25 , output_type="""pt""" ).frames lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def A__ ( self ): """simple docstring""" lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) lowercase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) lowercase = pipe.to("""cuda""" ) lowercase = """Spiderman is surfing""" lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type="""pt""" ).frames lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
350
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
32
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {} class A ( UpperCamelCase_ ): UpperCamelCase__ : int ='llama' UpperCamelCase__ : List[Any] =['past_key_values'] def __init__( self : str , lowercase_ : int=3_2000 , lowercase_ : Optional[int]=4096 , lowercase_ : List[str]=1_1008 , lowercase_ : Dict=32 , lowercase_ : List[str]=32 , lowercase_ : Any=None , lowercase_ : Union[str, Any]="silu" , lowercase_ : Tuple=2048 , lowercase_ : Optional[int]=0.02 , lowercase_ : List[Any]=1E-6 , lowercase_ : int=True , lowercase_ : Union[str, Any]=0 , lowercase_ : Dict=1 , lowercase_ : Dict=2 , lowercase_ : int=1 , lowercase_ : Any=False , lowercase_ : Dict=None , **lowercase_ : Union[str, Any] , ) -> Any: """simple docstring""" _lowerCamelCase : int =vocab_size _lowerCamelCase : List[str] =max_position_embeddings _lowerCamelCase : List[str] =hidden_size _lowerCamelCase : Optional[Any] =intermediate_size _lowerCamelCase : Dict =num_hidden_layers _lowerCamelCase : Optional[int] =num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCamelCase : List[str] =num_attention_heads _lowerCamelCase : List[Any] =num_key_value_heads _lowerCamelCase : Optional[int] =hidden_act _lowerCamelCase : int =initializer_range _lowerCamelCase : Union[str, Any] =rms_norm_eps _lowerCamelCase : Tuple =pretraining_tp _lowerCamelCase : int =use_cache _lowerCamelCase : List[str] =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , ) def lowerCamelCase ( self : List[str] ) -> Any: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'''got {self.rope_scaling}''' ) _lowerCamelCase : Union[str, Any] =self.rope_scaling.get('type' , lowercase_ ) _lowerCamelCase : Optional[Any] =self.rope_scaling.get('factor' , lowercase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
199
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( UpperCamelCase_ ): UpperCamelCase__ : Any =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(('num_inference_steps', 25),) def lowerCamelCase ( self : Optional[Any] , **lowercase_ : List[Any] ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] ={ 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**lowercase_ ) return config def lowerCamelCase ( self : Optional[int] , lowercase_ : Optional[Any]=0 , **lowercase_ : Any ) -> List[Any]: """simple docstring""" _lowerCamelCase : List[Any] =dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[Any] =kwargs.pop('num_inference_steps' , lowercase_ ) _lowerCamelCase : Optional[int] =self.dummy_sample _lowerCamelCase : Dict =0.1 * sample _lowerCamelCase : Optional[int] =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase : int =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : str =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals _lowerCamelCase : int =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) _lowerCamelCase : Dict =scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals _lowerCamelCase : str =dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase , _lowerCamelCase : Any =sample, sample for t in range(lowercase_ , time_step + scheduler.config.solver_order + 1 ): _lowerCamelCase : List[str] =scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : Optional[Any] =new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def lowerCamelCase ( self : str , lowercase_ : str=0 , **lowercase_ : List[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : int =dict(self.forward_default_kwargs ) _lowerCamelCase : Dict =kwargs.pop('num_inference_steps' , lowercase_ ) _lowerCamelCase : Optional[int] =self.dummy_sample _lowerCamelCase : Any =0.1 * sample _lowerCamelCase : int =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _lowerCamelCase : Optional[int] =self.get_scheduler_config() _lowerCamelCase : Any =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase : Dict =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) _lowerCamelCase : Optional[int] =scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase : str =dummy_past_residuals[: new_scheduler.config.solver_order] _lowerCamelCase : Dict =scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : Dict =new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Any , lowercase_ : Union[str, Any]=None , **lowercase_ : List[str] ) -> str: """simple docstring""" if scheduler is None: _lowerCamelCase : Tuple =self.scheduler_classes[0] _lowerCamelCase : Optional[int] =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : Union[str, Any] =scheduler_class(**lowercase_ ) _lowerCamelCase : List[Any] =self.scheduler_classes[0] _lowerCamelCase : Optional[Any] =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) _lowerCamelCase : str =10 _lowerCamelCase : Union[str, Any] =self.dummy_model() _lowerCamelCase : Dict =self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : List[str] =model(lowercase_ , lowercase_ ) _lowerCamelCase : Optional[int] =scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" _lowerCamelCase : Any =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCamelCase : int =50 _lowerCamelCase : Optional[int] =self.dummy_model() _lowerCamelCase : Tuple =self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _lowerCamelCase : Any =model(lowercase_ , lowercase_ ) _lowerCamelCase : List[str] =scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample _lowerCamelCase : int =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2574 ) < 1E-3 def lowerCamelCase ( self : Any ) -> List[str]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[int] =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _lowerCamelCase : Optional[Any] =self.full_loop(scheduler=lowercase_ ) _lowerCamelCase : Tuple =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 _lowerCamelCase : Dict =DEISMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Optional[int] =DPMSolverMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : Union[str, Any] =UniPCMultistepScheduler.from_config(scheduler.config ) _lowerCamelCase : List[str] =DPMSolverSinglestepScheduler.from_config(scheduler.config ) _lowerCamelCase : List[Any] =self.full_loop(scheduler=lowercase_ ) _lowerCamelCase : List[str] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def lowerCamelCase ( self : str ) -> Dict: """simple docstring""" self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , algorithm_type='dpmsolver++' , solver_order=lowercase_ , solver_type=lowercase_ , ) def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , algorithm_type=lowercase_ , ) _lowerCamelCase : Any =self.full_loop( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , algorithm_type=lowercase_ , ) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def lowerCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowerCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" self.check_over_configs(variance_type=lowercase_ ) self.check_over_configs(variance_type='learned_range' ) def lowerCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowercase_ , time_step=0 ) def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCamelCase : Dict =self.full_loop() _lowerCamelCase : Dict =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2791 ) < 1E-3 def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : str =self.full_loop(use_karras_sigmas=lowercase_ ) _lowerCamelCase : Optional[Any] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2248 ) < 1E-3 def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _lowerCamelCase : Any =self.full_loop(prediction_type='v_prediction' ) _lowerCamelCase : Dict =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.1453 ) < 1E-3 def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _lowerCamelCase : str =self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=lowercase_ ) _lowerCamelCase : List[str] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.0649 ) < 1E-3 def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _lowerCamelCase : List[str] =self.scheduler_classes[0] _lowerCamelCase : List[str] =self.get_scheduler_config(thresholding=lowercase_ , dynamic_thresholding_ratio=0 ) _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) _lowerCamelCase : Optional[Any] =10 _lowerCamelCase : Optional[int] =self.dummy_model() _lowerCamelCase : List[Any] =self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCamelCase : str =model(lowercase_ , lowercase_ ) _lowerCamelCase : Any =scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample assert sample.dtype == torch.floataa
199
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case : Union[List[PIL.Image.Image], np.ndarray] _snake_case : Optional[List[bool]] _snake_case : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
359
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCAmelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } __UpperCAmelCase = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off __UpperCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = ['''input_ids''', '''attention_mask'''] _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self , _UpperCamelCase , _UpperCamelCase="<s>" , _UpperCamelCase="</s>" , _UpperCamelCase="</s>" , _UpperCamelCase="<s>" , _UpperCamelCase="<unk>" , _UpperCamelCase="<pad>" , _UpperCamelCase="<mask>" , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase=None , **_UpperCamelCase , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : List[Any] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token UpperCAmelCase_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenizer_file=_UpperCamelCase , src_lang=_UpperCamelCase , tgt_lang=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) UpperCAmelCase_ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[int] = len(self.sp_model ) UpperCAmelCase_ : str = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCamelCase ) } UpperCAmelCase_ : int = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase_ : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase_ : Any = src_lang if src_lang is not None else 'en_XX' UpperCAmelCase_ : Any = self.lang_code_to_id[self._src_lang] UpperCAmelCase_ : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Dict: UpperCAmelCase_ : Optional[int] = self.__dict__.copy() UpperCAmelCase_ : str = None UpperCAmelCase_ : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __UpperCAmelCase ( self ) -> Tuple: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCAmelCase ( self ) -> str: return self._src_lang @src_lang.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) UpperCAmelCase_ : Tuple = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCamelCase )) + ([0] * len(_UpperCamelCase )) + suffix_ones def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> List[int]: UpperCAmelCase_ : int = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) UpperCAmelCase_ : Optional[int] = src_lang UpperCAmelCase_ : Dict = self(_UpperCamelCase , add_special_tokens=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : int = self.convert_tokens_to_ids(_UpperCamelCase ) UpperCAmelCase_ : Any = tgt_lang_id return inputs def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : str = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : Dict = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ''.join(_UpperCamelCase ).replace(_UpperCamelCase , ' ' ).strip() return out_string def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase_ : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , 'wb' ) as fi: UpperCAmelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = "en_XX" , _UpperCamelCase = None , _UpperCamelCase = "ro_RO" , **_UpperCamelCase , ) -> BatchEncoding: UpperCAmelCase_ : Union[str, Any] = src_lang UpperCAmelCase_ : Dict = tgt_lang return super().prepare_seqaseq_batch(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self ) -> Optional[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Any = self.lang_code_to_id[src_lang] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [self.eos_token_id, self.cur_lang_code] def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Any = self.lang_code_to_id[lang] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = [self.eos_token_id, self.cur_lang_code]
