code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , a : str , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : Union[str, Any] = 13 SCREAMING_SNAKE_CASE : Union[str, Any] = 7 SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Tuple = 99 SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : Dict = 4 SCREAMING_SNAKE_CASE : Union[str, Any] = 37 SCREAMING_SNAKE_CASE : Optional[Any] = "gelu" SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1 SCREAMING_SNAKE_CASE : Any = 0.1 SCREAMING_SNAKE_CASE : Any = 512 SCREAMING_SNAKE_CASE : Any = 16 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Dict = 0.02 SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : Dict = 4 SCREAMING_SNAKE_CASE : List[Any] = None def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Optional[int] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Optional[int] , a : Optional[int] , a : Dict , a : Any , a : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = TFDistilBertModel(config=a ) SCREAMING_SNAKE_CASE : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} SCREAMING_SNAKE_CASE : Dict = model(a ) SCREAMING_SNAKE_CASE : int = [input_ids, input_mask] SCREAMING_SNAKE_CASE : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[Any] , a : Dict , a : Tuple , a : str , a : int , a : List[str] , a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = TFDistilBertForMaskedLM(config=a ) SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} SCREAMING_SNAKE_CASE : List[Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any , a : List[Any] , a : str , a : Union[str, Any] , a : Dict , a : Optional[int] , a : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFDistilBertForQuestionAnswering(config=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, } SCREAMING_SNAKE_CASE : List[str] = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : int , a : List[Any] , a : Dict , a : Tuple , a : Tuple , a : Tuple , a : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = TFDistilBertForSequenceClassification(a ) SCREAMING_SNAKE_CASE : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} SCREAMING_SNAKE_CASE : Optional[int] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Any , a : Any , a : Optional[int] , a : Any , a : int , a : int , a : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.num_choices SCREAMING_SNAKE_CASE : Dict = TFDistilBertForMultipleChoice(a ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } SCREAMING_SNAKE_CASE : Dict = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[Any] , a : List[str] , a : Dict , a : List[Any] , a : List[Any] , a : Union[str, Any] , a : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : Any = TFDistilBertForTokenClassification(a ) SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask} SCREAMING_SNAKE_CASE : str = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) lowerCamelCase__ =( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TFDistilBertModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=a , dim=37 ) def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) @slow def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): SCREAMING_SNAKE_CASE : List[str] = TFDistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(a )[0] SCREAMING_SNAKE_CASE : int = [1, 6, 768] self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : str = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , a , atol=1e-4 )
76
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : lowerCAmelCase_ = 42 # setable values lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = None @classmethod def _snake_case ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return cls(common=__SCREAMING_SNAKE_CASE , init_noise_sigma=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) @dataclass class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = 42 class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase_ = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCAmelCase_ = 42 @property def _snake_case ( self ): """simple docstring""" return True @register_to_config def __init__( self , __SCREAMING_SNAKE_CASE = 10_00 , __SCREAMING_SNAKE_CASE = 0.0_001 , __SCREAMING_SNAKE_CASE = 0.02 , __SCREAMING_SNAKE_CASE = "linear" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "fixed_small" , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = "epsilon" , __SCREAMING_SNAKE_CASE = jnp.floataa , ): """simple docstring""" lowercase_ : Dict = dtype def _snake_case ( self , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if common is None: lowercase_ : Tuple = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase_ : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) lowercase_ : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__SCREAMING_SNAKE_CASE , init_noise_sigma=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE , ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" return sample def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = () ): """simple docstring""" lowercase_ : Optional[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase_ : int = (jnp.arange(0 , __SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE , ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase_ : List[Any] = state.common.alphas_cumprod[t] lowercase_ : str = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase_ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase_ : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase_ : int = jnp.clip(__SCREAMING_SNAKE_CASE , a_min=1E-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase_ : List[str] = jnp.log(jnp.clip(__SCREAMING_SNAKE_CASE , a_min=1E-2_0 ) ) elif variance_type == "fixed_large": lowercase_ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase_ : List[Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase_ : Optional[Any] = variance lowercase_ : Union[str, Any] = state.common.betas[t] lowercase_ : Union[str, Any] = (predicted_variance + 1) / 2 lowercase_ : Any = frac * max_log + (1 - frac) * min_log return variance def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , ): """simple docstring""" lowercase_ : Optional[int] = timestep if key is None: lowercase_ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase_ , lowercase_ : Optional[Any] = jnp.split(__SCREAMING_SNAKE_CASE , sample.shape[1] , axis=1 ) else: lowercase_ : int = None # 1. compute alphas, betas lowercase_ : Any = state.common.alphas_cumprod[t] lowercase_ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase_ : int = 1 - alpha_prod_t lowercase_ : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase_ : Tuple = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase_ : Any = model_output elif self.config.prediction_type == "v_prediction": lowercase_ : List[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase_ : Optional[Any] = jnp.clip(__SCREAMING_SNAKE_CASE , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase_ : Optional[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase_ : str = jax.random.split(__SCREAMING_SNAKE_CASE , num=1 ) lowercase_ : List[Any] = jax.random.normal(__SCREAMING_SNAKE_CASE , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , predicted_variance=__SCREAMING_SNAKE_CASE ) ** 0.5) * noise lowercase_ : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase_ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" return add_noise_common(state.common , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" return get_velocity_common(state.common , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
93
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ : str = logging.get_logger(__name__) a_ : Optional[Any] = { """Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""", # See all Marian models at https://huggingface.co/models?filter=marian } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] ='marian' lowercase : Union[str, Any] =['past_key_values'] lowercase : Union[str, Any] ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self, lowerCAmelCase=58_101, lowerCAmelCase=None, lowerCAmelCase=1_024, lowerCAmelCase=12, lowerCAmelCase=4_096, lowerCAmelCase=16, lowerCAmelCase=12, lowerCAmelCase=4_096, lowerCAmelCase=16, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase="gelu", lowerCAmelCase=1_024, lowerCAmelCase=0.1, lowerCAmelCase=0.0, lowerCAmelCase=0.0, lowerCAmelCase=0.0_2, lowerCAmelCase=58_100, lowerCAmelCase=False, lowerCAmelCase=58_100, lowerCAmelCase=0, lowerCAmelCase=0, lowerCAmelCase=True, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =vocab_size lowerCamelCase_ =decoder_vocab_size or vocab_size lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =d_model lowerCamelCase_ =encoder_ffn_dim lowerCamelCase_ =encoder_layers lowerCamelCase_ =encoder_attention_heads lowerCamelCase_ =decoder_ffn_dim lowerCamelCase_ =decoder_layers lowerCamelCase_ =decoder_attention_heads lowerCamelCase_ =dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =activation_dropout lowerCamelCase_ =activation_function lowerCamelCase_ =init_std lowerCamelCase_ =encoder_layerdrop lowerCamelCase_ =decoder_layerdrop lowerCamelCase_ =use_cache lowerCamelCase_ =encoder_layers lowerCamelCase_ =scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase_ =share_encoder_decoder_embeddings super().__init__( pad_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, is_encoder_decoder=lowerCAmelCase, decoder_start_token_id=lowerCAmelCase, forced_eos_token_id=lowerCAmelCase, **lowerCAmelCase, ) class __UpperCamelCase ( lowerCamelCase__ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowercase__ ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase_ ={0: '''batch'''} lowerCamelCase_ ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCamelCase_ ={0: '''batch''', 1: '''decoder_sequence'''} lowerCamelCase_ ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase, direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase_ =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase_, lowerCamelCase_ =self.num_layers for i in range(lowerCAmelCase ): lowerCamelCase_ ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase_ ={0: '''batch''', 2: '''past_sequence + sequence'''} else: lowerCamelCase_ =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowercase__ ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ =super().outputs else: lowerCamelCase_ =super(lowerCAmelCase, self ).outputs if self.use_past: lowerCamelCase_, lowerCamelCase_ =self.num_layers for i in range(lowerCAmelCase ): lowerCamelCase_ ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase_ ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = -1, lowerCAmelCase = -1, lowerCAmelCase = False, lowerCAmelCase = None, ): """simple docstring""" lowerCamelCase_ =self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) # Generate decoder inputs lowerCamelCase_ =seq_length if not self.use_past else 1 lowerCamelCase_ =self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ ={f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase_ =dict(**lowerCAmelCase, **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase_, lowerCamelCase_ =common_inputs['''input_ids'''].shape lowerCamelCase_ =common_inputs['''decoder_input_ids'''].shape[1] lowerCamelCase_, lowerCamelCase_ =self.num_attention_heads lowerCamelCase_ =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase_ =decoder_seq_length + 3 lowerCamelCase_ =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase_ =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCAmelCase, lowerCAmelCase )], dim=1 ) lowerCamelCase_ =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase_, lowerCamelCase_ =self.num_layers lowerCamelCase_ =min(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =max(lowerCAmelCase, lowerCAmelCase ) - min_num_layers lowerCamelCase_ ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. lowerCamelCase_ =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCAmelCase, lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = -1, lowerCAmelCase = -1, lowerCAmelCase = False, lowerCAmelCase = None, ): """simple docstring""" lowerCamelCase_ =self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase_, lowerCamelCase_ =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCamelCase_ =seqlen + 2 lowerCamelCase_, lowerCamelCase_ =self.num_layers lowerCamelCase_, lowerCamelCase_ =self.num_attention_heads lowerCamelCase_ =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase_ =common_inputs['''attention_mask'''].dtype lowerCamelCase_ =torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCAmelCase, lowerCAmelCase, dtype=lowerCAmelCase )], dim=1 ) lowerCamelCase_ =[ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = -1, lowerCAmelCase = -1, lowerCAmelCase = False, lowerCAmelCase = None, ): """simple docstring""" lowerCamelCase_ =compute_effective_axis_dimension( lowerCAmelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase_ =tokenizer.num_special_tokens_to_add(lowerCAmelCase ) lowerCamelCase_ =compute_effective_axis_dimension( lowerCAmelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase_ =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase_ =dict(tokenizer(lowerCAmelCase, return_tensors=lowerCAmelCase ) ) return common_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = -1, lowerCAmelCase = -1, lowerCAmelCase = False, lowerCAmelCase = None, ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ =self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase, batch_size=lowerCAmelCase, seq_length=lowerCAmelCase, is_pair=lowerCAmelCase, framework=lowerCAmelCase ) else: lowerCamelCase_ =self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase, batch_size=lowerCAmelCase, seq_length=lowerCAmelCase, is_pair=lowerCAmelCase, framework=lowerCAmelCase ) return common_inputs def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: lowerCamelCase_ =super()._flatten_past_key_values_(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) else: lowerCamelCase_ =super(lowerCAmelCase, self )._flatten_past_key_values_( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
364
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __UpperCamelCase ( lowerCamelCase__ ): lowercase : List[str] =['image_processor', 'tokenizer'] lowercase : Optional[int] ='AutoImageProcessor' lowercase : List[str] ='AutoTokenizer' def __init__( self, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', lowerCAmelCase, ) lowerCamelCase_ =kwargs.pop('''feature_extractor''' ) lowerCamelCase_ =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def __call__( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''images''', lowerCAmelCase ) lowerCamelCase_ =kwargs.pop('''text''', lowerCAmelCase ) if len(lowerCAmelCase ) > 0: lowerCamelCase_ =args[0] lowerCamelCase_ =args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowerCamelCase_ =self.image_processor(lowerCAmelCase, *lowerCAmelCase, **lowerCAmelCase ) if text is not None: lowerCamelCase_ =self.tokenizer(lowerCAmelCase, **lowerCAmelCase ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase_ =encodings['''input_ids'''] return inputs def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, *lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase, **lowerCAmelCase ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowerCamelCase_ =True lowerCamelCase_ =self.tokenizer yield lowerCamelCase_ =self.image_processor lowerCamelCase_ =False def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=False, lowerCAmelCase=None ): """simple docstring""" if added_vocab is None: lowerCamelCase_ =self.tokenizer.get_added_vocab() lowerCamelCase_ ={} while tokens: lowerCamelCase_ =re.search(R'''<s_(.*?)>''', lowerCAmelCase, re.IGNORECASE ) if start_token is None: break lowerCamelCase_ =start_token.group(1 ) lowerCamelCase_ =re.search(Rf'''</s_{key}>''', lowerCAmelCase, re.IGNORECASE ) lowerCamelCase_ =start_token.group() if end_token is None: lowerCamelCase_ =tokens.replace(lowerCAmelCase, '''''' ) else: lowerCamelCase_ =end_token.group() lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.escape(lowerCAmelCase ) lowerCamelCase_ =re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''', lowerCAmelCase, re.IGNORECASE ) if content is not None: lowerCamelCase_ =content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase_ =self.tokenajson(lowerCAmelCase, is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if value: if len(lowerCAmelCase ) == 1: lowerCamelCase_ =value[0] lowerCamelCase_ =value else: # leaf nodes lowerCamelCase_ =[] for leaf in content.split(R'''<sep/>''' ): lowerCamelCase_ =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase_ =leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase ) if len(output[key] ) == 1: lowerCamelCase_ =output[key][0] lowerCamelCase_ =tokens[tokens.find(lowerCAmelCase ) + len(lowerCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=lowerCAmelCase, added_vocab=lowerCAmelCase ) if len(lowerCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', lowerCAmelCase, ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', lowerCAmelCase, ) return self.image_processor
6
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore a : int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" a : Union[str, Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print("\n".join(upper_files) + "\n") a : Any = [file for file in filepaths if " " in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print("\n".join(space_files) + "\n") a : str = [file for file in filepaths if "-" in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print("\n".join(hyphen_files) + "\n") a : Optional[Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print("\n".join(nodir_files) + "\n") a : List[Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
114
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = '''ylacombe/bark-small''' __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = '''en_speaker_1''' __lowerCamelCase = '''This is a test string''' __lowerCamelCase = '''speaker_embeddings_path.json''' __lowerCamelCase = '''speaker_embeddings''' def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **a : Dict ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BarkProcessor(tokenizer=a ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __lowerCamelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCamelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __lowerCamelCase = 35 __lowerCamelCase = 2 __lowerCamelCase = 8 __lowerCamelCase = { '''semantic_prompt''': np.ones(a ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __lowerCamelCase = processor(text=self.input_string , voice_preset=a ) __lowerCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a , np.array([] ) ).tolist() ) # test loading voice preset from npz file __lowerCamelCase = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(a , **a ) __lowerCamelCase = processor(text=self.input_string , voice_preset=a ) __lowerCamelCase = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a , np.array([] ) ).tolist() ) # test loading voice preset from the hub __lowerCamelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = BarkProcessor(tokenizer=a ) __lowerCamelCase = processor(text=self.input_string ) __lowerCamelCase = tokenizer( self.input_string , padding='''max_length''' , max_length=2_56 , add_special_tokens=a , return_attention_mask=a , return_token_type_ids=a , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
67
0
import math def _a ( _lowercase : int ): '''simple docstring''' if not isinstance(_snake_case , _snake_case ): __UpperCAmelCase : Tuple = F'Input value of [number={number}] must be an integer' raise TypeError(_snake_case ) if number < 1: __UpperCAmelCase : Any = F'Input value of [number={number}] must be > 0' raise ValueError(_snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCAmelCase : Any = int(math.log(number // 3 , 2 ) ) + 2 __UpperCAmelCase : Tuple = [3, 5] __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Union[str, Any] = 3 for block in range(1 , _snake_case ): for _ in range(_snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __UpperCAmelCase :Dict = 0 try: __UpperCAmelCase :List[str] = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
352
'''simple docstring''' import os import sys import unittest __UpperCAmelCase :Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase :Dict = os.path.join(git_repo_path, "src", "diffusers") class a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Any ) -> int: __UpperCAmelCase : Optional[Any] = find_backend(''' if not is_torch_available():''' ) self.assertEqual(snake_case , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __UpperCAmelCase : Union[str, Any] = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(snake_case , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __UpperCAmelCase : List[str] = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(snake_case , '''torch_and_transformers_and_onnx''' ) def lowerCamelCase__ ( self : Optional[int] ) -> int: __UpperCAmelCase : Tuple = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , snake_case ) self.assertIn('''torch_and_transformers''' , snake_case ) self.assertIn('''flax_and_transformers''' , snake_case ) self.assertIn('''torch_and_transformers_and_onnx''' , snake_case ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: __UpperCAmelCase : str = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(snake_case , '''\nCONSTANT = None\n''' ) __UpperCAmelCase : Union[str, Any] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( snake_case , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __UpperCAmelCase : Optional[int] = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' __UpperCAmelCase : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(snake_case , snake_case ) def lowerCamelCase__ ( self : int ) -> List[Any]: __UpperCAmelCase : List[str] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' __UpperCAmelCase : Optional[int] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , snake_case )
240
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ : Dict = logging.get_logger(__name__) a_ : Tuple = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def __snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): for attribute in key.split("." ): lowerCamelCase_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) if weight_type is not None: lowerCamelCase_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ).shape else: lowerCamelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase_ = value elif weight_type == "weight_g": lowerCamelCase_ = value elif weight_type == "weight_v": lowerCamelCase_ = value elif weight_type == "bias": lowerCamelCase_ = value else: lowerCamelCase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str ): lowerCamelCase_ = [] lowerCamelCase_ = fairseq_model.state_dict() lowerCamelCase_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase_ = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase_ = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase_ = True if "*" in mapped_key: lowerCamelCase_ = name.split(UpperCAmelCase_ )[0].split("." )[-2] lowerCamelCase_ = mapped_key.replace("*" , UpperCAmelCase_ ) if "weight_g" in name: lowerCamelCase_ = "weight_g" elif "weight_v" in name: lowerCamelCase_ = "weight_v" elif "weight" in name: lowerCamelCase_ = "weight" elif "bias" in name: lowerCamelCase_ = "bias" else: lowerCamelCase_ = None set_recursively(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) continue if not is_used: unused_weights.append(UpperCAmelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ): lowerCamelCase_ = full_name.split("conv_layers." )[-1] lowerCamelCase_ = name.split("." ) lowerCamelCase_ = int(items[0] ) lowerCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ): lowerCamelCase_ = SEWConfig() if is_finetuned: lowerCamelCase_ = model.wav_encoder.wav_model.cfg else: lowerCamelCase_ = model.cfg lowerCamelCase_ = fs_config.conv_bias lowerCamelCase_ = eval(fs_config.conv_feature_layers ) lowerCamelCase_ = [x[0] for x in conv_layers] lowerCamelCase_ = [x[1] for x in conv_layers] lowerCamelCase_ = [x[2] for x in conv_layers] lowerCamelCase_ = "gelu" lowerCamelCase_ = "layer" if fs_config.extractor_mode == "layer_norm" else "group" lowerCamelCase_ = 0.0 lowerCamelCase_ = fs_config.activation_fn.name lowerCamelCase_ = fs_config.encoder_embed_dim lowerCamelCase_ = 0.02 lowerCamelCase_ = fs_config.encoder_ffn_embed_dim lowerCamelCase_ = 1E-5 lowerCamelCase_ = fs_config.encoder_layerdrop lowerCamelCase_ = fs_config.encoder_attention_heads lowerCamelCase_ = fs_config.conv_pos_groups lowerCamelCase_ = fs_config.conv_pos lowerCamelCase_ = len(UpperCAmelCase_ ) lowerCamelCase_ = fs_config.encoder_layers lowerCamelCase_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowerCamelCase_ = model.cfg lowerCamelCase_ = fs_config.final_dropout lowerCamelCase_ = fs_config.layerdrop lowerCamelCase_ = fs_config.activation_dropout lowerCamelCase_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowerCamelCase_ = fs_config.attention_dropout lowerCamelCase_ = fs_config.dropout_input lowerCamelCase_ = fs_config.dropout lowerCamelCase_ = fs_config.mask_channel_length lowerCamelCase_ = fs_config.mask_channel_prob lowerCamelCase_ = fs_config.mask_length lowerCamelCase_ = fs_config.mask_prob lowerCamelCase_ = "Wav2Vec2FeatureExtractor" lowerCamelCase_ = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=True ): if is_finetuned: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowerCamelCase_ = SEWConfig.from_pretrained(UpperCAmelCase_ ) else: lowerCamelCase_ = convert_config(model[0] , UpperCAmelCase_ ) lowerCamelCase_ = model[0].eval() lowerCamelCase_ = True if config.feat_extract_norm == "layer" else False lowerCamelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) if is_finetuned: if dict_path: lowerCamelCase_ = Dictionary.load(UpperCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase_ = target_dict.pad_index lowerCamelCase_ = target_dict.bos_index lowerCamelCase_ = target_dict.pad_index lowerCamelCase_ = target_dict.bos_index lowerCamelCase_ = target_dict.eos_index lowerCamelCase_ = len(target_dict.symbols ) lowerCamelCase_ = os.path.join(UpperCAmelCase_ , "vocab.json" ) if not os.path.isdir(UpperCAmelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCAmelCase_ ) ) return os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , UpperCAmelCase_ ) lowerCamelCase_ = WavaVecaCTCTokenizer( UpperCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCAmelCase_ , ) lowerCamelCase_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) lowerCamelCase_ = SEWForCTC(UpperCAmelCase_ ) else: lowerCamelCase_ = SEWModel(UpperCAmelCase_ ) feature_extractor.save_pretrained(UpperCAmelCase_ ) recursively_load_weights(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ : int = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
55
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCamelCase__ : List[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCamelCase__ : List[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) lowerCamelCase__ : int = BeautifulSoup(res.text, 'html.parser') lowerCamelCase__ : List[str] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f'''https://google.com{link.get('href')}''')
225
0
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) SCREAMING_SNAKE_CASE_:Tuple = parser.parse_args() SCREAMING_SNAKE_CASE_:Optional[int] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
115
from random import randint, random def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = 5 , ) -> list: """simple docstring""" A : Any = [[-1] * number_of_cells] # Create a highway without any car A : Tuple = 0 A : Dict = max(_lowerCAmelCase , 0 ) while i < number_of_cells: A : Any = ( randint(0 , _lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" A : List[str] = 0 A : Dict = highway_now[car_index + 1 :] for cell in range(len(_lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_lowerCAmelCase , -1 ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> list: """simple docstring""" A : str = len(_lowerCAmelCase ) # Beforce calculations, the highway is empty A : Any = [-1] * number_of_cells for car_index in range(_lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed A : str = min(highway_now[car_index] + 1 , _lowerCAmelCase ) # Number of empty cell before the next car A : Optional[int] = get_distance(_lowerCAmelCase , _lowerCAmelCase ) - 1 # We can't have the car causing an accident A : Any = min(next_highway[car_index] , _lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down A : Optional[Any] = max(next_highway[car_index] - 1 , 0 ) return next_highway def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> list: """simple docstring""" A : Any = len(highway[0] ) for i in range(_lowerCAmelCase ): A : Optional[int] = update(highway[i] , _lowerCAmelCase , _lowerCAmelCase ) A : Tuple = [-1] * number_of_cells for car_index in range(_lowerCAmelCase ): A : Dict = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) A : Optional[int] = (car_index + speed) % number_of_cells # Commit the change of position A : Dict = speed highway.append(_lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
115
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) _UpperCamelCase : ClassVar[Features] = Features({"image": Image()} ) _UpperCamelCase : ClassVar[Features] = Features({"labels": ClassLabel} ) _UpperCamelCase : str = "image" _UpperCamelCase : str = "labels" def __A ( self , a__ ): if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , a__ ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) _lowerCAmelCase : str = copy.deepcopy(self ) _lowerCAmelCase : Dict = self.label_schema.copy() _lowerCAmelCase : str = features[self.label_column] _lowerCAmelCase : Optional[Any] = label_schema return task_template @property def __A ( self ): return { self.image_column: "image", self.label_column: "labels", }
44
"""simple docstring""" import numpy as np def __lowerCAmelCase (_UpperCamelCase ): return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase (_UpperCamelCase ): return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
86
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _a (unittest.TestCase ): '''simple docstring''' def __init__( self , A__ , A__=7 , A__=3 , A__=30 , A__=400 , A__=True , A__=None , A__=0.9 , A__=None , A__=True , A__=[0.5, 0.5, 0.5] , A__=[0.5, 0.5, 0.5] , ): A__ : Tuple = size if size is not None else {"""shortest_edge""": 30} A__ : Any = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} A__ : Union[str, Any] = parent A__ : Tuple = batch_size A__ : List[Any] = num_channels A__ : Any = min_resolution A__ : List[str] = max_resolution A__ : Any = do_resize_and_center_crop A__ : Any = size A__ : Union[str, Any] = crop_pct A__ : List[str] = crop_size A__ : Any = do_normalize A__ : Any = image_mean A__ : List[str] = image_std def __A ( self ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _a (UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Any = PoolFormerImageProcessor if is_vision_available() else None def __A ( self ): A__ : Tuple = PoolFormerImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): A__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(__a , """size""" ) ) self.assertTrue(hasattr(__a , """crop_pct""" ) ) self.assertTrue(hasattr(__a , """do_normalize""" ) ) self.assertTrue(hasattr(__a , """image_mean""" ) ) self.assertTrue(hasattr(__a , """image_std""" ) ) def __A ( self ): A__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) A__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __A ( self ): pass def __A ( self ): # Initialize image_processing A__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input A__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : Union[str, Any] = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing A__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input A__ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : Union[str, Any] = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing A__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input A__ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : List[Any] = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
368
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase (lowercase_: str , lowercase_: Optional[int] ) -> str: A__ : Union[str, Any] = old_name if "patch_embed" in old_name: A__ , A__ , A__ : Any = old_name.split(""".""" ) if layer == "0": A__ : List[Any] = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": A__ : Optional[int] = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": A__ : int = old_name.replace("""3""" , """convolution2""" ) else: A__ : Dict = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , lowercase_ ): A__ : str = r"""\b\d{2}\b""" if bool(re.search(lowercase_ , lowercase_ ) ): A__ : Optional[Any] = re.search(r"""\d\.\d\d.""" , lowercase_ ).group() else: A__ : int = re.search(r"""\d\.\d.""" , lowercase_ ).group() if int(match[0] ) < 6: A__ : Optional[Any] = old_name.replace(lowercase_ , """""" ) A__ : Tuple = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) A__ : int = """intermediate_stages.""" + trimmed_name else: A__ : Dict = old_name.replace(lowercase_ , """""" ) if int(match[2] ) < num_meta4D_last_stage: A__ : Optional[int] = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: A__ : Optional[Any] = str(int(match[2] ) - num_meta4D_last_stage ) A__ : Dict = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: A__ : str = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: A__ : Optional[int] = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: A__ : List[Any] = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: A__ : Optional[Any] = trimmed_name.replace("""fc2""" , """linear_out""" ) A__ : str = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , lowercase_ ): A__ : List[str] = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: A__ : Optional[int] = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): A__ : Optional[int] = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): A__ : int = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: A__ : Tuple = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: A__ : Optional[int] = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: A__ : Optional[Any] = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: A__ : Optional[Any] = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": A__ : Union[str, Any] = new_name.replace("""norm""" , """layernorm""" ) A__ : Union[str, Any] = """efficientformer.""" + new_name else: A__ : int = """efficientformer.encoder.""" + new_name return new_name def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: Union[str, Any] ) -> Tuple: for key in checkpoint.copy().keys(): A__ : List[Any] = checkpoint.pop(lowercase_ ) A__ : Dict = val return checkpoint def UpperCamelCase () -> Optional[int]: A__ : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : List[str] = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return image def UpperCamelCase (lowercase_: Path , lowercase_: Path , lowercase_: Path , lowercase_: bool ) -> Tuple: A__ : Any = torch.load(lowercase_ , map_location="""cpu""" )["""model"""] A__ : List[Any] = EfficientFormerConfig.from_json_file(lowercase_ ) A__ : Any = EfficientFormerForImageClassificationWithTeacher(lowercase_ ) A__ : List[str] = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) A__ : Union[str, Any] = config.depths[-1] - config.num_metaad_blocks + 1 A__ : Any = convert_torch_checkpoint(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() A__ : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image A__ : Optional[int] = prepare_img() A__ : Optional[Any] = 256 A__ : str = 224 A__ : List[str] = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) A__ : Tuple = processor(images=lowercase_ , return_tensors="""pt""" ).pixel_values # original processing pipeline A__ : List[Any] = Compose( [ Resize(lowercase_ , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(lowercase_ ), ToTensor(), Normalize(lowercase_ , lowercase_ ), ] ) A__ : Any = image_transforms(lowercase_ ).unsqueeze(0 ) assert torch.allclose(lowercase_ , lowercase_ ) A__ : Optional[int] = model(lowercase_ ) A__ : List[str] = outputs.logits A__ : Tuple = (1, 1000) if "l1" in model_name: A__ : List[str] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: A__ : Any = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , lowercase_ , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: A__ : Union[str, Any] = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowercase_ ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add model""" , use_temp_dir=lowercase_ , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add image processor""" , use_temp_dir=lowercase_ , ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) A_ : List[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
141
0
'''simple docstring''' def __magic_name__( lowerCamelCase): return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def __magic_name__( lowerCamelCase): __lowerCAmelCase = credit_card_number __lowerCAmelCase = 0 __lowerCAmelCase = len(a__) - 2 for i in range(a__, -1, -2): # double the value of every second digit __lowerCAmelCase = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 __lowerCAmelCase = cc_number[:i] + str(a__) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a__) - 1, -1, -2): total += int(cc_number[i]) return total % 1_0 == 0 def __magic_name__( lowerCamelCase): __lowerCAmelCase = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""") return False if not 1_3 <= len(a__) <= 1_6: print(F"""{error_message} of its length.""") return False if not validate_initial_digits(a__): print(F"""{error_message} of its first two digits.""") return False if not luhn_validation(a__): print(F"""{error_message} it fails the Luhn check.""") return False print(F"""{credit_card_number} is a valid credit card number.""") return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
174
# flake8: noqa # Lint as: python3 A : Optional[Any] = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
6
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase (unittest.TestCase ): """simple docstring""" _UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) return generator, ["Something to write", "Something else"] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = generator('Something there' ) self.assertEqual(lowerCAmelCase__ , [{'generated_text': ANY(lowerCAmelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) SCREAMING_SNAKE_CASE_ : List[Any] = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ [{'generated_text': ANY(lowerCAmelCase__ )}, {'generated_text': ANY(lowerCAmelCase__ )}], [{'generated_text': ANY(lowerCAmelCase__ )}, {'generated_text': ANY(lowerCAmelCase__ )}], ] , ) SCREAMING_SNAKE_CASE_ : Dict = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ [{'generated_text': ANY(lowerCAmelCase__ )}, {'generated_text': ANY(lowerCAmelCase__ )}], [{'generated_text': ANY(lowerCAmelCase__ )}, {'generated_text': ANY(lowerCAmelCase__ )}], ] , ) with self.assertRaises(lowerCAmelCase__ ): generator(4 ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_ : Optional[int] = generator('Something there' , do_sample=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [{'generated_text': ''}] ) SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : Dict = generator( 'Something there' , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = generator('This is a test' , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) SCREAMING_SNAKE_CASE_ : List[str] = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_ : Tuple = '<pad>' SCREAMING_SNAKE_CASE_ : Optional[int] = generator( ['This is a test', 'This is a second test'] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_ : int = generator('Something there' , do_sample=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [{'generated_text': ''}] )
367
# Lint as: python3 import itertools import os import re lowerCAmelCase__ : Optional[int] =re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCAmelCase__ : List[Any] =re.compile(R'([a-z\d])([A-Z])') lowerCAmelCase__ : Dict =re.compile(R'(?<!_)_(?!_)') lowerCAmelCase__ : int =re.compile(R'(_{2,})') lowerCAmelCase__ : Optional[Any] =R'^\w+(\.\w+)*$' lowerCAmelCase__ : List[Any] =R'<>:/\|?*' def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Dict = _uppercase_uppercase_re.sub(r'\1_\2', A__ ) SCREAMING_SNAKE_CASE_ : List[str] = _lowercase_uppercase_re.sub(r'\1_\2', A__ ) return name.lower() def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = _single_underscore_re.split(A__ ) SCREAMING_SNAKE_CASE_ : str = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != '' ) def a__ ( A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(A__ ) def a__ ( A__, A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re, A__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(A__ )}-{split}''' def a__ ( A__, A__, A__, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(A__, A__ ) return F'''{filepath}*''' def a__ ( A__, A__, A__, A__=None, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) SCREAMING_SNAKE_CASE_ : Dict = os.path.join(A__, A__ ) if shard_lengths: SCREAMING_SNAKE_CASE_ : Dict = len(A__ ) SCREAMING_SNAKE_CASE_ : Any = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(A__ )] if filetype_suffix: SCREAMING_SNAKE_CASE_ : Optional[int] = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
162
0
def _snake_case ( lowerCAmelCase : list ): """simple docstring""" if len(lowerCAmelCase ) <= 1: return [tuple(lowerCAmelCase )] SCREAMING_SNAKE_CASE_ : Tuple = [] def generate(lowerCAmelCase : int , lowerCAmelCase : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase ) generate(len(lowerCAmelCase ) , lowerCAmelCase ) return res if __name__ == "__main__": __lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase : Dict = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
18
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case_ (lowerCamelCase_ , unittest.TestCase ): UpperCAmelCase__ : Tuple = XLMTokenizer UpperCAmelCase__ : List[str] = False def lowerCamelCase__( self :Any ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] a__ = dict(zip(__snake_case ,range(len(__snake_case ) ) ) ) a__ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ) as fp: fp.write(json.dumps(__snake_case ) ) with open(self.merges_file ,'w' ) as fp: fp.write('\n'.join(__snake_case ) ) def lowerCamelCase__( self :Any ,__snake_case :int ) -> Optional[int]: a__ = 'lower newer' a__ = 'lower newer' return input_text, output_text def lowerCamelCase__( self :Tuple ) -> Tuple: a__ = XLMTokenizer(self.vocab_file ,self.merges_file ) a__ = 'lower' a__ = ['low', 'er</w>'] a__ = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case ,__snake_case ) a__ = tokens + ['<unk>'] a__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) ,__snake_case ) @slow def lowerCamelCase__( self :List[str] ) -> Optional[Any]: a__ = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) a__ = tokenizer.encode('sequence builders' ,add_special_tokens=__snake_case ) a__ = tokenizer.encode('multi-sequence build' ,add_special_tokens=__snake_case ) a__ = tokenizer.build_inputs_with_special_tokens(__snake_case ) a__ = tokenizer.build_inputs_with_special_tokens(__snake_case ,__snake_case ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
240
0
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def _SCREAMING_SNAKE_CASE ( ) ->Union[str, Any]: '''simple docstring''' a : str = 9 a : Dict = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] a : Tuple = kruskal(_lowerCamelCase , _lowerCamelCase ) a : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(_lowerCamelCase ) == sorted(_lowerCamelCase )
370
"""simple docstring""" import math def _SCREAMING_SNAKE_CASE ( _lowercase : int = 100 ) ->int: '''simple docstring''' a : Dict = sum(i * i for i in range(1 , n + 1 ) ) a : Tuple = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
79
0