145
0
'''simple docstring''' from collections import namedtuple UpperCAmelCase : str = namedtuple('from_to', 'from_ to') UpperCAmelCase : Dict = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1_0_0_0), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 3_5.3_1_4_7), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def a__ ( a__ , a__ , a__ ): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + """, """.join(_A ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + """, """.join(_A ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
267
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : str = '''EncodecFeatureExtractor''' UpperCAmelCase_ : Dict = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = self.feature_extractor lowerCAmelCase = False def a_ ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=__lowerCAmelCase , language=__lowerCAmelCase , no_timestamps=__lowerCAmelCase) def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = kwargs.pop("""audio""" , __lowerCAmelCase) lowerCAmelCase = kwargs.pop("""sampling_rate""" , __lowerCAmelCase) lowerCAmelCase = kwargs.pop("""text""" , __lowerCAmelCase) if len(__lowerCAmelCase) > 0: lowerCAmelCase = args[0] lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""") if text is not None: lowerCAmelCase = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase) if audio is not None: lowerCAmelCase = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: lowerCAmelCase = audio_inputs["""padding_mask"""] return inputs def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = kwargs.pop("""audio""" , __lowerCAmelCase) lowerCAmelCase = kwargs.pop("""padding_mask""" , __lowerCAmelCase) if len(__lowerCAmelCase) > 0: lowerCAmelCase = args[0] lowerCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(__lowerCAmelCase , padding_mask=__lowerCAmelCase) else: return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase = None): """simple docstring""" lowerCAmelCase = to_numpy(__lowerCAmelCase) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = audio_values.shape if padding_mask is None: return list(__lowerCAmelCase) lowerCAmelCase = to_numpy(__lowerCAmelCase) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase = seq_len - padding_mask.shape[-1] lowerCAmelCase = 1 - self.feature_extractor.padding_value lowerCAmelCase = np.pad(__lowerCAmelCase , ((0, 0), (0, difference)) , """constant""" , constant_values=__lowerCAmelCase) lowerCAmelCase = audio_values.tolist() for i in range(__lowerCAmelCase): lowerCAmelCase = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase = sliced_audio.reshape(__lowerCAmelCase , -1) return audio_values
272
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : Optional[int] = False return options def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
318
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : str = pad_token_id SCREAMING_SNAKE_CASE_ : Optional[int] = max_length SCREAMING_SNAKE_CASE_ : Dict = vocab SCREAMING_SNAKE_CASE_ : Dict = merges SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab() return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_) return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]): '''simple docstring''' return cls(**lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs( lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
1
"""simple docstring""" from collections.abc import Callable def _snake_case ( UpperCamelCase : Callable[[float], float] , UpperCamelCase : float , UpperCamelCase : float ): UpperCAmelCase : float = a UpperCAmelCase : float = b if function(lowerCamelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCamelCase__ ) == 0: return b elif ( function(lowerCamelCase__ ) * function(lowerCamelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: UpperCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCamelCase__ ) == 0: return mid elif function(lowerCamelCase__ ) * function(lowerCamelCase__ ) < 0: UpperCAmelCase : Tuple = mid else: UpperCAmelCase : List[str] = mid UpperCAmelCase : Dict = start + (end - start) / 2.0 return mid def _snake_case ( UpperCamelCase : float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
109
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :jnp.ndarray _UpperCAmelCase :jnp.ndarray class lowercase__ ( nn.Module ): _UpperCAmelCase :int _UpperCAmelCase :Tuple[int] = (16, 32, 96, 256) _UpperCAmelCase :jnp.dtype = jnp.floataa def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Optional[int] =nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase_ : Any =[] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase_ : Union[str, Any] =self.block_out_channels[i] lowerCamelCase_ : Any =self.block_out_channels[i + 1] lowerCamelCase_ : List[str] =nn.Conv( snake_case__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCamelCase_ : List[str] =nn.Conv( snake_case__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCamelCase_ : Union[str, Any] =blocks lowerCamelCase_ : Optional[Any] =nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Tuple , snake_case__ : Union[str, Any] ): lowerCamelCase_ : int =self.conv_in(snake_case__ ) lowerCamelCase_ : List[Any] =nn.silu(snake_case__ ) for block in self.blocks: lowerCamelCase_ : Union[str, Any] =block(snake_case__ ) lowerCamelCase_ : List[str] =nn.silu(snake_case__ ) lowerCamelCase_ : Tuple =self.conv_out(snake_case__ ) return embedding @flax_register_to_config class lowercase__ ( nn.Module, snake_case__, snake_case__ ): _UpperCAmelCase :int = 32 _UpperCAmelCase :int = 4 _UpperCAmelCase :Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCAmelCase :Union[bool, Tuple[bool]] = False _UpperCAmelCase :Tuple[int] = (320, 640, 1280, 1280) _UpperCAmelCase :int = 2 _UpperCAmelCase :Union[int, Tuple[int]] = 8 _UpperCAmelCase :Optional[Union[int, Tuple[int]]] = None _UpperCAmelCase :int = 1280 _UpperCAmelCase :float = 0.0 _UpperCAmelCase :bool = False _UpperCAmelCase :jnp.dtype = jnp.floataa _UpperCAmelCase :bool = True _UpperCAmelCase :int = 0 _UpperCAmelCase :str = "rgb" _UpperCAmelCase :Tuple[int] = (16, 32, 96, 256) def UpperCAmelCase__ ( self : int , snake_case__ : jax.random.KeyArray ): # init input tensors lowerCamelCase_ : str =(1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ : List[Any] =jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCamelCase_ : int =jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase_ : Union[str, Any] =jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase_ : Optional[int] =(1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase_ : Any =jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCamelCase_ , lowerCamelCase_ : Any =jax.random.split(snake_case__ ) lowerCamelCase_ : Tuple ={"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Union[str, Any] =self.block_out_channels lowerCamelCase_ : Optional[int] =block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ : int =self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ : Any =nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase_ : Union[str, Any] =FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase_ : List[Any] =FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) lowerCamelCase_ : List[str] =FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase_ : Optional[int] =self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : str =(only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : Any =(num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ : Optional[int] =[] lowerCamelCase_ : Optional[Any] =[] lowerCamelCase_ : str =block_out_channels[0] lowerCamelCase_ : str =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ : Union[str, Any] =output_channel lowerCamelCase_ : Tuple =block_out_channels[i] lowerCamelCase_ : List[Any] =i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ : Tuple =FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase_ : Union[str, Any] =FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) for _ in range(self.layers_per_block ): lowerCamelCase_ : List[Any] =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) if not is_final_block: lowerCamelCase_ : Any =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) lowerCamelCase_ : List[str] =down_blocks lowerCamelCase_ : int =controlnet_down_blocks # mid lowerCamelCase_ : int =block_out_channels[-1] lowerCamelCase_ : str =FlaxUNetMidBlockaDCrossAttn( in_channels=snake_case__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase_ : List[str] =nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Tuple , snake_case__ : Dict , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : float = 1.0 , snake_case__ : bool = True , snake_case__ : bool = False , ): lowerCamelCase_ : int =self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase_ : Optional[Any] =jnp.flip(snake_case__ , axis=1 ) # 1. time if not isinstance(snake_case__ , jnp.ndarray ): lowerCamelCase_ : Dict =jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ : Any =timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ : Optional[Any] =jnp.expand_dims(snake_case__ , 0 ) lowerCamelCase_ : Any =self.time_proj(snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.time_embedding(snake_case__ ) # 2. pre-process lowerCamelCase_ : List[str] =jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCamelCase_ : Union[str, Any] =self.conv_in(snake_case__ ) lowerCamelCase_ : List[str] =jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCamelCase_ : str =self.controlnet_cond_embedding(snake_case__ ) sample += controlnet_cond # 3. down lowerCamelCase_ : List[str] =(sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: lowerCamelCase_ , lowerCamelCase_ : Optional[int] =down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase_ : Optional[int] =self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) # 5. contronet blocks lowerCamelCase_ : Dict =() for down_block_res_sample, controlnet_block in zip(snake_case__ , self.controlnet_down_blocks ): lowerCamelCase_ : Dict =controlnet_block(snake_case__ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ : List[Any] =controlnet_down_block_res_samples lowerCamelCase_ : Tuple =self.controlnet_mid_block(snake_case__ ) # 6. scaling lowerCamelCase_ : Dict =[sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=snake_case__ , mid_block_res_sample=snake_case__ )
144
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["ConvNextFeatureExtractor"] lowercase_ = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
357
import os from collections.abc import Iterator def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "." ): for dir_path, dir_names, filenames in os.walk(SCREAMING_SNAKE_CASE_ ): lowercase__ = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(SCREAMING_SNAKE_CASE_ )[1] in (".py", ".ipynb"): yield os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).lstrip("./" ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return f'''{i * " "}*''' if i else "\n##" def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(SCREAMING_SNAKE_CASE_ ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(SCREAMING_SNAKE_CASE_ )} {new_part.replace("_" , " " ).title()}''' ) return new_path def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "." ): lowercase__ = "" for filepath in sorted(good_file_paths(SCREAMING_SNAKE_CASE_ ) ): lowercase__ , lowercase__ = os.path.split(SCREAMING_SNAKE_CASE_ ) if filepath != old_path: lowercase__ = print_path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase__ = f'''{filepath}/{filename}'''.replace(" " , "%20" ) lowercase__ = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f'''{md_prefix(SCREAMING_SNAKE_CASE_ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(""".""")
224
0
import math def a ( lowerCamelCase_ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( lowerCamelCase_ = 0.1 ): '''simple docstring''' lowercase__ = 3 lowercase__ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__A ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
207
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? snake_case__ : Any = '''ssube/stable-diffusion-x4-upscaler-onnx''' def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : int=0 ) -> Tuple: a_ : Union[str, Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ) a_ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.get_dummy_inputs() a_ : int = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : Tuple = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : List[Any] = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = self.get_dummy_inputs() a_ : List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : str = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: a_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = self.get_dummy_inputs() a_ : Dict = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Optional[Any] = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: a_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.get_dummy_inputs() a_ : Dict = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : int = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) a_ : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.get_dummy_inputs() a_ : List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images a_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a_ : Union[str, Any] = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : List[str] = ort.SessionOptions() a_ : int = False return options def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: a_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) a_ : int = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default a_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = 'A fantasy landscape, trending on artstation' a_ : str = torch.manual_seed(0 ) a_ : List[str] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) a_ : Dict = output.images a_ : Any = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a_ : str = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) a_ : List[str] = init_image.resize((1_2_8, 1_2_8) ) a_ : Dict = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) a_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a_ : Any = 'A fantasy landscape, trending on artstation' a_ : Tuple = torch.manual_seed(0 ) a_ : Optional[Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) a_ : str = output.images a_ : List[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) a_ : Tuple = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
32
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self: List[Any] , *a: Dict , **a: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def _snake_case ( self: Tuple , a: str=None , a: Optional[int]=None , a: Optional[int]=None , **a: List[Any] ): __lowerCamelCase , __lowerCamelCase : int = {}, {} if padding is not None: __lowerCamelCase : int = padding if truncation is not None: __lowerCamelCase : str = truncation if top_k is not None: __lowerCamelCase : Any = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , a: Union["Image.Image", str] , a: str = None , **a: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase : Dict = {'image': image, 'question': question} else: __lowerCamelCase : str = image __lowerCamelCase : Dict = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def _snake_case ( self: Tuple , a: str , a: Any=False , a: Optional[int]=False ): __lowerCamelCase : List[str] = load_image(inputs['image'] ) __lowerCamelCase : str = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase : str = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def _snake_case ( self: Optional[int] , a: Tuple ): __lowerCamelCase : str = self.model(**UpperCamelCase_ ) return model_outputs def _snake_case ( self: List[str] , a: Optional[int] , a: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase : str = model_outputs.logits.sigmoid()[0] __lowerCamelCase , __lowerCamelCase : Optional[Any] = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase : str = scores.tolist() __lowerCamelCase : Dict = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
357
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): __lowerCamelCase : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): __lowerCamelCase : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __lowerCamelCase : Optional[int] = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) __lowerCamelCase : str = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 255.0 __lowerCamelCase : List[str] = image.transpose(0 , 3 , 1 , 2 ) __lowerCamelCase : Union[str, Any] = 2.0 * image - 1.0 __lowerCamelCase : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): __lowerCamelCase : str = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.9_995 ): if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): __lowerCamelCase : List[str] = True __lowerCamelCase : str = va.device __lowerCamelCase : int = va.cpu().numpy() __lowerCamelCase : List[str] = va.cpu().numpy() __lowerCamelCase : str = np.sum(va * va / (np.linalg.norm(SCREAMING_SNAKE_CASE__ ) * np.linalg.norm(SCREAMING_SNAKE_CASE__ )) ) if np.abs(SCREAMING_SNAKE_CASE__ ) > DOT_THRESHOLD: __lowerCamelCase : Union[str, Any] = (1 - t) * va + t * va else: __lowerCamelCase : List[Any] = np.arccos(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Dict = np.sin(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = theta_a * t __lowerCamelCase : List[Any] = np.sin(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = np.sin(theta_a - theta_t ) / sin_theta_a __lowerCamelCase : List[Any] = sin_theta_t / sin_theta_a __lowerCamelCase : Union[str, Any] = sa * va + sa * va if inputs_are_torch: __lowerCamelCase : str = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return va def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) __lowerCamelCase : Union[str, Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for param in model.parameters(): __lowerCamelCase : Any = value class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Any , a: AutoencoderKL , a: CLIPTextModel , a: CLIPModel , a: CLIPTokenizer , a: UNetaDConditionModel , a: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , a: CLIPFeatureExtractor , a: Union[str, Any]=None , a: Union[str, Any]=None , a: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=a , text_encoder=a , clip_model=a , tokenizer=a , unet=a , scheduler=a , feature_extractor=a , coca_model=a , coca_tokenizer=a , coca_transform=a , ) __lowerCamelCase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size , a ) else feature_extractor.size['shortest_edge'] ) __lowerCamelCase : List[Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , a ) set_requires_grad(self.clip_model , a ) def _snake_case ( self: Optional[Any] , a: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCamelCase : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def _snake_case ( self: Dict ): self.enable_attention_slicing(a ) def _snake_case ( self: Optional[Any] ): set_requires_grad(self.vae , a ) def _snake_case ( self: List[Any] ): set_requires_grad(self.vae , a ) def _snake_case ( self: int ): set_requires_grad(self.unet , a ) def _snake_case ( self: int ): set_requires_grad(self.unet , a ) def _snake_case ( self: Optional[Any] , a: Union[str, Any] , a: List[str] , a: List[Any] ): # get the original timestep using init_timestep __lowerCamelCase : List[Any] = min(int(num_inference_steps * strength ) , a ) __lowerCamelCase : str = max(num_inference_steps - init_timestep , 0 ) __lowerCamelCase : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self: Union[str, Any] , a: Optional[Any] , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , a: List[str]=None ): if not isinstance(a , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(a )}' ) __lowerCamelCase : Union[str, Any] = image.to(device=a , dtype=a ) if isinstance(a , a ): __lowerCamelCase : str = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] __lowerCamelCase : Tuple = torch.cat(a , dim=0 ) else: __lowerCamelCase : List[Any] = self.vae.encode(a ).latent_dist.sample(a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : List[str] = 0.1_8_2_1_5 * init_latents __lowerCamelCase : Union[str, Any] = init_latents.repeat_interleave(a , dim=0 ) __lowerCamelCase : Optional[int] = randn_tensor(init_latents.shape , generator=a , device=a , dtype=a ) # get latents __lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(a , a , a ) __lowerCamelCase : int = init_latents return latents def _snake_case ( self: Optional[int] , a: Any ): __lowerCamelCase : List[Any] = self.coca_transform(a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowerCamelCase : Any = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __lowerCamelCase : str = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def _snake_case ( self: Any , a: Tuple , a: Tuple ): __lowerCamelCase : Dict = self.feature_extractor.preprocess(a ) __lowerCamelCase : Dict = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() __lowerCamelCase : List[str] = self.clip_model.get_image_features(a ) __lowerCamelCase : Optional[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) __lowerCamelCase : Tuple = image_embeddings_clip.repeat_interleave(a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _snake_case ( self: str , a: str , a: int , a: List[Any] , a: str , a: List[Any] , a: Dict , a: int , ): __lowerCamelCase : Optional[Any] = latents.detach().requires_grad_() __lowerCamelCase : str = self.scheduler.scale_model_input(a , a ) # predict the noise residual __lowerCamelCase : Optional[int] = self.unet(a , a , encoder_hidden_states=a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowerCamelCase : str = self.scheduler.alphas_cumprod[timestep] __lowerCamelCase : Dict = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase : Optional[int] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowerCamelCase : Optional[int] = torch.sqrt(a ) __lowerCamelCase : int = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , a ): __lowerCamelCase : str = self.scheduler.sigmas[index] __lowerCamelCase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : Optional[int] = 1 / 0.1_8_2_1_5 * sample __lowerCamelCase : Optional[Any] = self.vae.decode(a ).sample __lowerCamelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Any = transforms.Resize(self.feature_extractor_size )(a ) __lowerCamelCase : Union[str, Any] = self.normalize(a ).to(latents.dtype ) __lowerCamelCase : Tuple = self.clip_model.get_image_features(a ) __lowerCamelCase : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) __lowerCamelCase : List[str] = spherical_dist_loss(a , a ).mean() * clip_guidance_scale __lowerCamelCase : Tuple = -torch.autograd.grad(a , a )[0] if isinstance(self.scheduler , a ): __lowerCamelCase : Optional[int] = latents.detach() + grads * (sigma**2) __lowerCamelCase : List[Any] = noise_pred_original else: __lowerCamelCase : str = noise_pred_original - torch.sqrt(a ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Any , a: Union[torch.FloatTensor, PIL.Image.Image] , a: Union[torch.FloatTensor, PIL.Image.Image] , a: Optional[str] = None , a: Optional[str] = None , a: Optional[int] = 512 , a: Optional[int] = 512 , a: float = 0.6 , a: Optional[int] = 50 , a: Optional[float] = 7.5 , a: Optional[int] = 1 , a: float = 0.0 , a: Optional[float] = 100 , a: Optional[torch.Generator] = None , a: Optional[str] = "pil" , a: bool = True , a: float = 0.8 , a: float = 0.1 , a: float = 0.1 , ): if isinstance(a , a ) and len(a ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(a )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(a , torch.Generator ) and batch_size > 1: __lowerCamelCase : List[Any] = [generator] + [None] * (batch_size - 1) __lowerCamelCase : Dict = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] __lowerCamelCase : Any = [x[0] for x in coca_is_none if x[1]] __lowerCamelCase : str = ', '.join(a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(a ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __lowerCamelCase : Any = self.get_image_description(a ) if style_prompt is None: if len(a ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __lowerCamelCase : Tuple = self.get_image_description(a ) # get prompt text embeddings for content and style __lowerCamelCase : int = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) __lowerCamelCase : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowerCamelCase : Union[str, Any] = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) __lowerCamelCase : Any = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowerCamelCase : List[Any] = slerp(a , a , a ) # duplicate text embeddings for each generation per prompt __lowerCamelCase : Any = text_embeddings.repeat_interleave(a , dim=0 ) # set timesteps __lowerCamelCase : List[Any] = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowerCamelCase : Union[str, Any] = {} if accepts_offset: __lowerCamelCase : Dict = 1 self.scheduler.set_timesteps(a , **a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowerCamelCase , __lowerCamelCase : Dict = self.get_timesteps(a , a , self.device ) __lowerCamelCase : Tuple = timesteps[:1].repeat(a ) # Preprocess image __lowerCamelCase : Any = preprocess(a , a , a ) __lowerCamelCase : str = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) __lowerCamelCase : Dict = preprocess(a , a , a ) __lowerCamelCase : Optional[int] = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) __lowerCamelCase : int = slerp(a , a , a ) if clip_guidance_scale > 0: __lowerCamelCase : List[str] = self.get_clip_image_embeddings(a , a ) __lowerCamelCase : Union[str, Any] = self.get_clip_image_embeddings(a , a ) __lowerCamelCase : Union[str, Any] = slerp( a , a , a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowerCamelCase : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowerCamelCase : Optional[int] = content_text_input.input_ids.shape[-1] __lowerCamelCase : int = self.tokenizer([''] , padding='max_length' , max_length=a , return_tensors='pt' ) __lowerCamelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowerCamelCase : List[Any] = uncond_embeddings.repeat_interleave(a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase : int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowerCamelCase : str = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowerCamelCase : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowerCamelCase : Tuple = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: __lowerCamelCase : List[Any] = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __lowerCamelCase : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase : int = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase : Dict = {} if accepts_eta: __lowerCamelCase : List[str] = eta # check if the scheduler accepts generator __lowerCamelCase : Optional[int] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowerCamelCase : Optional[Any] = generator with self.progress_bar(total=a ): for i, t in enumerate(a ): # expand the latents if we are doing classifier free guidance __lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase : Union[str, Any] = self.scheduler.scale_model_input(a , a ) # predict the noise residual __lowerCamelCase : Tuple = self.unet(a , a , encoder_hidden_states=a ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase : str = noise_pred.chunk(2 ) __lowerCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowerCamelCase : str = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowerCamelCase , __lowerCamelCase : int = self.cond_fn( a , a , a , a , a , a , a , ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : Tuple = self.scheduler.step(a , a , a , **a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents __lowerCamelCase : Union[str, Any] = self.vae.decode(a ).sample __lowerCamelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : Union[str, Any] = self.numpy_to_pil(a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