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase : Dict = 50_0000 UpperCAmelCase , UpperCAmelCase : Optional[int] = os.path.split(__file__) UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def lowerCamelCase ( _UpperCamelCase : datasets.Dataset , **_UpperCamelCase : int ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = dataset.map(**_UpperCamelCase ) @get_duration def lowerCamelCase ( _UpperCamelCase : datasets.Dataset , **_UpperCamelCase : str ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : str = dataset.filter(**_UpperCamelCase ) def lowerCamelCase ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : Any = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) __UpperCAmelCase : Optional[int] = generate_example_dataset( os.path.join(_UpperCamelCase , """dataset.arrow""" ) , _UpperCamelCase , num_examples=_UpperCamelCase ) __UpperCAmelCase : List[Any] = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_UpperCamelCase ) def tokenize(_UpperCamelCase : Any ): return tokenizer(examples["""text"""] ) __UpperCAmelCase : Optional[int] = map(_UpperCamelCase ) __UpperCAmelCase : List[Any] = map(_UpperCamelCase , batched=_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = map(_UpperCamelCase , function=lambda _UpperCamelCase : None , batched=_UpperCamelCase ) with dataset.formatted_as(type="""numpy""" ): __UpperCAmelCase : Tuple = map(_UpperCamelCase , function=lambda _UpperCamelCase : None , batched=_UpperCamelCase ) with dataset.formatted_as(type="""pandas""" ): __UpperCAmelCase : List[Any] = map(_UpperCamelCase , function=lambda _UpperCamelCase : None , batched=_UpperCamelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): __UpperCAmelCase : Union[str, Any] = map(_UpperCamelCase , function=lambda _UpperCamelCase : None , batched=_UpperCamelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): __UpperCAmelCase : List[Any] = map(_UpperCamelCase , function=lambda _UpperCamelCase : None , batched=_UpperCamelCase ) __UpperCAmelCase : Any = map(_UpperCamelCase , function=_UpperCamelCase , batched=_UpperCamelCase ) __UpperCAmelCase : Tuple = filter(_UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_UpperCamelCase , """wb""" ) as f: f.write(json.dumps(_UpperCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
115
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase : Union[str, Any] = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
115
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase__ ( a_ ): '''simple docstring''' UpperCamelCase = "Salesforce/blip-image-captioning-base" UpperCamelCase = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) UpperCamelCase = "image_captioner" UpperCamelCase = AutoModelForVisionaSeq UpperCamelCase = ["image"] UpperCamelCase = ["text"] def __init__( self : int , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' return self.pre_processor(images=_UpperCAmelCase , return_tensors="pt" ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : str ) -> Tuple: '''simple docstring''' return self.model.generate(**_UpperCAmelCase ) def lowercase__ ( self : int , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' return self.pre_processor.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )[0].strip()
350
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''roberta''' def __init__( self : int , _UpperCAmelCase : List[Any]=50265 , _UpperCAmelCase : str=768 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[Any]=1e-12 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple="absolute" , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=None , **_UpperCAmelCase : List[str] , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
241
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCamelCase( __UpperCamelCase : Dict ): if is_torch_version('''<''' ,'''2.0.0''' ) or not hasattr(__UpperCamelCase ,'''_dynamo''' ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : bool = True ): lowerCAmelCase_ : List[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCAmelCase_ : Optional[Any] = is_compiled_module(__UpperCamelCase ) if is_compiled: lowerCAmelCase_ : Optional[Any] = model lowerCAmelCase_ : str = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCAmelCase_ : int = model.module if not keep_fpaa_wrapper: lowerCAmelCase_ : List[Any] = getattr(__UpperCamelCase ,'''forward''' ) lowerCAmelCase_ : Any = model.__dict__.pop('''_original_forward''' ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,'''__wrapped__''' ): lowerCAmelCase_ : Tuple = forward.__wrapped__ if forward == original_forward: break lowerCAmelCase_ : str = forward if getattr(__UpperCamelCase ,'''_converted_to_transformer_engine''' ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: lowerCAmelCase_ : List[str] = model lowerCAmelCase_ : str = compiled_model return model def UpperCamelCase( ): PartialState().wait_for_everyone() def UpperCamelCase( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def UpperCamelCase( **__UpperCamelCase : Optional[int] ): for key, value in kwargs.items(): lowerCAmelCase_ : Dict = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCamelCase( __UpperCamelCase : Optional[int] ): if not hasattr(__UpperCamelCase ,'''__qualname__''' ) and not hasattr(__UpperCamelCase ,'''__name__''' ): lowerCAmelCase_ : Dict = getattr(__UpperCamelCase ,'''__class__''' ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,'''__qualname__''' ): return obj.__qualname__ if hasattr(__UpperCamelCase ,'''__name__''' ): return obj.__name__ return str(__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : int ): for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): lowerCAmelCase_ : Optional[int] = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: lowerCAmelCase_ : Tuple = value return destination def UpperCamelCase( __UpperCamelCase : int = None ): if port is None: lowerCAmelCase_ : str = 29500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
103
'''simple docstring''' import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( A , A , unittest.TestCase ): lowerCAmelCase_ = IFImgaImgSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case ( self : int ): """simple docstring""" return self._get_superresolution_dummy_components() def snake_case ( self : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : List[str]=0 ): """simple docstring""" if str(__lowercase ).startswith('mps' ): __lowercase =torch.manual_seed(__lowercase ) else: __lowercase =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowercase =floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase =floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowercase ) ).to(__lowercase ) __lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case ( self : Union[str, Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case ( self : Optional[int] ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def snake_case ( self : int ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case ( self : Optional[int] ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case ( self : str ): """simple docstring""" self._test_save_load_local() def snake_case ( self : Optional[Any] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
141
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowercase__ = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = _TestCommandArgs(dataset=lowerCAmelCase__ , all_configs=lowerCAmelCase__ , save_infos=lowerCAmelCase__ ) lowercase = TestCommand(*lowerCAmelCase__ ) test_command.run() lowercase = os.path.join(lowerCAmelCase__ , '''README.md''' ) assert os.path.exists(lowerCAmelCase__ ) lowercase = DatasetInfosDict.from_directory(lowerCAmelCase__ ) lowercase = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 235_1563, '''num_examples''': 1_0000, }, { '''name''': '''validation''', '''num_bytes''': 23_8418, '''num_examples''': 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase , lowercase = getattr(dataset_infos['''default'''] , lowerCAmelCase__ ), getattr(expected_dataset_infos['''default'''] , lowerCAmelCase__ ) if key == "num_bytes": assert is_apercent_close(lowerCAmelCase__ , lowerCAmelCase__ ) elif key == "splits": assert list(lowerCAmelCase__ ) == list(lowerCAmelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
359
from pathlib import Path import fire from tqdm import tqdm def UpperCamelCase ( lowerCAmelCase__="ro" , lowerCAmelCase__="en" , lowerCAmelCase__="wmt16" , lowerCAmelCase__=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) lowercase = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) lowercase = datasets.load_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) if save_dir is None: lowercase = f'{dataset}-{pair}' lowercase = Path(lowerCAmelCase__ ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets lowercase = '''val''' if split == '''validation''' else split lowercase = save_dir.joinpath(f'{fn}.source' ) lowercase = save_dir.joinpath(f'{fn}.target' ) lowercase = src_path.open('''w+''' ) lowercase = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
97
0
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __snake_case ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None ): '''simple docstring''' super().__init__() __A : Optional[int] = pad_token_id __A : str = max_length __A : Union[str, Any] = vocab __A : int = merges __A : Dict = BytePairTokenizer(UpperCamelCase__ , UpperCamelCase__ , sequence_length=UpperCamelCase__ ) @classmethod def UpperCamelCase__( cls , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' __A : List[Any] = [''' '''.join(UpperCamelCase__ ) for m in tokenizer.bpe_ranks.keys()] __A : Optional[Any] = tokenizer.get_vocab() return cls(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def UpperCamelCase__( cls , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' __A : int = GPTaTokenizer.from_pretrained(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) return cls.from_tokenizer(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def UpperCamelCase__( cls , __lowerCamelCase ): '''simple docstring''' return cls(**UpperCamelCase__ ) def UpperCamelCase__( self ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : List[Any] = self.tf_tokenizer(UpperCamelCase__ ) __A : Tuple = tf.ones_like(UpperCamelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length __A : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: __A , __A : Union[str, Any] = pad_model_inputs( UpperCamelCase__ , max_seq_length=UpperCamelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
179
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
162
0
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class _lowerCAmelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : str , **__snake_case : Optional[Any] )-> List[Any]: super().__init__(**__lowerCamelCase ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(__lowerCamelCase ) def lowerCAmelCase ( self : List[str] , **__snake_case : int )-> Tuple: snake_case = {} snake_case = {} snake_case = {} # preprocess args if "points_per_batch" in kwargs: snake_case = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: snake_case = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: snake_case = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: snake_case = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: snake_case = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: snake_case = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: snake_case = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: snake_case = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: snake_case = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: snake_case = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: snake_case = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: snake_case = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : str , __snake_case : Optional[Any] , *__snake_case : Optional[int] , __snake_case : int=None , __snake_case : Union[str, Any]=None , **__snake_case : Any )-> Tuple: return super().__call__(__lowerCamelCase , *__lowerCamelCase , num_workers=__lowerCamelCase , batch_size=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : str , __snake_case : int , __snake_case : str=64 , __snake_case : str = 0 , __snake_case : int = 5_12 / 15_00 , __snake_case : Any = 32 , __snake_case : int = 1 , )-> Optional[int]: snake_case = load_image(__lowerCamelCase ) snake_case = self.image_processor.size["""longest_edge"""] snake_case , snake_case , snake_case , snake_case = self.image_processor.generate_crop_boxes( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case = self.image_processor(images=__lowerCamelCase , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": snake_case = self.get_inference_context() with inference_context(): snake_case = self._ensure_tensor_on_device(__lowerCamelCase , device=self.device ) snake_case = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) snake_case = image_embeddings snake_case = grid_points.shape[1] snake_case = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , __lowerCamelCase , __lowerCamelCase ): snake_case = grid_points[:, i : i + points_per_batch, :, :] snake_case = input_labels[:, i : i + points_per_batch] snake_case = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowerCAmelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : Optional[Any]=0.88 , __snake_case : List[str]=0.95 , __snake_case : int=0 , __snake_case : List[str]=1 , )-> Tuple: snake_case = model_inputs.pop("""input_boxes""" ) snake_case = model_inputs.pop("""is_last""" ) snake_case = model_inputs.pop("""original_sizes""" ).tolist() snake_case = model_inputs.pop("""reshaped_input_sizes""" ).tolist() snake_case = self.model(**__lowerCamelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks snake_case = model_outputs["""pred_masks"""] snake_case = self.image_processor.post_process_masks( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , binarize=__lowerCamelCase ) snake_case = model_outputs["""iou_scores"""] snake_case , snake_case , snake_case = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowerCAmelCase ( self : Tuple , __snake_case : int , __snake_case : Optional[Any]=False , __snake_case : Any=False , __snake_case : Optional[int]=0.7 , )-> int: snake_case = [] snake_case = [] snake_case = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) snake_case = torch.cat(__lowerCamelCase ) snake_case = torch.cat(__lowerCamelCase ) snake_case , snake_case , snake_case , snake_case = self.image_processor.post_process_for_mask_generation( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) snake_case = defaultdict(__lowerCamelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__lowerCamelCase ) snake_case = {} if output_rle_mask: snake_case = rle_mask if output_bboxes_mask: snake_case = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = KandinskyVaaControlnetImgaImgPipeline snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = ["image_embeds", "negative_image_embeds", "image", "hint"] snake_case_ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case_ = False @property def lowerCAmelCase ( self : Dict )-> str: return 32 @property def lowerCAmelCase ( self : int )-> List[str]: return 32 @property def lowerCAmelCase ( self : List[Any] )-> str: return self.time_input_dim @property def lowerCAmelCase ( self : Optional[Any] )-> Any: return self.time_input_dim * 4 @property def lowerCAmelCase ( self : str )-> Union[str, Any]: return 1_00 @property def lowerCAmelCase ( self : Tuple )-> Optional[Any]: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def lowerCAmelCase ( self : List[Any] )-> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : str )-> List[str]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : int )-> Dict: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple=0 )-> List[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCAmelCase ( self : Dict )-> Optional[int]: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] )-> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] )-> Optional[int]: snake_case = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case = init_image.resize((5_12, 5_12) ) snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) snake_case = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case = """A robot, 4k photo""" snake_case = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
3
0
import argparse import json from tqdm import tqdm def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=SCREAMING_SNAKE_CASE__ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=SCREAMING_SNAKE_CASE__ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=SCREAMING_SNAKE_CASE__ , help='where to store parsed gold_data_path file' , ) __UpperCamelCase =parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: __UpperCamelCase =json.load(SCREAMING_SNAKE_CASE__ ) for dpr_record in tqdm(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =dpr_record['question'] __UpperCamelCase =[context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(SCREAMING_SNAKE_CASE__ ) + '\n' ) if __name__ == "__main__": main()
62
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowerCamelCase_ = logging.getLogger(__name__) def __lowercase ( __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' if os.path.exists(__lowercase ): if os.path.exists(os.path.join(__lowercase , "config.json" ) ) and os.path.isfile( os.path.join(__lowercase , "config.json" ) ): os.remove(os.path.join(__lowercase , "config.json" ) ) if os.path.exists(os.path.join(__lowercase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(__lowercase , "pytorch_model.bin" ) ): os.remove(os.path.join(__lowercase , "pytorch_model.bin" ) ) else: os.makedirs(__lowercase ) model.save_pretrained(__lowercase ) def __lowercase ( __lowercase , __lowercase=False ) -> Optional[int]: '''simple docstring''' _A = 2 if unlogit: _A = torch.pow(__lowercase , __lowercase ) _A = p * torch.log(__lowercase ) _A = 0 return -plogp.sum(dim=-1 ) def __lowercase ( __lowercase ) -> Optional[Any]: '''simple docstring''' logger.info("lv, h >\t" + "\t".join(F'''{x + 1}''' for x in range(len(__lowercase ) ) ) ) for row in range(len(__lowercase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase=True , __lowercase=True , __lowercase=None , __lowercase=False ) -> int: '''simple docstring''' _A , _A = model.config.num_hidden_layers, model.config.num_attention_heads _A = torch.zeros(__lowercase , __lowercase ).to(args.device ) _A = torch.zeros(__lowercase , __lowercase ).to(args.device ) if head_mask is None: _A = torch.ones(__lowercase , __lowercase ).to(args.device ) head_mask.requires_grad_(requires_grad=__lowercase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: _A = None _A = 0.0 _A = 0.0 for step, inputs in enumerate(tqdm(__lowercase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): _A = tuple(t.to(args.device ) for t in inputs ) ((_A) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) _A = model(__lowercase , labels=__lowercase , head_mask=__lowercase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) _A , _A , _A = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__lowercase ): _A = entropy(attn.detach() , __lowercase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__lowercase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: _A = 2 _A = torch.pow(torch.pow(__lowercase , __lowercase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: _A = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(__lowercase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(__lowercase ) logger.info("Head ranked by importance scores" ) _A = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) _A = torch.arange( head_importance.numel() , device=args.device ) _A = head_ranks.view_as(__lowercase ) print_ad_tensor(__lowercase ) return attn_entropy, head_importance, total_loss def __lowercase ( __lowercase , __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _A , _A , _A = compute_heads_importance(__lowercase , __lowercase , __lowercase , compute_entropy=__lowercase ) _A = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , __lowercase , original_score * args.masking_threshold ) _A = torch.ones_like(__lowercase ) _A = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) _A = original_score while current_score >= original_score * args.masking_threshold: _A = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads _A = float("Inf" ) _A = head_importance.view(-1 ).sort()[1] if len(__lowercase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads _A = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) _A = new_head_mask.view(-1 ) _A = 0.0 _A = new_head_mask.view_as(__lowercase ) _A = new_head_mask.clone().detach() print_ad_tensor(__lowercase ) # Compute metric and head importance again _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , head_mask=__lowercase ) _A = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , __lowercase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(__lowercase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[str]: '''simple docstring''' _A = datetime.now() _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , compute_importance=__lowercase , head_mask=__lowercase ) _A = 1 / loss _A = datetime.now() - before_time _A = sum(p.numel() for p in model.parameters() ) _A = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__lowercase ) ) } for k, v in heads_to_prune.items(): if isinstance(__lowercase , __lowercase ): _A = [ v, ] assert sum(len(__lowercase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__lowercase ) _A = sum(p.numel() for p in model.parameters() ) _A = datetime.now() _A , _A , _A = compute_heads_importance( __lowercase , __lowercase , __lowercase , compute_entropy=__lowercase , compute_importance=__lowercase , head_mask=__lowercase , actually_pruned=__lowercase , ) _A = 1 / loss _A = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , __lowercase , __lowercase , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , __lowercase , __lowercase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(__lowercase , args.output_dir ) def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=__lowercase , type=__lowercase , required=__lowercase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=__lowercase , type=__lowercase , required=__lowercase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=__lowercase , type=__lowercase , required=__lowercase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=__lowercase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=__lowercase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=__lowercase , type=__lowercase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=__lowercase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=__lowercase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=__lowercase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=__lowercase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=__lowercase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=__lowercase , help="Batch size." ) parser.add_argument("--seed" , type=__lowercase , default=42 ) parser.add_argument("--local_rank" , type=__lowercase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=__lowercase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=__lowercase , default="" , help="Can be used for distant debugging." ) _A = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__lowercase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: _A = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) _A = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) _A = torch.device("cuda" , args.local_rank ) _A = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) _A = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: _A = nn.parallel.DistributedDataParallel( __lowercase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__lowercase ) elif args.n_gpu > 1: _A = nn.DataParallel(__lowercase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__lowercase ) torch.save(__lowercase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , __lowercase ) # Prepare dataset _A = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) _A = (torch.from_numpy(__lowercase ),) _A = TensorDataset(*__lowercase ) _A = RandomSampler(__lowercase ) _A = DataLoader(__lowercase , sampler=__lowercase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__lowercase , __lowercase , __lowercase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: _A = mask_heads(__lowercase , __lowercase , __lowercase ) prune_heads(__lowercase , __lowercase , __lowercase , __lowercase ) if __name__ == "__main__": main()
79
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "spiece.model"} _snake_case = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } _snake_case = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) _snake_case = 0 _snake_case = 1 _snake_case = 2 _snake_case = 3 _snake_case = 4 class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = "left" def __init__( self , _a , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , _a = None , **_a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _A : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _A : Tuple = 3 _A : Tuple = do_lower_case _A : Union[str, Any] = remove_space _A : Union[str, Any] = keep_accents _A : Optional[int] = vocab_file _A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def a__ ( self ) -> str: return len(self.sp_model ) def a__ ( self ) -> List[Any]: _A : int = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: _A : Union[str, Any] = self.__dict__.copy() _A : Tuple = None return state def __setstate__( self , _a ) -> Dict: _A : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _A : List[Any] = {} _A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self , _a ) -> Optional[Any]: if self.remove_space: _A : Tuple = """ """.join(inputs.strip().split() ) else: _A : List[str] = inputs _A : Dict = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _A : Optional[Any] = unicodedata.normalize("""NFKD""" , _a ) _A : int = """""".join([c for c in outputs if not unicodedata.combining(_a )] ) if self.do_lower_case: _A : Union[str, Any] = outputs.lower() return outputs def a__ ( self , _a ) -> List[str]: _A : Optional[int] = self.preprocess_text(_a ) _A : Union[str, Any] = self.sp_model.encode(_a , out_type=_a ) _A : int = [] for piece in pieces: if len(_a ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _A : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _A : List[Any] = cur_pieces[1:] else: _A : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_a ) else: new_pieces.append(_a ) return new_pieces def a__ ( self , _a ) -> Dict: return self.sp_model.PieceToId(_a ) def a__ ( self , _a ) -> int: return self.sp_model.IdToPiece(_a ) def a__ ( self , _a ) -> Optional[int]: _A : List[Any] = """""".join(_a ).replace(_a , """ """ ).strip() return out_string def a__ ( self , _a , _a = False , _a = None , _a = True , **_a , ) -> str: _A : Any = kwargs.pop("""use_source_tokenizer""" , _a ) _A : Tuple = self.convert_ids_to_tokens(_a , skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _A : int = [] _A : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) _A : Dict = [] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _A : Tuple = """""".join(_a ) _A : List[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _A : Tuple = self.clean_up_tokenization(_a ) return clean_text else: return text def a__ ( self , _a , _a = None ) -> List[int]: _A : Tuple = [self.sep_token_id] _A : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a__ ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is not None: return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1, 1] return ([0] * len(_a )) + [1, 1] def a__ ( self , _a , _a = None ) -> List[int]: _A : Union[str, Any] = [self.sep_token_id] _A : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : List[Any] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: _A : str = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
343
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCAmelCase : Optional[Any] = ksize + 1 lowerCAmelCase : List[Any] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_snake_case ): for x in range(_snake_case ): # distance from center lowerCAmelCase : Any = x - ksize // 2 lowerCAmelCase : Any = y - ksize // 2 # degree to radiant lowerCAmelCase : Any = theta / 180 * np.pi lowerCAmelCase : Tuple = np.cos(_theta ) lowerCAmelCase : Dict = np.sin(_theta ) # get kernel x lowerCAmelCase : str = cos_theta * px + sin_theta * py # get kernel y lowerCAmelCase : List[Any] = -sin_theta * px + cos_theta * py # fill kernel lowerCAmelCase : Tuple = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image snake_case__ : List[str] = imread('''../image_data/lena.jpg''') # turn image in gray scale value snake_case__ : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges snake_case__ : Any = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: snake_case__ : Any = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) snake_case__ : Tuple = out / out.max() * 255 snake_case__ : Optional[Any] = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
60
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Union[str, Any] = ["""flax"""] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : List[str] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Union[str, Any] , **a_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : Union[str, Any] , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""flax"""] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Dict = ["""flax"""] def __init__( self : Any , *a_ : Optional[int] , **a_ : str ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Tuple , **a_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , *a_ : Any , **a_ : Union[str, Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""flax"""] def __init__( self : str , *a_ : Optional[int] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Dict , **a_ : str ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Optional[int] , **a_ : List[str] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""flax"""] def __init__( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Optional[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Dict , **a_ : Any ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Tuple , *a_ : Optional[Any] , **a_ : Tuple ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[int] , *a_ : List[Any] , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : str , **a_ : Any ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Any , **a_ : Tuple ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Optional[Any] , *a_ : Optional[int] , **a_ : str ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : int = ["""flax"""] def __init__( self : Dict , *a_ : str , **a_ : int ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : str , *a_ : List[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : List[Any] , **a_ : List[Any] ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""flax"""] def __init__( self : Any , *a_ : Any , **a_ : int ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : Tuple , **a_ : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[Any] , *a_ : Dict , **a_ : Dict ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Any , **a_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : Dict , *a_ : List[Any] , **a_ : Optional[int] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : List[Any] , **a_ : Tuple ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""flax"""] def __init__( self : Tuple , *a_ : Optional[int] , **a_ : Union[str, Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : List[str] , **a_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : Union[str, Any] , *a_ : Any , **a_ : Any ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""flax"""] def __init__( self : Optional[Any] , *a_ : Optional[Any] , **a_ : Dict ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : int , **a_ : List[str] ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : int , **a_ : str ): requires_backends(cls , ["flax"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""flax"""] def __init__( self : List[str] , *a_ : Optional[Any] , **a_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def lowerCamelCase ( cls : int , *a_ : Optional[int] , **a_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def lowerCamelCase ( cls : List[str] , *a_ : Union[str, Any] , **a_ : Union[str, Any] ): requires_backends(cls , ["flax"] )
241
0
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = 1_0 _UpperCAmelCase = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _UpperCAmelCase = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [9_7], 'text': ['1976']}] * 1_0, 'id': list(range(__lowerCAmelCase ) ), } , features=__lowerCAmelCase , ) return dataset @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: List[str] , a__: str ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=__lowerCAmelCase ) return filename # FILE_CONTENT + files lowerCAmelCase__ :List[str] = '''\ Text data. Second line of data.''' @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Tuple ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''file.txt''' _UpperCAmelCase = FILE_CONTENT with open(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase ) return filename @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: List[str] ) -> Optional[int]: '''simple docstring''' import bza _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''file.txt.bz2''' _UpperCAmelCase = bytes(__lowerCAmelCase , 'utf-8' ) with bza.open(__lowerCAmelCase , 'wb' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Dict: '''simple docstring''' import gzip _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _UpperCAmelCase = bytes(__lowerCAmelCase , 'utf-8' ) with gzip.open(__lowerCAmelCase , 'wb' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: int ) -> int: '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''file.txt.lz4''' _UpperCAmelCase = bytes(__lowerCAmelCase , 'utf-8' ) with lza.frame.open(__lowerCAmelCase , 'wb' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: int , a__: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''file.txt.7z''' with pyazr.SevenZipFile(__lowerCAmelCase , 'w' ) as archive: archive.write(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Any , a__: List[str] ) -> Optional[Any]: '''simple docstring''' import tarfile _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''file.txt.tar''' with tarfile.TarFile(__lowerCAmelCase , 'w' ) as f: f.add(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[Any] ) -> str: '''simple docstring''' import lzma _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''file.txt.xz''' _UpperCAmelCase = bytes(__lowerCAmelCase , 'utf-8' ) with lzma.open(__lowerCAmelCase , 'wb' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[int] , a__: Optional[int] ) -> List[str]: '''simple docstring''' import zipfile _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''file.txt.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Tuple ) -> int: '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''file.txt.zst''' _UpperCAmelCase = bytes(__lowerCAmelCase , 'utf-8' ) with zstd.open(__lowerCAmelCase , 'wb' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Any ) -> int: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''file.xml''' _UpperCAmelCase = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase ) return filename lowerCAmelCase__ :List[str] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] lowerCAmelCase__ :List[Any] = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] lowerCAmelCase__ :List[Any] = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase__ :Tuple = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] lowerCAmelCase__ :str = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( ) -> int: '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: int ) -> Tuple: '''simple docstring''' _UpperCAmelCase = datasets.Dataset.from_dict(__lowerCAmelCase ) _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: int ) -> Dict: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(__lowerCAmelCase ) ) as con: _UpperCAmelCase = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[int] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(__lowerCAmelCase , 'w' , newline='' ) as f: _UpperCAmelCase = csv.DictWriter(__lowerCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(__lowerCAmelCase , 'w' , newline='' ) as f: _UpperCAmelCase = csv.DictWriter(__lowerCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: str , a__: int ) -> Union[str, Any]: '''simple docstring''' import bza _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset.csv.bz2''' with open(__lowerCAmelCase , 'rb' ) as f: _UpperCAmelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__lowerCAmelCase , 'wb' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Any , a__: List[Any] , a__: Any ) -> Tuple: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset.csv.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) f.write(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int] , a__: Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset.csv.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(__lowerCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Union[str, Any] , a__: List[str] , a__: Dict ) -> str: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCAmelCase ) ) ) f.write(__lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: List[str] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _UpperCAmelCase = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(__lowerCAmelCase , 'wb' ) as f: _UpperCAmelCase = pq.ParquetWriter(__lowerCAmelCase , schema=__lowerCAmelCase ) _UpperCAmelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__lowerCAmelCase ) )] for k in DATA[0]} , schema=__lowerCAmelCase ) writer.write_table(__lowerCAmelCase ) writer.close() return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _UpperCAmelCase = {'''data''': DATA} with open(__lowerCAmelCase , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[int] ) -> str: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _UpperCAmelCase = {'''data''': DATA_DICT_OF_LISTS} with open(__lowerCAmelCase , 'w' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[int] ) -> int: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(__lowerCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__lowerCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(__lowerCAmelCase , 'w' ) as f: for item in DATA: f.write(json.dumps(__lowerCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(__lowerCAmelCase , 'w' ) as f: for item in DATA_312: f.write(json.dumps(__lowerCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(__lowerCAmelCase , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(__lowerCAmelCase ) + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict ) -> int: '''simple docstring''' import gzip _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(__lowerCAmelCase , 'rb' ) as orig_file: with gzip.open(__lowerCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Dict , a__: Optional[Any] ) -> List[Any]: '''simple docstring''' import gzip _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(__lowerCAmelCase , 'rb' ) as orig_file: with gzip.open(__lowerCAmelCase , 'wb' ) as zipped_file: zipped_file.writelines(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: str , a__: Any , a__: List[str] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) f.write(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: str , a__: Any , a__: Dict , a__: int ) -> List[str]: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.join('nested' , os.path.basename(__lowerCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Tuple , a__: Any , a__: List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCAmelCase ) ) ) f.write(__lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Union[str, Any] , a__: Optional[Any] , a__: List[str] ) -> List[str]: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(__lowerCAmelCase , 'w' ) as f: f.add(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) f.add(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Any , a__: Optional[int] , a__: Tuple , a__: Any ) -> Any: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(__lowerCAmelCase , 'w' ) as f: f.add(__lowerCAmelCase , arcname=os.path.join('nested' , os.path.basename(__lowerCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: str ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = ['''0''', '''1''', '''2''', '''3'''] _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(__lowerCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Tuple ) -> int: '''simple docstring''' _UpperCAmelCase = ['''0''', '''1''', '''2''', '''3'''] _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(__lowerCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = ['''0''', '''1''', '''2''', '''3'''] _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset.abc''' with open(__lowerCAmelCase , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Tuple , a__: Union[str, Any] , a__: List[str] ) -> Dict: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset.text.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) f.write(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: List[str] , a__: str , a__: Optional[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCAmelCase ) ) ) f.write(__lowerCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(__lowerCAmelCase ) ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: List[Any] , a__: int , a__: Tuple ) -> Tuple: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset.ext.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.basename('unsupported.ext' ) ) f.write(__lowerCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = '''\n'''.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _UpperCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(__lowerCAmelCase ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( ) -> Dict: '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Dict , a__: Any ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data' ) / '''dataset.img.zip''' with zipfile.ZipFile(__lowerCAmelCase , 'w' ) as f: f.write(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ) ) f.write(__lowerCAmelCase , arcname=os.path.basename(__lowerCAmelCase ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def lowerCAmelCase__ ( a__: Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 1_0 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 1_0 ) return data_dir
350
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ :Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :str = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :List[str] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :str = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :List[Any] = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase__ :Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
185
0
def _A ( SCREAMING_SNAKE_CASE : list ): """simple docstring""" a__ : Tuple =len(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: a__ , a__ : Tuple =arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase : Dict = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
95
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __snake_case = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''DPTFeatureExtractor'''] __snake_case = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
97
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowercase (_A ): """simple docstring""" def is_in_circle(_A , _A ) -> bool: _lowerCAmelCase : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _lowerCAmelCase : Any = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_A ) ) # The ratio of the area for circle to square is pi/4. _lowerCAmelCase : List[Any] = proportion * 4 print(f'The estimated value of pi is {pi_estimate}' ) print(f'The numpy value of pi is {pi}' ) print(f'The total error is {abs(pi - pi_estimate )}' ) def lowercase (_A , _A , _A = 0.0 , _A = 1.0 , ): """simple docstring""" return mean( function_to_integrate(uniform(_A , _A ) ) for _ in range(_A ) ) * (max_value - min_value) def lowercase (_A , _A = 0.0 , _A = 1.0 ): """simple docstring""" def identity_function(_A ) -> float: return x _lowerCAmelCase : List[str] = area_under_curve_estimator( _A , _A , _A , _A ) _lowerCAmelCase : Optional[int] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {expected_value}' ) print(f'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def lowercase (_A ): """simple docstring""" def function_to_integrate(_A ) -> float: return sqrt(4.0 - x * x ) _lowerCAmelCase : Dict = area_under_curve_estimator( _A , _A , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {pi}' ) print(f'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
25