194
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss snake_case : List[str] = pytest.mark.integration @require_faiss class _snake_case ( _snake_case ): def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(_lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :Dataset = self._create_dummy_dataset() a :str = dset.map( lambda _lowerCamelCase , _lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_lowerCamelCase , keep_in_memory=_lowerCamelCase ) a :List[Any] = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) a , a :List[Any] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) a , a :List[Any] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_lowerCamelCase ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) a , a :List[str] = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def SCREAMING_SNAKE_CASE__ ( self ): a :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(_lowerCamelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE__ ( self ): from elasticsearch import Elasticsearch a :Dataset = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: a :Tuple = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) a :List[str] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} a :Tuple = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=_lowerCamelCase ) a , a :Dict = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class _snake_case ( _snake_case ): def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query a :Tuple = np.zeros(5 , dtype=np.floataa ) a :str = 1 a , a :int = index.search(_lowerCamelCase ) self.assertRaises(_lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries a :Tuple = np.eye(5 , dtype=np.floataa )[::-1] a , a :Dict = index.search_batch(_lowerCamelCase ) self.assertRaises(_lowerCamelCase , index.search_batch , queries[0] ) a :Union[str, Any] = [scores[0] for scores in total_scores] a :List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :List[Any] = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) a :str = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_lowerCamelCase ): a :Tuple = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :List[str] = faiss.IndexFlat(5 ) a :List[Any] = FaissIndex(custom_index=_lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE__ ( self ): import faiss a :Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) a :int = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) a :Optional[int] = np.zeros(5 , dtype=np.floataa ) a :Any = 1 a , a :Any = index.search(_lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] ): """simple docstring""" import faiss a :Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) a :Optional[Any] = '''index.faiss''' a :Union[str, Any] = F'''mock://{index_name}''' index.save(UpperCAmelCase_ , storage_options=mockfs.storage_options ) a :List[str] = FaissIndex.load(UpperCAmelCase_ , storage_options=mockfs.storage_options ) a :str = np.zeros(5 , dtype=np.floataa ) a :List[str] = 1 a , a :Union[str, Any] = index.search(UpperCAmelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _snake_case ): def SCREAMING_SNAKE_CASE__ ( self ): from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: a :Any = Elasticsearch() a :Optional[Any] = {'''acknowledged''': True} a :Union[str, Any] = ElasticSearchIndex(es_client=_lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query a :int = '''foo''' a :List[str] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} a , a :Optional[Any] = index.search(_lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout a :Optional[Any] = '''foo''' a :Optional[Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} a , a :str = index.search(_lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries a :Dict = ['''foo''', '''bar''', '''foobar'''] a :Optional[Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} a , a :List[Any] = index.search_batch(_lowerCamelCase ) a :str = [scores[0] for scores in total_scores] a :List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , _lowerCamelCase ) # batched queries with timeout a :Union[str, Any] = ['''foo''', '''bar''', '''foobar'''] a :str = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} a , a :str = index.search_batch(_lowerCamelCase , request_timeout=30 ) a :Union[str, Any] = [scores[0] for scores in total_scores] a :int = [indices[0] for indices in total_indices] self.assertGreater(np.min(_lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , _lowerCamelCase )
94
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : Any = (3_2, 3_2) _UpperCAmelCase : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=lowerCAmelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Any = self.dummy_cond_unet_upscale _UpperCAmelCase : Union[str, Any] = DDPMScheduler() _UpperCAmelCase : str = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : List[Any] = self.dummy_text_encoder _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : int = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : str = "A painting of a squirrel eating a burger" _UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Dict = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCAmelCase : Optional[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[Any] = self.dummy_cond_unet_upscale _UpperCAmelCase : Tuple = DDPMScheduler() _UpperCAmelCase : Dict = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : str = self.dummy_vae _UpperCAmelCase : Optional[Any] = self.dummy_text_encoder _UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : List[str] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : List[Any] = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : Any = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : int = output.images assert image.shape[0] == 2 _UpperCAmelCase : Tuple = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : Any = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : Any = self.dummy_cond_unet_upscale _UpperCAmelCase : Any = DDPMScheduler() _UpperCAmelCase : Optional[int] = DDIMScheduler(prediction_type="v_prediction" ) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : List[Any] = self.dummy_text_encoder _UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 _UpperCAmelCase : Tuple = unet.half() _UpperCAmelCase : Dict = text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : List[Any] = StableDiffusionUpscalePipeline( unet=lowerCAmelCase__ , low_res_scheduler=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , max_noise_level=3_5_0 , ) _UpperCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Dict = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = sd_pipe( [prompt] , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , ).images _UpperCAmelCase : str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCAmelCase : Tuple = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : str = StableDiffusionUpscalePipeline.from_pretrained(lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _UpperCAmelCase : Union[str, Any] = "a cat sitting on a park bench" _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , ) _UpperCAmelCase : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCAmelCase : Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() _UpperCAmelCase : Dict = "a cat sitting on a park bench" _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="np" , ) _UpperCAmelCase : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCAmelCase : int = "stabilityai/stable-diffusion-x4-upscaler" _UpperCAmelCase : Any = StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase : Tuple = "a cat sitting on a park bench" _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
145
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : def __init__( self :Optional[Any] ,__snake_case :List[str] ,__snake_case :Any=13 ,__snake_case :Dict=30 ,__snake_case :Dict=2 ,__snake_case :Dict=3 ,__snake_case :Optional[Any]=True ,__snake_case :Any=True ,__snake_case :Dict=32 ,__snake_case :str=2 ,__snake_case :List[Any]=4 ,__snake_case :Tuple=37 ,__snake_case :Dict="gelu" ,__snake_case :Optional[Any]=0.1 ,__snake_case :List[Any]=0.1 ,__snake_case :Tuple=10 ,__snake_case :Dict=0.02 ,__snake_case :Union[str, Any]=3 ,__snake_case :List[str]=0.6 ,__snake_case :Tuple=None ,) -> Optional[Any]: a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = mask_ratio a__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) a__ = (image_size // patch_size) ** 2 a__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase__( self :Tuple ) -> List[str]: a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__( self :int ) -> str: return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__snake_case ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def lowerCamelCase__( self :Tuple ,__snake_case :List[str] ,__snake_case :List[str] ,__snake_case :Dict ) -> List[Any]: a__ = TFViTMAEModel(config=__snake_case ) a__ = model(__snake_case ,training=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__( self :Tuple ,__snake_case :Dict ,__snake_case :Any ,__snake_case :str ) -> Any: a__ = TFViTMAEForPreTraining(__snake_case ) a__ = model(__snake_case ,training=__snake_case ) # expected sequence length = num_patches a__ = (self.image_size // self.patch_size) ** 2 a__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images a__ = 1 a__ = TFViTMAEForPreTraining(__snake_case ) a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(__snake_case ,training=__snake_case ) a__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase__( self :List[Any] ) -> int: a__ = self.prepare_config_and_inputs() ((a__) , (a__) , (a__)) = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class snake_case_ (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCAmelCase__ : str = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :List[str] ) -> int: a__ = TFViTMAEModelTester(self ) a__ = ConfigTester(self ,config_class=__snake_case ,has_text_modality=__snake_case ,hidden_size=37 ) def lowerCamelCase__( self :str ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def lowerCamelCase__( self :str ) -> int: pass def lowerCamelCase__( self :Tuple ) -> Union[str, Any]: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case ,tf.keras.layers.Layer ) ) def lowerCamelCase__( self :Union[str, Any] ) -> str: a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase__( self :Optional[Any] ) -> List[str]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__snake_case ) def lowerCamelCase__( self :List[Any] ) -> Any: # make the mask reproducible np.random.seed(2 ) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = int((config.image_size // config.patch_size) ** 2 ) a__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = self._prepare_for_class(__snake_case ,__snake_case ) a__ = model(__snake_case ,noise=__snake_case ) a__ = copy.deepcopy(self._prepare_for_class(__snake_case ,__snake_case ) ) a__ = model(**__snake_case ,noise=__snake_case ) a__ = outputs_dict[0].numpy() a__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1E-6 ) def lowerCamelCase__( self :Optional[int] ) -> List[str]: # make the mask reproducible np.random.seed(2 ) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = int((config.image_size // config.patch_size) ** 2 ) a__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__snake_case :Tuple ): a__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(__snake_case ): a__ = v.numpy() else: a__ = np.array(__snake_case ) return inputs_np_dict for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = self._prepare_for_class(__snake_case ,__snake_case ) a__ = prepare_numpy_arrays(__snake_case ) a__ = model(__snake_case ,noise=__snake_case ) a__ = model(**__snake_case ,noise=__snake_case ) self.assert_outputs_same(__snake_case ,__snake_case ) def lowerCamelCase__( self :Any ,__snake_case :Optional[Any] ,__snake_case :Optional[Any] ,__snake_case :List[str] ) -> List[str]: # make masks reproducible np.random.seed(2 ) a__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) a__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) a__ = tf.constant(__snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument a__ = tf_noise super().check_pt_tf_models(__snake_case ,__snake_case ,__snake_case ) def lowerCamelCase__( self :Any ) -> Optional[int]: # make mask reproducible np.random.seed(2 ) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__snake_case ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(__snake_case ,__snake_case ),) if isinstance(__snake_case ,__snake_case ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__snake_case ,'_keras_serializable' ,__snake_case ) } a__ = int((config.image_size // config.patch_size) ** 2 ) a__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) a__ = tf.convert_to_tensor(__snake_case ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: a__ = main_layer_class(__snake_case ) a__ = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } a__ = tf.keras.Model(__snake_case ,outputs=main_layer(__snake_case ) ) a__ = model(__snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(__snake_case ,'keras_model.h5' ) model.save(__snake_case ) a__ = tf.keras.models.load_model( __snake_case ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__snake_case ,tf.keras.Model ) a__ = model(__snake_case ) self.assert_outputs_same(__snake_case ,__snake_case ) @slow def lowerCamelCase__( self :str ) -> int: # make mask reproducible np.random.seed(2 ) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = int((config.image_size // config.patch_size) ** 2 ) a__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = self._prepare_for_class(__snake_case ,__snake_case ) a__ = model(__snake_case ,noise=__snake_case ) if model_class.__name__ == "TFViTMAEModel": a__ = outputs.last_hidden_state.numpy() a__ = 0 else: a__ = outputs.logits.numpy() a__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case ,saved_model=__snake_case ) a__ = model_class.from_pretrained(__snake_case ) a__ = model(__snake_case ,noise=__snake_case ) if model_class.__name__ == "TFViTMAEModel": a__ = after_outputs['last_hidden_state'].numpy() a__ = 0 else: a__ = after_outputs['logits'].numpy() a__ = 0 a__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__snake_case ,1E-5 ) def lowerCamelCase__( self :List[str] ) -> List[Any]: # make mask reproducible np.random.seed(2 ) a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() a__ = int((config.image_size // config.patch_size) ** 2 ) a__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: a__ = model_class(__snake_case ) a__ = self._prepare_for_class(__snake_case ,__snake_case ) a__ = model(__snake_case ,noise=__snake_case ) a__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__snake_case ) a__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config a__ = model_class.from_config(model.config ) a__ = new_model(__snake_case ) # Build model new_model.set_weights(model.get_weights() ) a__ = new_model(__snake_case ,noise=__snake_case ) self.assert_outputs_same(__snake_case ,__snake_case ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCamelCase__( self :Optional[int] ) -> Union[str, Any]: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def lowerCamelCase__( self :Optional[Any] ) -> Dict: pass @slow def lowerCamelCase__( self :Tuple ) -> List[str]: a__ = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(__snake_case ) def __lowercase ( ): a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class snake_case_ (unittest.TestCase ): @cached_property def lowerCamelCase__( self :Optional[Any] ) -> List[str]: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def lowerCamelCase__( self :List[str] ) -> str: # make random mask reproducible across the PT and TF model np.random.seed(2 ) a__ = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=__snake_case ,return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) a__ = ViTMAEConfig() a__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) a__ = np.random.uniform(size=(1, num_patches) ) # forward pass a__ = model(**__snake_case ,noise=__snake_case ) # verify the logits a__ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape ,__snake_case ) a__ = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,__snake_case ,atol=1E-4 )