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
1
def __A ( __lowerCAmelCase )-> bool: """simple docstring""" _UpperCAmelCase = [int(__lowerCAmelCase ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(__lowerCAmelCase ) == 4 and all(0 <= int(__lowerCAmelCase ) <= 254 for octet in octets ) if __name__ == "__main__": _a = input().strip() _a = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
39
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase : Union[str, Any] = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowercase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def lowerCAmelCase_ ( snake_case__ , snake_case__=False ): '''simple docstring''' A, A : Tuple = create_model( '''HTSAT-tiny''' , '''roberta''' , snake_case__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=snake_case__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = {} A : str = R'''.*sequential.(\d+).*''' A : Union[str, Any] = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A : Any = key.replace(snake_case__ , snake_case__ ) if re.match(snake_case__ , snake_case__ ): # replace sequential layers with list A : Any = re.match(snake_case__ , snake_case__ ).group(1 ) A : List[str] = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(snake_case__ )//3}.linear.' ) elif re.match(snake_case__ , snake_case__ ): A : Union[str, Any] = int(re.match(snake_case__ , snake_case__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... A : str = 1 if projecton_layer == 0 else 2 A : Optional[Any] = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value A : int = value A : List[Any] = mixed_qkv.size(0 ) // 3 A : Union[str, Any] = mixed_qkv[:qkv_dim] A : Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] A : Optional[int] = mixed_qkv[qkv_dim * 2 :] A : Tuple = query_layer A : Union[str, Any] = key_layer A : Optional[int] = value_layer else: A : Dict = value return model_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' A, A : int = init_clap(snake_case__ , enable_fusion=snake_case__ ) clap_model.eval() A : str = clap_model.state_dict() A : Union[str, Any] = rename_state_dict(snake_case__ ) A : Tuple = ClapConfig() A : str = enable_fusion A : str = ClapModel(snake_case__ ) # ignore the spectrogram embedding layer model.load_state_dict(snake_case__ , strict=snake_case__ ) model.save_pretrained(snake_case__ ) transformers_config.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowercase : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
3
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __UpperCAmelCase : List[str] = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCamelCase : Optional[str] = field( default=_a, metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCamelCase : Optional[str] = field( default=_a, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCamelCase : Optional[str] = field( default=_a, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) __UpperCamelCase : bool = field(default=_a, metadata={"help": "Whether tp freeze the encoder."}) __UpperCamelCase : bool = field(default=_a, metadata={"help": "Whether to freeze the embeddings."}) @dataclass class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}) __UpperCamelCase : Optional[str] = field( default="summarization", metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, ) __UpperCamelCase : Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) __UpperCamelCase : Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) __UpperCamelCase : Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) __UpperCamelCase : Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) __UpperCamelCase : Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."}) __UpperCamelCase : Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."}) __UpperCamelCase : Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."}) __UpperCamelCase : Optional[str] = field(default=_a, metadata={"help": "Source language id for translation."}) __UpperCamelCase : Optional[str] = field(default=_a, metadata={"help": "Target language id for translation."}) __UpperCamelCase : Optional[int] = field(default=_a, metadata={"help": "# num_beams to use for evaluation."}) __UpperCamelCase : bool = field( default=_a, metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , F"""{split}_results.json""" ) ) def a ( ): """simple docstring""" UpperCamelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase : List[Any] = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase : Dict = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase : int = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase : Optional[int] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase : str = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase : List[Any] = SeqaSeqDataset # Get datasets UpperCamelCase : Union[str, Any] = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) UpperCamelCase : Any = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase : Optional[int] = ( dataset_class( SCREAMING_SNAKE_CASE_ , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase : List[Any] = ( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE_ ) if training_args.predict_with_generate else None ) UpperCamelCase : Any = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , data_args=SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) UpperCamelCase : str = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase : int = train_result.metrics UpperCamelCase : Tuple = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCamelCase : str = trainer.evaluate(metric_key_prefix='''val''' ) UpperCamelCase : Dict = data_args.n_val UpperCamelCase : Optional[Any] = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) UpperCamelCase : str = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE_ , metric_key_prefix='''test''' ) UpperCamelCase : Tuple = test_output.metrics UpperCamelCase : Tuple = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase : Optional[int] = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , SCREAMING_SNAKE_CASE_ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE_ ) if training_args.predict_with_generate: UpperCamelCase : Tuple = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = lmap(str.strip , SCREAMING_SNAKE_CASE_ ) write_txt_file(SCREAMING_SNAKE_CASE_ , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE_ , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
353
import glob import os import random from string import ascii_lowercase, digits import cva __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : Union[str, Any] = "" __UpperCAmelCase : Optional[int] = "" __UpperCAmelCase : Any = 1 # (0 is vertical, 1 is horizontal) def a ( ): """simple docstring""" UpperCamelCase , UpperCamelCase : List[Any] = get_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print('''Processing...''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = update_image_and_anno(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for index, image in enumerate(SCREAMING_SNAKE_CASE_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase : Optional[int] = random_chars(3_2 ) UpperCamelCase : List[Any] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0] UpperCamelCase : int = F"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(F"""/{file_root}.jpg""" , SCREAMING_SNAKE_CASE_ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(F"""Success {index+1}/{len(SCREAMING_SNAKE_CASE_ )} with {file_name}""" ) UpperCamelCase : Any = [] for anno in new_annos[index]: UpperCamelCase : Tuple = F"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(SCREAMING_SNAKE_CASE_ ) with open(F"""/{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Any = [] UpperCamelCase : Union[str, Any] = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , '''*.txt''' ) ): UpperCamelCase : Optional[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(SCREAMING_SNAKE_CASE_ ) as in_file: UpperCamelCase : List[str] = in_file.readlines() UpperCamelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{label_name}.jpg""" ) UpperCamelCase : Union[str, Any] = [] for obj_list in obj_lists: UpperCamelCase : str = obj_list.rstrip('''\n''' ).split(''' ''' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE_ ) labels.append(SCREAMING_SNAKE_CASE_ ) return img_paths, labels def a ( SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int = 1 ): """simple docstring""" UpperCamelCase : List[Any] = [] UpperCamelCase : str = [] UpperCamelCase : int = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Tuple = [] UpperCamelCase : Optional[int] = img_list[idx] path_list.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = anno_list[idx] UpperCamelCase : Optional[Any] = cva.imread(SCREAMING_SNAKE_CASE_ ) if flip_type == 1: UpperCamelCase : Optional[Any] = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: UpperCamelCase : Optional[Any] = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCamelCase : List[str] = cva.flip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for bbox in img_annos: UpperCamelCase : Union[str, Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(SCREAMING_SNAKE_CASE_ ) new_imgs_list.append(SCREAMING_SNAKE_CASE_ ) return new_imgs_list, new_annos_lists, path_list def a ( SCREAMING_SNAKE_CASE_ : int = 3_2 ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" UpperCamelCase : Any = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main() print("DONE ✅")
315
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _SCREAMING_SNAKE_CASE = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = """left""" def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[Any]="<s>" , lowerCamelCase_ : List[Any]="</s>" , lowerCamelCase_ : Union[str, Any]="<unk>" , lowerCamelCase_ : Tuple="<sep>" , lowerCamelCase_ : Optional[Any]="<pad>" , lowerCamelCase_ : Optional[Any]="<cls>" , lowerCamelCase_ : Any="<mask>" , lowerCamelCase_ : Optional[int]=["<eop>", "<eod>"] , lowerCamelCase_ : Optional[Dict[str, Any]] = None , **lowerCamelCase_ : int , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) UpperCamelCase = 3 UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return len(self.sp_model ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self : str , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : str ): """simple docstring""" if self.remove_space: UpperCamelCase = """ """.join(inputs.strip().split() ) else: UpperCamelCase = inputs UpperCamelCase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCamelCase = unicodedata.normalize("""NFKD""" , lowerCamelCase_ ) UpperCamelCase = """""".join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] ) if self.do_lower_case: UpperCamelCase = outputs.lower() return outputs def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.preprocess_text(lowerCamelCase_ ) UpperCamelCase = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) UpperCamelCase = [] for piece in pieces: if len(lowerCamelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase = cur_pieces[1:] else: UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase_ ) else: new_pieces.append(lowerCamelCase_ ) return new_pieces def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Dict ): """simple docstring""" return self.sp_model.PieceToId(lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[Any] ): """simple docstring""" return self.sp_model.IdToPiece(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = """""".join(lowerCamelCase_ ).replace(lowerCamelCase_ , """ """ ).strip() return out_string def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = None , lowerCamelCase_ : bool = True , **lowerCamelCase_ : Tuple , ): """simple docstring""" UpperCamelCase = kwargs.pop("""use_source_tokenizer""" , lowerCamelCase_ ) UpperCamelCase = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCamelCase = [] UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_ ) ) UpperCamelCase = [] sub_texts.append(lowerCamelCase_ ) else: current_sub_text.append(lowerCamelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCamelCase = """""".join(lowerCamelCase_ ) UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCamelCase = self.clean_up_tokenization(lowerCamelCase_ ) return clean_text else: return text def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] return ([0] * len(lowerCamelCase_ )) + [1, 1] def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , """wb""" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,)
343
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = 0 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision="""aaaaaa""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Any ): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = True try: AutoConfig.register("""custom""" , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
343
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Any = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: UpperCamelCase__ : Optional[int] = TOKENIZER_CLASSES else: UpperCamelCase__ : Optional[int] = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + '''Fast''' )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: UpperCamelCase__ : Tuple = TOKENIZER_CLASSES[tokenizer_name] UpperCamelCase__ : str = True if checkpoint_name is None: UpperCamelCase__ : Optional[Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCamelCase__ : Tuple = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer UpperCamelCase__ : int = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: UpperCamelCase__ , UpperCamelCase__ : List[str] = checkpoint.split('''/''' ) UpperCamelCase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: UpperCamelCase__ : Tuple = checkpoint UpperCamelCase__ : List[Any] = dump_path else: UpperCamelCase__ : List[str] = None UpperCamelCase__ : Tuple = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCamelCase__ : Union[str, Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCamelCase__ : List[Any] = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": UpperCamelCase__ : str = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) UpperCamelCase__ : int = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) __UpperCamelCase : int = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
51
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __magic_name__ ( TensorFormatter[Mapping, "torch.Tensor", Mapping]): def __init__( self : Optional[int] , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : int ) -> List[str]: '''simple docstring''' super().__init__(features=lowerCamelCase__ ) UpperCamelCase__ : Any = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' import torch if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and column: if all( isinstance(lowerCamelCase__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCamelCase__ ) return column def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] ) -> int: '''simple docstring''' import torch if isinstance(lowerCamelCase__ , (str, bytes, type(lowerCamelCase__ )) ): return value elif isinstance(lowerCamelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase__ : Tuple = {} if isinstance(lowerCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCamelCase__ : int = {'''dtype''': torch.intaa} elif isinstance(lowerCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase__ : Any = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCamelCase__ , PIL.Image.Image ): UpperCamelCase__ : Optional[int] = np.asarray(lowerCamelCase__ ) return torch.tensor(lowerCamelCase__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Any ) -> Dict: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(lowerCamelCase__ , '''__array__''' ) and not isinstance(lowerCamelCase__ , torch.Tensor ): UpperCamelCase__ : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCamelCase__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCamelCase__ ) for substruct in data_struct] ) elif isinstance(lowerCamelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCamelCase__ ) for substruct in data_struct] ) return self._tensorize(lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : dict ) -> Optional[int]: '''simple docstring''' return map_nested(self._recursive_tensorize , lowerCamelCase__ , map_list=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : pa.Table ) -> Mapping: '''simple docstring''' UpperCamelCase__ : int = self.numpy_arrow_extractor().extract_row(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = self.python_features_decoder.decode_row(lowerCamelCase__ ) return self.recursive_tensorize(lowerCamelCase__ ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : pa.Table ) -> "torch.Tensor": '''simple docstring''' UpperCamelCase__ : List[Any] = self.numpy_arrow_extractor().extract_column(lowerCamelCase__ ) UpperCamelCase__ : str = self.python_features_decoder.decode_column(lowerCamelCase__ , pa_table.column_names[0] ) UpperCamelCase__ : int = self.recursive_tensorize(lowerCamelCase__ ) UpperCamelCase__ : Tuple = self._consolidate(lowerCamelCase__ ) return column def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : pa.Table ) -> Mapping: '''simple docstring''' UpperCamelCase__ : Dict = self.numpy_arrow_extractor().extract_batch(lowerCamelCase__ ) UpperCamelCase__ : Any = self.python_features_decoder.decode_batch(lowerCamelCase__ ) UpperCamelCase__ : Tuple = self.recursive_tensorize(lowerCamelCase__ ) for column_name in batch: UpperCamelCase__ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
51
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _A ( _a ): """simple docstring""" UpperCAmelCase : str = """roberta""" def __init__( self : Tuple , __UpperCAmelCase : Tuple=50265 , __UpperCAmelCase : Dict=768 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Any=3072 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : List[str]=1e-12 , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Optional[int]="absolute" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : str , ): super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a : int = vocab_size a : Optional[Any] = hidden_size a : Any = num_hidden_layers a : Dict = num_attention_heads a : Dict = hidden_act a : int = intermediate_size a : str = hidden_dropout_prob a : List[Any] = attention_probs_dropout_prob a : Any = max_position_embeddings a : str = type_vocab_size a : Optional[int] = initializer_range a : Optional[Any] = layer_norm_eps a : Optional[Any] = position_embedding_type a : Any = use_cache a : List[str] = classifier_dropout class _A ( _a ): """simple docstring""" @property def __snake_case ( self : int): if self.task == "multiple-choice": a : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
40
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VQModel lowerCamelCase : Union[str, Any] = 'sample' @property def lowercase_ ( self , SCREAMING_SNAKE_CASE_=(32, 32) ) -> Any: __lowerCamelCase : Tuple = 4 __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def lowercase_ ( self ) -> Optional[int]: return (3, 32, 32) @property def lowercase_ ( self ) -> List[Any]: return (3, 32, 32) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } __lowerCamelCase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self ) -> str: pass def lowercase_ ( self ) -> Optional[int]: pass def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase_ ( self ) -> int: __lowerCamelCase : List[Any] = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(SCREAMING_SNAKE_CASE_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __lowerCamelCase : List[str] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __lowerCamelCase : Optional[int] = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE_ ).sample __lowerCamelCase : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __lowerCamelCase : Union[str, Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
185
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def _a ( ): '''simple docstring''' __UpperCAmelCase : Dict = 10 __UpperCAmelCase : List[Any] = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) __UpperCAmelCase : Tuple = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(_lowercase ) ), } , features=_lowercase , ) return dataset @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Any , _lowercase : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=_lowercase ) return filename # FILE_CONTENT + files __UpperCAmelCase :Dict = "\\n Text data.\n Second line of data." @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : str = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' __UpperCAmelCase : str = FILE_CONTENT with open(_lowercase , '''w''' ) as f: f.write(_lowercase ) return filename @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Any ): '''simple docstring''' import bza __UpperCAmelCase : List[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' __UpperCAmelCase : List[str] = bytes(_lowercase , '''utf-8''' ) with bza.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : List[Any] ): '''simple docstring''' import gzip __UpperCAmelCase : int = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) __UpperCAmelCase : List[str] = bytes(_lowercase , '''utf-8''' ) with gzip.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Any ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame __UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' __UpperCAmelCase : Union[str, Any] = bytes(_lowercase , '''utf-8''' ) with lza.frame.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : List[str] , _lowercase : int ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr __UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(_lowercase , '''w''' ) as archive: archive.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : int , _lowercase : Tuple ): '''simple docstring''' import tarfile __UpperCAmelCase : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(_lowercase , '''w''' ) as f: f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Tuple ): '''simple docstring''' import lzma __UpperCAmelCase : str = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' __UpperCAmelCase : Union[str, Any] = bytes(_lowercase , '''utf-8''' ) with lzma.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Optional[Any] , _lowercase : int ): '''simple docstring''' import zipfile __UpperCAmelCase : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : int ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' __UpperCAmelCase : str = bytes(_lowercase , '''utf-8''' ) with zstd.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : int ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' __UpperCAmelCase : int = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(_lowercase , '''w''' ) as f: f.write(_lowercase ) return filename __UpperCAmelCase :Tuple = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] __UpperCAmelCase :Optional[Any] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] __UpperCAmelCase :Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } __UpperCAmelCase :Dict = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] __UpperCAmelCase :Union[str, Any] = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='''session''' ) def _a ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = datasets.Dataset.from_dict(_lowercase ) __UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(_lowercase ) ) as con: __UpperCAmelCase : int = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(_lowercase , '''w''' , newline='''''' ) as f: __UpperCAmelCase : int = csv.DictWriter(_lowercase , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : int ): '''simple docstring''' __UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(_lowercase , '''w''' , newline='''''' ) as f: __UpperCAmelCase : Union[str, Any] = csv.DictWriter(_lowercase , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : int , _lowercase : int ): '''simple docstring''' import bza __UpperCAmelCase : str = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(_lowercase , '''rb''' ) as f: __UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_lowercase , '''wb''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : str ): '''simple docstring''' __UpperCAmelCase : List[str] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Dict , _lowercase : Tuple , _lowercase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(_lowercase , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Dict ): '''simple docstring''' __UpperCAmelCase : int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) __UpperCAmelCase : List[Any] = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(_lowercase , '''wb''' ) as f: __UpperCAmelCase : Optional[Any] = pq.ParquetWriter(_lowercase , schema=_lowercase ) __UpperCAmelCase : Dict = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_lowercase ) )] for k in DATA[0]} , schema=_lowercase ) writer.write_table(_lowercase ) writer.close() return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Dict ): '''simple docstring''' __UpperCAmelCase : str = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) __UpperCAmelCase : List[Any] = {'''data''': DATA} with open(_lowercase , '''w''' ) as f: json.dump(_lowercase , _lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) __UpperCAmelCase : Union[str, Any] = {'''data''': DATA_DICT_OF_LISTS} with open(_lowercase , '''w''' ) as f: json.dump(_lowercase , _lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(_lowercase , '''w''' ) as f: for item in DATA: f.write(json.dumps(_lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(_lowercase , '''w''' ) as f: for item in DATA: f.write(json.dumps(_lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Any = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(_lowercase , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(_lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Any ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(_lowercase , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(_lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Union[str, Any] , _lowercase : Optional[Any] ): '''simple docstring''' import gzip __UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(_lowercase , '''rb''' ) as orig_file: with gzip.open(_lowercase , '''wb''' ) as zipped_file: zipped_file.writelines(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : List[str] , _lowercase : str ): '''simple docstring''' import gzip __UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(_lowercase , '''rb''' ) as orig_file: with gzip.open(_lowercase , '''wb''' ) as zipped_file: zipped_file.writelines(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : Dict , _lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.join('''nested''' , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : int , _lowercase : str , _lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : str = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(_lowercase , '''w''' ) as f: f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Optional[Any] , _lowercase : int , _lowercase : Dict , _lowercase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(_lowercase , '''w''' ) as f: f.add(_lowercase , arcname=os.path.join('''nested''' , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase : List[str] = ['''0''', '''1''', '''2''', '''3'''] __UpperCAmelCase : List[str] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(_lowercase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Any ): '''simple docstring''' __UpperCAmelCase : Tuple = ['''0''', '''1''', '''2''', '''3'''] __UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(_lowercase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ['''0''', '''1''', '''2''', '''3'''] __UpperCAmelCase : str = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(_lowercase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Optional[int] , _lowercase : Dict , _lowercase : str ): '''simple docstring''' __UpperCAmelCase : str = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(_lowercase , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Dict = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) __UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(_lowercase ) return path @pytest.fixture(scope='''session''' ) def _a ( ): '''simple docstring''' return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def _a ( ): '''simple docstring''' return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Any , _lowercase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(_lowercase , '''w''' ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def _a ( _lowercase : Any ): '''simple docstring''' __UpperCAmelCase : Any = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
240
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase :Union[str, Any] = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Dict = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase :Dict = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCAmelCase :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
240
1
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ (a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : List[str] = CodeGenTokenizer __UpperCamelCase : int = CodeGenTokenizerFast __UpperCamelCase : List[str] = True __UpperCamelCase : Optional[Any] = {'''add_prefix_space''': True} __UpperCamelCase : str = False def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] SCREAMING_SNAKE_CASE__ : Any = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) SCREAMING_SNAKE_CASE__ : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE__ : List[str] = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = """lower newer""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """lower newer""" return input_text, output_text def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ : int = """lower newer""" SCREAMING_SNAKE_CASE__ : Dict = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] SCREAMING_SNAKE_CASE__ : int = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = """lower newer""" # Testing tokenization SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE__ : int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing the unknown token SCREAMING_SNAKE_CASE__ : str = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" pass def __magic_name__ (self , SCREAMING_SNAKE_CASE__=15 ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ : Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # Simple input SCREAMING_SNAKE_CASE__ : Any = """This is a simple input""" SCREAMING_SNAKE_CASE__ : Tuple = ["""This is a simple input 1""", """This is a simple input 2"""] SCREAMING_SNAKE_CASE__ : Dict = ("""This is a simple input""", """This is a pair""") SCREAMING_SNAKE_CASE__ : Optional[int] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE__ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE__ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , padding="""max_length""" , ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input SCREAMING_SNAKE_CASE__ : str = """This is a simple input""" SCREAMING_SNAKE_CASE__ : int = ["""This is a simple input looooooooong""", """This is a simple input"""] SCREAMING_SNAKE_CASE__ : str = ("""This is a simple input""", """This is a pair""") SCREAMING_SNAKE_CASE__ : List[Any] = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] SCREAMING_SNAKE_CASE__ : Dict = tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncate=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer(*SCREAMING_SNAKE_CASE__ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncate=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = """$$$""" SCREAMING_SNAKE_CASE__ : Optional[int] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE__ , add_bos_token=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = """This is a simple input""" SCREAMING_SNAKE_CASE__ : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] SCREAMING_SNAKE_CASE__ : Dict = tokenizer.bos_token_id SCREAMING_SNAKE_CASE__ : Any = tokenizer(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = tokenizer(SCREAMING_SNAKE_CASE__ ) self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE__ : int = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) SCREAMING_SNAKE_CASE__ : str = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" SCREAMING_SNAKE_CASE__ : int = """\nif len_a > len_b: result = a\nelse: result = b""" SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] SCREAMING_SNAKE_CASE__ : Any = tokenizer.decode(SCREAMING_SNAKE_CASE__ , truncate_before_pattern=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" pass
25
"""simple docstring""" import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase__ : List[str] = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase__ : List[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = SavedModel() SCREAMING_SNAKE_CASE__ : Dict = [] with open(os.path.join(_snake_case ,"""utils""" ,"""tf_ops""" ,"""onnx.json""" ) ) as f: SCREAMING_SNAKE_CASE__ : Any = json.load(_snake_case )["""opsets"""] for i in range(1 ,opset + 1 ): onnx_ops.extend(onnx_opsets[str(_snake_case )] ) with open(_snake_case ,"""rb""" ) as f: saved_model.ParseFromString(f.read() ) SCREAMING_SNAKE_CASE__ : List[str] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want SCREAMING_SNAKE_CASE__ : int = sorted(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_snake_case ) if strict and len(_snake_case ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(_snake_case ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*_snake_case ,sep="""\n""" ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=1_2, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase__ : Dict = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
25
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def SCREAMING_SNAKE_CASE_ (UpperCamelCase = True , *UpperCamelCase , **UpperCamelCase ) -> Union[str, Any]: if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) lowerCamelCase__ : Any = False if main_process_only: lowerCamelCase__ : Optional[Any] = PartialState().local_process_index == 0 return _tqdm(*lowercase__ , **lowercase__ , disable=lowercase__ )
363
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[Any]: if "cls_token" in name: lowerCamelCase__ : Any = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: lowerCamelCase__ : Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase__ : str = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowerCamelCase__ : Optional[int] = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase__ : Any = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: lowerCamelCase__ : Dict = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: lowerCamelCase__ : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCamelCase__ : List[str] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase__ : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase__ : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase__ : str = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: lowerCamelCase__ : Tuple = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: lowerCamelCase__ : Optional[int] = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: lowerCamelCase__ : int = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: lowerCamelCase__ : Union[str, Any] = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: lowerCamelCase__ : Dict = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple: for key in orig_state_dict.copy().keys(): lowerCamelCase__ : List[str] = orig_state_dict.pop(UpperCamelCase ) if "qkv" in key: lowerCamelCase__ : List[Any] = key.split(""".""" ) lowerCamelCase__ : Optional[int] = int(key_split[1] ) if "decoder_blocks" in key: lowerCamelCase__ : str = config.decoder_hidden_size lowerCamelCase__ : List[Any] = """decoder.decoder_layers.""" if "weight" in key: lowerCamelCase__ : int = val[:dim, :] lowerCamelCase__ : int = val[dim : dim * 2, :] lowerCamelCase__ : Tuple = val[-dim:, :] elif "bias" in key: lowerCamelCase__ : Tuple = val[:dim] lowerCamelCase__ : Optional[int] = val[dim : dim * 2] lowerCamelCase__ : List[Any] = val[-dim:] else: lowerCamelCase__ : List[Any] = config.hidden_size lowerCamelCase__ : Optional[int] = """vit.encoder.layer.""" if "weight" in key: lowerCamelCase__ : str = val[:dim, :] lowerCamelCase__ : List[Any] = val[dim : dim * 2, :] lowerCamelCase__ : Optional[int] = val[-dim:, :] elif "bias" in key: lowerCamelCase__ : int = val[:dim] lowerCamelCase__ : List[Any] = val[dim : dim * 2] lowerCamelCase__ : Optional[int] = val[-dim:] else: lowerCamelCase__ : int = val return orig_state_dict def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : Any = ViTMAEConfig() if "large" in checkpoint_url: lowerCamelCase__ : Any = 1024 lowerCamelCase__ : Optional[Any] = 4096 lowerCamelCase__ : List[str] = 24 lowerCamelCase__ : Union[str, Any] = 16 elif "huge" in checkpoint_url: lowerCamelCase__ : List[str] = 14 lowerCamelCase__ : Dict = 1280 lowerCamelCase__ : Tuple = 5120 lowerCamelCase__ : List[str] = 32 lowerCamelCase__ : Union[str, Any] = 16 lowerCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCamelCase ) lowerCamelCase__ : str = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" )["""model"""] lowerCamelCase__ : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase__ : List[str] = convert_state_dict(UpperCamelCase , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" lowerCamelCase__ : List[Any] = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) lowerCamelCase__ : str = ViTMAEImageProcessor(size=config.image_size ) lowerCamelCase__ : Any = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) lowerCamelCase__ : Optional[Any] = model(**UpperCamelCase ) lowerCamelCase__ : Optional[Any] = outputs.logits if "large" in checkpoint_url: lowerCamelCase__ : List[Any] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: lowerCamelCase__ : Optional[Any] = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: lowerCamelCase__ : int = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , UpperCamelCase , atol=1E-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _A : Tuple =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
129
0
def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" lowerCamelCase__: int =[[] for _ in range(_snake_case )] lowerCamelCase__: Union[str, Any] =key - 1 if key <= 0: raise ValueError("Height of grid can\'t be 0 or negative" ) if key == 1 or len(_snake_case ) <= key: return input_string for position, character in enumerate(_snake_case ): lowerCamelCase__: Union[str, Any] =position % (lowest * 2) # puts it in bounds lowerCamelCase__: List[str] =min(_snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_snake_case ) lowerCamelCase__: str =["".join(_snake_case ) for row in temp_grid] lowerCamelCase__: List[str] ="".join(_snake_case ) return output_string def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" lowerCamelCase__: str =[] lowerCamelCase__: List[Any] =key - 1 if key <= 0: raise ValueError("Height of grid can\'t be 0 or negative" ) if key == 1: return input_string lowerCamelCase__: Tuple =[[] for _ in range(_snake_case )] # generates template for position in range(len(_snake_case ) ): lowerCamelCase__: str =position % (lowest * 2) # puts it in bounds lowerCamelCase__: int =min(_snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) lowerCamelCase__: Optional[Any] =0 for row in temp_grid: # fills in the characters lowerCamelCase__: Optional[int] =input_string[counter : counter + len(_snake_case )] grid.append(list(_snake_case ) ) counter += len(_snake_case ) lowerCamelCase__: int ="" # reads as zigzag for position in range(len(_snake_case ) ): lowerCamelCase__: Dict =position % (lowest * 2) # puts it in bounds lowerCamelCase__: List[str] =min(_snake_case , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCAmelCase_ ( __a ) -> dict[int, str]: """simple docstring""" lowerCamelCase__: Optional[int] ={} for key_guess in range(1 , len(_snake_case ) ): # tries every key lowerCamelCase__: List[str] =decrypt(_snake_case , _snake_case ) return results if __name__ == "__main__": import doctest doctest.testmod()
10
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Optional[int] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Tuple = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> int: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Tuple: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Union[str, Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : int = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : int = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Tuple: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Any = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Dict: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Dict: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Optional[int] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Any = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Optional[int] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> int: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Optional[Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Tuple = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> str: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) def lowerCamelCase ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def lowerCamelCase ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def lowerCamelCase ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def lowerCamelCase ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def lowerCamelCase ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def lowerCamelCase ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) def lowerCamelCase ( *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' requires_backends(lowerCAmelCase__ , ['''torch'''] ) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : List[Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Tuple: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Tuple = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Optional[Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Dict = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Union[str, Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> str: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Tuple = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Dict: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Optional[Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Dict: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : int = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Dict: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Tuple = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : int = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Tuple: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : int = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> int: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Tuple = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> str: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : List[str] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Dict: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Dict = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Any = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : str = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Dict: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Optional[Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : int = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : str = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Optional[Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> List[str]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : List[str] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : List[Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> int: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Dict = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> str: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : str = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> str: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : int = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Tuple: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : int = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> str: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : List[str] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> int: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Tuple: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : int = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> int: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Any = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Tuple: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : str = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : List[Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : List[str] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> List[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : str = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Any: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Dict: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Optional[Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Any = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Any: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[str]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Optional[int]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Union[str, Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Union[str, Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Dict: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> str: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Dict = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Tuple: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : str = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Dict: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> Dict: requires_backends(cls , ['''torch''']) class lowerCamelCase_ ( metaclass=__lowercase ): '''simple docstring''' a__ : Union[str, Any] = ["torch"] def __init__( self , *__lowercase , **__lowercase) -> Optional[Any]: requires_backends(self , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> List[Any]: requires_backends(cls , ['''torch''']) @classmethod def UpperCamelCase__ ( cls , *__lowercase , **__lowercase) -> int: requires_backends(cls , ['''torch'''])
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowercase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''LayoutLMv3FeatureExtractor'''] __lowercase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
0
def A (__A : int ) -> None: """simple docstring""" UpperCAmelCase_ = generate_pascal_triangle(__A ) for row_idx in range(__A ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A (__A : int ) -> list[list[int]]: """simple docstring""" if not isinstance(__A , __A ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) UpperCAmelCase_ = [] for current_row_idx in range(__A ): UpperCAmelCase_ = populate_current_row(__A , __A ) triangle.append(__A ) return triangle def A (__A : list[list[int]] , __A : int ) -> list[int]: """simple docstring""" UpperCAmelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase_ , UpperCAmelCase_ = 1, 1 for current_col_idx in range(1 , __A ): calculate_current_element( __A , __A , __A , __A ) return current_row def A (__A : list[list[int]] , __A : list[int] , __A : int , __A : int , ) -> None: """simple docstring""" UpperCAmelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase_ = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase_ = above_to_left_elt + above_to_right_elt def A (__A : int ) -> list[list[int]]: """simple docstring""" if not isinstance(__A , __A ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) UpperCAmelCase_ = [[1]] for row_index in range(1 , __A ): UpperCAmelCase_ = [0] + result[-1] + [0] UpperCAmelCase_ = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase_ = sum(divmod(__A , 2 ) ) UpperCAmelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase_ = row_first_half + row_second_half result.append(__A ) return result def A () -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__A : Callable , __A : int ) -> None: UpperCAmelCase_ = F"""{func.__name__}({value})""" UpperCAmelCase_ = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__A , __A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
51
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Dict = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
"""simple docstring""" import datasets UpperCamelCase_ ="""\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ UpperCamelCase_ ="""\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ UpperCamelCase_ =""" Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def a_ ( _lowercase , _lowercase ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def snake_case ( self : List[str] ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ), codebase_urls=[], reference_urls=[], format='''numpy''', ) def snake_case ( self : Optional[Any], lowerCAmelCase__ : Optional[Any], lowerCAmelCase__ : int ) -> int: '''simple docstring''' return {"accuracy": simple_accuracy(lowerCAmelCase__, lowerCAmelCase__ )}
363
"""simple docstring""" from functools import lru_cache @lru_cache def a_ ( _lowercase ): if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
128
0
snake_case : Optional[Any] = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on snake_case : Dict = {value: key for key, value in MORSE_CODE_DICT.items()} def __lowercase ( __lowerCAmelCase : str ): return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __lowercase ( __lowerCAmelCase : str ): return "".join(REVERSE_DICT[char] for char in message.split() ) def __lowercase ( ): a__ = 'Morse code here!' print(__lowerCAmelCase ) a__ = encrypt(__lowerCAmelCase ) print(__lowerCAmelCase ) a__ = decrypt(__lowerCAmelCase ) print(__lowerCAmelCase ) if __name__ == "__main__": main()
240
import argparse snake_case : int = '''docs/source/_static/js/custom.js''' def __lowercase ( __lowerCAmelCase : Optional[Any] ): with open(__lowerCAmelCase , encoding='utf-8' , newline='\n' ) as f: a__ = f.readlines() a__ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 a__ = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(__lowerCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__lowerCAmelCase ) if __name__ == "__main__": snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') snake_case : Optional[int] = parser.parse_args() update_custom_js(args.version)
240
1
"""simple docstring""" import os from collections import deque import torch from torch.utils.data import Dataset class snake_case__ ( snake_case_ ): def __init__( self , lowerCamelCase="" , lowerCamelCase="train" ): assert os.path.isdir(lowerCamelCase ) __a = [] __a = os.listdir(lowerCamelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue __a = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isfile(lowerCamelCase ): continue self.documents.append(lowerCamelCase ) def __len__( self ): return len(self.documents ) def __getitem__( self , lowerCamelCase ): __a = self.documents[idx] __a = document_path.split("/" )[-1] with open(lowerCamelCase , encoding="utf-8" ) as source: __a = source.read() __a , __a = process_story(lowerCamelCase ) return document_name, story_lines, summary_lines def _lowerCamelCase( a ): __a = list(filter(lambda a : len(a ) != 0 , [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it __a = [_add_missing_period(a ) for line in nonempty_lines] # gather article lines __a = [] __a = deque(a ) while True: try: __a = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(a ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines __a = list(filter(lambda a : not t.startswith("@highlight" ) , a ) ) return story_lines, summary_lines def _lowerCamelCase( a ): __a = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def _lowerCamelCase( a , a , a ): if len(a ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(a )) ) return sequence def _lowerCamelCase( a , a ): __a = torch.ones_like(a ) __a = sequence == pad_token_id __a = 0 return mask def _lowerCamelCase( a , a , a ): __a = [tokenizer.encode(a ) for line in story_lines] __a = [token for sentence in story_lines_token_ids for token in sentence] __a = [tokenizer.encode(a ) for line in summary_lines] __a = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def _lowerCamelCase( a , a ): __a = [] for sequence in batch: __a = -1 __a = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(a ) return torch.tensor(a )
365
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:str = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class snake_case__ ( snake_case_ ): _snake_case : str = """sew-d""" def __init__( self , lowerCamelCase=32 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase=2 , lowerCamelCase=512 , lowerCamelCase=256 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=("p2c", "c2p") , lowerCamelCase="layer_norm" , lowerCamelCase="gelu_python" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=1E-7 , lowerCamelCase=1E-5 , lowerCamelCase="group" , lowerCamelCase="gelu" , lowerCamelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase=False , lowerCamelCase=128 , lowerCamelCase=16 , lowerCamelCase=True , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=0 , lowerCamelCase="mean" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=256 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , **lowerCamelCase , ): super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) __a = hidden_size __a = feat_extract_norm __a = feat_extract_activation __a = list(lowerCamelCase ) __a = list(lowerCamelCase ) __a = list(lowerCamelCase ) __a = conv_bias __a = num_conv_pos_embeddings __a = num_conv_pos_embedding_groups __a = len(self.conv_dim ) __a = num_hidden_layers __a = intermediate_size __a = squeeze_factor __a = max_position_embeddings __a = position_buckets __a = share_att_key __a = relative_attention __a = norm_rel_ebd __a = list(lowerCamelCase ) __a = hidden_act __a = num_attention_heads __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = feat_proj_dropout __a = final_dropout __a = layer_norm_eps __a = feature_layer_norm_eps __a = initializer_range __a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a = apply_spec_augment __a = mask_time_prob __a = mask_time_length __a = mask_time_min_masks __a = mask_feature_prob __a = mask_feature_length __a = mask_feature_min_masks # ctc loss __a = ctc_loss_reduction __a = ctc_zero_infinity # sequence classification __a = use_weighted_layer_sum __a = classifier_proj_size @property def a__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
268
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Any = CycleDiffusionPipeline snake_case__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } snake_case__ : List[Any] = PipelineTesterMixin.required_optional_params - {"latents"} snake_case__ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"}) snake_case__ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : Tuple ) -> str: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1_0_0_0 , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __SCREAMING_SNAKE_CASE = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int]=0 ) -> Any: __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = self.get_dummy_components() for name, module in components.items(): if hasattr(UpperCAmelCase__ , "half" ): __SCREAMING_SNAKE_CASE = module.half() __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCAmelCase_ ( self : int ) -> Tuple: return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: return super().test_inference_batch_single_identical() @skip_mps def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase_ ( self : Dict ) -> List[Any]: return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase_ ( self : int ) -> str: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: __SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) __SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) __SCREAMING_SNAKE_CASE = init_image.resize((5_1_2, 5_1_2) ) __SCREAMING_SNAKE_CASE = "CompVis/stable-diffusion-v1-4" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder="scheduler" ) __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained( UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = "A black colored car" __SCREAMING_SNAKE_CASE = "A blue colored car" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=UpperCAmelCase__ , source_prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase__ , output_type="np" , ) __SCREAMING_SNAKE_CASE = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) __SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) __SCREAMING_SNAKE_CASE = init_image.resize((5_1_2, 5_1_2) ) __SCREAMING_SNAKE_CASE = "CompVis/stable-diffusion-v1-4" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder="scheduler" ) __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = "A black colored car" __SCREAMING_SNAKE_CASE = "A blue colored car" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=UpperCAmelCase__ , source_prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase__ , output_type="np" , ) __SCREAMING_SNAKE_CASE = output.images assert np.abs(image - expected_image ).max() < 2E-2
54
from jiwer import compute_measures import datasets __snake_case : Dict ='\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __snake_case : Optional[Any] ='\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' __snake_case : Any ='\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): '''simple docstring''' def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence''' ), '''references''': datasets.Value('''string''' ,id='''sequence''' ), } ) ,codebase_urls=['''https://github.com/jitsi/jiwer/'''] ,reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] ,) def lowerCAmelCase__ (self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=False ) -> Any: """simple docstring""" if concatenate_texts: return compute_measures(__lowerCamelCase ,__lowerCamelCase )["wer"] else: lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Tuple = 0 for prediction, reference in zip(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Dict = compute_measures(__lowerCamelCase ,__lowerCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
129
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = ["""input_values""", """padding_mask"""] def __init__( self , A_ = 1 , A_ = 24000 , A_ = 0.0 , A_ = None , A_ = None , **A_ , )-> Optional[Any]: '''simple docstring''' super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ ) UpperCamelCase = chunk_length_s UpperCamelCase = overlap @property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , A_ , A_ = None , A_ = False , A_ = None , A_ = None , A_ = None , )-> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs UpperCamelCase = True UpperCamelCase = bool( isinstance(A_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(A_ , np.ndarray ): UpperCamelCase = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCamelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase = [np.asarray(A_ ).T] # verify inputs are valid for idx, example in enumerate(A_ ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) UpperCamelCase = None UpperCamelCase = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCamelCase = min(array.shape[0] for array in raw_audio ) UpperCamelCase = int(np.floor(max_length / self.chunk_stride ) ) UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCamelCase = max(array.shape[0] for array in raw_audio ) UpperCamelCase = int(np.ceil(max_length / self.chunk_stride ) ) UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCamelCase = 'max_length' else: UpperCamelCase = input_values # normal padding on batch if padded_inputs is None: UpperCamelCase = self.pad( A_ , max_length=A_ , truncation=A_ , padding=A_ , return_attention_mask=A_ , ) if padding: UpperCamelCase = padded_inputs.pop('attention_mask' ) UpperCamelCase = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: UpperCamelCase = example[..., None] input_values.append(example.T ) UpperCamelCase = input_values if return_tensors is not None: UpperCamelCase = padded_inputs.convert_to_tensors(A_ ) return padded_inputs
251
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : int = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """timesformer""" def __init__( self , A_=224 , A_=16 , A_=3 , A_=8 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-6 , A_=True , A_="divided_space_time" , A_=0 , **A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = num_frames UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = qkv_bias UpperCamelCase = attention_type UpperCamelCase = drop_path_rate
251
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case_ : def __init__( self : Optional[int] , lowercase_ : str , lowercase_ : Dict=13 , lowercase_ : Optional[Any]=10 , lowercase_ : int=3 , lowercase_ : str=2 , lowercase_ : Tuple=2 , lowercase_ : int=True , lowercase_ : int=True , lowercase_ : Optional[int]=32 , lowercase_ : List[Any]=5 , lowercase_ : Optional[Any]=4 , lowercase_ : List[Any]=37 , lowercase_ : Tuple="gelu" , lowercase_ : int=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : str=10 , lowercase_ : Optional[int]=0.02 , lowercase_ : List[str]="divided_space_time" , lowercase_ : Union[str, Any]=None , ) -> List[str]: lowercase__ : int = parent lowercase__ : str = batch_size lowercase__ : Optional[int] = image_size lowercase__ : Tuple = num_channels lowercase__ : List[str] = patch_size lowercase__ : Optional[Any] = num_frames lowercase__ : Any = is_training lowercase__ : Union[str, Any] = use_labels lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : int = intermediate_size lowercase__ : Dict = hidden_act lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : int = attention_type lowercase__ : Optional[int] = initializer_range lowercase__ : Optional[int] = scope lowercase__ : Optional[Any] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowercase__ : Optional[int] = (image_size // patch_size) ** 2 lowercase__ : Tuple = (num_frames) * self.num_patches_per_frame + 1 def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: lowercase__ : List[str] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : int = None if self.use_labels: lowercase__ : Any = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : Optional[int] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: lowercase__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowercase__ : int = self.num_labels return config def __UpperCamelCase ( self : Tuple , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[str] ) -> Optional[int]: lowercase__ : Optional[Any] = TimesformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Dict = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ) -> Tuple: lowercase__ : Tuple = TimesformerForVideoClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Tuple = model(lowercase_ ) # verify the logits shape lowercase__ : Optional[int] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: lowercase__ : str = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : int = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __A : Dict = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) __A : str = False __A : Optional[Any] = False __A : Tuple = False __A : Union[str, Any] = False def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: lowercase__ : Optional[Any] = TimesformerModelTester(self ) lowercase__ : Tuple = ConfigTester( self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Any=False ) -> Union[str, Any]: lowercase__ : Dict = copy.deepcopy(lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): lowercase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def __UpperCamelCase ( self : str ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def __UpperCamelCase ( self : str ) -> Optional[int]: pass def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(lowercase_ ) lowercase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> Dict: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowercase_ ) @slow def __UpperCamelCase ( self : Tuple ) -> Tuple: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = TimesformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Tuple: if not self.has_attentions: pass else: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : str = True for model_class in self.all_model_classes: lowercase__ : Tuple = self.model_tester.seq_length lowercase__ : Any = self.model_tester.num_frames lowercase__ : Optional[int] = True lowercase__ : List[Any] = False lowercase__ : Tuple = True lowercase__ : Union[str, Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase__ : str = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase__ : int = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Dict = True lowercase__ : Union[str, Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowercase__ : Optional[Any] = len(lowercase_ ) # Check attention is always last and order is fine lowercase__ : Any = True lowercase__ : List[str] = True lowercase__ : Union[str, Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + 1 , len(lowercase_ ) ) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowercase_ : str , lowercase_ : Any , lowercase_ : str ): lowercase__ : str = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase__ : Dict = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase__ : Any = outputs.hidden_states lowercase__ : Any = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase_ ) , lowercase_ ) lowercase__ : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def lowercase_ ( ): lowercase__ : Optional[Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset") lowercase__ : Optional[Any] = np.load(_lowerCamelCase) return list(_lowerCamelCase) @require_torch @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Optional[int] ) -> str: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : Optional[int] = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( lowercase_ ) lowercase__ : str = self.default_image_processor lowercase__ : str = prepare_video() lowercase__ : Any = image_processor(video[:8] , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase__ : Optional[int] = model(**lowercase_ ) # verify the logits lowercase__ : Optional[Any] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase__ : List[str] = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
87
"""simple docstring""" from datetime import datetime import requests def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->bytes: '''simple docstring''' a : Dict = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" a : Dict = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(_lowercase ).content if __name__ == "__main__": a : str = input('''Enter Video/IGTV url: ''').strip() a : Any = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
105
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin __lowercase: Any = get_tests_dir("fixtures/test_sentencepiece.model") __lowercase: List[str] = get_tests_dir("fixtures/test_sentencepiece_bpe.model") __lowercase: Dict = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class UpperCAmelCase ( UpperCAmelCase_ , unittest.TestCase): _lowerCamelCase : List[str] = CamembertTokenizer _lowerCamelCase : int = CamembertTokenizerFast _lowerCamelCase : Optional[int] = True _lowerCamelCase : str = True def lowercase_ ( self : str ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = CamembertTokenizer(__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase__ = '''<pad>''' UpperCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ), __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ), __lowercase ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], "<s>NOTUSED" ) self.assertEqual(vocab_keys[1], "<pad>" ) self.assertEqual(vocab_keys[-1], "<mask>" ) self.assertEqual(len(__lowercase ), 1004 ) def lowercase_ ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size, 1005 ) def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = CamembertTokenizer(__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) UpperCamelCase__ = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCamelCase__ = '''I was born in 92000, and this is falsé.''' UpperCamelCase__ = tokenizer.encode(__lowercase ) UpperCamelCase__ = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase, __lowercase ) UpperCamelCase__ = tokenizer.encode(__lowercase, add_special_tokens=__lowercase ) UpperCamelCase__ = rust_tokenizer.encode(__lowercase, add_special_tokens=__lowercase ) self.assertListEqual(__lowercase, __lowercase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(__lowercase ) UpperCamelCase__ = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase, __lowercase ) def lowercase_ ( self : Any ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = '''I was born in 92000, and this is falsé.''' UpperCamelCase__ = tokenizer.tokenize(__lowercase ) UpperCamelCase__ = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase, __lowercase ) UpperCamelCase__ = tokenizer.encode(__lowercase, add_special_tokens=__lowercase ) UpperCamelCase__ = rust_tokenizer.encode(__lowercase, add_special_tokens=__lowercase ) self.assertListEqual(__lowercase, __lowercase ) UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = tokenizer.encode(__lowercase ) UpperCamelCase__ = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase, __lowercase ) @slow def lowercase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase__ = {'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCamelCase__ = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowercase, model_name="camembert-base", revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf", sequences=__lowercase, )
366
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __lowercase: int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) UpperCamelCase__ = torch.load(_UpperCamelCase , map_location="cpu" ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCamelCase__ = convert_pytorch_sharded_state_dict_to_flax(_UpperCamelCase , _UpperCamelCase ) return flax_state_dict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple[str] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, jnp.ndarray] , _UpperCamelCase : str , ) -> (Tuple[str], np.ndarray): '''simple docstring''' def is_key_or_prefix_key_in_dict(_UpperCamelCase : Tuple[str] ) -> bool: return len(set(_UpperCamelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCamelCase__ = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCamelCase__ = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCamelCase__ = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCamelCase__ = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCamelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCamelCase ): UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCamelCase__ = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCamelCase__ = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCamelCase__ = pt_tuple_key[-2] + "_v" if name is not None: UpperCamelCase__ = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_UpperCamelCase ) UpperCamelCase__ = {} UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any ) -> Any: '''simple docstring''' import torch # Load the index UpperCamelCase__ = {} for shard_file in shard_filenames: # load using msgpack utils UpperCamelCase__ = torch.load(_UpperCamelCase ) UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCamelCase__ = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCamelCase__ = flax_model.params["params"] UpperCamelCase__ = flatten_dict(_UpperCamelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: UpperCamelCase__ = flax_model.params UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) UpperCamelCase__ = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = tuple(pt_key.split("." ) ) # remove base model prefix if necessary UpperCamelCase__ = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = pt_tuple_key[1:] # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # add model prefix if necessary UpperCamelCase__ = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue if "var" in flax_key[-1]: UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCamelCase , _UpperCamelCase ) continue # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) else: # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = os.path.abspath(_UpperCamelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class UpperCamelCase__ = getattr(_UpperCamelCase , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_UpperCamelCase , "rb" ) as state_f: try: UpperCamelCase__ = from_bytes(_UpperCamelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple , _UpperCamelCase : Any ) -> Optional[Any]: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights UpperCamelCase__ = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , _UpperCamelCase ) ).values() if any(_UpperCamelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) UpperCamelCase__ = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCamelCase ) UpperCamelCase__ = flatten_dict(_UpperCamelCase ) UpperCamelCase__ = pt_model.state_dict() UpperCamelCase__ = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) UpperCamelCase__ = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCamelCase__ = [] UpperCamelCase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCamelCase__ = flax_key_tuple[0] == pt_model.base_model_prefix UpperCamelCase__ = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCamelCase__ = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCamelCase__ = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCamelCase ) not in pt_model_dict: # conv layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = jnp.transpose(_UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCamelCase ) not in pt_model_dict: # linear layer UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) UpperCamelCase__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase__ = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: UpperCamelCase__ = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: UpperCamelCase__ = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCamelCase__ = ".".join(_UpperCamelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCamelCase__ = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCamelCase__ = key.split("." ) UpperCamelCase__ = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCamelCase__ = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCamelCase__ = key_components[-2] + "_v" if name is not None: UpperCamelCase__ = key_components[:-3] + [name] UpperCamelCase__ = ".".join(_UpperCamelCase ) UpperCamelCase__ = key if flax_key in special_pt_names: UpperCamelCase__ = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict UpperCamelCase__ = np.asarray(_UpperCamelCase ) if not isinstance(_UpperCamelCase , np.ndarray ) else flax_tensor UpperCamelCase__ = torch.from_numpy(_UpperCamelCase ) # remove from missing keys missing_keys.remove(_UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCamelCase ) pt_model.load_state_dict(_UpperCamelCase ) # re-transform missing_keys to list UpperCamelCase__ = list(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCamelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' "If your task is similar to the task the model of the checkpoint was trained on, " F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
31
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCAmelCase : List[str] = ["""small""", """medium""", """large"""] lowerCAmelCase : int = """lm_head.decoder.weight""" lowerCAmelCase : List[str] = """lm_head.weight""" def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = torch.load(_lowerCAmelCase ) lowerCamelCase = d.pop(_lowerCAmelCase ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) lowerCAmelCase : List[Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCAmelCase : int = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") lowerCAmelCase : List[Any] = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
291
def _lowerCAmelCase (_lowerCAmelCase): if n_term == "": return [] UpperCamelCase_ = [] for temp in range(int(_lowerCAmelCase)): series.append(f"""1/{temp + 1}""" if series else "1") return series if __name__ == "__main__": UpperCAmelCase : Optional[int] =input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
128
0
def UpperCAmelCase_ ( __UpperCAmelCase : list ) -> list: if len(__UpperCAmelCase ) <= 1: return [tuple(__UpperCAmelCase )] SCREAMING_SNAKE_CASE_ = [] def generate(__UpperCAmelCase : int , __UpperCAmelCase : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , __UpperCAmelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = arr[k - 1], arr[i] else: # k is odd SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = arr[k - 1], arr[0] generate(k - 1 , __UpperCAmelCase ) generate(len(__UpperCAmelCase ) , __UpperCAmelCase ) return res if __name__ == "__main__": lowerCamelCase__ : int = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase__ : Any = [int(item) for item in user_input.split(',')] print(heaps(arr))
210
import random from typing import Any def UpperCAmelCase_ ( __UpperCAmelCase : list ) -> list[Any]: for _ in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = random.randint(0 , len(__UpperCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ = random.randint(0 , len(__UpperCAmelCase ) - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = data[b], data[a] return data if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = [0, 1, 2, 3, 4, 5, 6, 7] lowerCamelCase__ : Optional[int] = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
210
1
'''simple docstring''' from __future__ import annotations def _A ( snake_case ) -> Union[str, Any]: _lowercase : Dict = len(A__ ) # We need to create solution object to save path. _lowercase : Dict = [[0 for _ in range(A__ )] for _ in range(A__ )] _lowercase : Optional[int] = run_maze(A__ , 0 , 0 , A__ ) if solved: print("\n".join(str(A__ ) for row in solutions ) ) else: print("No solution exists!" ) return solved def _A ( snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]: _lowercase : Any = len(A__ ) # Final check point. if i == j == (size - 1): _lowercase : Optional[int] = 1 return True _lowercase : Optional[int] = (not i < 0) and (not j < 0) # Check lower bounds _lowercase : List[Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _lowercase : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _lowercase : List[str] = 1 # check for directions if ( run_maze(A__ , i + 1 , A__ , A__ ) or run_maze(A__ , A__ , j + 1 , A__ ) or run_maze(A__ , i - 1 , A__ , A__ ) or run_maze(A__ , A__ , j - 1 , A__ ) ): return True _lowercase : Optional[Any] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
250
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[int]=32 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : List[Any]=10 , lowerCAmelCase_ : Any=[10, 20, 30, 40] , lowerCAmelCase_ : Any=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : int="relu" , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=None , ) -> str: UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : str = image_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : Tuple = embeddings_size UpperCAmelCase_ : Union[str, Any] = hidden_sizes UpperCAmelCase_ : int = depths UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : str = scope UpperCAmelCase_ : str = len(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> str: UpperCAmelCase_ : List[Any] = TFRegNetModel(config=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : List[Any] = TFRegNetForImageClassification(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = config_and_inputs UpperCAmelCase_ : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ (__A , __A , unittest.TestCase ): __magic_name__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __magic_name__ = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = TFRegNetModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: def check_hidden_states_output(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ): UpperCAmelCase_ : str = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Any = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) UpperCAmelCase_ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ : List[Any] = layer_type UpperCAmelCase_ : int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str]={} ): UpperCAmelCase_ : Tuple = model(lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ).to_tuple() def recursive_check(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): if isinstance(lowerCAmelCase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) , msg=( "Tuple and dict output are not equal. Difference:" f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Any = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {"output_hidden_states": True} ) UpperCAmelCase_ : List[str] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {"output_hidden_states": True} ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TFRegNetModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case ( ): UpperCAmelCase_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCamelCase_ (unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : Any = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase_ : Union[str, Any] = self.default_image_processor UpperCAmelCase_ : int = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="tf" ) # forward pass UpperCAmelCase_ : Tuple = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits UpperCAmelCase_ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 )
268
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = len(set_a.intersection(__SCREAMING_SNAKE_CASE ) ) if alternative_union: lowercase_ : Dict = len(__SCREAMING_SNAKE_CASE ) + len(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Union[str, Any] = len(set_a.union(__SCREAMING_SNAKE_CASE ) ) return intersection / union if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): lowercase_ : Dict = [element for element in set_a if element in set_b] if alternative_union: lowercase_ : Any = len(__SCREAMING_SNAKE_CASE ) + len(__SCREAMING_SNAKE_CASE ) return len(__SCREAMING_SNAKE_CASE ) / union else: lowercase_ : str = set_a + [element for element in set_b if element not in set_a] return len(__SCREAMING_SNAKE_CASE ) / len(__SCREAMING_SNAKE_CASE ) return len(__SCREAMING_SNAKE_CASE ) / len(__SCREAMING_SNAKE_CASE ) return None if __name__ == "__main__": _lowercase : List[str] = {"a", "b", "c", "d", "e"} _lowercase : Dict = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
264
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase : Any = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCamelCase_ ): def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
264
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Union[str, Any] = '''linear''' A : int = '''cosine''' A : Optional[Any] = '''cosine_with_restarts''' A : Optional[int] = '''polynomial''' A : str = '''constant''' A : Union[str, Any] = '''constant_with_warmup''' A : Optional[Any] = '''piecewise_constant''' def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int = -1 ): """simple docstring""" return LambdaLR(__UpperCamelCase ,lambda __UpperCamelCase : 1 ,last_epoch=__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int ,__UpperCamelCase: int = -1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: int ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1.0 ,__UpperCamelCase ) ) return 1.0 return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,last_epoch=__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: str ,__UpperCamelCase: int = -1 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : Optional[Any] = step_rules.split(',' ) for rule_str in rule_list[:-1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = rule_str.split(':' ) SCREAMING_SNAKE_CASE : int = int(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = float(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = value SCREAMING_SNAKE_CASE : Any = float(rule_list[-1] ) def create_rules_function(__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[Any] ): def rule_func(__UpperCamelCase: int ) -> float: SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func SCREAMING_SNAKE_CASE : Any = create_rules_function(__UpperCamelCase ,__UpperCamelCase ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,last_epoch=__UpperCamelCase ) def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Dict ,__UpperCamelCase: int=-1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: int ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) return max( 0.0 ,float(num_training_steps - current_step ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: float = 0.5 ,__UpperCamelCase: int = -1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: Any ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : str = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * float(__UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optimizer ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: int = 1 ,__UpperCamelCase: int = -1 ): """simple docstring""" def lr_lambda(__UpperCamelCase: Dict ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : int = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: Any ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: Optional[Any]=1e-7 ,__UpperCamelCase: Dict=1.0 ,__UpperCamelCase: Optional[Any]=-1 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__UpperCamelCase: int ): if current_step < num_warmup_steps: return float(__UpperCamelCase ) / float(max(1 ,__UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: SCREAMING_SNAKE_CASE : List[str] = lr_init - lr_end SCREAMING_SNAKE_CASE : Optional[Any] = num_training_steps - num_warmup_steps SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - (current_step - num_warmup_steps) / decay_steps SCREAMING_SNAKE_CASE : str = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) UpperCamelCase_ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowercase__( __UpperCamelCase: Union[str, SchedulerType] ,__UpperCamelCase: Optimizer ,__UpperCamelCase: Optional[str] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: int = 1 ,__UpperCamelCase: float = 1.0 ,__UpperCamelCase: int = -1 ,): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = SchedulerType(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCamelCase ,last_epoch=__UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCamelCase ,step_rules=__UpperCamelCase ,last_epoch=__UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,last_epoch=__UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,num_training_steps=__UpperCamelCase ,num_cycles=__UpperCamelCase ,last_epoch=__UpperCamelCase ,) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,num_training_steps=__UpperCamelCase ,power=__UpperCamelCase ,last_epoch=__UpperCamelCase ,) return schedule_func( __UpperCamelCase ,num_warmup_steps=__UpperCamelCase ,num_training_steps=__UpperCamelCase ,last_epoch=__UpperCamelCase )
251
'''simple docstring''' from __future__ import annotations def lowercase__( __UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [True] * limit SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : List[Any] = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): SCREAMING_SNAKE_CASE : Any = i * 2 while index < limit: SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[Any] = index + i SCREAMING_SNAKE_CASE : Tuple = [2] for i in range(3 ,__UpperCamelCase ,2 ): if is_prime[i]: primes.append(__UpperCamelCase ) return primes def lowercase__( __UpperCamelCase: int = 1_00_00_00 ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = prime_sieve(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Dict = 0 for i in range(len(__UpperCamelCase ) ): for j in range(i + length ,len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE : Optional[int] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: SCREAMING_SNAKE_CASE : Dict = j - i SCREAMING_SNAKE_CASE : Optional[Any] = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
251