109
from __future__ import annotations class snake_case_ : def __init__( self :List[str] ,__snake_case :int ) -> None: a__ = data a__ = None a__ = None def __lowercase ( __lowerCAmelCase : Node | None ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __lowercase ( __lowerCAmelCase : Node | None ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __lowercase ( __lowerCAmelCase : Node ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __lowercase ( ): # Main function for testing. a__ = Node(1 ) a__ = Node(2 ) a__ = Node(3 ) a__ = Node(4 ) a__ = Node(5 ) a__ = Node(6 ) a__ = Node(7 ) a__ = Node(8 ) a__ = Node(9 ) print(is_full_binary_tree(__lowerCAmelCase ) ) print(depth_of_tree(__lowerCAmelCase ) ) print('Tree is: ' ) display(__lowerCAmelCase ) if __name__ == "__main__": main()
109
1
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _lowercase , unittest.TestCase ): # TODO: is there an appropriate internal test set? lowerCamelCase : Any = "ssube/stable-diffusion-x4-upscaler-onnx" def UpperCAmelCase__ (self , A=0 ): lowerCamelCase_ : Optional[Any] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(A ) ) lowerCamelCase_ : Tuple = torch.manual_seed(A ) lowerCamelCase_ : Optional[int] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : str = self.get_dummy_inputs() lowerCamelCase_ : Dict = pipe(**A ).images lowerCamelCase_ : List[str] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ : int = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCAmelCase__ (self ): lowerCamelCase_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCamelCase_ : Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Any = self.get_dummy_inputs() lowerCamelCase_ : Union[str, Any] = pipe(**A ).images lowerCamelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ : List[Any] = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCamelCase_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : int = self.get_dummy_inputs() lowerCamelCase_ : Optional[int] = pipe(**A ).images lowerCamelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ : str = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCamelCase_ : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : int = self.get_dummy_inputs() lowerCamelCase_ : Dict = pipe(**A ).images lowerCamelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ : Union[str, Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowerCamelCase_ : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : List[str] = self.get_dummy_inputs() lowerCamelCase_ : Any = pipe(**A ).images lowerCamelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ : Tuple = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase ): @property def UpperCAmelCase__ (self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ort.SessionOptions() lowerCamelCase_ : Optional[int] = False return options def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : Tuple = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default lowerCamelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Tuple = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : List[str] = torch.manual_seed(0 ) lowerCamelCase_ : List[str] = pipe( prompt=A , image=A , guidance_scale=7.5 , num_inference_steps=1_0 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Any = output.images lowerCamelCase_ : Optional[Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ : Tuple = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowerCamelCase_ : Dict = init_image.resize((1_2_8, 1_2_8) ) lowerCamelCase_ : int = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) lowerCamelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) lowerCamelCase_ : Dict = '''A fantasy landscape, trending on artstation''' lowerCamelCase_ : str = torch.manual_seed(0 ) lowerCamelCase_ : Any = pipe( prompt=A , image=A , guidance_scale=7.5 , num_inference_steps=2_0 , generator=A , output_type='''np''' , ) lowerCamelCase_ : Any = output.images lowerCamelCase_ : Union[str, Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ : Union[str, Any] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
318
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowercase ( nn.Module ): def __init__(self , A , A ): super().__init__() lowerCamelCase_ : Tuple = module lowerCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , A , bias=A ) , nn.Linear(A , module.out_features , bias=A ) , ) lowerCamelCase_ : Optional[Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCAmelCase__ (self , A , *A , **A ): return self.module(A , *A , **A ) + self.adapter(A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase : Tuple = "bigscience/bloom-1b7" # Constant values lowerCamelCase : List[Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase : int = "Hello my name is" lowerCamelCase : Tuple = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCamelCase : Optional[int] = 10 def UpperCAmelCase__ (self ): # Models and tokenizer lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # Models and tokenizer lowerCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCamelCase_ : List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_abit.config self.assertTrue(hasattr(A , '''quantization_config''' ) ) lowerCamelCase_ : Tuple = config.to_dict() lowerCamelCase_ : Optional[Any] = config.to_diff_dict() lowerCamelCase_ : Any = config.to_json_string() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit lowerCamelCase_ : str = self.model_fpaa.get_memory_footprint() lowerCamelCase_ : List[str] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCamelCase_ : Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCAmelCase__ (self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : Union[str, Any] = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = BitsAndBytesConfig() lowerCamelCase_ : Optional[Any] = True lowerCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) def UpperCAmelCase__ (self ): with self.assertRaises(A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = BitsAndBytesConfig() with self.assertRaises(A ): lowerCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=A , load_in_abit=A , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def UpperCAmelCase__ (self ): with self.assertRaises(A ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = self.model_fpaa.to(torch.floataa ) lowerCamelCase_ : Tuple = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error lowerCamelCase_ : str = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCamelCase_ : List[Any] = self.model_fpaa.half() # Check this does not throw an error lowerCamelCase_ : List[str] = self.model_fpaa.float() def UpperCAmelCase__ (self ): lowerCamelCase_ : str = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=A , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowercase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : List[Any] = '''t5-small''' lowerCamelCase_ : Optional[Any] = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense lowerCamelCase_ : List[str] = AutoTokenizer.from_pretrained(cls.model_name ) lowerCamelCase_ : Optional[Any] = '''Translate in German: Hello, my dog is cute''' def UpperCAmelCase__ (self ): gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from transformers import TaForConditionalGeneration lowerCamelCase_ : Any = TaForConditionalGeneration._keep_in_fpaa_modules lowerCamelCase_ : List[Any] = None # test with `t5-small` lowerCamelCase_ : int = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : str = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[Any] = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : int = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Optional[int] = model.generate(**A ) lowerCamelCase_ : Any = modules def UpperCAmelCase__ (self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCamelCase_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCamelCase_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Dict = model.generate(**A ) # test with `flan-t5-small` lowerCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=A , device_map='''auto''' ) lowerCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCamelCase_ : Tuple = model.generate(**A ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() # model_name lowerCamelCase_ : Optional[int] = '''bigscience/bloom-560m''' lowerCamelCase_ : Optional[int] = '''t5-small''' # Different types of model lowerCamelCase_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Sequence classification model lowerCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=A , device_map='''auto''' ) # CausalLM model lowerCamelCase_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A , device_map='''auto''' ) # Seq2seq model lowerCamelCase_ : int = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=A , device_map='''auto''' ) def UpperCAmelCase__ (self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self ): lowerCamelCase_ : int = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCamelCase_ : List[str] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): super().setUp() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=A , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCamelCase_ : Any = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=A ) , self.EXPECTED_OUTPUTS ) class __lowercase ( _lowercase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : str = '''facebook/opt-350m''' super().setUp() def UpperCAmelCase__ (self ): if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCamelCase_ : Any = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCamelCase_ : List[str] = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCamelCase_ : Optional[int] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(A ) ): lowerCamelCase_ : Dict = LoRALayer(module.q_proj , rank=1_6 ) lowerCamelCase_ : str = LoRALayer(module.k_proj , rank=1_6 ) lowerCamelCase_ : int = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch lowerCamelCase_ : Union[str, Any] = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCamelCase_ : Optional[int] = model.forward(**A ) out.logits.norm().backward() for module in model.modules(): if isinstance(A , A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowercase ( _lowercase ): lowerCamelCase : Optional[Any] = "gpt2-xl" lowerCamelCase : int = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
318
1
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=1_0_2_4 ) -> Union[str, Any]: A , A: Optional[Any] = [], [] A: Optional[Any] = list(zip(__lowercase , __lowercase ) ) A , A: Optional[int] = sorted_examples[0] def is_too_big(__lowercase ): return tok(__lowercase , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): A: Optional[Any] = new_src + ''' ''' + src A: int = new_tgt + ''' ''' + tgt if is_too_big(__lowercase ) or is_too_big(__lowercase ): # cant fit, finalize example finished_src.append(__lowercase ) finished_tgt.append(__lowercase ) A , A: List[Any] = src, tgt else: # can fit, keep adding A , A: Union[str, Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__lowercase ) finished_tgt.append(__lowercase ) return finished_src, finished_tgt def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Any: A: List[str] = Path(__lowercase ) save_path.mkdir(exist_ok=__lowercase ) for split in ["train"]: A , A: str = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" A: Union[str, Any] = [x.rstrip() for x in Path(__lowercase ).open().readlines()] A: Optional[int] = [x.rstrip() for x in Path(__lowercase ).open().readlines()] A , A: int = pack_examples(__lowercase , __lowercase , __lowercase , __lowercase ) print(F"""packed {split} split from {len(__lowercase )} examples -> {len(__lowercase )}.""" ) Path(save_path / F"""{split}.source""" ).open('''w''' ).write('''\n'''.join(__lowercase ) ) Path(save_path / F"""{split}.target""" ).open('''w''' ).write('''\n'''.join(__lowercase ) ) for split in ["val", "test"]: A , A: List[str] = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(__lowercase , save_path / F"""{split}.source""" ) shutil.copyfile(__lowercase , save_path / F"""{split}.target""" ) def SCREAMING_SNAKE_CASE( ) -> List[str]: A: int = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=__lowercase , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=__lowercase , default=1_2_8 ) parser.add_argument('''--data_dir''' , type=__lowercase ) parser.add_argument('''--save_path''' , type=__lowercase ) A: Dict = parser.parse_args() A: Tuple = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__lowercase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
360
'''simple docstring''' from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: return np.maximum(0 , __lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
334
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase : Dict = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase : List[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def _SCREAMING_SNAKE_CASE (A , A=100 , A=" " ) -> List[str]: """simple docstring""" lowercase__ = text.split(A ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(A ) , A )] def _SCREAMING_SNAKE_CASE (A ) -> dict: """simple docstring""" lowercase__ ,lowercase__ = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(A ): titles.append(title if title is not None else '''''' ) texts.append(A ) return {"title": titles, "text": texts} def _SCREAMING_SNAKE_CASE (A , A , A ) -> dict: """simple docstring""" lowercase__ = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=A , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] lowercase__ = ctx_encoder(input_ids.to(device=A ) , return_dict=A ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _SCREAMING_SNAKE_CASE (A , A , A , ) -> List[str]: """simple docstring""" logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ = dataset.map(A , batched=A , num_proc=processing_args.num_proc ) # And compute the embeddings lowercase__ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=A ) lowercase__ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowercase__ = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space lowercase__ = dataset.map( partial(A , ctx_encoder=A , ctx_tokenizer=A ) , batched=A , batch_size=processing_args.batch_size , features=A , ) # And finally save your dataset lowercase__ = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(A ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=A ) # And save the index lowercase__ = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(A ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : str = field( default=str(Path(lowercase_ ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) lowerCAmelCase__ : Optional[str] = field( default=lowercase_ , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) lowerCAmelCase__ : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) lowerCAmelCase__ : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) lowerCAmelCase__ : Optional[str] = field( default=str(Path(lowercase_ ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : Optional[int] = field( default=lowercase_ , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) lowerCAmelCase__ : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : int = field( default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) lowerCAmelCase__ : int = field( default=128 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase : Optional[Any] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase : Optional[int] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