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Dict = {'''vocab_file''': '''spiece.model'''} __UpperCamelCase : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __UpperCamelCase : List[str] = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __UpperCamelCase : Optional[Any] = '''▁''' class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _snake_case , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case="[CLS]" , _snake_case="[SEP]" , _snake_case="<unk>" , _snake_case="[SEP]" , _snake_case="<pad>" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = ( AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case , normalized=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token ) lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = remove_space lowerCAmelCase = keep_accents lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.remove_space: lowerCAmelCase = ' '.join(inputs.strip().split() ) else: lowerCAmelCase = inputs lowerCAmelCase = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: lowerCAmelCase = unicodedata.normalize('NFKD' , _snake_case ) lowerCAmelCase = ''.join([c for c in outputs if not unicodedata.combining(_snake_case )] ) if self.do_lower_case: lowerCAmelCase = outputs.lower() return outputs def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.preprocess_text(_snake_case ) lowerCAmelCase = self.sp_model.encode(_snake_case , out_type=_snake_case ) lowerCAmelCase = [] for piece in pieces: if len(_snake_case ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase = cur_pieces[1:] else: lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_snake_case ) else: new_pieces.append(_snake_case ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.sp_model.PieceToId(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.sp_model.IdToPiece(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = '' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(_snake_case ) lowerCAmelCase = False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
309
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def __init__( self : int , A : Dict , A : Optional[int]=7 , A : Tuple=3 , A : Optional[Any]=10 , A : int=18 , A : Dict=30 , A : List[str]=400 , A : int=True , A : Optional[Any]=None , A : Optional[Any]=True , A : List[Any]=[0.5, 0.5, 0.5] , A : List[str]=[0.5, 0.5, 0.5] , A : Optional[int]=None , ): _UpperCAmelCase : Dict = size if size is not None else {"shortest_edge": 18} _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Optional[Any] = num_frames _UpperCAmelCase : Any = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : Any = max_resolution _UpperCAmelCase : Optional[int] = do_resize _UpperCAmelCase : str = size _UpperCAmelCase : List[Any] = do_normalize _UpperCAmelCase : Any = image_mean _UpperCAmelCase : Tuple = image_std _UpperCAmelCase : Any = crop_size def _A ( self : List[Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Dict = VivitImageProcessor if is_vision_available() else None def _A ( self : int ): _UpperCAmelCase : Tuple = VivitImageProcessingTester(self ) @property def _A ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Union[str, Any] ): _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "image_mean" ) ) self.assertTrue(hasattr(A , "image_std" ) ) self.assertTrue(hasattr(A , "do_normalize" ) ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "do_center_crop" ) ) self.assertTrue(hasattr(A , "size" ) ) def _A ( self : List[Any] ): _UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) _UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _A ( self : Tuple ): # Initialize image_processing _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _UpperCAmelCase : Any = prepare_video_inputs(self.image_processor_tester , equal_resolution=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _UpperCAmelCase : str = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : List[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : List[Any] ): # Initialize image_processing _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _UpperCAmelCase : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : List[Any] ): # Initialize image_processing _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for video in video_inputs: self.assertIsInstance(A , A ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _UpperCAmelCase : Optional[Any] = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : List[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
31
0
"""simple docstring""" import argparse import os import re _SCREAMING_SNAKE_CASE : List[str] = """src/diffusers""" # Pattern that looks at the indentation in a line. _SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _SCREAMING_SNAKE_CASE : Any = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _SCREAMING_SNAKE_CASE : List[str] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _SCREAMING_SNAKE_CASE : str = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(r"""\[([^\]]+)\]""") def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : str =_re_indent.search(UpperCAmelCase ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]="" , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=None ): '''simple docstring''' UpperCamelCase__ : int =0 UpperCamelCase__ : Union[str, Any] =code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase ): index += 1 UpperCamelCase__ : Optional[int] =['''\n'''.join(lines[:index] )] else: UpperCamelCase__ : List[Any] =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase__ : Dict =[lines[index]] index += 1 while index < len(UpperCAmelCase ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(UpperCAmelCase ) ) if index < len(UpperCAmelCase ) - 1: UpperCamelCase__ : Optional[Any] =[lines[index + 1]] index += 1 else: UpperCamelCase__ : List[str] =[] else: blocks.append('''\n'''.join(UpperCAmelCase ) ) UpperCamelCase__ : List[Any] =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase ) > 0: blocks.append('''\n'''.join(UpperCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( UpperCAmelCase : str ): '''simple docstring''' def _inner(UpperCAmelCase : Dict ): return key(UpperCAmelCase ).lower().replace('''_''' , '''''' ) return _inner def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : Dict=None ): '''simple docstring''' def noop(UpperCAmelCase : Optional[Any] ): return x if key is None: UpperCamelCase__ : int =noop # Constants are all uppercase, they go first. UpperCamelCase__ : List[str] =[obj for obj in objects if key(UpperCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase__ : Dict =[obj for obj in objects if key(UpperCAmelCase )[0].isupper() and not key(UpperCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase__ : int =[obj for obj in objects if not key(UpperCAmelCase )[0].isupper()] UpperCamelCase__ : Optional[int] =ignore_underscore(UpperCAmelCase ) return sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) + sorted(UpperCAmelCase , key=UpperCAmelCase ) def _lowerCAmelCase ( UpperCAmelCase : Union[str, Any] ): '''simple docstring''' def _replace(UpperCAmelCase : Union[str, Any] ): UpperCamelCase__ : List[str] =match.groups()[0] if "," not in imports: return F'''[{imports}]''' UpperCamelCase__ : Optional[int] =[part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ : Tuple =keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase )] ) + "]" UpperCamelCase__ : List[Any] =import_statement.split('''\n''' ) if len(UpperCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase__ : List[str] =2 if lines[1].strip() == '''[''' else 1 UpperCamelCase__ : List[str] =[(i, _re_strip_line.search(UpperCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase__ : List[str] =sort_objects(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] ) UpperCamelCase__ : Tuple =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase__ : Dict =_re_bracket_content.sub(_replace , lines[1] ) else: UpperCamelCase__ : Optional[int] =[part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ : Tuple =keys[:-1] UpperCamelCase__ : Optional[Any] =get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(UpperCAmelCase )] ) return "\n".join(UpperCAmelCase ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase__ : List[str] =_re_bracket_content.sub(_replace , UpperCAmelCase ) return import_statement def _lowerCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=True ): '''simple docstring''' with open(UpperCAmelCase , '''r''' ) as f: UpperCamelCase__ : int =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase__ : Optional[int] =split_code_in_indented_blocks( UpperCAmelCase , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase__ : Dict =main_blocks[block_idx] UpperCamelCase__ : List[str] =block.split('''\n''' ) # Get to the start of the imports. UpperCamelCase__ : str =0 while line_idx < len(UpperCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase__ : Optional[int] =len(UpperCAmelCase ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase__ : Optional[Any] ='''\n'''.join(block_lines[line_idx:-1] ) UpperCamelCase__ : Tuple =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase__ : str =split_code_in_indented_blocks(UpperCAmelCase , indent_level=UpperCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase__ : str =_re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase__ : Tuple =[(pattern.search(UpperCAmelCase ).groups()[0] if pattern.search(UpperCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase__ : List[Any] =[(i, key) for i, key in enumerate(UpperCAmelCase ) if key is not None] UpperCamelCase__ : Optional[Any] =[x[0] for x in sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase__ : Union[str, Any] =0 UpperCamelCase__ : str =[] for i in range(len(UpperCAmelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCamelCase__ : Optional[Any] =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCAmelCase ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase__ : Optional[Any] ='''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(UpperCAmelCase , '''w''' ) as f: f.write('''\n'''.join(UpperCAmelCase ) ) def _lowerCAmelCase ( UpperCAmelCase : Dict=True ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] =[] for root, _, files in os.walk(UpperCAmelCase ): if "__init__.py" in files: UpperCamelCase__ : List[Any] =sort_imports(os.path.join(UpperCAmelCase , '''__init__.py''' ) , check_only=UpperCAmelCase ) if result: UpperCamelCase__ : int =[os.path.join(UpperCAmelCase , '''__init__.py''' )] if len(UpperCAmelCase ) > 0: raise ValueError(F'''Would overwrite {len(UpperCAmelCase )} files, run `make style`.''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
157
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline _SCREAMING_SNAKE_CASE : Optional[int] = """path-to-your-trained-model""" _SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") _SCREAMING_SNAKE_CASE : Dict = """A photo of sks dog in a bucket""" _SCREAMING_SNAKE_CASE : Any = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
157
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __a : List[Any] = logging.get_logger(__name__) class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> None: '''simple docstring''' warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
210
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __a : List[str] = Lock() def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __lowercase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __lowercase = min(lowercase , lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __lowercase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __lowercase = max(lowercase , lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowercase ) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = [] __lowercase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __lowercase = Pipe() __lowercase = Pipe() process_array_.append( Process( target=lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __lowercase = temp_rs __lowercase = temp_rr for i in range(1 , len(lowercase ) - 1 ): __lowercase = Pipe() __lowercase = Pipe() process_array_.append( Process( target=lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __lowercase = temp_rs __lowercase = temp_rr process_array_.append( Process( target=lowercase , args=( len(lowercase ) - 1, arr[len(lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowercase ) ): __lowercase = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCAmelCase ( ): """simple docstring""" __lowercase = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*lowercase ) __lowercase = odd_even_transposition(lowercase ) print('''Sorted List\n''' ) print(*lowercase ) if __name__ == "__main__": main()
210
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __SCREAMING_SNAKE_CASE ={ "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __SCREAMING_SNAKE_CASE ={ "yjernite/retribert-base-uncased": 512, } __SCREAMING_SNAKE_CASE ={ "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class UpperCamelCase ( lowercase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RetriBertTokenizer lowercase = ['input_ids', 'attention_mask'] def __init__( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=True ,__UpperCamelCase="[UNK]" ,__UpperCamelCase="[SEP]" ,__UpperCamelCase="[PAD]" ,__UpperCamelCase="[CLS]" ,__UpperCamelCase="[MASK]" ,__UpperCamelCase=True ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> Dict: '''simple docstring''' super().__init__( __UpperCamelCase ,tokenizer_file=__UpperCamelCase ,do_lower_case=__UpperCamelCase ,unk_token=__UpperCamelCase ,sep_token=__UpperCamelCase ,pad_token=__UpperCamelCase ,cls_token=__UpperCamelCase ,mask_token=__UpperCamelCase ,tokenize_chinese_chars=__UpperCamelCase ,strip_accents=__UpperCamelCase ,**__UpperCamelCase ,) lowercase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,__UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' ,__UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,__UpperCamelCase ) != tokenize_chinese_chars ): lowercase_ : List[str] = getattr(__UpperCamelCase ,normalizer_state.pop('type' ) ) lowercase_ : Tuple = do_lower_case lowercase_ : List[Any] = strip_accents lowercase_ : Dict = tokenize_chinese_chars lowercase_ : Any = normalizer_class(**__UpperCamelCase ) lowercase_ : str = do_lower_case def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=None ) -> int: '''simple docstring''' lowercase_ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> List[int]: '''simple docstring''' lowercase_ : Dict = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ : str = self._tokenizer.model.save(__UpperCamelCase ,name=__UpperCamelCase ) return tuple(__UpperCamelCase )
321
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ,__UpperCamelCase ) -> List[str]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): lowercase_ : Dict = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : List[str] = 'sgugger/tiny-distilbert-classification' lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,only_pretrain_model=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : Optional[Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = 'sshleifer/tiny-gpt2' lowercase_ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : Any = 'sshleifer/tiny-gpt2' lowercase_ : Any = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : int = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' lowercase_ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' lowercase_ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : str = TensorFlowBenchmark(__UpperCamelCase ,[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'patrickvonplaten/t5-tiny-random' lowercase_ : int = AutoConfig.from_pretrained(__UpperCamelCase ) lowercase_ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ,configs=[config] ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 ,'Cannot do xla on CPU.' ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = 'sshleifer/tiny-gpt2' lowercase_ : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCamelCase ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,use_xla=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Union[str, Any] = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,save_to_csv=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCamelCase ,'inf_time.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ,env_info_csv_file=os.path.join(__UpperCamelCase ,'env.csv' ) ,multi_process=__UpperCamelCase ,) lowercase_ : List[str] = TensorFlowBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'env.csv' ) ).exists() ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCamelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] ,inference=__UpperCamelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCamelCase ,'log.txt' ) ,log_print=__UpperCamelCase ,trace_memory_line_by_line=__UpperCamelCase ,eager_mode=__UpperCamelCase ,multi_process=__UpperCamelCase ,) lowercase_ : Dict = TensorFlowBenchmark(__UpperCamelCase ) lowercase_ : Any = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase ,'log.txt' ) ).exists() )
321
1
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __lowercase ( _a ): snake_case_ : Optional[int] = checkpoints.load_tax_checkpoint(_a ) snake_case_ : Any = flatten_dict(_a ) return flax_params def __lowercase ( _a ): snake_case_ : str = {} snake_case_ : Optional[int] = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } snake_case_ : List[Any] = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key snake_case_ : str = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): snake_case_ : List[str] = new_key.replace(_a , _a ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): snake_case_ : Any = new_key.replace(_a , _a ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number snake_case_ : Union[str, Any] = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , _a ) snake_case_ : Optional[int] = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number snake_case_ : List[Any] = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , _a ) snake_case_ : List[Any] = flax_dict[key] snake_case_ : Optional[int] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): snake_case_ : Any = torch.from_numpy(converted_dict[key].T ) else: snake_case_ : Any = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __lowercase ( _a , _a , _a=False , _a=False ): snake_case_ : List[Any] = get_flax_param(_a ) if not use_large: snake_case_ : Dict = PixaStructVisionConfig() snake_case_ : Dict = PixaStructTextConfig() else: snake_case_ : Optional[int] = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) snake_case_ : Optional[int] = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) snake_case_ : int = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_a ) snake_case_ : str = PixaStructForConditionalGeneration(_a ) snake_case_ : List[str] = rename_and_convert_flax_params(_a ) model.load_state_dict(_a ) snake_case_ : List[Any] = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) snake_case_ : List[Any] = PixaStructImageProcessor() snake_case_ : Union[str, Any] = PixaStructProcessor(image_processor=_a , tokenizer=_a ) if use_large: snake_case_ : Tuple = 4_096 snake_case_ : Union[str, Any] = True # mkdir if needed os.makedirs(_a , exist_ok=_a ) model.save_pretrained(_a ) processor.save_pretrained(_a ) print('''Model saved in {}'''.format(_a ) ) if __name__ == "__main__": lowercase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') lowercase__ : int = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
264
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Dict = logging.get_logger(__name__) def __lowercase ( _a , _a=False ): snake_case_ : List[str] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def __lowercase ( _a , _a , _a=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case_ : List[str] = '''''' else: snake_case_ : Dict = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ : List[str] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case_ : Optional[int] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case_ : Dict = in_proj_bias[: config.hidden_size] snake_case_ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ : Dict = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : str = in_proj_bias[-config.hidden_size :] def __lowercase ( _a ): snake_case_ : Dict = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_a , _a ) def __lowercase ( _a , _a , _a ): snake_case_ : Union[str, Any] = dct.pop(_a ) snake_case_ : Union[str, Any] = val def __lowercase ( ): snake_case_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ : Tuple = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def __lowercase ( _a , _a , _a=False ): snake_case_ : str = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=_a , ) snake_case_ : Tuple = ViTHybridConfig(backbone_config=_a , image_size=384 , num_labels=1_000 ) snake_case_ : int = False # load original model from timm snake_case_ : str = timm.create_model(_a , pretrained=_a ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ : Any = timm_model.state_dict() if base_model: remove_classification_head_(_a ) snake_case_ : int = create_rename_keys(_a , _a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , _a ) snake_case_ : Optional[Any] = '''huggingface/label-files''' snake_case_ : Any = '''imagenet-1k-id2label.json''' snake_case_ : Dict = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : Dict = {int(_a ): v for k, v in idalabel.items()} snake_case_ : Optional[int] = idalabel snake_case_ : Optional[Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case_ : Optional[Any] = ViTHybridModel(_a ).eval() else: snake_case_ : Any = ViTHybridForImageClassification(_a ).eval() model.load_state_dict(_a ) # create image processor snake_case_ : Optional[Any] = create_transform(**resolve_data_config({} , model=_a ) ) snake_case_ : List[Any] = transform.transforms snake_case_ : Optional[Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } snake_case_ : List[Any] = ViTHybridImageProcessor( do_resize=_a , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_a , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_a , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case_ : Optional[int] = prepare_img() snake_case_ : Optional[int] = transform(_a ).unsqueeze(0 ) snake_case_ : int = processor(_a , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_a , _a ) # verify logits with torch.no_grad(): snake_case_ : List[str] = model(_a ) snake_case_ : Any = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: snake_case_ : Optional[Any] = timm_model.forward_features(_a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_a , outputs.pooler_output , atol=1E-3 ) else: snake_case_ : int = timm_model(_a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_a ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) lowercase__ : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
264
1
'''simple docstring''' from __future__ import annotations import queue class _SCREAMING_SNAKE_CASE : def __init__( self : int , a__ : Dict ): __magic_name__ = data __magic_name__ = None __magic_name__ = None def UpperCamelCase ( ) -> str: '''simple docstring''' print('''\n********Press N to stop entering at any point of time********\n''' ) __magic_name__ = input('''Enter the value of the root node: ''' ).strip().lower() __magic_name__ = queue.Queue() __magic_name__ = TreeNode(int(lowercase__ ) ) q.put(lowercase__ ) while not q.empty(): __magic_name__ = q.get() __magic_name__ = F'''Enter the left node of {node_found.data}: ''' __magic_name__ = input(lowercase__ ).strip().lower() or 'n' if check == "n": return tree_node __magic_name__ = TreeNode(int(lowercase__ ) ) __magic_name__ = left_node q.put(lowercase__ ) __magic_name__ = F'''Enter the right node of {node_found.data}: ''' __magic_name__ = input(lowercase__ ).strip().lower() or 'n' if check == "n": return tree_node __magic_name__ = TreeNode(int(lowercase__ ) ) __magic_name__ = right_node q.put(lowercase__ ) raise def UpperCamelCase ( a ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def UpperCamelCase ( a ) -> Dict: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return __magic_name__ = queue.Queue() q.put(lowercase__ ) while not q.empty(): __magic_name__ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def UpperCamelCase ( a ) -> Optional[int]: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return __magic_name__ = queue.Queue() q.put(lowercase__ ) while not q.empty(): __magic_name__ = [] while not q.empty(): __magic_name__ = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowercase__ ) def UpperCamelCase ( a ) -> Union[str, Any]: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return __magic_name__ = [] __magic_name__ = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(lowercase__ ) __magic_name__ = n.left # end of while means current node doesn't have left child __magic_name__ = stack.pop() # start to traverse its right child __magic_name__ = n.right def UpperCamelCase ( a ) -> Dict: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return __magic_name__ = [] __magic_name__ = node while n or stack: while n: stack.append(lowercase__ ) __magic_name__ = n.left __magic_name__ = stack.pop() print(n.data , end=''',''' ) __magic_name__ = n.right def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return __magic_name__ = [], [] __magic_name__ = node stacka.append(lowercase__ ) while stacka: # to find the reversed order of post order, store it in stack2 __magic_name__ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowercase__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def UpperCamelCase ( a = "" , a=50 , a="*" ) -> Any: '''simple docstring''' if not s: return "\n" + width * char __magic_name__ = divmod(width - len(lowercase__ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) _lowerCAmelCase = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
362
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , a__ : Union[str, Any] , a__ : Union[str, Any]=7 , a__ : Dict=3 , a__ : Optional[Any]=18 , a__ : Optional[Any]=30 , a__ : Tuple=400 , a__ : Optional[int]=True , a__ : int=None , a__ : Union[str, Any]=True , a__ : Optional[Any]=None , a__ : str=True , a__ : List[Any]=[0.5, 0.5, 0.5] , a__ : Tuple=[0.5, 0.5, 0.5] , a__ : Union[str, Any]=False , ): __magic_name__ = size if size is not None else {'''height''': 20, '''width''': 20} __magic_name__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = do_reduce_labels def snake_case__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCamelCase ( ) -> str: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __magic_name__ = Image.open(dataset[0]['''file'''] ) __magic_name__ = Image.open(dataset[1]['''file'''] ) return image, map def UpperCamelCase ( ) -> List[str]: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __magic_name__ = Image.open(ds[0]['''file'''] ) __magic_name__ = Image.open(ds[1]['''file'''] ) __magic_name__ = Image.open(ds[2]['''file'''] ) __magic_name__ = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[Any] = BeitImageProcessor if is_vision_available() else None def snake_case__ ( self : Dict ): __magic_name__ = BeitImageProcessingTester(self ) @property def snake_case__ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) self.assertTrue(hasattr(a__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a__ , '''center_crop''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) def snake_case__ ( self : int ): __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) __magic_name__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a__ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) def snake_case__ ( self : Optional[Any] ): pass def snake_case__ ( self : Dict ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[str] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Union[str, Any] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) __magic_name__ = [] for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) __magic_name__ , __magic_name__ = prepare_semantic_single_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) __magic_name__ , __magic_name__ = prepare_semantic_batch_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def snake_case__ ( self : Any ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __magic_name__ , __magic_name__ = prepare_semantic_single_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) __magic_name__ = True __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
98
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """spiece.model"""} UpperCamelCase_ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } UpperCamelCase_ = { """albert-base-v1""": 5_12, """albert-large-v1""": 5_12, """albert-xlarge-v1""": 5_12, """albert-xxlarge-v1""": 5_12, """albert-base-v2""": 5_12, """albert-large-v2""": 5_12, """albert-xlarge-v2""": 5_12, """albert-xxlarge-v2""": 5_12, } UpperCamelCase_ = """▁""" class a_ (_a ): __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case_ , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_="[CLS]" , snake_case_="[SEP]" , snake_case_="<unk>" , snake_case_="[SEP]" , snake_case_="<pad>" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_ = None , **snake_case_ , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _lowerCAmelCase : List[Any] = ( AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token ) _lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) _lowerCAmelCase : Any = do_lower_case _lowerCAmelCase : int = remove_space _lowerCAmelCase : List[str] = keep_accents _lowerCAmelCase : Any = vocab_file _lowerCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case_ ) @property def __UpperCamelCase ( self ): return len(self.sp_model ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : Union[str, Any] = self.__dict__.copy() _lowerCAmelCase : Tuple = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self , snake_case_ ): if self.remove_space: _lowerCAmelCase : Optional[int] = """ """.join(inputs.strip().split() ) else: _lowerCAmelCase : str = inputs _lowerCAmelCase : int = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase : Union[str, Any] = unicodedata.normalize("""NFKD""" , snake_case_ ) _lowerCAmelCase : List[Any] = """""".join([c for c in outputs if not unicodedata.combining(snake_case_ )] ) if self.do_lower_case: _lowerCAmelCase : Optional[int] = outputs.lower() return outputs def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[int] = self.preprocess_text(snake_case_ ) _lowerCAmelCase : Any = self.sp_model.encode(snake_case_ , out_type=snake_case_ ) _lowerCAmelCase : int = [] for piece in pieces: if len(snake_case_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase : Optional[Any] = cur_pieces[1:] else: _lowerCAmelCase : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case_ ) else: new_pieces.append(snake_case_ ) return new_pieces def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.PieceToId(snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.IdToPiece(snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Any = """""" _lowerCAmelCase : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Tuple = True _lowerCAmelCase : Union[str, Any] = [] else: current_sub_tokens.append(snake_case_ ) _lowerCAmelCase : str = False out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase : List[str] = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
309
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = """▁""" UpperCamelCase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCamelCase_ = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } UpperCamelCase_ = { """facebook/m2m100_418M""": 10_24, } # fmt: off UpperCamelCase_ = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class a_ (_a ): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = ["""input_ids""", """attention_mask"""] __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=None , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<pad>" , snake_case_="<unk>" , snake_case_="m2m100" , snake_case_ = None , snake_case_=8 , **snake_case_ , ): _lowerCAmelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : Optional[Any] = language_codes _lowerCAmelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _lowerCAmelCase : str = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} _lowerCAmelCase : int = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case_ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case_ , tgt_lang=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , language_codes=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = vocab_file _lowerCAmelCase : Any = load_json(snake_case_ ) _lowerCAmelCase : str = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Union[str, Any] = spm_file _lowerCAmelCase : Tuple = load_spm(snake_case_ , self.sp_model_kwargs ) _lowerCAmelCase : int = len(self.encoder ) _lowerCAmelCase : Union[str, Any] = { self.get_lang_token(snake_case_ ): self.encoder_size + i for i, lang_code in enumerate(snake_case_ ) } _lowerCAmelCase : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case_ )} _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} _lowerCAmelCase : Any = src_lang if src_lang is not None else """en""" _lowerCAmelCase : Optional[int] = tgt_lang _lowerCAmelCase : Tuple = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _lowerCAmelCase : List[Any] = num_madeup_words @property def __UpperCamelCase ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , snake_case_ ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __UpperCamelCase ( self , snake_case_ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case_ , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , snake_case_ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case_ , self.unk_token ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = [] _lowerCAmelCase : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_ ) + token _lowerCAmelCase : Optional[Any] = [] else: current_sub_tokens.append(snake_case_ ) out_string += self.sp_model.decode(snake_case_ ) return out_string.strip() def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : str = None return state def __setstate__( self , snake_case_ ): _lowerCAmelCase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : str = {} _lowerCAmelCase : str = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Dict = Path(snake_case_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _lowerCAmelCase : Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case_ ) elif not os.path.isfile(self.spm_file ): with open(snake_case_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (str(snake_case_ ), str(snake_case_ )) def __UpperCamelCase ( self , snake_case_ , snake_case_ = "en" , snake_case_ = None , snake_case_ = "ro" , **snake_case_ , ): _lowerCAmelCase : Union[str, Any] = src_lang _lowerCAmelCase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Dict = src_lang _lowerCAmelCase : str = self(snake_case_ , add_special_tokens=snake_case_ , **snake_case_ ) _lowerCAmelCase : Union[str, Any] = self.get_lang_id(snake_case_ ) _lowerCAmelCase : Tuple = tgt_lang_id return inputs def __UpperCamelCase ( self ): self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.get_lang_token(snake_case_ ) _lowerCAmelCase : List[Any] = self.lang_token_to_id[lang_token] _lowerCAmelCase : Any = [self.cur_lang_id] _lowerCAmelCase : Any = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.get_lang_token(snake_case_ ) _lowerCAmelCase : int = self.lang_token_to_id[lang_token] _lowerCAmelCase : str = [self.cur_lang_id] _lowerCAmelCase : str = [self.eos_token_id] def __UpperCamelCase ( self , snake_case_ ): return self.lang_code_to_token[lang] def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : List[str] = self.get_lang_token(snake_case_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: _lowerCAmelCase : Optional[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def _UpperCAmelCase ( _lowerCamelCase : str ) -> Union[Dict, List]: with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : str ) -> None: with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
309
1
def lowerCAmelCase__ ( a__: Dict , a__: Any ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 _UpperCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _UpperCAmelCase = min(a__ , a__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
185
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCAmelCase__ ( a__: Sequence[float] , a__: int , a__: int ) -> tuple[int | None, int | None, float]: '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] _UpperCAmelCase = (low + high) // 2 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = max_subarray(a__ , a__ , a__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = max_subarray(a__ , mid + 1 , a__ ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = max_cross_sum(a__ , a__ , a__ , a__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCAmelCase__ ( a__: Sequence[float] , a__: int , a__: int , a__: int ) -> tuple[int, int, float]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = float('-inf' ), -1 _UpperCAmelCase , _UpperCAmelCase = float('-inf' ), -1 _UpperCAmelCase = 0 for i in range(a__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _UpperCAmelCase = summ _UpperCAmelCase = i _UpperCAmelCase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _UpperCAmelCase = summ _UpperCAmelCase = i return max_left, max_right, (left_sum + right_sum) def lowerCAmelCase__ ( a__: int ) -> float: '''simple docstring''' _UpperCAmelCase = [randint(1 , a__ ) for _ in range(a__ )] _UpperCAmelCase = time.time() max_subarray(a__ , 0 , input_size - 1 ) _UpperCAmelCase = time.time() return end - start def lowerCAmelCase__ ( ) -> None: '''simple docstring''' _UpperCAmelCase = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] _UpperCAmelCase = [time_max_subarray(a__ ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(a__ , a__ ): print(a__ , '\t\t' , a__ ) plt.plot(a__ , a__ ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
185
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _snake_case = open # noqa: we just need to have a builtin inside this module to test it properly
157
from math import sqrt def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : Union[str, Any] = 0 for i in range(1, int(sqrt(snake_case__ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case__ ): total += i + n // i elif i == sqrt(snake_case__ ): total += i return total - n def _UpperCamelCase ( snake_case__ = 1_0000 ) -> int: __UpperCAmelCase : List[str] = sum( i for i in range(1, snake_case__ ) if sum_of_divisors(sum_of_divisors(snake_case__ ) ) == i and sum_of_divisors(snake_case__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
157
1
'''simple docstring''' import csv import tweepy # Twitter API credentials __snake_case : Union[str, Any] = '' __snake_case : Any = '' __snake_case : int = '' __snake_case : int = '' def _UpperCAmelCase ( _UpperCamelCase : str ) -> None: # authorize twitter, initialize tweepy A_ = tweepy.OAuthHandler(_UpperCamelCase, _UpperCamelCase ) auth.set_access_token(_UpperCamelCase, _UpperCamelCase ) A_ = tweepy.API(_UpperCamelCase ) # initialize a list to hold all the tweepy Tweets A_ = [] # make initial request for most recent tweets (200 is the maximum allowed count) A_ = api.user_timeline(screen_name=_UpperCamelCase, count=2_00 ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # save the id of the oldest tweet less one A_ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCamelCase ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates A_ = api.user_timeline( screen_name=_UpperCamelCase, count=2_00, max_id=_UpperCamelCase ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # update the id of the oldest tweet less one A_ = alltweets[-1].id - 1 print(F'''...{len(_UpperCamelCase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv A_ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''', '''w''' ) as f: A_ = csv.writer(_UpperCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(_UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
18
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE__ = { 'yjernite/retribert-base-uncased': 5_1_2, } SCREAMING_SNAKE_CASE__ = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RetriBertTokenizer lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_lower_case def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
321
'''simple docstring''' def lowercase__ ( __UpperCamelCase = 4000000 )-> int: UpperCamelCase = [] UpperCamelCase ,UpperCamelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = b, a + b return sum(__UpperCamelCase ) if __name__ == "__main__": print(f'{solution() = }')
321
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : list[int] , snake_case_ : int ): snake_case__ : Any = 0 snake_case__ : Optional[int] = len(snake_case_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: snake_case__ : int = i + 1 else: snake_case__ : Dict = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
286
__lowerCamelCase : Optional[int] = """Tobias Carryer""" from time import time class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : List[Any] , __A : Optional[int] , __A : List[str] , __A : Dict=int(time() ) ): # noqa: B008 snake_case__ : List[Any] = multiplier snake_case__ : Optional[int] = increment snake_case__ : Optional[int] = modulo snake_case__ : Union[str, Any] = seed def _lowercase ( self : str ): snake_case__ : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __lowerCamelCase : int = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
286
1
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCAmelCase__ : List[Any] = '\\n\n' lowerCAmelCase__ : Tuple = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' lowerCAmelCase__ : str = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) ,reference_urls=['https://huggingface.co/docs/transformers/perplexity'] ,) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : int = 16 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : List[str]=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ = 'cuda' else: UpperCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = model.to(lowerCamelCase__ ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowerCamelCase__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ = model.config.max_length - 1 else: UpperCAmelCase__ = model.config.max_length UpperCAmelCase__ = tokenizer( lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ ,max_length=lowerCamelCase__ ,return_tensors='pt' ,return_attention_mask=lowerCamelCase__ ,).to(lowerCamelCase__ ) UpperCAmelCase__ = encodings['input_ids'] UpperCAmelCase__ = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ = [] UpperCAmelCase__ = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 ,len(lowerCamelCase__ ) ,lowerCamelCase__ ) ): UpperCAmelCase__ = min(start_index + batch_size ,len(lowerCamelCase__ ) ) UpperCAmelCase__ = encoded_texts[start_index:end_index] UpperCAmelCase__ = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCamelCase__ ) UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 ) UpperCAmelCase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(lowerCamelCase__ ), attn_mask] ,dim=1 ) UpperCAmelCase__ = encoded_batch with torch.no_grad(): UpperCAmelCase__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ).logits UpperCAmelCase__ = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = attn_mask[..., 1:].contiguous() UpperCAmelCase__ = torch.expa( (loss_fct(shift_logits.transpose(1 ,2 ) ,lowerCamelCase__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCamelCase__ )}
98
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib snake_case__ = get_logger() snake_case__ = None class UpperCamelCase_ (TensorFormatter[Mapping, 'jax.Array', Mapping] ): """simple docstring""" def __init__( self : Tuple , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : int=None , **_lowerCamelCase : Dict ): """simple docstring""" super().__init__(features=_lowerCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError( f'Expected {device} to be a `str` not {type(_lowerCamelCase )}, as `jaxlib.xla_extension.Device` ' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) A_ : List[str] = device if isinstance(_lowerCamelCase , _lowerCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A_ : Dict = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) A_ : int = str(jax.devices()[0] ) A_ : Tuple = jnp_array_kwargs @staticmethod def _a ( ): """simple docstring""" import jax return {str(_lowerCamelCase ): device for device in jax.devices()} def _a ( self : int , _lowerCamelCase : List[str] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_lowerCamelCase , _lowerCamelCase ) and column: if all( isinstance(_lowerCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_lowerCamelCase , axis=0 ) return column def _a ( self : List[str] , _lowerCamelCase : Dict ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_lowerCamelCase , (str, bytes, type(_lowerCamelCase )) ): return value elif isinstance(_lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A_ : Optional[int] = {} if isinstance(_lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: A_ : str = {'''dtype''': jnp.intaa} else: A_ : int = {'''dtype''': jnp.intaa} elif isinstance(_lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A_ : Optional[int] = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_lowerCamelCase , PIL.Image.Image ): A_ : List[Any] = np.asarray(_lowerCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A_ : Tuple = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_lowerCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def _a ( self : List[Any] , _lowerCamelCase : List[str] ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_lowerCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_lowerCamelCase , '''__array__''' ) and not isinstance(_lowerCamelCase , jax.Array ): A_ : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_lowerCamelCase ) for substruct in data_struct] ) elif isinstance(_lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(_lowerCamelCase ) def _a ( self : Union[str, Any] , _lowerCamelCase : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , _lowerCamelCase , map_list=_lowerCamelCase ) def _a ( self : str , _lowerCamelCase : pa.Table ): """simple docstring""" A_ : str = self.numpy_arrow_extractor().extract_row(_lowerCamelCase ) A_ : Optional[int] = self.python_features_decoder.decode_row(_lowerCamelCase ) return self.recursive_tensorize(_lowerCamelCase ) def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" A_ : List[str] = self.numpy_arrow_extractor().extract_column(_lowerCamelCase ) A_ : Tuple = self.python_features_decoder.decode_column(_lowerCamelCase , pa_table.column_names[0] ) A_ : Tuple = self.recursive_tensorize(_lowerCamelCase ) A_ : List[Any] = self._consolidate(_lowerCamelCase ) return column def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" A_ : Optional[int] = self.numpy_arrow_extractor().extract_batch(_lowerCamelCase ) A_ : Optional[Any] = self.python_features_decoder.decode_batch(_lowerCamelCase ) A_ : str = self.recursive_tensorize(_lowerCamelCase ) for column_name in batch: A_ : Union[str, Any] = self._consolidate(batch[column_name] ) return batch
4
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _lowerCAmelCase = 'CIDAS/clipseg-rd64-refined' _lowerCAmelCase = 'image_segmenter' _lowerCAmelCase = CLIPSegForImageSegmentation _lowerCAmelCase = ['image', 'text'] _lowerCAmelCase = ['image'] def __init__( self : Optional[int] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self : List[str] , _lowerCamelCase : "Image" , _lowerCamelCase : str ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def _a ( self : Union[str, Any] , _lowerCamelCase : Optional[int] ): """simple docstring""" with torch.no_grad(): A_ : Optional[int] = self.model(**_lowerCamelCase ).logits return logits def _a ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : int = outputs.cpu().detach().numpy() A_ : Tuple = 0 A_ : List[str] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
4
1
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np A__ : Optional[int] = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) A__ : Tuple = None def UpperCAmelCase__ ( ) -> Optional[Any]: __lowerCamelCase : Optional[int] = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=UpperCAmelCase_ , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=UpperCAmelCase_ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> Optional[Any]: __lowerCamelCase : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase : Union[str, Any] = bool(qa['answers']['text'] ) return qid_to_has_ans def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Optional[int]: def remove_articles(UpperCAmelCase_ : Optional[int] ): return ARTICLES_REGEX.sub(' ' , UpperCAmelCase_ ) def white_space_fix(UpperCAmelCase_ : Dict ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase_ : Optional[int] ): __lowerCamelCase : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase_ : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase_ ) ) ) ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Optional[int]: if not s: return [] return normalize_answer(UpperCAmelCase_ ).split() def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ) -> int: return int(normalize_answer(UpperCAmelCase_ ) == normalize_answer(UpperCAmelCase_ ) ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) -> Optional[int]: __lowerCamelCase : List[Any] = get_tokens(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = get_tokens(UpperCAmelCase_ ) __lowerCamelCase : List[str] = collections.Counter(UpperCAmelCase_ ) & collections.Counter(UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum(common.values() ) if len(UpperCAmelCase_ ) == 0 or len(UpperCAmelCase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __lowerCamelCase : str = 1.0 * num_same / len(UpperCAmelCase_ ) __lowerCamelCase : Dict = 1.0 * num_same / len(UpperCAmelCase_ ) __lowerCamelCase : int = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) -> Tuple: __lowerCamelCase : Optional[int] = {} __lowerCamelCase : List[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase : Union[str, Any] = qa['id'] __lowerCamelCase : List[str] = [t for t in qa['answers']['text'] if normalize_answer(UpperCAmelCase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __lowerCamelCase : Optional[int] = [''] if qid not in preds: print(F'Missing prediction for {qid}' ) continue __lowerCamelCase : str = preds[qid] # Take max over all gold answers __lowerCamelCase : Optional[Any] = max(compute_exact(UpperCAmelCase_ , UpperCAmelCase_ ) for a in gold_answers ) __lowerCamelCase : str = max(compute_fa(UpperCAmelCase_ , UpperCAmelCase_ ) for a in gold_answers ) return exact_scores, fa_scores def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict ) -> Tuple: __lowerCamelCase : str = {} for qid, s in scores.items(): __lowerCamelCase : Union[str, Any] = na_probs[qid] > na_prob_thresh if pred_na: __lowerCamelCase : int = float(not qid_to_has_ans[qid] ) else: __lowerCamelCase : List[str] = s return new_scores def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=None ) -> int: if not qid_list: __lowerCamelCase : List[str] = len(UpperCAmelCase_ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: __lowerCamelCase : List[Any] = len(UpperCAmelCase_ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any ) -> Union[str, Any]: for k in new_eval: __lowerCamelCase : int = new_eval[k] def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Optional[Any]: plt.step(UpperCAmelCase_ , UpperCAmelCase_ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(UpperCAmelCase_ , UpperCAmelCase_ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(UpperCAmelCase_ ) plt.savefig(UpperCAmelCase_ ) plt.clf() def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict=None ) -> Dict: __lowerCamelCase : int = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : na_probs[k] ) __lowerCamelCase : List[Any] = 0.0 __lowerCamelCase : Optional[int] = 1.0 __lowerCamelCase : List[Any] = 0.0 __lowerCamelCase : Optional[int] = [1.0] __lowerCamelCase : Optional[int] = [0.0] __lowerCamelCase : Union[str, Any] = 0.0 for i, qid in enumerate(UpperCAmelCase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] __lowerCamelCase : List[Any] = true_pos / float(i + 1 ) __lowerCamelCase : str = true_pos / float(UpperCAmelCase_ ) if i == len(UpperCAmelCase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(UpperCAmelCase_ ) recalls.append(UpperCAmelCase_ ) if out_image: plot_pr_curve(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return {"ap": 100.0 * avg_prec} def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] ) -> Any: if out_image_dir and not os.path.exists(UpperCAmelCase_ ): os.makedirs(UpperCAmelCase_ ) __lowerCamelCase : str = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __lowerCamelCase : Optional[Any] = make_precision_recall_eval( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) __lowerCamelCase : Optional[Any] = make_precision_recall_eval( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) __lowerCamelCase : Optional[Any] = {k: float(UpperCAmelCase_ ) for k, v in qid_to_has_ans.items()} __lowerCamelCase : Tuple = make_precision_recall_eval( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , 'pr_exact' ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , 'pr_f1' ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , 'pr_oracle' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ) -> Tuple: if not qid_list: return __lowerCamelCase : List[Any] = [na_probs[k] for k in qid_list] __lowerCamelCase : Union[str, Any] = np.ones_like(UpperCAmelCase_ ) / float(len(UpperCAmelCase_ ) ) plt.hist(UpperCAmelCase_ , weights=UpperCAmelCase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(UpperCAmelCase_ , F'na_prob_hist_{name}.png' ) ) plt.clf() def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) -> Optional[Any]: __lowerCamelCase : str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __lowerCamelCase : Tuple = num_no_ans __lowerCamelCase : Tuple = cur_score __lowerCamelCase : int = 0.0 __lowerCamelCase : List[str] = sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : na_probs[k] ) for i, qid in enumerate(UpperCAmelCase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: __lowerCamelCase : Optional[int] = scores[qid] else: if preds[qid]: __lowerCamelCase : str = -1 else: __lowerCamelCase : Any = 0 cur_score += diff if cur_score > best_score: __lowerCamelCase : int = cur_score __lowerCamelCase : Union[str, Any] = na_probs[qid] return 100.0 * best_score / len(UpperCAmelCase_ ), best_thresh def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ) -> int: __lowerCamelCase , __lowerCamelCase : int = find_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : List[Any] = find_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = best_exact __lowerCamelCase : List[str] = exact_thresh __lowerCamelCase : Tuple = best_fa __lowerCamelCase : int = fa_thresh def UpperCAmelCase__ ( ) -> List[str]: with open(OPTS.data_file ) as f: __lowerCamelCase : Tuple = json.load(UpperCAmelCase_ ) __lowerCamelCase : Any = dataset_json['data'] with open(OPTS.pred_file ) as f: __lowerCamelCase : Optional[Any] = json.load(UpperCAmelCase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __lowerCamelCase : Optional[int] = json.load(UpperCAmelCase_ ) else: __lowerCamelCase : Union[str, Any] = {k: 0.0 for k in preds} __lowerCamelCase : Optional[int] = make_qid_to_has_ans(UpperCAmelCase_ ) # maps qid to True/False __lowerCamelCase : List[Any] = [k for k, v in qid_to_has_ans.items() if v] __lowerCamelCase : Tuple = [k for k, v in qid_to_has_ans.items() if not v] __lowerCamelCase , __lowerCamelCase : Union[str, Any] = get_raw_scores(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Any = apply_no_ans_threshold(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.na_prob_thresh ) __lowerCamelCase : Tuple = apply_no_ans_threshold(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.na_prob_thresh ) __lowerCamelCase : Optional[Any] = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ ) if has_ans_qids: __lowerCamelCase : int = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ , qid_list=UpperCAmelCase_ ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , 'HasAns' ) if no_ans_qids: __lowerCamelCase : List[str] = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ , qid_list=UpperCAmelCase_ ) merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir ) histogram_na_prob(UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) else: print(json.dumps(UpperCAmelCase_ , indent=2 ) ) if __name__ == "__main__": A__ : Optional[Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
185
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A__ : List[str] = get_logger(__name__) A__ : str = R""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class UpperCAmelCase_ : """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase_ : """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: for processor in self: __lowerCamelCase : str = inspect.signature(processor.__call__ ).parameters if len(SCREAMING_SNAKE_CASE_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) __lowerCamelCase : Tuple = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : int = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) __lowerCamelCase : Optional[int] = temperature def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : Dict = scores / self.temperature return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -float('Inf' ) , SCREAMING_SNAKE_CASE_ = 1 ) -> Union[str, Any]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) __lowerCamelCase : str = top_p __lowerCamelCase : Tuple = filter_value __lowerCamelCase : Tuple = min_tokens_to_keep def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase , __lowerCamelCase : Any = lax.top_k(SCREAMING_SNAKE_CASE_ , scores.shape[-1] ) __lowerCamelCase : int = jnp.full_like(SCREAMING_SNAKE_CASE_ , self.filter_value ) __lowerCamelCase : Tuple = jax.nn.softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ).cumsum(axis=-1 ) __lowerCamelCase : List[str] = cumulative_probs < self.top_p # include the token that is higher than top_p as well __lowerCamelCase : Tuple = jnp.roll(SCREAMING_SNAKE_CASE_ , 1 ) score_mask |= score_mask.at[:, 0].set(SCREAMING_SNAKE_CASE_ ) # min tokens to keep __lowerCamelCase : Any = score_mask.at[:, : self.min_tokens_to_keep].set(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = jnp.where(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = jax.lax.sort_key_val(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[-1] return next_scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -float('Inf' ) , SCREAMING_SNAKE_CASE_ = 1 ) -> str: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) __lowerCamelCase : List[str] = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = filter_value def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase , __lowerCamelCase : List[Any] = scores.shape __lowerCamelCase : Tuple = jnp.full(batch_size * vocab_size , self.filter_value ) __lowerCamelCase : int = min(self.top_k , scores.shape[-1] ) # Safety check __lowerCamelCase , __lowerCamelCase : Tuple = lax.top_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = jnp.broadcast_to((jnp.arange(SCREAMING_SNAKE_CASE_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __lowerCamelCase : List[Any] = topk_scores.flatten() __lowerCamelCase : Union[str, Any] = topk_indices.flatten() + shift __lowerCamelCase : Tuple = next_scores_flat.at[topk_indices_flat].set(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = next_scores_flat.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return next_scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Any = bos_token_id def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : Optional[Any] = jnp.full(scores.shape , -float('inf' ) ) __lowerCamelCase : Optional[Any] = 1 - jnp.bool_(cur_len - 1 ) __lowerCamelCase : List[Any] = jnp.where(SCREAMING_SNAKE_CASE_ , new_scores.at[:, self.bos_token_id].set(0 ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Tuple = max_length __lowerCamelCase : Any = eos_token_id def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : List[str] = jnp.full(scores.shape , -float('inf' ) ) __lowerCamelCase : Any = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __lowerCamelCase : List[str] = jnp.where(SCREAMING_SNAKE_CASE_ , new_scores.at[:, self.eos_token_id].set(0 ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) __lowerCamelCase : str = min_length __lowerCamelCase : Optional[int] = eos_token_id def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied __lowerCamelCase : Optional[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __lowerCamelCase : str = jnp.where(SCREAMING_SNAKE_CASE_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Union[str, Any] = list(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = begin_index def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : List[Any] = 1 - jnp.bool_(cur_len - self.begin_index ) __lowerCamelCase : str = jnp.where(SCREAMING_SNAKE_CASE_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Tuple = list(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: __lowerCamelCase : int = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = dict(SCREAMING_SNAKE_CASE_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __lowerCamelCase : Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __lowerCamelCase : str = force_token_array.at[index].set(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = jnp.intaa(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> jnp.ndarray: def _force_token(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : List[str] = scores.shape[0] __lowerCamelCase : Tuple = self.force_token_array[generation_idx] __lowerCamelCase : List[Any] = jnp.ones_like(SCREAMING_SNAKE_CASE_ , dtype=scores.dtype ) * -float('inf' ) __lowerCamelCase : Any = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __lowerCamelCase : str = lax.dynamic_update_slice(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (0, current_token) ) return new_scores __lowerCamelCase : int = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(SCREAMING_SNAKE_CASE_ ) , lambda: scores , ) , ) return scores class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = generate_config.eos_token_id __lowerCamelCase : Dict = generate_config.no_timestamps_token_id __lowerCamelCase : Tuple = generate_config.no_timestamps_token_id + 1 __lowerCamelCase : List[str] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(SCREAMING_SNAKE_CASE_ , 'max_initial_timestamp_index' ): __lowerCamelCase : str = generate_config.max_initial_timestamp_index else: __lowerCamelCase : Optional[int] = model_config.vocab_size if self.max_initial_timestamp_index is None: __lowerCamelCase : Tuple = model_config.vocab_size def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: # suppress <|notimestamps|> which is handled by without_timestamps __lowerCamelCase : Union[str, Any] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = jnp.where((cur_len - self.begin_index) >= 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = jnp.where((cur_len - self.begin_index) < 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) return jnp.where( SCREAMING_SNAKE_CASE_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = jax.vmap(SCREAMING_SNAKE_CASE_ )(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = jnp.where(cur_len == self.begin_index , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = self.timestamp_begin + self.max_initial_timestamp_index __lowerCamelCase : str = jnp.where( SCREAMING_SNAKE_CASE_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ , ) # if sum of probability over timestamps is above any other token, sample timestamp __lowerCamelCase : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) def handle_cumulative_probs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __lowerCamelCase : List[str] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Dict = jax.vmap(SCREAMING_SNAKE_CASE_ )(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return scores
185
1
"""simple docstring""" class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Union[str, Any]: _lowerCAmelCase =data _lowerCAmelCase =previous _lowerCAmelCase =next_node def __str__( self ) -> str: return f'''{self.data}''' def _lowerCAmelCase ( self ) -> int: return self.data def _lowerCAmelCase ( self ) -> Union[str, Any]: return self.next def _lowerCAmelCase ( self ) -> Dict: return self.previous class lowerCamelCase__ : '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase =head def __iter__( self ) -> Union[str, Any]: return self def _lowerCAmelCase ( self ) -> List[Any]: if not self.current: raise StopIteration else: _lowerCAmelCase =self.current.get_data() _lowerCAmelCase =self.current.get_next() return value class lowerCamelCase__ : '''simple docstring''' def __init__( self ) -> Tuple: _lowerCAmelCase =None # First node in list _lowerCAmelCase =None # Last node in list def __str__( self ) -> Union[str, Any]: _lowerCAmelCase =self.head _lowerCAmelCase =[] while current is not None: nodes.append(current.get_data() ) _lowerCAmelCase =current.get_next() return " ".join(str(__UpperCAmelCase ) for node in nodes ) def __contains__( self , __UpperCAmelCase ) -> Optional[Any]: _lowerCAmelCase =self.head while current: if current.get_data() == value: return True _lowerCAmelCase =current.get_next() return False def __iter__( self ) -> int: return LinkedListIterator(self.head ) def _lowerCAmelCase ( self ) -> Optional[int]: if self.head: return self.head.get_data() return None def _lowerCAmelCase ( self ) -> int: if self.tail: return self.tail.get_data() return None def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: if self.head is None: _lowerCAmelCase =node _lowerCAmelCase =node else: self.insert_before_node(self.head , __UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: if self.head is None: self.set_head(__UpperCAmelCase ) else: self.insert_after_node(self.tail , __UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> None: _lowerCAmelCase =Node(__UpperCAmelCase ) if self.head is None: self.set_head(__UpperCAmelCase ) else: self.set_tail(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _lowerCAmelCase =node _lowerCAmelCase =node.previous if node.get_previous() is None: _lowerCAmelCase =node_to_insert else: _lowerCAmelCase =node_to_insert _lowerCAmelCase =node_to_insert def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _lowerCAmelCase =node _lowerCAmelCase =node.next if node.get_next() is None: _lowerCAmelCase =node_to_insert else: _lowerCAmelCase =node_to_insert _lowerCAmelCase =node_to_insert def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: _lowerCAmelCase =1 _lowerCAmelCase =Node(__UpperCAmelCase ) _lowerCAmelCase =self.head while node: if current_position == position: self.insert_before_node(__UpperCAmelCase , __UpperCAmelCase ) return current_position += 1 _lowerCAmelCase =node.next self.insert_after_node(self.tail , __UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Node: _lowerCAmelCase =self.head while node: if node.get_data() == item: return node _lowerCAmelCase =node.get_next() raise Exception("""Node not found""" ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Dict: if (node := self.get_node(__UpperCAmelCase )) is not None: if node == self.head: _lowerCAmelCase =self.head.get_next() if node == self.tail: _lowerCAmelCase =self.tail.get_previous() self.remove_node_pointers(__UpperCAmelCase ) @staticmethod def _lowerCAmelCase ( __UpperCAmelCase ) -> None: if node.get_next(): _lowerCAmelCase =node.previous if node.get_previous(): _lowerCAmelCase =node.next _lowerCAmelCase =None _lowerCAmelCase =None def _lowerCAmelCase ( self ) -> Optional[Any]: return self.head is None def _lowerCamelCase() -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
341
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase__ : '''simple docstring''' lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True lowerCamelCase = None lowerCamelCase = 1 lowerCamelCase = None lowerCamelCase = False lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCAmelCase ) for k, v in self.__dict__.items()} )
341
1
import sys __lowerCamelCase : List[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 1 for digit in s: product *= int(lowerCAmelCase ) return product def _snake_case ( lowerCAmelCase : str = N ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = -sys.maxsize - 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = n[:1_3] SCREAMING_SNAKE_CASE_ : Dict = 1_3 while cur_index < len(lowerCAmelCase ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): SCREAMING_SNAKE_CASE_ : str = substr[1:] + n[cur_index] cur_index += 1 else: SCREAMING_SNAKE_CASE_ : Dict = max(lowerCAmelCase , str_eval(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[str] = n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
18
def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(lowerCAmelCase , 2 ) return binary_recursive(lowerCAmelCase ) + str(lowerCAmelCase ) def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) SCREAMING_SNAKE_CASE_ : List[str] = "-" if number.startswith("-" ) else "" SCREAMING_SNAKE_CASE_ : Optional[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f'{negative}0b{binary_recursive(int(lowerCAmelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
18
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging lowerCAmelCase__ : List[str] =logging.get_logger(__name__) def __lowercase ( a__ ) -> List[int]: if isinstance(a__ , np.ndarray ): return list(tensor.shape ) __SCREAMING_SNAKE_CASE = tf.shape(a__ ) if tensor.shape == tf.TensorShape(a__ ): return dynamic __SCREAMING_SNAKE_CASE = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(a__ )] def __lowercase ( a__ , a__ = None , a__ = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1E-9 , axis=a__ , name=a__ ) def __lowercase ( a__ , a__ , a__ , a__=1E-5 , a__=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(a__ , a__ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tf.nn.moments(a__ , axes=[axis] , keepdims=a__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __SCREAMING_SNAKE_CASE = [1] * inputs.shape.rank __SCREAMING_SNAKE_CASE = shape_list(a__ )[axis] __SCREAMING_SNAKE_CASE = tf.reshape(a__ , a__ ) __SCREAMING_SNAKE_CASE = tf.reshape(a__ , a__ ) # Compute layer normalization using the batch_normalization # function. __SCREAMING_SNAKE_CASE = tf.nn.batch_normalization( a__ , a__ , a__ , offset=a__ , scale=a__ , variance_epsilon=a__ , ) return outputs def __lowercase ( a__ , a__=0 , a__=-1 ) -> List[str]: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __SCREAMING_SNAKE_CASE = tf.shape(a__ ) __SCREAMING_SNAKE_CASE = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __SCREAMING_SNAKE_CASE = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(a__ , a__ ) def __lowercase ( a__ ) -> tf.Tensor: if not isinstance(a__ , tf.Tensor ): __SCREAMING_SNAKE_CASE = tf.convert_to_tensor(a__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __SCREAMING_SNAKE_CASE = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __SCREAMING_SNAKE_CASE = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __SCREAMING_SNAKE_CASE = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __lowercase ( a__ , a__ , a__ = "input_ids" ) -> None: tf.debugging.assert_less( a__ , tf.cast(a__ , dtype=tensor.dtype ) , message=( f"""The maximum value of {tensor_name} ({tf.math.reduce_max(a__ )}) must be smaller than the embedding """ f"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __lowercase ( a__ , a__ , a__ ) -> int: __SCREAMING_SNAKE_CASE = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __SCREAMING_SNAKE_CASE = [x for x in data if len(a__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ f"""bytes: {bad_attributes}""" ) __SCREAMING_SNAKE_CASE = np.asarray(a__ ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = np.array_split(a__ , a__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __SCREAMING_SNAKE_CASE = np.array_split(a__ , a__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(a__ ): __SCREAMING_SNAKE_CASE = chunk_data else: __SCREAMING_SNAKE_CASE = data def __lowercase ( a__ , a__ ) -> str: if name in group.attrs: __SCREAMING_SNAKE_CASE = [n.decode('utf8' ) if hasattr(a__ , 'decode' ) else n for n in group.attrs[name]] else: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(a__ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def __lowercase ( a__ ) -> List[str]: def _expand_single_ad_tensor(a__ ): if isinstance(a__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(a__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , a__ )
361
from __future__ import annotations from collections.abc import Generator def __lowercase ( ) -> Generator[int, None, None]: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 2 while True: __SCREAMING_SNAKE_CASE = factor_map.pop(a__ , a__ ) if factor: __SCREAMING_SNAKE_CASE = factor + prime while x in factor_map: x += factor __SCREAMING_SNAKE_CASE = factor else: __SCREAMING_SNAKE_CASE = prime yield prime prime += 1 def __lowercase ( a__ = 1E10 ) -> int: __SCREAMING_SNAKE_CASE = sieve() __SCREAMING_SNAKE_CASE = 1 while True: __SCREAMING_SNAKE_CASE = next(a__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(a__ ) n += 2 if __name__ == "__main__": print(solution())
118
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase_ : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCamelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
286
"""simple docstring""" def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" A_ : str = False if num < 0: A_ : Dict = True A_ : Union[str, Any] = -num A_ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_UpperCAmelCase ) for e in binary ) return "0b" + "".join(str(_UpperCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
286
1
"""simple docstring""" from collections import deque from .hash_table import HashTable class __snake_case ( __lowerCAmelCase ): def __init__( self , *lowercase , **lowercase) -> Optional[Any]: '''simple docstring''' super().__init__(*lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__: Tuple = deque([]) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowercase) a__: int = self.values[key] def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return ( sum(self.charge_factor - len(lowercase) for slot in self.values) / self.size_table * self.charge_factor ) def lowerCamelCase_ ( self , lowercase , lowercase=None) -> Union[str, Any]: '''simple docstring''' if not ( len(self.values[key]) == self.charge_factor and self.values.count(lowercase) == 0 ): return key return super()._collision_resolution(lowercase , lowercase)
203
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } lowercase__ = { 'unc-nlp/lxmert-base-uncased': 512, } lowercase__ = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class __snake_case ( __lowerCAmelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_INIT_CONFIGURATION a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = LxmertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Dict: '''simple docstring''' super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) a__: Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , lowercase) != do_lower_case or normalizer_state.get('strip_accents' , lowercase) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase) != tokenize_chinese_chars ): a__: int = getattr(lowercase , normalizer_state.pop('type')) a__: Dict = do_lower_case a__: Dict = strip_accents a__: Optional[int] = tokenize_chinese_chars a__: List[Any] = normalizer_class(**lowercase) a__: Optional[int] = do_lower_case def lowerCamelCase_ ( self , lowercase , lowercase=None) -> Tuple: '''simple docstring''' a__: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__: List[Any] = [self.sep_token_id] a__: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCamelCase_ ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__: List[Any] = self._tokenizer.model.save(lowercase , name=lowercase) return tuple(lowercase)
203
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __snake_case =get_logger() __snake_case =None class UpperCAmelCase_ ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): def __init__( self : Optional[int] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : Dict ) -> int: super().__init__(features=UpperCAmelCase__ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError( F'''Expected {device} to be a `str` not {type(UpperCAmelCase__ )}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) lowerCAmelCase = device if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) lowerCAmelCase = str(jax.devices()[0] ) lowerCAmelCase = jnp_array_kwargs @staticmethod def __UpperCAmelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(UpperCAmelCase__ ): device for device in jax.devices()} def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: import jax import jax.numpy as jnp if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and column: if all( isinstance(UpperCAmelCase__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCAmelCase__ , axis=0 ) return column def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: import jax import jax.numpy as jnp if isinstance(UpperCAmelCase__ , (str, bytes, type(UpperCAmelCase__ )) ): return value elif isinstance(UpperCAmelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase = {} if isinstance(UpperCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCAmelCase = {'dtype': jnp.intaa} else: lowerCAmelCase = {'dtype': jnp.intaa} elif isinstance(UpperCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowerCAmelCase = np.asarray(UpperCAmelCase__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase__ , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> str: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCAmelCase__ , '__array__' ) and not isinstance(UpperCAmelCase__ , jax.Array ): lowerCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase__ ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase__ ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : dict ) -> str: return map_nested(self._recursive_tensorize , UpperCAmelCase__ , map_list=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : pa.Table ) -> Mapping: lowerCAmelCase = self.numpy_arrow_extractor().extract_row(UpperCAmelCase__ ) lowerCAmelCase = self.python_features_decoder.decode_row(UpperCAmelCase__ ) return self.recursive_tensorize(UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : pa.Table ) -> "jax.Array": lowerCAmelCase = self.numpy_arrow_extractor().extract_column(UpperCAmelCase__ ) lowerCAmelCase = self.python_features_decoder.decode_column(UpperCAmelCase__ , pa_table.column_names[0] ) lowerCAmelCase = self.recursive_tensorize(UpperCAmelCase__ ) lowerCAmelCase = self._consolidate(UpperCAmelCase__ ) return column def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : pa.Table ) -> Mapping: lowerCAmelCase = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase__ ) lowerCAmelCase = self.python_features_decoder.decode_batch(UpperCAmelCase__ ) lowerCAmelCase = self.recursive_tensorize(UpperCAmelCase__ ) for column_name in batch: lowerCAmelCase = self._consolidate(batch[column_name] ) return batch
4
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def a_ ( lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=0 ): # Format the message. if name is None: lowerCAmelCase = None else: lowerCAmelCase = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' lowerCAmelCase = fmt.format(lowerCamelCase ) # Print and recurse (if needed). if isinstance(lowerCamelCase , lowerCamelCase ): if msg is not None: print(lowerCamelCase ) for k in val.keys(): recursive_print(lowerCamelCase , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase , torch.Tensor ): print(lowerCamelCase , ':' , val.size() ) else: print(lowerCamelCase , ':' , lowerCamelCase ) def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. lowerCAmelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCAmelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 2 ) lowerCAmelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCAmelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCAmelCase = param.view(*lowerCamelCase ) lowerCAmelCase = param.transpose(0 , 1 ).contiguous() lowerCAmelCase = param.view(*lowerCamelCase ) return param def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : str ): # The converted output model. lowerCAmelCase = {} # old versions did not store training args lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCAmelCase = ds_args.padded_vocab_size lowerCAmelCase = ds_args.max_position_embeddings lowerCAmelCase = ds_args.hidden_size lowerCAmelCase = ds_args.num_layers lowerCAmelCase = ds_args.num_attention_heads lowerCAmelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCAmelCase = config.n_head # The hidden_size per head. lowerCAmelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCAmelCase = input_state_dict['checkpoint_version'] else: lowerCAmelCase = 0.0 # The model. lowerCAmelCase = input_state_dict['model'] # The language model. lowerCAmelCase = model['language_model'] # The embeddings. lowerCAmelCase = lm['embedding'] # The word embeddings. lowerCAmelCase = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. lowerCAmelCase = word_embeddings[: config.vocab_size, :] lowerCAmelCase = word_embeddings # The position embeddings. lowerCAmelCase = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCAmelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. lowerCAmelCase = pos_embeddings # The transformer. lowerCAmelCase = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. lowerCAmelCase = re.compile(R'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. lowerCAmelCase = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCAmelCase = layer_re.match(lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCAmelCase = int(m.group(1 ) ) # The name of the operation. lowerCAmelCase = m.group(2 ) # Is it a weight or a bias? lowerCAmelCase = m.group(3 ) # The name of the layer. lowerCAmelCase = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): lowerCAmelCase = 'ln_1' if op_name.startswith('input' ) else 'ln_2' lowerCAmelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCAmelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCAmelCase = torch.tensor(-1e4 , dtype=torch.floataa ) lowerCAmelCase = masked_bias lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCAmelCase = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCAmelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCAmelCase = fix_query_key_value_ordering(lowerCamelCase , lowerCamelCase , 3 , lowerCamelCase , lowerCamelCase ) # Store. No change of shape. lowerCAmelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCAmelCase = megatron_to_transformers[op_name] lowerCAmelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCAmelCase = transformer['final_layernorm.weight'] lowerCAmelCase = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. lowerCAmelCase = word_embeddings # It should be done! return output_state_dict def a_ ( ): # Create the argument parser. lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=lowerCamelCase , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=lowerCamelCase , help='An optional config json file describing the pre-trained model.' , ) lowerCAmelCase = parser.parse_args() # Extract the basename. lowerCAmelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: lowerCAmelCase = torch.load(lowerCamelCase , map_location='cpu' ) else: lowerCAmelCase = torch.load(args.path_to_checkpoint , map_location='cpu' ) lowerCAmelCase = input_state_dict.get('args' , lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCAmelCase = 'gelu_fast' elif ds_args.openai_gelu: lowerCAmelCase = 'gelu_new' else: lowerCAmelCase = 'gelu' else: # in the very early days this used to be "gelu_new" lowerCAmelCase = 'gelu_new' # Spell out all parameters in case the defaults change. lowerCAmelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowerCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=lowerCamelCase , summary_activation=lowerCamelCase , summary_proj_to_labels=lowerCamelCase , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase , use_cache=lowerCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCAmelCase = GPTaConfig.from_json_file(args.config_file ) lowerCAmelCase = ['GPT2LMHeadModel'] # Convert. print('Converting' ) lowerCAmelCase = convert_megatron_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase , lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCAmelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCAmelCase = 'gpt2' elif tokenizer_type == "PretrainedFromHF": lowerCAmelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: lowerCAmelCase = 'gpt2' lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCamelCase ) lowerCAmelCase = type(lowerCamelCase ).__name__ lowerCAmelCase = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(lowerCamelCase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase ) # Store the state_dict to file. lowerCAmelCase = os.path.join(lowerCamelCase , 'pytorch_model.bin' ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase , lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
4
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = FlaxAutoencoderKL @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = 4 A_ : List[Any] = 3 A_ : Dict = (32, 32) A_ : str = jax.random.PRNGKey(0 ) A_ : Tuple = jax.random.uniform(snake_case , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Optional[int] = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } A_ : Any = self.dummy_input return init_dict, inputs_dict
70
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Dict[Optional[str], Type[Formatter]] = {} _lowerCAmelCase : Dict[Optional[str], str] = {} _lowerCAmelCase : Dict[Optional[str], Exception] = {} def __snake_case ( _lowerCAmelCase : type , _lowerCAmelCase : Optional[str] , _lowerCAmelCase : Optional[List[str]] = None , ) -> List[Any]: A_ : Any = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) A_ : str = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) A_ : Union[str, Any] = format_type def __snake_case ( _lowerCAmelCase : Exception , _lowerCAmelCase : Optional[str] , _lowerCAmelCase : Optional[List[str]] = None ) -> Optional[int]: A_ : Optional[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A_ : List[str] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: _lowerCAmelCase : str = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: _lowerCAmelCase : Tuple = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: _lowerCAmelCase : List[str] = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def __snake_case ( _lowerCAmelCase : Optional[str] ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __snake_case ( _lowerCAmelCase : Optional[str] , **_lowerCAmelCase : str ) -> Formatter: A_ : str = get_format_type_from_alias(_lowerCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_lowerCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
70
1
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: _snake_case = data _snake_case = previous _snake_case = next_node def __str__(self ) -> str: return f"""{self.data}""" def lowercase (self ) -> int: return self.data def lowercase (self ) -> Dict: return self.next def lowercase (self ) -> Union[str, Any]: return self.previous class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> List[str]: _snake_case = head def __iter__(self ) -> Optional[Any]: return self def lowercase (self ) -> str: if not self.current: raise StopIteration else: _snake_case = self.current.get_data() _snake_case = self.current.get_next() return value class _lowerCAmelCase : '''simple docstring''' def __init__(self ) -> Optional[int]: _snake_case = None # First node in list _snake_case = None # Last node in list def __str__(self ) -> Optional[int]: _snake_case = self.head _snake_case = [] while current is not None: nodes.append(current.get_data() ) _snake_case = current.get_next() return " ".join(str(UpperCAmelCase ) for node in nodes ) def __contains__(self , UpperCAmelCase ) -> int: _snake_case = self.head while current: if current.get_data() == value: return True _snake_case = current.get_next() return False def __iter__(self ) -> Union[str, Any]: return LinkedListIterator(self.head ) def lowercase (self ) -> str: if self.head: return self.head.get_data() return None def lowercase (self ) -> List[Any]: if self.tail: return self.tail.get_data() return None def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: _snake_case = node _snake_case = node else: self.insert_before_node(self.head , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: if self.head is None: self.set_head(UpperCAmelCase ) else: self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> None: _snake_case = Node(UpperCAmelCase ) if self.head is None: self.set_head(UpperCAmelCase ) else: self.set_tail(UpperCAmelCase ) def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.previous if node.get_previous() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = node _snake_case = node.next if node.get_next() is None: _snake_case = node_to_insert else: _snake_case = node_to_insert _snake_case = node_to_insert def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None: _snake_case = 1 _snake_case = Node(UpperCAmelCase ) _snake_case = self.head while node: if current_position == position: self.insert_before_node(UpperCAmelCase , UpperCAmelCase ) return current_position += 1 _snake_case = node.next self.insert_after_node(self.tail , UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Node: _snake_case = self.head while node: if node.get_data() == item: return node _snake_case = node.get_next() raise Exception("""Node not found""" ) def lowercase (self , UpperCAmelCase ) -> Optional[int]: if (node := self.get_node(UpperCAmelCase )) is not None: if node == self.head: _snake_case = self.head.get_next() if node == self.tail: _snake_case = self.tail.get_previous() self.remove_node_pointers(UpperCAmelCase ) @staticmethod def lowercase (UpperCAmelCase ) -> None: if node.get_next(): _snake_case = node.previous if node.get_previous(): _snake_case = node.next _snake_case = None _snake_case = None def lowercase (self ) -> Dict: return self.head is None def __SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