2
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : Tuple = [0] * len(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Tuple = [1] * len(lowerCAmelCase__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase__ ) ): if indegree[i] == 0: queue.append(lowerCAmelCase__ ) while queue: lowerCAmelCase_ : Union[str, Any] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCAmelCase_ : Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowerCAmelCase__ ) print(max(lowerCAmelCase__ ) ) # Adjacency list of Graph lowercase__ : Any = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
224
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = "cpu" , UpperCAmelCase_ = None ): _UpperCamelCase : str = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(UpperCAmelCase_ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _UpperCamelCase : str = v.half() if save_path is None: # overwrite src_path _UpperCamelCase : Tuple = src_path torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": fire.Fire(convert)
236
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = DanceDiffusionPipeline lowercase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase__ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } lowercase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : str = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=16000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=lowerCamelCase__ ,use_timestep_embedding=lowerCamelCase__ ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _UpperCamelCase : int = IPNDMScheduler() _UpperCamelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int=0 ): '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): _UpperCamelCase : Union[str, Any] = torch.manual_seed(lowerCamelCase__ ) else: _UpperCamelCase : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCamelCase : str = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : List[str] = self.get_dummy_components() _UpperCamelCase : int = DanceDiffusionPipeline(**lowerCamelCase__ ) _UpperCamelCase : List[str] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCamelCase : List[Any] = pipe(**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = output.audios _UpperCamelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCamelCase : Dict = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = torch_device _UpperCamelCase : Dict = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _UpperCamelCase : str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = pipe(generator=lowerCamelCase__ ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _UpperCamelCase : Optional[int] = output.audios _UpperCamelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase : Tuple = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = torch_device _UpperCamelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _UpperCamelCase : Any = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = pipe(generator=lowerCamelCase__ ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _UpperCamelCase : Any = output.audios _UpperCamelCase : str = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase : Any = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
236
1
"""simple docstring""" from typing import Any import numpy as np def lowercase_ ( _snake_case ): return np.array_equal(_snake_case ,matrix.conjugate().T ) def lowercase_ ( _snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = v.conjugate().T SCREAMING_SNAKE_CASE__ : str = v_star.dot(_snake_case ) assert isinstance(_snake_case ,np.ndarray ) return (v_star_dot.dot(_snake_case )) / (v_star.dot(_snake_case )) def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[Any] = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE__ : Dict = np.array([[1], [2], [3]] ) assert is_hermitian(_snake_case ), f'''{a} is not hermitian.''' print(rayleigh_quotient(_snake_case ,_snake_case ) ) SCREAMING_SNAKE_CASE__ : Any = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_snake_case ), f'''{a} is not hermitian.''' assert rayleigh_quotient(_snake_case ,_snake_case ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
25
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = np.dot(__snake_case, __snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=7_00_00 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__snake_case ): _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = np.dot(x.T, h - y ) / y.size _UpperCamelCase = theta - alpha * gradient # updating the weights _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = cost_function(__snake_case, __snake_case ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _a = datasets.load_iris() _a = iris.data[:, :2] _a = (iris.target != 0) * 1 _a = 0.1 _a = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return sigmoid_function( np.dot(__snake_case, __snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((_a) , (_a)) = (x[:, 0].min(), x[:, 0].max()) ((_a) , (_a)) = (x[:, 1].min(), x[:, 1].max()) ((_a) , (_a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _a = np.c_[xxa.ravel(), xxa.ravel()] _a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
194
0
def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [[] for _ in range(__lowerCamelCase )] SCREAMING_SNAKE_CASE_ = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1 or len(__lowerCamelCase ) <= key: return input_string for position, character in enumerate(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE_ = min(__lowerCamelCase, lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = [''''''.join(__lowerCamelCase ) for row in temp_grid] SCREAMING_SNAKE_CASE_ = ''''''.join(__lowerCamelCase ) return output_string def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = key - 1 if key <= 0: raise ValueError('''Height of grid can\'t be 0 or negative''' ) if key == 1: return input_string SCREAMING_SNAKE_CASE_ = [[] for _ in range(__lowerCamelCase )] # generates template for position in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE_ = min(__lowerCamelCase, lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('''*''' ) SCREAMING_SNAKE_CASE_ = 0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE_ = input_string[counter : counter + len(__lowerCamelCase )] grid.append(list(__lowerCamelCase ) ) counter += len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = '''''' # reads as zigzag for position in range(len(__lowerCamelCase ) ): SCREAMING_SNAKE_CASE_ = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE_ = min(__lowerCamelCase, lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = {} for key_guess in range(1, len(__lowerCamelCase ) ): # tries every key SCREAMING_SNAKE_CASE_ = decrypt(__lowerCamelCase, __lowerCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
364
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =42 class UpperCamelCase__ ( nn.Module ): """simple docstring""" UpperCAmelCase_ =42 UpperCAmelCase_ =(16, 32, 96, 256) UpperCAmelCase_ =jnp.floataa def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.block_out_channels ) - 1 ): SCREAMING_SNAKE_CASE_ = self.block_out_channels[i] SCREAMING_SNAKE_CASE_ = self.block_out_channels[i + 1] SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) SCREAMING_SNAKE_CASE_ = blocks SCREAMING_SNAKE_CASE_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.conv_in(_A ) SCREAMING_SNAKE_CASE_ = nn.silu(_A ) for block in self.blocks: SCREAMING_SNAKE_CASE_ = block(_A ) SCREAMING_SNAKE_CASE_ = nn.silu(_A ) SCREAMING_SNAKE_CASE_ = self.conv_out(_A ) return embedding @flax_register_to_config class UpperCamelCase__ ( nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =32 UpperCAmelCase_ =4 UpperCAmelCase_ =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ =False UpperCAmelCase_ =(320, 640, 1_280, 1_280) UpperCAmelCase_ =2 UpperCAmelCase_ =8 UpperCAmelCase_ =None UpperCAmelCase_ =1_280 UpperCAmelCase_ =0.0 UpperCAmelCase_ =False UpperCAmelCase_ =jnp.floataa UpperCAmelCase_ =True UpperCAmelCase_ =0 UpperCAmelCase_ ="rgb" UpperCAmelCase_ =(16, 32, 96, 256) def _UpperCamelCase ( self , _A ) -> FrozenDict: # init input tensors SCREAMING_SNAKE_CASE_ = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE_ = jnp.zeros(_A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = (1, 3, self.sample_size * 8, self.sample_size * 8) SCREAMING_SNAKE_CASE_ = jnp.zeros(_A , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = jax.random.split(_A ) SCREAMING_SNAKE_CASE_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_A , _A , _A , _A , _A )["params"] def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.block_out_channels SCREAMING_SNAKE_CASE_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE_ = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE_ = FlaxTimestepEmbedding(_A , dtype=self.dtype ) SCREAMING_SNAKE_CASE_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) SCREAMING_SNAKE_CASE_ = self.only_cross_attention if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = block_out_channels[0] SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE_ = output_channel SCREAMING_SNAKE_CASE_ = block_out_channels[i] SCREAMING_SNAKE_CASE_ = i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE_ = FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE_ = FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) for _ in range(self.layers_per_block ): SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) if not is_final_block: SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) SCREAMING_SNAKE_CASE_ = down_blocks SCREAMING_SNAKE_CASE_ = controlnet_down_blocks # mid SCREAMING_SNAKE_CASE_ = block_out_channels[-1] SCREAMING_SNAKE_CASE_ = FlaxUNetMidBlockaDCrossAttn( in_channels=_A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = nn.Conv( _A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A , _A , _A , _A , _A = 1.0 , _A = True , _A = False , ) -> Union[FlaxControlNetOutput, Tuple]: SCREAMING_SNAKE_CASE_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": SCREAMING_SNAKE_CASE_ = jnp.flip(_A , axis=1 ) # 1. time if not isinstance(_A , jnp.ndarray ): SCREAMING_SNAKE_CASE_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_ = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.expand_dims(_A , 0 ) SCREAMING_SNAKE_CASE_ = self.time_proj(_A ) SCREAMING_SNAKE_CASE_ = self.time_embedding(_A ) # 2. pre-process SCREAMING_SNAKE_CASE_ = jnp.transpose(_A , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ = self.conv_in(_A ) SCREAMING_SNAKE_CASE_ = jnp.transpose(_A , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ = self.controlnet_cond_embedding(_A ) sample += controlnet_cond # 3. down SCREAMING_SNAKE_CASE_ = (sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = down_block(_A , _A , _A , deterministic=not train ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid SCREAMING_SNAKE_CASE_ = self.mid_block(_A , _A , _A , deterministic=not train ) # 5. contronet blocks SCREAMING_SNAKE_CASE_ = () for down_block_res_sample, controlnet_block in zip(_A , self.controlnet_down_blocks ): SCREAMING_SNAKE_CASE_ = controlnet_block(_A ) controlnet_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE_ = controlnet_down_block_res_samples SCREAMING_SNAKE_CASE_ = self.controlnet_mid_block(_A ) # 6. scaling SCREAMING_SNAKE_CASE_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_A , mid_block_res_sample=_A )
257
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : Dict = logging.get_logger(__name__) A_ : List[str] = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase ( _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "swin" UpperCAmelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self ,a_=224 ,a_=4 ,a_=3 ,a_=96 ,a_=[2, 2, 6, 2] ,a_=[3, 6, 12, 24] ,a_=7 ,a_=4.0 ,a_=True ,a_=0.0 ,a_=0.0 ,a_=0.1 ,a_="gelu" ,a_=False ,a_=0.02 ,a_=1E-5 ,a_=32 ,a_=None ,a_=None ,**a_ ,) -> Dict: super().__init__(**snake_case__ ) _UpperCAmelCase : Any = image_size _UpperCAmelCase : Union[str, Any] = patch_size _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : Tuple = embed_dim _UpperCAmelCase : Any = depths _UpperCAmelCase : List[Any] = len(snake_case__ ) _UpperCAmelCase : List[str] = num_heads _UpperCAmelCase : Union[str, Any] = window_size _UpperCAmelCase : Optional[Any] = mlp_ratio _UpperCAmelCase : List[str] = qkv_bias _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = drop_path_rate _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Optional[int] = use_absolute_embeddings _UpperCAmelCase : int = layer_norm_eps _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Optional[Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase : int = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _UpperCAmelCase : Tuple = ["stem"] + [f'''stage{idx}''' for idx in range(1 ,len(snake_case__ ) + 1 )] _UpperCAmelCase : List[Any] = get_aligned_output_features_output_indices( out_features=snake_case__ ,out_indices=snake_case__ ,stage_names=self.stage_names ) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Optional[int]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> Optional[Any]: return 1E-4
215
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : int =MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowerCAmelCase : Dict = VideoClassificationPipeline(model=snake_case__ , image_processor=snake_case__ , top_k=2 ) lowerCAmelCase : Any = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" for example in examples: lowerCAmelCase : str = video_classifier(snake_case__ ) self.assertEqual( snake_case__ , [ {"score": ANY(snake_case__ ), "label": ANY(snake_case__ )}, {"score": ANY(snake_case__ ), "label": ANY(snake_case__ )}, ] , ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowerCAmelCase : str = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) lowerCAmelCase : int = pipeline( "video-classification" , model=snake_case__ , feature_extractor=snake_case__ , frame_sampling_rate=4 ) lowerCAmelCase : Optional[int] = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowerCAmelCase : Union[str, Any] = video_classifier(snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] , ) lowerCAmelCase : Tuple = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ] , ) @require_tf def lowercase__ ( self ): """simple docstring""" pass
108
0
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowercase__ : Any = TypeVar("""_T""") class UpperCamelCase__ ( Generic[_T] ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Iterable[_T] | None = None ): lowerCAmelCase_ : list[_T] = list(iterable or [] ) lowerCAmelCase_ : list[_T] = [] def __len__( self : List[str] ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : int ): return F"Queue({tuple(self._stacka[::-1] + self._stacka )})" def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : _T ): self._stacka.append(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : List[str] = self._stacka.pop lowerCAmelCase_ : int = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('Queue is empty' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
289
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ : Dict = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
1
"""simple docstring""" from functools import lru_cache @lru_cache def a_ ( lowerCamelCase ): if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
98
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class A__ ( unittest.TestCase ): def __init__( self : Any , a : Union[str, Any] , a : List[str]=7 , a : List[Any]=3 , a : int=30 , a : Any=400 , a : List[str]=True , a : Any=None , a : Union[str, Any]=True , a : Union[str, Any]=[0.5, 0.5, 0.5] , a : List[Any]=[0.5, 0.5, 0.5] , a : str=True , a : Optional[int]=1 / 255 , a : Dict=True , ): '''simple docstring''' lowerCAmelCase__ : Dict = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} lowerCAmelCase__ : str = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : int = min_resolution lowerCAmelCase__ : Dict = max_resolution lowerCAmelCase__ : Dict = do_resize lowerCAmelCase__ : Any = size lowerCAmelCase__ : Any = do_normalize lowerCAmelCase__ : int = image_mean lowerCAmelCase__ : Tuple = image_std lowerCAmelCase__ : Optional[int] = do_rescale lowerCAmelCase__ : str = rescale_factor lowerCAmelCase__ : Optional[int] = do_pad def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowerCamelCase ( self : Optional[Any] , a : List[Any] , a : Union[str, Any]=False ): '''simple docstring''' if not batched: lowerCAmelCase__ : Dict = image_inputs[0] if isinstance(a , Image.Image ): lowerCAmelCase__ : Tuple = image.size else: lowerCAmelCase__ : Union[str, Any] = image.shape[1], image.shape[2] if w < h: lowerCAmelCase__ : str = int(self.size['shortest_edge'] * h / w ) lowerCAmelCase__ : str = self.size['shortest_edge'] elif w > h: lowerCAmelCase__ : int = self.size['shortest_edge'] lowerCAmelCase__ : Optional[int] = int(self.size['shortest_edge'] * w / h ) else: lowerCAmelCase__ : List[Any] = self.size['shortest_edge'] lowerCAmelCase__ : int = self.size['shortest_edge'] else: lowerCAmelCase__ : List[Any] = [] for image in image_inputs: lowerCAmelCase__ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase__ : List[str] = max(a , key=lambda a : item[0] )[0] lowerCAmelCase__ : List[Any] = max(a , key=lambda a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A__ ( __UpperCamelCase , unittest.TestCase ): lowercase = ConditionalDetrImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Any = ConditionalDetrImageProcessingTester(self ) @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , a ) lowerCAmelCase__ : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=a ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowerCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(a , batched=a ) lowerCAmelCase__ : Optional[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowerCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values lowerCAmelCase__ : Dict = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowerCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values lowerCAmelCase__ : int = self.image_processor_tester.get_expected_values(a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase__ : List[str] = image_processing(a , return_tensors='pt' ).pixel_values lowerCAmelCase__ : Any = self.image_processor_tester.get_expected_values(a , batched=a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: lowerCAmelCase__ : int = json.loads(f.read() ) lowerCAmelCase__ : Any = {'image_id': 39_769, 'annotations': target} # encode them lowerCAmelCase__ : Any = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) lowerCAmelCase__ : Union[str, Any] = image_processing(images=a , annotations=a , return_tensors='pt' ) # verify pixel values lowerCAmelCase__ : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , a ) lowerCAmelCase__ : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1E-4 ) ) # verify area lowerCAmelCase__ : Optional[int] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a ) ) # verify boxes lowerCAmelCase__ : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , a ) lowerCAmelCase__ : Optional[int] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Any = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a ) ) # verify is_crowd lowerCAmelCase__ : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a ) ) # verify class_labels lowerCAmelCase__ : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a ) ) # verify orig_size lowerCAmelCase__ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a ) ) # verify size lowerCAmelCase__ : Union[str, Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a ) ) @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: lowerCAmelCase__ : Dict = json.loads(f.read() ) lowerCAmelCase__ : Optional[int] = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} lowerCAmelCase__ : Tuple = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them lowerCAmelCase__ : Union[str, Any] = ConditionalDetrImageProcessor(format='coco_panoptic' ) lowerCAmelCase__ : Optional[Any] = image_processing(images=a , annotations=a , masks_path=a , return_tensors='pt' ) # verify pixel values lowerCAmelCase__ : Dict = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , a ) lowerCAmelCase__ : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1E-4 ) ) # verify area lowerCAmelCase__ : str = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a ) ) # verify boxes lowerCAmelCase__ : Any = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , a ) lowerCAmelCase__ : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1E-3 ) ) # verify image_id lowerCAmelCase__ : Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a ) ) # verify is_crowd lowerCAmelCase__ : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a ) ) # verify class_labels lowerCAmelCase__ : Dict = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a ) ) # verify masks lowerCAmelCase__ : List[Any] = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , a ) # verify orig_size lowerCAmelCase__ : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a ) ) # verify size lowerCAmelCase__ : Union[str, Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a ) )
351
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup _UpperCAmelCase : Any = [ "kernels/rwkv/wkv_cuda.cu", "kernels/rwkv/wkv_op.cpp", "kernels/deformable_detr/ms_deform_attn.h", "kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh", "models/graphormer/algos_graphormer.pyx", ] def UpperCAmelCase__ ( lowerCamelCase ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--check_lib", action="store_true", help="Whether to check the build or the actual package.") _UpperCAmelCase : Union[str, Any] = parser.parse_args() if args.check_lib: _UpperCAmelCase : Optional[Any] = importlib.import_module("transformers") _UpperCAmelCase : Any = Path(transformers_module.__file__).parent else: _UpperCAmelCase : Tuple = Path.cwd() / "build/lib/transformers" if not test_custom_files_are_present(transformers_path): raise ValueError("The built release does not contain the custom files. Fix this before going further!")
236
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): lowercase :List[str] = "" for word_or_phrase in separated: if not isinstance(lowerCamelCase, lowerCamelCase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
236
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __lowerCamelCase : List[Any] = get_tests_dir('''fixtures''') __lowerCamelCase : Optional[int] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __lowerCamelCase : Any = get_tests_dir('''fixtures/dummy-config.json''') class __snake_case ( unittest.TestCase ): def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ).to_dict() config_dict.pop("""feature_extractor_type""" ) SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor(**_lowercase ) # save in new folder model_config.save_pretrained(_lowercase ) config.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( _lowercase , """bert-base is not a local folder and is not a valid model identifier""" ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( _lowercase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase , revision="""aaaaaa""" ) def __a ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex( _lowercase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self : str ): """simple docstring""" with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self : Union[str, Any] ): """simple docstring""" try: AutoConfig.register("""custom""" , _lowercase ) AutoFeatureExtractor.register(_lowercase , _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoFeatureExtractor.register(_lowercase , _lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self : Any ): """simple docstring""" class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = True try: AutoConfig.register("""custom""" , _lowercase ) AutoFeatureExtractor.register(_lowercase , _lowercase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_lowercase ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(_lowercase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
204
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __snake_case ( unittest.TestCase ): def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) SCREAMING_SNAKE_CASE__ = Vector() def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_lowercase ) , """(0,0,0,0,0,1)""" ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3, 4] ) self.assertEqual(len(_lowercase ) , 4 ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2] ) SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3, 4, 5] ) SCREAMING_SNAKE_CASE__ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE__ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([2, -1, 4] ) # for test of dot product SCREAMING_SNAKE_CASE__ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __a ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __a ( self : str ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _lowercase , _lowercase ) ) , """(3,4,7)""" ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE__ = x.copy() self.assertEqual(str(_lowercase ) , str(_lowercase ) ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_lowercase ) , """(0,1,0)""" ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(_lowercase ) ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_lowercase , _lowercase ) ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_lowercase , _lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(_lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __a ( self : Any ): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
204
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : List[str] = filter(lambda snake_case__ : p.requires_grad , model.parameters() ) _snake_case : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params A_ = logging.getLogger(__name__) def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ): """simple docstring""" if metric == "rouge2": _snake_case : Union[str, Any] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _snake_case : Union[str, Any] = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _snake_case : Tuple = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": _snake_case : List[Any] = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" """ function.""" ) _snake_case : Union[str, Any] = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"val_{metric}" , mode="""max""" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Any ): """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode="""min""" if """loss""" in metric else """max""" , patience=a__ , verbose=a__ , ) class lowercase( pl.Callback ): '''simple docstring''' def UpperCamelCase_ ( self: str, a_: int, a_: int ): '''simple docstring''' _snake_case : List[Any] = {f"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def UpperCamelCase_ ( self: Any, a_: Tuple, a_: Union[str, Any], a_: Tuple, a_: List[Any]=True ): '''simple docstring''' logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) _snake_case : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _snake_case : Union[str, Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": _snake_case : List[str] = od / """test_results.txt""" _snake_case : List[str] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _snake_case : str = od / f"{type_path}_results/{trainer.global_step:05d}.txt" _snake_case : Union[str, Any] = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A, """a+""" ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue _snake_case : Dict = metrics[key] if isinstance(_A, torch.Tensor ): _snake_case : Any = val.item() _snake_case : Union[str, Any] = f"{key}: {val:.6f}\n" writer.write(_A ) if not save_generations: return if "preds" in metrics: _snake_case : int = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_A ) @rank_zero_only def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[int], a_: Tuple ): '''simple docstring''' try: _snake_case : List[Any] = pl_module.model.model.num_parameters() except AttributeError: _snake_case : List[str] = pl_module.model.num_parameters() _snake_case : Optional[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def UpperCamelCase_ ( self: Optional[int], a_: Optional[Any], a_: Optional[int] ): '''simple docstring''' save_json(pl_module.metrics, pl_module.metrics_save_path ) return self._write_logs(_A, _A, """test""" ) @rank_zero_only def UpperCamelCase_ ( self: Tuple, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' save_json(pl_module.metrics, pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
64
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __lowercase ( a__ ) -> Tuple: __SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = emb.weight.shape __SCREAMING_SNAKE_CASE = nn.Linear(a__ , a__ , bias=a__ ) __SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def __lowercase ( a__ ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = torch.load(a__ , map_location='cpu' ) __SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model'] __SCREAMING_SNAKE_CASE = mam_aaa['model'] remove_ignore_keys_(a__ ) __SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0] __SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=a__ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) __SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight'] __SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(a__ ) model.model.load_state_dict(a__ , strict=a__ ) __SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase__ : Optional[int] =parser.parse_args() lowerCAmelCase__ : Tuple =convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
257