341
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ): _snake_case = 1 _snake_case = 2 _snake_case = 0 _snake_case = 0 _snake_case = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value _snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
341
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( UpperCamelCase__ ): _lowercase : List[str] = ['''image_processor''', '''tokenizer'''] _lowercase : List[str] = '''BlipImageProcessor''' _lowercase : Optional[Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[Any] ) -> str: """simple docstring""" lowercase__ = False super().__init__(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.image_processor def __call__( self: List[Any] , UpperCamelCase_: ImageInput = None , UpperCamelCase_: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase_: bool = True , UpperCamelCase_: Union[bool, str, PaddingStrategy] = False , UpperCamelCase_: Union[bool, str, TruncationStrategy] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: int = 0 , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[str, TensorType]] = None , **UpperCamelCase_: Tuple , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowercase__ = self.tokenizer lowercase__ = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) return text_encoding # add pixel_values lowercase__ = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) if text is not None: lowercase__ = self.tokenizer( text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ , stride=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_overflowing_tokens=UpperCamelCase_ , return_special_tokens_mask=UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , return_length=UpperCamelCase_ , verbose=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ , ) else: lowercase__ = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase_ ) return encoding_image_processor def lowerCamelCase_ ( self: Dict , *UpperCamelCase_: Dict , **UpperCamelCase_: List[Any] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: int , *UpperCamelCase_: Tuple , **UpperCamelCase_: List[str] ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
93
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = ShapEImgaImgPipeline _lowercase : Optional[Any] = ['''image'''] _lowercase : Optional[int] = ['''image'''] _lowercase : Optional[int] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowercase : Tuple = False @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" return 32 @property def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" return 8 @property def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowercase__ = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase__ = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase__ = ShapERenderer(**UpperCamelCase_ ) return model def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = self.dummy_prior lowercase__ = self.dummy_image_encoder lowercase__ = self.dummy_image_processor lowercase__ = self.dummy_renderer lowercase__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) lowercase__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[int]=0 ) -> Tuple: """simple docstring""" lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) lowercase__ = output.images[0] lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = torch_device == '''cpu''' lowercase__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCamelCase_ ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = 1 lowercase__ = 2 lowercase__ = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: lowercase__ = batch_size * [inputs[key]] lowercase__ = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" lowercase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) lowercase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) lowercase__ = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) lowercase__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) lowercase__ = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
93
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :List[Any] = 'ssube/stable-diffusion-x4-upscaler-onnx' def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 ) -> int: lowercase_ = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowercase ( self : Tuple ) -> Optional[Any]: lowercase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.get_dummy_inputs() lowercase_ = pipe(**SCREAMING_SNAKE_CASE_ ).images lowercase_ = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowercase ( self : int ) -> Optional[Any]: lowercase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowercase_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.get_dummy_inputs() lowercase_ = pipe(**SCREAMING_SNAKE_CASE_ ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : Optional[Any] ) -> int: lowercase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowercase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.get_dummy_inputs() lowercase_ = pipe(**SCREAMING_SNAKE_CASE_ ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : List[str] ) -> Union[str, Any]: lowercase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowercase_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.get_dummy_inputs() lowercase_ = pipe(**SCREAMING_SNAKE_CASE_ ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) lowercase_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.get_dummy_inputs() lowercase_ = pipe(**SCREAMING_SNAKE_CASE_ ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase__( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self : str ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase_ = ort.SessionOptions() lowercase_ = False return options def _lowercase ( self : Optional[Any] ) -> Tuple: lowercase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowercase_ = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default lowercase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = '''A fantasy landscape, trending on artstation''' lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=SCREAMING_SNAKE_CASE_ , output_type='''np''' , ) lowercase_ = output.images lowercase_ = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowercase ( self : Dict ) -> Optional[Any]: lowercase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowercase_ = init_image.resize((1_2_8, 1_2_8) ) lowercase_ = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) lowercase_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase_ = '''A fantasy landscape, trending on artstation''' lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=SCREAMING_SNAKE_CASE_ , output_type='''np''' , ) lowercase_ = output.images lowercase_ = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
30
def a__ ( __UpperCamelCase = 1_0_0_0 ): SCREAMING_SNAKE_CASE_ = -1 SCREAMING_SNAKE_CASE_ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE_ = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE_ = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE_ = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE_ = candidate return product if __name__ == "__main__": print(f"{solution() = }")
118
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase : Any = logging.get_logger(__name__) _lowercase : Union[str, Any] = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _a = 'blip_2_vision_model' def __init__( self : List[str], lowerCamelCase : int=1408, lowerCamelCase : str=6144, lowerCamelCase : str=39, lowerCamelCase : List[str]=16, lowerCamelCase : List[str]=224, lowerCamelCase : List[Any]=14, lowerCamelCase : Dict="gelu", lowerCamelCase : int=0.00_001, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[int]=1E-10, lowerCamelCase : Dict=True, **lowerCamelCase : Optional[Any], )-> int: super().__init__(**lowerCamelCase ) lowerCamelCase__ : Optional[int] =hidden_size lowerCamelCase__ : str =intermediate_size lowerCamelCase__ : Dict =num_hidden_layers lowerCamelCase__ : Optional[Any] =num_attention_heads lowerCamelCase__ : int =patch_size lowerCamelCase__ : List[Any] =image_size lowerCamelCase__ : Dict =initializer_range lowerCamelCase__ : str =attention_dropout lowerCamelCase__ : Dict =layer_norm_eps lowerCamelCase__ : Any =hidden_act lowerCamelCase__ : Any =qkv_bias @classmethod def snake_case ( cls : Tuple, lowerCamelCase : Union[str, os.PathLike], **lowerCamelCase : Union[str, Any] )-> "PretrainedConfig": cls._set_token_in_kwargs(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =cls.get_config_dict(lowerCamelCase, **lowerCamelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowerCamelCase__ : Union[str, Any] =config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase, **lowerCamelCase ) class __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _a = 'blip_2_qformer' def __init__( self : Optional[Any], lowerCamelCase : Optional[Any]=3_0522, lowerCamelCase : List[Any]=768, lowerCamelCase : Optional[int]=12, lowerCamelCase : Tuple=12, lowerCamelCase : Union[str, Any]=3072, lowerCamelCase : List[str]="gelu", lowerCamelCase : Tuple=0.1, lowerCamelCase : List[Any]=0.1, lowerCamelCase : Any=512, lowerCamelCase : Any=0.02, lowerCamelCase : Union[str, Any]=1E-12, lowerCamelCase : Tuple=0, lowerCamelCase : Dict="absolute", lowerCamelCase : List[Any]=2, lowerCamelCase : List[Any]=1408, **lowerCamelCase : str, )-> Union[str, Any]: super().__init__(pad_token_id=lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : str =vocab_size lowerCamelCase__ : Dict =hidden_size lowerCamelCase__ : str =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : Any =hidden_act lowerCamelCase__ : Optional[Any] =intermediate_size lowerCamelCase__ : Dict =hidden_dropout_prob lowerCamelCase__ : Any =attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] =max_position_embeddings lowerCamelCase__ : List[Any] =initializer_range lowerCamelCase__ : Any =layer_norm_eps lowerCamelCase__ : Tuple =position_embedding_type lowerCamelCase__ : Optional[int] =cross_attention_frequency lowerCamelCase__ : Optional[Any] =encoder_hidden_size @classmethod def snake_case ( cls : Dict, lowerCamelCase : Union[str, os.PathLike], **lowerCamelCase : Any )-> "PretrainedConfig": cls._set_token_in_kwargs(lowerCamelCase ) lowerCamelCase__ : Optional[int] =cls.get_config_dict(lowerCamelCase, **lowerCamelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": lowerCamelCase__ : Optional[Any] =config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase, **lowerCamelCase ) class __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _a = 'blip-2' _a = True def __init__( self : Union[str, Any], lowerCamelCase : Any=None, lowerCamelCase : List[str]=None, lowerCamelCase : List[Any]=None, lowerCamelCase : Dict=32, **lowerCamelCase : List[str] )-> Union[str, Any]: super().__init__(**lowerCamelCase ) if vision_config is None: lowerCamelCase__ : List[str] ={} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: lowerCamelCase__ : Any ={} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: lowerCamelCase__ : Union[str, Any] ={} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) lowerCamelCase__ : Optional[int] =BlipaVisionConfig(**lowerCamelCase ) lowerCamelCase__ : List[str] =BlipaQFormerConfig(**lowerCamelCase ) lowerCamelCase__ : List[str] =text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowerCamelCase__ : List[str] =CONFIG_MAPPING[text_model_type](**lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =self.text_config.tie_word_embeddings lowerCamelCase__ : Dict =self.text_config.is_encoder_decoder lowerCamelCase__ : Union[str, Any] =num_query_tokens lowerCamelCase__ : List[Any] =self.vision_config.hidden_size lowerCamelCase__ : int =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase__ : str =1.0 lowerCamelCase__ : str =0.02 @classmethod def snake_case ( cls : int, lowerCamelCase : BlipaVisionConfig, lowerCamelCase : BlipaQFormerConfig, lowerCamelCase : PretrainedConfig, **lowerCamelCase : Any, )-> List[str]: return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **lowerCamelCase, ) def snake_case ( self : List[str] )-> int: lowerCamelCase__ : Union[str, Any] =copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Union[str, Any] =self.vision_config.to_dict() lowerCamelCase__ : Optional[Any] =self.qformer_config.to_dict() lowerCamelCase__ : Dict =self.text_config.to_dict() lowerCamelCase__ : Optional[int] =self.__class__.model_type return output
351
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowercase : Dict = logging.get_logger(__name__) _lowercase : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'blenderbot-small' _a = ['past_key_values'] _a = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple, lowerCamelCase : Any=5_0265, lowerCamelCase : Optional[Any]=512, lowerCamelCase : Union[str, Any]=8, lowerCamelCase : Dict=2048, lowerCamelCase : str=16, lowerCamelCase : List[Any]=8, lowerCamelCase : List[str]=2048, lowerCamelCase : int=16, lowerCamelCase : Any=0.0, lowerCamelCase : Dict=0.0, lowerCamelCase : Tuple=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Tuple=512, lowerCamelCase : Tuple=0.1, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : List[str]=0.02, lowerCamelCase : Any=1, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : Any=0, lowerCamelCase : Tuple=1, lowerCamelCase : Tuple=2, lowerCamelCase : Dict=2, **lowerCamelCase : Any, )-> Dict: lowerCamelCase__ : Dict =vocab_size lowerCamelCase__ : Dict =max_position_embeddings lowerCamelCase__ : Optional[Any] =d_model lowerCamelCase__ : Union[str, Any] =encoder_ffn_dim lowerCamelCase__ : Optional[Any] =encoder_layers lowerCamelCase__ : Any =encoder_attention_heads lowerCamelCase__ : Union[str, Any] =decoder_ffn_dim lowerCamelCase__ : Optional[int] =decoder_layers lowerCamelCase__ : Any =decoder_attention_heads lowerCamelCase__ : Optional[int] =dropout lowerCamelCase__ : str =attention_dropout lowerCamelCase__ : Union[str, Any] =activation_dropout lowerCamelCase__ : Tuple =activation_function lowerCamelCase__ : str =init_std lowerCamelCase__ : List[Any] =encoder_layerdrop lowerCamelCase__ : List[str] =decoder_layerdrop lowerCamelCase__ : Tuple =use_cache lowerCamelCase__ : Optional[Any] =encoder_layers lowerCamelCase__ : List[Any] =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase, bos_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, decoder_start_token_id=lowerCamelCase, forced_eos_token_id=lowerCamelCase, **lowerCamelCase, ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' @property def snake_case ( self : Optional[int] )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : int =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase__ : List[str] ={0: '''batch'''} lowerCamelCase__ : Tuple ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCamelCase__ : Union[str, Any] ={0: '''batch''', 1: '''decoder_sequence'''} lowerCamelCase__ : Tuple ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase, direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Optional[Any] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : List[str] =self.num_layers for i in range(lowerCamelCase ): lowerCamelCase__ : Optional[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase__ : Optional[int] ={0: '''batch''', 2: '''past_sequence + sequence'''} else: lowerCamelCase__ : str =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def snake_case ( self : Dict )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict =super().outputs else: lowerCamelCase__ : Optional[Any] =super(lowerCamelCase, self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : str =self.num_layers for i in range(lowerCamelCase ): lowerCamelCase__ : Tuple ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCamelCase__ : Dict ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def snake_case ( self : List[str], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: lowerCamelCase__ : Any =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # Generate decoder inputs lowerCamelCase__ : str =seq_length if not self.use_past else 1 lowerCamelCase__ : Tuple =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : str ={F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Tuple =dict(**lowerCamelCase, **lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : List[Any] =common_inputs['''input_ids'''].shape lowerCamelCase__ : Optional[Any] =common_inputs['''decoder_input_ids'''].shape[1] lowerCamelCase__ , lowerCamelCase__ : List[str] =self.num_attention_heads lowerCamelCase__ : str =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : List[Any] =decoder_seq_length + 3 lowerCamelCase__ : Optional[int] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : Optional[Any] =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase, lowerCamelCase )], dim=1 ) lowerCamelCase__ : Tuple =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : int =self.num_layers lowerCamelCase__ : Any =min(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Any =max(lowerCamelCase, lowerCamelCase ) - min_num_layers lowerCamelCase__ : Dict ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), ) ) # TODO: test this. lowerCamelCase__ : Union[str, Any] =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCamelCase, lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) ) return common_inputs def snake_case ( self : List[str], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: lowerCamelCase__ : int =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : List[str] =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCamelCase__ : Union[str, Any] =seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : int =self.num_layers lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.num_attention_heads lowerCamelCase__ : int =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : str =common_inputs['''attention_mask'''].dtype lowerCamelCase__ : int =torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCamelCase, lowerCamelCase, dtype=lowerCamelCase )], dim=1 ) lowerCamelCase__ : str =[ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(lowerCamelCase ) ] return common_inputs def snake_case ( self : Optional[int], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ : int =compute_effective_axis_dimension( lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : Optional[int] =tokenizer.num_special_tokens_to_add(lowerCamelCase ) lowerCamelCase__ : Optional[int] =compute_effective_axis_dimension( lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] =dict(tokenizer(lowerCamelCase, return_tensors=lowerCamelCase ) ) return common_inputs def snake_case ( self : List[Any], lowerCamelCase : PreTrainedTokenizer, lowerCamelCase : int = -1, lowerCamelCase : int = -1, lowerCamelCase : bool = False, lowerCamelCase : Optional[TensorType] = None, )-> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] =self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Union[str, Any] =self._generate_dummy_inputs_for_causal_lm( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) else: lowerCamelCase__ : List[Any] =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase, batch_size=lowerCamelCase, seq_length=lowerCamelCase, is_pair=lowerCamelCase, framework=lowerCamelCase ) return common_inputs def snake_case ( self : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : Any )-> str: if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Any =super()._flatten_past_key_values_(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) else: lowerCamelCase__ : List[str] =super(lowerCamelCase, self )._flatten_past_key_values_( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase )
272
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __snake_case = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } __snake_case = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } __snake_case = """▁""" class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = ['''input_ids''', '''attention_mask'''] __UpperCAmelCase : Optional[Any] = BarthezTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , **UpperCamelCase__ , ) -> str: '''simple docstring''' snake_case : List[str] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , **UpperCamelCase__ , ) snake_case : Tuple = vocab_file snake_case : Tuple = False if not self.vocab_file else True def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case : List[str] = [self.cls_token_id] snake_case : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' snake_case : Any = [self.sep_token_id] snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case : str = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) return (out_vocab_file,)
203
"""simple docstring""" from typing import List import numpy as np def __lowerCAmelCase ( lowercase : dict ) -> int: """simple docstring""" snake_case : Union[str, Any] = {key: len(lowercase ) for key, value in gen_kwargs.items() if isinstance(lowercase , lowercase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) snake_case : int = max(lists_lengths.values() , default=0 ) return max(1 , lowercase ) def __lowerCAmelCase ( lowercase : int , lowercase : int ) -> List[range]: """simple docstring""" snake_case : Union[str, Any] = [] for group_idx in range(lowercase ): snake_case : Union[str, Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break snake_case : int = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 snake_case : Dict = range(lowercase , start + num_shards_to_add ) shards_indices_per_group.append(lowercase ) return shards_indices_per_group def __lowerCAmelCase ( lowercase : dict , lowercase : int ) -> List[dict]: """simple docstring""" snake_case : int = _number_of_shards_in_gen_kwargs(lowercase ) if num_shards == 1: return [dict(lowercase )] else: snake_case : Optional[int] = _distribute_shards(num_shards=lowercase , max_num_jobs=lowercase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowercase , lowercase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowercase ) ) ] def __lowerCAmelCase ( lowercase : List[dict] ) -> dict: """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowercase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowerCAmelCase ( lowercase : np.random.Generator , lowercase : dict ) -> dict: """simple docstring""" snake_case : Tuple = {len(lowercase ) for value in gen_kwargs.values() if isinstance(lowercase , lowercase )} snake_case : str = {} for size in list_sizes: snake_case : Optional[int] = list(range(lowercase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes snake_case : Dict = dict(lowercase ) for key, value in shuffled_kwargs.items(): if isinstance(lowercase , lowercase ): snake_case : Dict = [value[i] for i in indices_per_size[len(lowercase )]] return shuffled_kwargs
203
1
"""simple docstring""" from __future__ import annotations def a__ ( snake_case__ , snake_case__ ) -> list[str]: if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) lowerCamelCase = number_of_bytes // partitions lowerCamelCase = [] for i in range(snake_case__ ): lowerCamelCase = i * bytes_per_partition + 1 lowerCamelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
168
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_a , speech_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , feature_extractor=_a , ) def _lowerCAmelCase ( self , _a = "auto" ): """simple docstring""" if slice_size == "auto": lowerCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def _lowerCAmelCase ( self ): """simple docstring""" self.enable_attention_slicing(_a ) @torch.no_grad() def __call__( self , _a , _a=16_000 , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): """simple docstring""" lowerCamelCase = self.speech_processor.feature_extractor( _a , return_tensors="""pt""" , sampling_rate=_a ).input_features.to(self.device ) lowerCamelCase = self.speech_model.generate(_a , max_length=480_000 ) lowerCamelCase = self.speech_processor.tokenizer.batch_decode(_a , skip_special_tokens=_a , normalize=_a )[ 0 ] if isinstance(_a , _a ): lowerCamelCase = 1 elif isinstance(_a , _a ): lowerCamelCase = len(_a ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(_a )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(_a )}.' ) # get prompt text embeddings lowerCamelCase = self.tokenizer( _a , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase , lowerCamelCase , lowerCamelCase = text_embeddings.shape lowerCamelCase = text_embeddings.repeat(1 , _a , 1 ) lowerCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , _a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase = 42 if negative_prompt is None: lowerCamelCase = [""""""] * batch_size elif type(_a ) is not type(_a ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(_a )} !=' f' {type(_a )}.' ) elif isinstance(_a , _a ): lowerCamelCase = [negative_prompt] elif batch_size != len(_a ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(_a )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: lowerCamelCase = negative_prompt lowerCamelCase = text_input_ids.shape[-1] lowerCamelCase = self.tokenizer( _a , padding="""max_length""" , max_length=_a , truncation=_a , return_tensors="""pt""" , ) lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase = uncond_embeddings.shape[1] lowerCamelCase = uncond_embeddings.repeat(1 , _a , 1 ) lowerCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , _a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase = torch.randn(_a , generator=_a , device="""cpu""" , dtype=_a ).to( self.device ) else: lowerCamelCase = torch.randn(_a , generator=_a , device=self.device , dtype=_a ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase = {} if accepts_eta: lowerCamelCase = eta for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual lowerCamelCase = self.unet(_a , _a , encoder_hidden_states=_a ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase , lowerCamelCase = noise_pred.chunk(2 ) lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a , _a ) lowerCamelCase = 1 / 0.18_215 * latents lowerCamelCase = self.vae.decode(_a ).sample lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase = self.numpy_to_pil(_a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_a , nsfw_content_detected=_a )
168
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue _lowerCAmelCase = cst_fwd.get(lowerCAmelCase , np.inf ) _lowerCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _lowerCAmelCase = new_cost_f _lowerCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _lowerCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = -1 _lowerCAmelCase = set() _lowerCAmelCase = set() _lowerCAmelCase = {source: 0} _lowerCAmelCase = {destination: 0} _lowerCAmelCase = {source: None} _lowerCAmelCase = {destination: None} _lowerCAmelCase = PriorityQueue() _lowerCAmelCase = PriorityQueue() _lowerCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _lowerCAmelCase , _lowerCAmelCase = queue_forward.get() visited_forward.add(lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = queue_backward.get() visited_backward.add(lowerCAmelCase ) _lowerCAmelCase = pass_and_relaxation( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) _lowerCAmelCase = pass_and_relaxation( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _lowerCAmelCase = shortest_distance return shortest_path_distance A__ : Optional[int] ={ '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } A__ : int ={ '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
70
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase ( snake_case_ ): _lowercase: Union[str, Any] = ['''image_processor''', '''tokenizer'''] _lowercase: int = '''AutoImageProcessor''' _lowercase: Optional[int] = '''AutoTokenizer''' def __init__( self : int , __snake_case : Tuple=None , __snake_case : Optional[int]=None , **__snake_case : Tuple ) -> List[Any]: _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __snake_case , ) _lowerCAmelCase = kwargs.pop("""feature_extractor""" ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__snake_case , __snake_case ) _lowerCAmelCase = self.image_processor _lowerCAmelCase = False def __call__( self : Dict , *__snake_case : Optional[int] , **__snake_case : Union[str, Any] ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) _lowerCAmelCase = kwargs.pop("""images""" , __snake_case ) _lowerCAmelCase = kwargs.pop("""text""" , __snake_case ) if len(__snake_case ) > 0: _lowerCAmelCase = args[0] _lowerCAmelCase = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _lowerCAmelCase = self.image_processor(__snake_case , *__snake_case , **__snake_case ) if text is not None: _lowerCAmelCase = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif images is None: return encodings else: _lowerCAmelCase = encodings["""input_ids"""] return inputs def lowercase__ ( self : List[Any] , *__snake_case : Dict , **__snake_case : List[str] ) -> int: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowercase__ ( self : int , *__snake_case : Tuple , **__snake_case : Optional[Any] ) -> Any: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def lowercase__ ( self : int ) -> Optional[Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) _lowerCAmelCase = True _lowerCAmelCase = self.tokenizer yield _lowerCAmelCase = self.image_processor _lowerCAmelCase = False def lowercase__ ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any]=False , __snake_case : Dict=None ) -> Tuple: if added_vocab is None: _lowerCAmelCase = self.tokenizer.get_added_vocab() _lowerCAmelCase = {} while tokens: _lowerCAmelCase = re.search(R"""<s_(.*?)>""" , __snake_case , re.IGNORECASE ) if start_token is None: break _lowerCAmelCase = start_token.group(1 ) _lowerCAmelCase = re.search(Rf"</s_{key}>" , __snake_case , re.IGNORECASE ) _lowerCAmelCase = start_token.group() if end_token is None: _lowerCAmelCase = tokens.replace(__snake_case , """""" ) else: _lowerCAmelCase = end_token.group() _lowerCAmelCase = re.escape(__snake_case ) _lowerCAmelCase = re.escape(__snake_case ) _lowerCAmelCase = re.search(f"{start_token_escaped}(.*?){end_token_escaped}" , __snake_case , re.IGNORECASE ) if content is not None: _lowerCAmelCase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _lowerCAmelCase = self.tokenajson(__snake_case , is_inner_value=__snake_case , added_vocab=__snake_case ) if value: if len(__snake_case ) == 1: _lowerCAmelCase = value[0] _lowerCAmelCase = value else: # leaf nodes _lowerCAmelCase = [] for leaf in content.split(R"""<sep/>""" ): _lowerCAmelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _lowerCAmelCase = leaf[1:-2] # for categorical special tokens output[key].append(__snake_case ) if len(output[key] ) == 1: _lowerCAmelCase = output[key][0] _lowerCAmelCase = tokens[tokens.find(__snake_case ) + len(__snake_case ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__snake_case , added_vocab=__snake_case ) if len(__snake_case ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __snake_case , ) return self.image_processor_class @property def lowercase__ ( self : List[Any] ) -> Any: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __snake_case , ) return self.image_processor
70
1
def __lowerCamelCase ( lowerCAmelCase__ ): if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True lowerCAmelCase__ = 4 lowerCAmelCase__ = (1 << p) - 1 for _ in range(p - 2 ): lowerCAmelCase__ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
370
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class a_ : '''simple docstring''' UpperCAmelCase_ = None UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = None UpperCAmelCase_ = 1 UpperCAmelCase_ = None UpperCAmelCase_ = False UpperCAmelCase_ = None UpperCAmelCase_ = None def __snake_case ( self : Dict): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(lowercase__) for k, v in self.__dict__.items()})
119
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = CLIPTokenizer lowerCAmelCase_ = CLIPTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = {} lowerCAmelCase_ = False def _snake_case ( self ): """simple docstring""" super().setUp() # fmt: off lowercase_ : List[str] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowercase_ : Union[str, Any] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowercase_ : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] lowercase_ : Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Union[str, Any] = '''lower newer''' lowercase_ : Optional[int] = '''lower newer''' return input_text, output_text def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ : Optional[Any] = '''lower newer''' lowercase_ : Any = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] lowercase_ : int = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = tokens + [tokenizer.unk_token] lowercase_ : Tuple = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) @require_ftfy def _snake_case ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : Union[str, Any] = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : int = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' lowercase_ : Tuple = tokenizer_s.tokenize(__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = tokenizer_r.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowercase_ : Optional[Any] = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' lowercase_ : Any = tokenizer_s.tokenize(__SCREAMING_SNAKE_CASE ) lowercase_ : str = tokenizer_r.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Test that the tokenization is identical on unicode of space type lowercase_ : Any = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowercase_ : int = tokenizer_s.tokenize(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = tokenizer_r.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Test that the tokenization is identical on unicode of line break type lowercase_ : List[Any] = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowercase_ : int = tokenizer_s.tokenize(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = tokenizer_r.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : List[str] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowercase_ : Optional[int] = F'''{text_of_1_token} {text_of_1_token}''' lowercase_ : str = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , ) lowercase_ : int = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) lowercase_ : Dict = F''' {text}''' lowercase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , ) lowercase_ : Dict = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , ) def _snake_case ( self ): """simple docstring""" with self.assertRaises(__SCREAMING_SNAKE_CASE ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def _snake_case ( self ): """simple docstring""" super().test_tokenization_python_rust_equals() def _snake_case ( self ): """simple docstring""" pass
93
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase__ ( torch.nn.Module ): def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() lowercase_ : Tuple = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = torch.nn.CosineSimilarity(3 , 1E-0_8 ) lowercase_ : Optional[Any] = torch.nn.Softmax(dim=1 ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = W_supports['''sizes'''].tolist() lowercase_ : Dict = W_supports['''start_token_id'''].item() lowercase_ : List[Any] = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase_ : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.BERT(**__SCREAMING_SNAKE_CASE ) lowercase_ : str = None lowercase_ : Dict = None lowercase_ : Tuple = W_supports['''input_ids'''] == start_token_id lowercase_ : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: lowercase_ : List[str] = 0 else: lowercase_ : List[Any] = support_sizes[i - 1] lowercase_ : str = S[s : s + size][start_token_masks[s : s + size]] lowercase_ : Optional[int] = S[s : s + size][end_token_masks[s : s + size]] lowercase_ : List[str] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase_ : List[str] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase_ : Tuple = torch.vstack((p_starts, p_start) ) lowercase_ : Optional[Any] = torch.vstack((p_ends, p_end) ) else: lowercase_ : str = p_start lowercase_ : int = p_end return p_starts, p_ends
93
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Optional[int] =TextToVideoSDPipeline A__ : int =TEXT_TO_IMAGE_PARAMS A__ : Any =TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. A__ : Union[str, Any] =frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def A_ ( self : Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__lowerCAmelCase , set_alpha_to_one=__lowerCAmelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def A_ ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict=0 ): if str(__lowerCAmelCase ).startswith('mps' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = TextToVideoSDPipeline(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = 'np' SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCAmelCase ).frames SCREAMING_SNAKE_CASE__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self : Union[str, Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowerCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A_ ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowerCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def A_ ( self : List[Any] ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def A_ ( self : List[str] ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def A_ ( self : List[Any] ): pass def A_ ( self : str ): return super().test_progress_bar() @slow @skip_mps class lowercase__ ( unittest.TestCase ): def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) SCREAMING_SNAKE_CASE__ = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) SCREAMING_SNAKE_CASE__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE__ = pipe.to('cuda' ) SCREAMING_SNAKE_CASE__ = 'Spiderman is surfing' SCREAMING_SNAKE_CASE__ = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=25 , output_type='pt' ).frames SCREAMING_SNAKE_CASE__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) SCREAMING_SNAKE_CASE__ = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) SCREAMING_SNAKE_CASE__ = pipe.to('cuda' ) SCREAMING_SNAKE_CASE__ = 'Spiderman is surfing' SCREAMING_SNAKE_CASE__ = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='pt' ).frames SCREAMING_SNAKE_CASE__ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
360
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __snake_case = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") __snake_case = get_tests_dir("""fixtures/vocab.json""") __snake_case = get_tests_dir("""fixtures""") class lowercase__ ( unittest.TestCase ): A__ : List[Any] =["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = 0 def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaConfig() SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) copyfile(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , 'vocab.json' ) ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) # save in new folder processor.save_pretrained(UpperCAmelCase_ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , 'r' ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCAmelCase_ ) config_dict.pop('processor_class' ) with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , 'w' ) as f: f.write(json.dumps(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor() SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) # save in new folder processor.save_pretrained(UpperCAmelCase_ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , 'r' ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCAmelCase_ ) config_dict.pop('processor_class' ) with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , 'w' ) as f: f.write(json.dumps(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(UpperCAmelCase_ ) # copy relevant files copyfile(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , 'w' ) as f: f.write('{}' ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=UpperCAmelCase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) SCREAMING_SNAKE_CASE__ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) SCREAMING_SNAKE_CASE__ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=UpperCAmelCase_ , use_fast=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def A_ ( self : Union[str, Any] ): try: AutoConfig.register('custom' , UpperCAmelCase_ ) AutoFeatureExtractor.register(UpperCAmelCase_ , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) AutoProcessor.register(UpperCAmelCase_ , UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoProcessor.register(UpperCAmelCase_ , UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(UpperCAmelCase_ , 'vocab.txt' ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = CustomTokenizer(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = CustomProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A_ ( self : Tuple ): class lowercase__ ( _UpperCAmelCase ): A__ : Optional[int] =False class lowercase__ ( _UpperCAmelCase ): A__ : Optional[int] =False class lowercase__ ( _UpperCAmelCase ): A__ : Dict ="""AutoFeatureExtractor""" A__ : Optional[int] ="""AutoTokenizer""" A__ : str =False try: AutoConfig.register('custom' , UpperCAmelCase_ ) AutoFeatureExtractor.register(UpperCAmelCase_ , UpperCAmelCase_ ) AutoTokenizer.register(UpperCAmelCase_ , slow_tokenizer_class=UpperCAmelCase_ ) AutoProcessor.register(UpperCAmelCase_ , UpperCAmelCase_ ) # If remote code is not set, the default is to use local classes. SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=UpperCAmelCase_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class lowercase__ ( unittest.TestCase ): A__ : List[Any] =["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def A_ ( cls : str ): SCREAMING_SNAKE_CASE__ = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def A_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCAmelCase_ , 'test-processor' ) , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(new_processor.feature_extractor , UpperCAmelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCAmelCase_ , 'test-processor-org' ) , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token , organization='valid_org' , ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase_ , getattr(new_processor.feature_extractor , UpperCAmelCase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A_ ( self : Optional[Any] ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE__ = CustomFeatureExtractor.from_pretrained(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = os.path.join(UpperCAmelCase_ , 'vocab.txt' ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ = CustomTokenizer(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = CustomProcessor(UpperCAmelCase_ , UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' , token=self._token ) SCREAMING_SNAKE_CASE__ = Repository(UpperCAmelCase_ , clone_from=F'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(UpperCAmelCase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCAmelCase_ , 'tokenizer_config.json' ) ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCAmelCase_ ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase_ , 'custom_processing.py' ) ) ) repo.push_to_hub() SCREAMING_SNAKE_CASE__ = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
169
0