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowerCAmelCase ( __lowercase , __lowercase): @register_to_config def __init__( self: Tuple , *, _lowerCAmelCase: int = 4 , _lowerCAmelCase: int = 7_68 , _lowerCAmelCase: int , _lowerCAmelCase: Dict , ): super().__init__() lowercase :Optional[int] = nn.Parameter(torch.zeros(UpperCAmelCase__ ) ) # parameters for additional clip time embeddings lowercase :int = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase :Any = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) # parameters for encoder hidden states lowercase :Tuple = clip_extra_context_tokens lowercase :Any = nn.Linear( UpperCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) lowercase :List[Any] = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase :Union[str, Any] = nn.LayerNorm(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( self: int , *, _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: str ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings lowercase :int = image_embeddings.shape[0] lowercase :Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) lowercase :str = classifier_free_guidance_embeddings.expand( UpperCAmelCase__ , -1 ) lowercase :Tuple = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] lowercase :int = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... lowercase :List[str] = self.embedding_proj(UpperCAmelCase__ ) lowercase :List[str] = self.clip_image_embeddings_project_to_time_embeddings(UpperCAmelCase__ ) lowercase :Optional[int] = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" lowercase :Optional[Any] = self.clip_extra_context_tokens_proj(UpperCAmelCase__ ) lowercase :List[str] = clip_extra_context_tokens.reshape(UpperCAmelCase__ , -1 , self.clip_extra_context_tokens ) lowercase :Tuple = clip_extra_context_tokens.permute(0 , 2 , 1 ) lowercase :Optional[int] = self.encoder_hidden_states_proj(UpperCAmelCase__ ) lowercase :Optional[int] = self.text_encoder_hidden_states_norm(UpperCAmelCase__ ) lowercase :int = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
361
import logging import os import threading import time try: import warnings except ImportError: _UpperCAmelCase : List[str] = None try: import msvcrt except ImportError: _UpperCAmelCase : Tuple = None try: import fcntl except ImportError: _UpperCAmelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _UpperCAmelCase : Tuple = OSError # Data # ------------------------------------------------ _UpperCAmelCase : Optional[int] = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _UpperCAmelCase : Optional[Any] = "3.0.12" _UpperCAmelCase : int = None def UpperCAmelCase__ ( ): global _logger lowercase :List[str] = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: int , _lowerCAmelCase: Dict ): lowercase :Any = lock_file return None def __str__( self: Dict ): lowercase :str = F"The file lock '{self.lock_file}' could not be acquired." return temp class __lowerCAmelCase : def __init__( self: Tuple , _lowerCAmelCase: Any ): lowercase :Optional[Any] = lock return None def __enter__( self: List[Any] ): return self.lock def __exit__( self: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[int] ): self.lock.release() return None class __lowerCAmelCase : def __init__( self: Optional[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Tuple=-1 , _lowerCAmelCase: int=None ): lowercase :Any = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long lowercase :int = self.hash_filename_if_too_long(_lowerCAmelCase , _lowerCAmelCase ) # The path to the lock file. lowercase :List[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowercase :Any = None # The default timeout value. lowercase :Any = timeout # We use this lock primarily for the lock counter. lowercase :Optional[int] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowercase :Optional[int] = 0 return None @property def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): return self._lock_file @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[str] ): lowercase :Tuple = float(_lowerCAmelCase ) return None def SCREAMING_SNAKE_CASE ( self: int ): raise NotImplementedError() def SCREAMING_SNAKE_CASE ( self: int ): raise NotImplementedError() @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: Union[str, Any]=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: lowercase :List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowercase :Any = id(self ) lowercase :Optional[int] = self._lock_file lowercase :Optional[Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(_lowerCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowercase :Union[str, Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: Tuple=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowercase :Union[str, Any] = id(self ) lowercase :str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() lowercase :List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self: Tuple ): self.acquire() return self def __exit__( self: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Dict ): self.release() return None def __del__( self: Optional[Any] ): self.release(force=_lowerCAmelCase ) return None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: int ): lowercase :Union[str, Any] = os.path.basename(_lowerCAmelCase ) if len(_lowerCAmelCase ) > max_length and max_length > 0: lowercase :Dict = os.path.dirname(_lowerCAmelCase ) lowercase :Any = str(hash(_lowerCAmelCase ) ) lowercase :Union[str, Any] = filename[: max_length - len(_lowerCAmelCase ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(_lowerCAmelCase , _lowerCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: int , _lowerCAmelCase: int , _lowerCAmelCase: Optional[Any]=-1 , _lowerCAmelCase: List[Any]=None ): from .file_utils import relative_to_absolute_path super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) lowercase :Optional[int] = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :int = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowercase :Tuple = os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: try: msvcrt.locking(_lowerCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_lowerCAmelCase ) else: lowercase :Any = fd return None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Any = self._lock_file_fd lowercase :Tuple = None msvcrt.locking(_lowerCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(_lowerCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: Dict=-1 , _lowerCAmelCase: Tuple=None ): lowercase :List[str] = os.statvfs(os.path.dirname(_lowerCAmelCase ) ).f_namemax super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :Any = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowercase :Optional[int] = os.open(self._lock_file , _lowerCAmelCase ) try: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_lowerCAmelCase ) else: lowercase :Optional[Any] = fd return None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition lowercase :Dict = self._lock_file_fd lowercase :Union[str, Any] = None fcntl.flock(_lowerCAmelCase , fcntl.LOCK_UN ) os.close(_lowerCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase): def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :str = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowercase :List[Any] = os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: lowercase :int = fd return None def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): os.close(self._lock_file_fd ) lowercase :int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _UpperCAmelCase : Tuple = None if msvcrt: _UpperCAmelCase : str = WindowsFileLock elif fcntl: _UpperCAmelCase : List[Any] = UnixFileLock else: _UpperCAmelCase : Optional[int] = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
158
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class a ( lowerCAmelCase_ ): _snake_case : Optional[int] = 'pix2struct_text_model' _snake_case : Dict = ['past_key_values'] _snake_case : Union[str, Any] = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , __lowerCAmelCase : List[Any]=5_0244 , __lowerCAmelCase : Dict=768 , __lowerCAmelCase : int=64 , __lowerCAmelCase : Optional[Any]=2048 , __lowerCAmelCase : Dict=12 , __lowerCAmelCase : Dict=12 , __lowerCAmelCase : int=32 , __lowerCAmelCase : Optional[int]=128 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Union[str, Any]=1e-6 , __lowerCAmelCase : List[str]=1.0 , __lowerCAmelCase : int="gelu_new" , __lowerCAmelCase : List[str]=0 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : str=1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=True , **__lowerCAmelCase : Union[str, Any] , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = d_kv _UpperCAmelCase = d_ff _UpperCAmelCase = num_layers _UpperCAmelCase = num_heads _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = dropout_rate _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_factor _UpperCAmelCase = use_cache _UpperCAmelCase = eos_token_id _UpperCAmelCase = decoder_start_token_id # for backwards compatibility _UpperCAmelCase = dense_act_fn super().__init__( pad_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , tie_word_embeddings=__lowerCAmelCase , is_decoder=__lowerCAmelCase , **__lowerCAmelCase , ) @classmethod def lowerCAmelCase_ ( cls : Any , __lowerCAmelCase : Union[str, os.PathLike] , **__lowerCAmelCase : Union[str, Any] ): cls._set_token_in_kwargs(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _UpperCAmelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class a ( lowerCAmelCase_ ): _snake_case : Tuple = 'pix2struct_vision_model' def __init__( self : Any , __lowerCAmelCase : List[str]=768 , __lowerCAmelCase : List[str]=768 , __lowerCAmelCase : int=2048 , __lowerCAmelCase : Optional[int]=64 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : Optional[int]="gelu_new" , __lowerCAmelCase : Optional[int]=1e-6 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : int=0.0 , __lowerCAmelCase : Optional[Any]=1e-1_0 , __lowerCAmelCase : Optional[int]=1.0 , __lowerCAmelCase : Any=4096 , __lowerCAmelCase : List[Any]=32 , __lowerCAmelCase : Optional[int]=128 , **__lowerCAmelCase : List[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = patch_embed_hidden_size _UpperCAmelCase = d_ff _UpperCAmelCase = dropout_rate _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = initializer_range _UpperCAmelCase = initializer_factor _UpperCAmelCase = attention_dropout _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = dense_act_fn _UpperCAmelCase = seq_len _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = relative_attention_max_distance _UpperCAmelCase = d_kv @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : Union[str, os.PathLike] , **__lowerCAmelCase : Optional[int] ): cls._set_token_in_kwargs(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = cls.get_config_dict(__lowerCAmelCase , **__lowerCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": _UpperCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCAmelCase , **__lowerCAmelCase ) class a ( lowerCAmelCase_ ): _snake_case : Any = 'pix2struct' _snake_case : Any = True def __init__( self : Optional[int] , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Dict=1.0 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : int=False , __lowerCAmelCase : Dict=True , **__lowerCAmelCase : Any , ): super().__init__(tie_word_embeddings=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) if text_config is None: _UpperCAmelCase = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: _UpperCAmelCase = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) _UpperCAmelCase = PixaStructTextConfig(**__lowerCAmelCase ) _UpperCAmelCase = PixaStructVisionConfig(**__lowerCAmelCase ) _UpperCAmelCase = self.text_config.decoder_start_token_id _UpperCAmelCase = self.text_config.pad_token_id _UpperCAmelCase = self.text_config.eos_token_id _UpperCAmelCase = initializer_factor _UpperCAmelCase = initializer_range _UpperCAmelCase = self.initializer_range _UpperCAmelCase = self.initializer_range _UpperCAmelCase = is_vqa @classmethod def lowerCAmelCase_ ( cls : Any , __lowerCAmelCase : PixaStructTextConfig , __lowerCAmelCase : PixaStructVisionConfig , **__lowerCAmelCase : Dict ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.text_config.to_dict() _UpperCAmelCase = self.vision_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
289
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class a : def __init__( self : Union[str, Any] ): _UpperCAmelCase = {} def lowerCAmelCase_ ( self : Optional[int] , __lowerCAmelCase : str ): _UpperCAmelCase = {} def lowerCAmelCase_ ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : float ): if nodea not in self.connections: self.add_node(__lowerCAmelCase ) if nodea not in self.connections: self.add_node(__lowerCAmelCase ) _UpperCAmelCase = probability def lowerCAmelCase_ ( self : Optional[Any] ): return list(self.connections ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : str ): _UpperCAmelCase = 0 _UpperCAmelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase ,lowercase ,lowercase ) _UpperCAmelCase = Counter(graph.get_nodes() ) _UpperCAmelCase = start for _ in range(lowercase ): _UpperCAmelCase = graph.transition(lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
289
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE_ : int = 6_55_36 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : str = "fourier" , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ : Tuple[str] = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : Tuple[int] = (32, 32, 64) , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : int = 8 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() A: Optional[Any] = sample_size # time if time_embedding_type == "fourier": A: Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) A: List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": A: str = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) A: Any = block_out_channels[0] if use_timestep_embedding: A: Optional[Any] = block_out_channels[0] * 4 A: List[Any] = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) A: Optional[Any] = nn.ModuleList([] ) A: str = None A: str = nn.ModuleList([] ) A: Tuple = None # down A: Any = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: Optional[int] = output_channel A: List[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels A: List[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[int] = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid A: Union[str, Any] = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up A: Optional[Any] = list(reversed(SCREAMING_SNAKE_CASE_ ) ) A: List[str] = reversed_block_out_channels[0] if out_block_type is None: A: int = out_channels else: A: Union[str, Any] = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): A: List[Any] = output_channel A: int = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) A: Optional[int] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 A: Optional[Any] = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) A: Any = output_channel # out A: List[str] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) A: Optional[int] = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Union[torch.Tensor, float, int] , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' A: Any = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): A: Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: A: List[str] = timesteps[None].to(sample.device ) A: int = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: A: List[Any] = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: A: str = timestep_embed[..., None] A: Union[str, Any] = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) A: Tuple = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down A: List[str] = () for downsample_block in self.down_blocks: A , A: Optional[int] = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: A: Dict = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): A: List[Any] = down_block_res_samples[-1:] A: List[str] = down_block_res_samples[:-1] A: Optional[int] = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: A: Any = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
334
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
1