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): _lowerCAmelCase = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): _lowerCAmelCase = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCAmelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] _lowerCAmelCase = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(snake_case )-1}' ) if "norm" in key: _lowerCAmelCase = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCAmelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] _lowerCAmelCase = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(snake_case )-1}' ) if "layer_norm1" in key: _lowerCAmelCase = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: _lowerCAmelCase = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 _lowerCAmelCase = key[key.find("""block""" ) + len("""block""" )] _lowerCAmelCase = key.replace(F'block{idx}' , F'block.{int(snake_case )-1}' ) if "attn.q" in key: _lowerCAmelCase = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: _lowerCAmelCase = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: _lowerCAmelCase = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: _lowerCAmelCase = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: _lowerCAmelCase = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: _lowerCAmelCase = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: _lowerCAmelCase = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) _lowerCAmelCase = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCAmelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )] _lowerCAmelCase = key.replace(F'linear_c{idx}' , F'linear_c.{int(snake_case )-1}' ) if "bot_conv" in key: _lowerCAmelCase = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: _lowerCAmelCase = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: _lowerCAmelCase = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: _lowerCAmelCase = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: _lowerCAmelCase = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: _lowerCAmelCase = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: _lowerCAmelCase = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): _lowerCAmelCase = key.replace("""module.last_layer_depth""" , """head.head""" ) _lowerCAmelCase = value return new_state_dict def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) _lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict _lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] _lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] _lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( snake_case , snake_case , snake_case=False , snake_case=None ): """simple docstring""" _lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _lowerCAmelCase = GLPNImageProcessor() # prepare image _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=snake_case , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict _lowerCAmelCase = torch.load(snake_case , map_location=torch.device("""cpu""" ) ) # rename keys _lowerCAmelCase = rename_keys(snake_case ) # key and value matrices need special treatment read_in_k_v(snake_case , snake_case ) # create HuggingFace model and load state dict _lowerCAmelCase = GLPNForDepthEstimation(snake_case ) model.load_state_dict(snake_case ) model.eval() # forward pass _lowerCAmelCase = model(snake_case ) _lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _lowerCAmelCase = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: _lowerCAmelCase = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) _lowerCAmelCase = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , snake_case , atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(snake_case , snake_case ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=snake_case , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case , snake_case ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=snake_case , ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) A__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
82
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class a__( enum.Enum ): '''simple docstring''' UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : Any = 2 @add_end_docstrings(lowerCAmelCase__ ) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : int = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase = None if self.model.config.prefix is not None: lowerCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self._sanitize_parameters(prefix=__lowerCAmelCase , **self._forward_params) lowerCAmelCase = {**self._preprocess_params, **preprocess_params} lowerCAmelCase = {**self._forward_params, **forward_params} def a_ ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = {} if prefix is not None: lowerCAmelCase = prefix if prefix: lowerCAmelCase = self.tokenizer( __lowerCAmelCase , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework) lowerCAmelCase = prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" """ [None, 'hole']""") lowerCAmelCase = handle_long_generation preprocess_params.update(__lowerCAmelCase) lowerCAmelCase = generate_kwargs lowerCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""") if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""") lowerCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""") lowerCAmelCase = ReturnType.TENSORS if return_type is not None: lowerCAmelCase = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase = self.tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) if len(__lowerCAmelCase) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""") lowerCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a_ ( self , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True}) return super()._parse_and_tokenize(*__lowerCAmelCase , **__lowerCAmelCase) def __call__( self , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase="" , __lowerCAmelCase=None , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.tokenizer( prefix + prompt_text , padding=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=self.framework) lowerCAmelCase = prompt_text if handle_long_generation == "hole": lowerCAmelCase = inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase = generate_kwargs["""max_new_tokens"""] else: lowerCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""") if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""") lowerCAmelCase = inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase = inputs["""attention_mask"""][:, -keep_length:] return inputs def a_ ( self , __lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" lowerCAmelCase = model_inputs["""input_ids"""] lowerCAmelCase = model_inputs.get("""attention_mask""" , __lowerCAmelCase) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = 1 else: lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model_inputs.pop("""prompt_text""") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase = generate_kwargs.pop("""prefix_length""" , 0) if prefix_length > 0: lowerCAmelCase = """max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase = generate_kwargs.get("""max_length""") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase = """min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase = self.model.generate(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase = generated_sequence.reshape(__lowerCAmelCase , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": lowerCAmelCase = tf.reshape(__lowerCAmelCase , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a_ ( self , __lowerCAmelCase , __lowerCAmelCase=ReturnType.FULL_TEXT , __lowerCAmelCase=True): """simple docstring""" lowerCAmelCase = model_outputs["""generated_sequence"""][0] lowerCAmelCase = model_outputs["""input_ids"""] lowerCAmelCase = model_outputs["""prompt_text"""] lowerCAmelCase = generated_sequence.numpy().tolist() lowerCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase = {"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase = self.tokenizer.decode( __lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase = 0 else: lowerCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , )) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase = prompt_text + text[prompt_length:] else: lowerCAmelCase = text[prompt_length:] lowerCAmelCase = {"""generated_text""": all_text} records.append(__lowerCAmelCase) return records
272
0
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = len(_UpperCAmelCase ) for i in range(1, _UpperCAmelCase ): __UpperCAmelCase : int = collection[i] __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : List[str] = i - 1 while low <= high: __UpperCAmelCase : Tuple = (low + high) // 2 if val < collection[mid]: __UpperCAmelCase : Dict = mid - 1 else: __UpperCAmelCase : List[str] = mid + 1 for j in range(_UpperCAmelCase, _UpperCAmelCase, -1 ): __UpperCAmelCase : Union[str, Any] = collection[j - 1] __UpperCAmelCase : str = val return collection if __name__ == "__main__": lowerCAmelCase__ : Any = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase__ : Optional[Any] = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
37
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Dict=[1, 2, 1] , UpperCAmelCase_ : str=[2, 2, 4] , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[Any]=2.0 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Optional[Any]=1e-5 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[str]=10 , UpperCAmelCase_ : List[Any]=8 , ): """simple docstring""" __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Dict = image_size __UpperCAmelCase : int = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : int = embed_dim __UpperCAmelCase : Dict = depths __UpperCAmelCase : int = num_heads __UpperCAmelCase : List[str] = window_size __UpperCAmelCase : List[str] = mlp_ratio __UpperCAmelCase : List[Any] = qkv_bias __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : int = hidden_act __UpperCAmelCase : Optional[Any] = use_absolute_embeddings __UpperCAmelCase : List[str] = patch_norm __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : str = is_training __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : int = use_labels __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : int = encoder_stride def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ): """simple docstring""" __UpperCAmelCase : List[str] = SwinvaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Union[str, Any] = model(UpperCAmelCase_ ) __UpperCAmelCase : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : str = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : Dict = SwinvaForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Dict = 1 __UpperCAmelCase : List[str] = SwinvaForMaskedImageModeling(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.type_sequence_label_size __UpperCAmelCase : Dict = SwinvaForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Dict = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Dict = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = SwinvaModelTester(self ) __UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase_ , embed_dim=37 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" pass def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = True for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Any = False __UpperCAmelCase : Tuple = True __UpperCAmelCase : str = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) __UpperCAmelCase : Union[str, Any] = outputs.attentions __UpperCAmelCase : Optional[int] = len(self.model_tester.depths ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[str] = config.window_size**2 __UpperCAmelCase : Union[str, Any] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __UpperCAmelCase : List[str] = len(UpperCAmelCase_ ) # Check attention is always last and order is fine __UpperCAmelCase : Tuple = True __UpperCAmelCase : Dict = True __UpperCAmelCase : Dict = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): __UpperCAmelCase : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __UpperCAmelCase : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(UpperCAmelCase_ ) ) __UpperCAmelCase : List[str] = outputs.attentions self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) __UpperCAmelCase : Dict = outputs.hidden_states __UpperCAmelCase : Dict = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # Swinv2 has a different seq_length __UpperCAmelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : str = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = reshaped_hidden_states[0].shape __UpperCAmelCase : Dict = ( reshaped_hidden_states[0].view(UpperCAmelCase_ , UpperCAmelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = 3 __UpperCAmelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase : Dict = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True self.check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , (padded_height, padded_width) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = SwinvaModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( UpperCAmelCase_ ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __UpperCAmelCase : Any = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**UpperCAmelCase_ ) # verify the logits __UpperCAmelCase : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) __UpperCAmelCase : str = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) )
37
1
'''simple docstring''' import qiskit def _A (lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> qiskit.result.counts.Counts: '''simple docstring''' _a = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _a = qiskit.QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator _a = qiskit.execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
168
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a_ : str = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") a_ : Tuple = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a_ : Any = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a_ : Union[str, Any] = sorted(arg_to_scheduler.keys()) a_ : List[Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class a ( pl.LightningModule ): def __init__( self , __magic_name__ , __magic_name__=None , __magic_name__="base" , __magic_name__=None , __magic_name__=None , __magic_name__=None , **__magic_name__ , ) -> List[str]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__magic_name__ ) _a = 0 _a = Path(self.hparams.output_dir ) _a = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _a = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__magic_name__ , **__magic_name__ , ) else: _a = config _a = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __magic_name__ , __magic_name__ ): assert hasattr(self.config , __magic_name__ ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __magic_name__ , getattr(self.hparams , __magic_name__ ) ) if tokenizer is None: _a = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__magic_name__ , ) else: _a = tokenizer _a = MODEL_MODES[mode] if model is None: _a = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__magic_name__ , ) else: _a = model def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]: _a = self.model_type.from_pretrained(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: _a = arg_to_scheduler[self.hparams.lr_scheduler] _a = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _a = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __UpperCAmelCase ( self ) -> Any: _a = self.model _a = ['bias', 'LayerNorm.weight'] _a = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: _a = Adafactor( __magic_name__ , lr=self.hparams.learning_rate , scale_parameter=__magic_name__ , relative_step=__magic_name__ ) else: _a = AdamW( __magic_name__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _a = optimizer _a = self.get_lr_scheduler() return [optimizer], [scheduler] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> List[str]: return self.validation_step(__magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: return self.validation_end(__magic_name__ ) def __UpperCAmelCase ( self ) -> int: _a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: if stage == "test": _a = len(self.test_dataloader().dataset ) else: _a = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__magic_name__ ) _a = len(self.train_dataloader().dataset ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = False ) -> int: raise NotImplementedError('You must implement this for your task' ) def __UpperCAmelCase ( self ) -> Tuple: return self.train_loader def __UpperCAmelCase ( self ) -> Dict: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __UpperCAmelCase ( self ) -> Tuple: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __magic_name__ , list(filter(__magic_name__ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __UpperCAmelCase ( self , __magic_name__ ) -> None: _a = self.output_dir.joinpath('best_tfmr' ) _a = self.step_count self.model.save_pretrained(__magic_name__ ) self.tokenizer.save_pretrained(__magic_name__ ) @staticmethod def __UpperCAmelCase ( __magic_name__ , __magic_name__ ) -> Optional[int]: parser.add_argument( '--model_name_or_path' , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__magic_name__ , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__magic_name__ , type=__magic_name__ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__magic_name__ ).parent / 'test_run' / 'cache' ) , type=__magic_name__ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__magic_name__ , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__magic_name__ , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__magic_name__ , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__magic_name__ , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=__magic_name__ , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__magic_name__ , metavar=__magic_name__ , type=__magic_name__ , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__magic_name__ , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__magic_name__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__magic_name__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__magic_name__ , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__magic_name__ ) parser.add_argument('--train_batch_size' , default=32 , type=__magic_name__ ) parser.add_argument('--eval_batch_size' , default=32 , type=__magic_name__ ) parser.add_argument('--adafactor' , action='store_true' ) class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Any: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__magic_name__ ) class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = trainer.lr_schedulers[0]['scheduler'] _a = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: rank_zero_info('***** Validation results *****' ) _a = trainer.callback_metrics # Log results for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: rank_zero_info('***** Test results *****' ) _a = trainer.callback_metrics # Log and save results to file _a = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__magic_name__ , 'w' ) as writer: for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] ) -> None: '''simple docstring''' parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase__ , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase__ ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase__ , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase__ , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase__ , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def _A (lowerCAmelCase__ :BaseTransformer , lowerCAmelCase__ :argparse.Namespace , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=[] , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Union[str, Any]=None , **lowerCAmelCase__ :List[str] , ) -> str: '''simple docstring''' pl.seed_everything(args.seed ) # init model _a = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase__ ) # add custom checkpoints if checkpoint_callback is None: _a = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase__ ) if logging_callback is None: _a = LoggingCallback() _a = {} if args.fpaa: _a = 16 if args.gpus > 1: _a = 'auto' _a = 'ddp' _a = args.accumulate_grad_batches _a = None _a = 'auto' _a = pl.Trainer.from_argparse_args( lowerCAmelCase__ , weights_summary=lowerCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase__ , ) if args.do_train: trainer.fit(lowerCAmelCase__ ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
168
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCAmelCase_ ) , 'Tatoeba directory does not exist.' ) class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowercase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.resolver.write_model_card('''opus-mt-he-en''', dry_run=__lowercase ) assert mmeta["long_pair"] == "heb-eng"
367
from __future__ import annotations def __UpperCamelCase ( _A ): lowerCAmelCase_ = len(_A ) # We need to create solution object to save path. lowerCAmelCase_ = [[0 for _ in range(_A )] for _ in range(_A )] lowerCAmelCase_ = run_maze(_A , 0 , 0 , _A ) if solved: print('''\n'''.join(str(_A ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __UpperCamelCase ( _A , _A , _A , _A ): lowerCAmelCase_ = len(_A ) # Final check point. if i == j == (size - 1): lowerCAmelCase_ = 1 return True lowerCAmelCase_ = (not i < 0) and (not j < 0) # Check lower bounds lowerCAmelCase_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCAmelCase_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCAmelCase_ = 1 # check for directions if ( run_maze(_A , i + 1 , _A , _A ) or run_maze(_A , _A , j + 1 , _A ) or run_maze(_A , i - 1 , _A , _A ) or run_maze(_A , _A , j - 1 , _A ) ): return True lowerCAmelCase_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
167
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase ( a_ , a_=0.999 , a_="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(a_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __A = [] for i in range(snake_case__ ): __A = i / num_diffusion_timesteps __A = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class UpperCAmelCase ( a__ , a__ ): '''simple docstring''' snake_case_ = [e.name for e in KarrasDiffusionSchedulers] snake_case_ = 2 @register_to_config def __init__( self : Optional[int] ,A : Optional[Any] = 10_00 ,A : Union[str, Any] = 0.0_00_85 ,A : List[Any] = 0.0_12 ,A : int = "linear" ,A : List[Any] = None ,A : List[Any] = "epsilon" ,A : List[str] = "linspace" ,A : List[str] = 0 ,): if trained_betas is not None: __A = torch.tensor(SCREAMING_SNAKE_CASE_ ,dtype=torch.floataa ) elif beta_schedule == "linear": __A = torch.linspace(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __A = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,SCREAMING_SNAKE_CASE_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __A = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __A = 1.0 - self.betas __A = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : str=None ): if schedule_timesteps is None: __A = self.timesteps __A = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __A = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0 else: __A = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep __A = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase_ ( self : Dict ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase_ ( self : List[str] ,A : Union[str, Any] ,A : Optional[Any] ,): __A = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) if self.state_in_first_order: __A = self.sigmas[step_index] else: __A = self.sigmas_interpol[step_index] __A = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase_ ( self : List[Any] ,A : str ,A : Optional[int] = None ,A : str = None ,): __A = num_inference_steps __A = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __A = np.linspace(0 ,num_train_timesteps - 1 ,SCREAMING_SNAKE_CASE_ ,dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __A = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __A = (np.arange(0 ,SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __A = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __A = (np.arange(SCREAMING_SNAKE_CASE_ ,0 ,-step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __A = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __A = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __A = np.interp(SCREAMING_SNAKE_CASE_ ,np.arange(0 ,len(SCREAMING_SNAKE_CASE_ ) ) ,SCREAMING_SNAKE_CASE_ ) __A = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __A = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) # interpolate sigmas __A = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() __A = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __A = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(SCREAMING_SNAKE_CASE_ ).startswith("mps" ): # mps does not support float64 __A = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ,dtype=torch.floataa ) else: __A = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) # interpolate timesteps __A = self.sigma_to_t(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ,dtype=timesteps.dtype ) __A = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() __A = torch.cat([timesteps[:1], interleaved_timesteps] ) __A = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __A = defaultdict(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : Dict ,A : Dict ): # get log sigma __A = sigma.log() # get distribution __A = log_sigma - self.log_sigmas[:, None] # get sigmas range __A = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __A = low_idx + 1 __A = self.log_sigmas[low_idx] __A = self.log_sigmas[high_idx] # interpolate sigmas __A = (low - log_sigma) / (low - high) __A = w.clamp(0 ,1 ) # transform interpolation to time range __A = (1 - w) * low_idx + w * high_idx __A = t.view(sigma.shape ) return t @property def UpperCamelCase_ ( self : str ): return self.sample is None def UpperCamelCase_ ( self : Any ,A : Tuple ,A : Tuple ,A : Union[str, Any] ,A : Tuple = True ,): __A = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) # advance index counter by 1 __A = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __A = self.sigmas[step_index] __A = self.sigmas_interpol[step_index + 1] __A = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __A = self.sigmas[step_index - 1] __A = self.sigmas_interpol[step_index] __A = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __A = 0 __A = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __A = sigma_hat if self.state_in_first_order else sigma_interpol __A = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __A = sigma_hat if self.state_in_first_order else sigma_interpol __A = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __A = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __A = sigma_interpol - sigma_hat # store for 2nd order step __A = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __A = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __A = sigma_next - sigma_hat __A = self.sample __A = None __A = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : Union[str, Any] ,A : int ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples __A = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): # mps does not support float64 __A = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) __A = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: __A = self.timesteps.to(original_samples.device ) __A = timesteps.to(original_samples.device ) __A = [self.index_for_timestep(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for t in timesteps] __A = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __A = sigma.unsqueeze(-1 ) __A = original_samples + noise * sigma return noisy_samples def __len__( self : int ): return self.config.num_train_timesteps
15
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __UpperCAmelCase = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __UpperCAmelCase = json.load(f) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return FSMTTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : List[Any] = FSMTForConditionalGeneration.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCamelCase : int = F"""facebook/wmt19-{pair}""" UpperCamelCase : Optional[int] = self.get_tokenizer(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.get_model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = bleu_data[pair]['src'] UpperCamelCase : Tuple = bleu_data[pair]['tgt'] UpperCamelCase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE_, return_tensors='pt', truncation=SCREAMING_SNAKE_CASE_, padding='longest' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = model.generate( input_ids=batch.input_ids, num_beams=8, ) UpperCamelCase : Tuple = tokenizer.batch_decode( SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = calculate_bleu(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(scores['bleu'], SCREAMING_SNAKE_CASE_ )
119
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __magic_name__ ( unittest.TestCase ): def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , )-> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_attention_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_choices def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_attention_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self )-> str: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Optional[Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase_ ( self )-> str: for model_class_name in self.all_model_classes: UpperCamelCase_ = model_class_name.from_pretrained("albert-base-v2" ) UpperCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class __magic_name__ ( unittest.TestCase ): @slow def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = FlaxAlbertModel.from_pretrained("albert-base-v2" ) UpperCamelCase_ = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCamelCase_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase )[0] UpperCamelCase_ = (1, 11, 768) self.assertEqual(output.shape , _lowercase ) UpperCamelCase_ = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) )
355
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets SCREAMING_SNAKE_CASE :Optional[int] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ SCREAMING_SNAKE_CASE :Optional[int] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ SCREAMING_SNAKE_CASE :Tuple = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def UpperCAmelCase_ ( self )-> Tuple: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = False , )-> int: UpperCamelCase_ = len(references[0] ) if any(len(_lowercase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCamelCase_ = [[refs[i] for refs in references] for i in range(_lowercase )] UpperCamelCase_ = TER( normalized=_lowercase , no_punct=_lowercase , asian_support=_lowercase , case_sensitive=_lowercase , ) UpperCamelCase_ = sb_ter.corpus_score(_lowercase , _lowercase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
60
0
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : List[str] ): """simple docstring""" UpperCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCamelCase = tokenizer('Hello there' , return_tensors='np' ).input_ids UpperCamelCase = tokenizer('Hi I am' , return_tensors='np' ).input_ids UpperCamelCase = shift_tokens_right(UpperCamelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCamelCase = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits UpperCamelCase = optax.softmax_cross_entropy(UpperCamelCase__ , onehot(UpperCamelCase__ , logits.shape[-1] ) ).mean() UpperCamelCase = -(labels.shape[-1] * loss.item()) UpperCamelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
28
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """char""" UpperCAmelCase_ = """bpe""" UpperCAmelCase_ = """wp""" _lowerCAmelCase : Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = ["""image_processor""", """char_tokenizer"""] UpperCAmelCase_ = """ViTImageProcessor""" UpperCAmelCase_ = """MgpstrTokenizer""" def __init__( self :List[str] , lowerCamelCase :Dict=None , lowerCamelCase :Optional[int]=None , **lowerCamelCase :List[str] ) -> Optional[Any]: UpperCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) UpperCAmelCase__ = kwargs.pop("feature_extractor" ) UpperCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) UpperCAmelCase__ = tokenizer UpperCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self :Optional[Any] , lowerCamelCase :List[str]=None , lowerCamelCase :Any=None , lowerCamelCase :Optional[Any]=None , **lowerCamelCase :Optional[int] ) -> Union[str, Any]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: UpperCAmelCase__ = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None: UpperCAmelCase__ = self.char_tokenizer(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: UpperCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Optional[Any] ) -> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = sequences UpperCAmelCase__ = char_preds.size(0 ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "char" ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "bpe" ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "wp" ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for i in range(lowerCamelCase ): UpperCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCAmelCase__ = scores.index(max(lowerCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCAmelCase__ = {} UpperCAmelCase__ = final_strs UpperCAmelCase__ = final_scores UpperCAmelCase__ = char_strs UpperCAmelCase__ = bpe_strs UpperCAmelCase__ = wp_strs return out def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int , lowerCamelCase :List[str] ) -> Union[str, Any]: if format == DecodeType.CHARACTER: UpperCAmelCase__ = self.char_decode UpperCAmelCase__ = 1 UpperCAmelCase__ = "[s]" elif format == DecodeType.BPE: UpperCAmelCase__ = self.bpe_decode UpperCAmelCase__ = 2 UpperCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: UpperCAmelCase__ = self.wp_decode UpperCAmelCase__ = 102 UpperCAmelCase__ = "[SEP]" else: raise ValueError(f'''Format {format} is not supported.''' ) UpperCAmelCase__ , UpperCAmelCase__ = [], [] UpperCAmelCase__ = pred_logits.size(0 ) UpperCAmelCase__ = pred_logits.size(1 ) UpperCAmelCase__ , UpperCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase , sorted=lowerCamelCase ) UpperCAmelCase__ = preds_index.view(-1 , lowerCamelCase )[:, 1:] UpperCAmelCase__ = decoder(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = torch.nn.functional.softmax(lowerCamelCase , dim=2 ).max(dim=2 ) UpperCAmelCase__ = preds_max_prob[:, 1:] for index in range(lowerCamelCase ): UpperCAmelCase__ = preds_str[index].find(lowerCamelCase ) UpperCAmelCase__ = preds_str[index][:pred_eos] UpperCAmelCase__ = preds_index[index].cpu().tolist() UpperCAmelCase__ = pred_index.index(lowerCamelCase ) if eos_token in pred_index else -1 UpperCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] UpperCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase ) conf_scores.append(lowerCamelCase ) return dec_strs, conf_scores def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int ) -> List[str]: UpperCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase )] return decode_strs def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :Dict ) -> Dict: return self.bpe_tokenizer.batch_decode(lowerCamelCase ) def UpperCAmelCase_ ( self :str , lowerCamelCase :str ) -> Tuple: UpperCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase )] return decode_strs
169
0
def __lowerCamelCase ( __magic_name__ : int , __magic_name__ : int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) a__: int =str(bin(__a ) )[2:] # remove the leading "0b" a__: Optional[int] =str(bin(__a ) )[2:] # remove the leading "0b" a__: Any =max(len(__a ) , len(__a ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__a ) , b_binary.zfill(__a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
365
from __future__ import annotations from math import gcd def __lowerCamelCase ( __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 1 , __magic_name__ : int = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> int: return (pow(__magic_name__ , 2 ) + step) % modulus for _ in range(__magic_name__ ): # These track the position within the cycle detection logic. a__: List[Any] =seed a__: Optional[int] =seed while True: # At each iteration, the tortoise moves one step and the hare moves two. a__: List[Any] =rand_fn(__magic_name__ , __magic_name__ , __magic_name__ ) a__: Tuple =rand_fn(__magic_name__ , __magic_name__ , __magic_name__ ) a__: Tuple =rand_fn(__magic_name__ , __magic_name__ , __magic_name__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. a__: Optional[Any] =gcd(hare - tortoise , __magic_name__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. a__: Dict =hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: __UpperCAmelCase = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
42
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _lowerCAmelCase = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def _SCREAMING_SNAKE_CASE ( UpperCamelCase = "dhaka" , UpperCamelCase = 5 ): """simple docstring""" lowerCAmelCase__ : Tuple = min(UpperCamelCase , 50 ) # Prevent abuse! lowerCAmelCase__ : List[Any] = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } lowerCAmelCase__ : List[Any] = requests.get("""https://www.google.com/search""" , params=UpperCamelCase , headers=UpperCamelCase ) lowerCAmelCase__ : List[Any] = BeautifulSoup(html.text , """html.parser""" ) lowerCAmelCase__ : int = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) ) lowerCAmelCase__ : Dict = json.dumps(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = json.loads(UpperCamelCase ) lowerCAmelCase__ : Dict = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , UpperCamelCase , ) if not matched_google_image_data: return 0 lowerCAmelCase__ : Tuple = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(UpperCamelCase ) , ) lowerCAmelCase__ : Union[str, Any] = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , UpperCamelCase , ) for index, fixed_full_res_image in enumerate(UpperCamelCase ): if index >= max_images: return index lowerCAmelCase__ : Optional[int] = bytes(UpperCamelCase , """ascii""" ).decode( """unicode-escape""" ) lowerCAmelCase__ : Optional[Any] = bytes(UpperCamelCase , """ascii""" ).decode( """unicode-escape""" ) lowerCAmelCase__ : Tuple = urllib.request.build_opener() lowerCAmelCase__ : int = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(UpperCamelCase ) lowerCAmelCase__ : List[Any] = f"""query_{query.replace(' ' , '_' )}""" if not os.path.exists(UpperCamelCase ): os.makedirs(UpperCamelCase ) urllib.request.urlretrieve( # noqa: S310 UpperCamelCase , f"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: _lowerCAmelCase = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print('''Please provide a search term.''') raise
37
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowerCAmelCase = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
37
1
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> List[str]: SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE_ )['input_ids'] SCREAMING_SNAKE_CASE = len(example['content'] ) / len(output['input_ids'] ) return output __UpperCamelCase = HfArgumentParser(PretokenizationArguments) __UpperCamelCase = parser.parse_args() if args.num_workers is None: __UpperCamelCase = multiprocessing.cpu_count() __UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) __UpperCamelCase = time.time() __UpperCamelCase = load_dataset(args.dataset_name, split='''train''') print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') __UpperCamelCase = time.time() __UpperCamelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') __UpperCamelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
358
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''allenai/led-base-16384''': 16384, } class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Union[str, Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> List[Any]: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = 'post_processor' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['cls'] ) SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , lowerCAmelCase__ ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , lowerCAmelCase__ ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , state.pop('type' ) ) SCREAMING_SNAKE_CASE = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __A ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __A ( self , lowerCAmelCase__ ) -> int: SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value SCREAMING_SNAKE_CASE = value def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding: SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , lowerCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[int]: SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> dict: SCREAMING_SNAKE_CASE = super()._pad( encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE = len(encoded_inputs['global_attention_mask'] ) != len(lowerCAmelCase__ ) if needs_to_be_padded: SCREAMING_SNAKE_CASE = len(lowerCAmelCase__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
38
0
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Tuple =KandinskyVaaControlnetPipeline lowercase_ : Dict =['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowercase_ : str =['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowercase_ : Dict =[ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase_ : str =False @property def A__ ( self): return 3_2 @property def A__ ( self): return 3_2 @property def A__ ( self): return self.time_input_dim @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 1_0_0 @property def A__ ( self): torch.manual_seed(0) lowercase = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase = UNetaDConditionModel(**A__) return model @property def A__ ( self): return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def A__ ( self): torch.manual_seed(0) lowercase = VQModel(**self.dummy_movq_kwargs) return model def A__ ( self): lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule='''linear''' ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=A__ ,set_alpha_to_one=A__ ,steps_offset=1 ,prediction_type='''epsilon''' ,thresholding=A__ ,) lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A__ ( self ,A__ ,A__=0): lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(A__)).to(A__) lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1)).to( A__) # create hint lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(A__)).to(A__) if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def A__ ( self): lowercase = '''cpu''' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = pipe(**self.get_dummy_inputs(A__)) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(A__) ,return_dict=A__ ,)[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''') lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''') lowercase = torch.from_numpy(np.array(A__)).float() / 255.0 lowercase = hint.permute(2 ,0 ,1).unsqueeze(0) lowercase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' ,torch_dtype=torch.floataa) pipe_prior.to(A__) lowercase = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' ,torch_dtype=torch.floataa) lowercase = pipeline.to(A__) pipeline.set_progress_bar_config(disable=A__) lowercase = '''A robot, 4k photo''' lowercase = torch.Generator(device='''cuda''').manual_seed(0) lowercase , lowercase = pipe_prior( A__ ,generator=A__ ,num_inference_steps=5 ,negative_prompt='''''' ,).to_tuple() lowercase = torch.Generator(device='''cuda''').manual_seed(0) lowercase = pipeline( image_embeds=A__ ,negative_image_embeds=A__ ,hint=A__ ,generator=A__ ,num_inference_steps=1_0_0 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(A__ ,A__)
101
"""simple docstring""" from manim import * class lowercase ( __UpperCAmelCase): def a_ ( self : int ): """simple docstring""" A_ : List[str] = Rectangle(height=0.5 , width=0.5 ) A_ : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A_ : Tuple = [mem.copy() for i in range(6 )] A_ : Optional[int] = [mem.copy() for i in range(6 )] A_ : Optional[int] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Optional[int] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : List[str] = VGroup(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Dict = Text('''CPU''' , font_size=24 ) A_ : List[str] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCamelCase ) A_ : Optional[int] = [mem.copy() for i in range(1 )] A_ : int = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : List[str] = Text('''GPU''' , font_size=24 ) A_ : List[str] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) gpu.align_to(_lowerCamelCase , _lowerCamelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCamelCase ) A_ : List[Any] = [mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) A_ : Any = Text('''Model''' , font_size=24 ) A_ : Optional[int] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCamelCase , run_time=1 ) , Create(_lowerCamelCase , run_time=1 ) , Create(_lowerCamelCase , run_time=1 ) , ) A_ : List[str] = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) A_ : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ : Dict = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase , run_time=2.5 ) , Write(_lowerCamelCase ) , Write(_lowerCamelCase ) ) self.add(_lowerCamelCase ) A_ : str = [] A_ : Any = [] A_ : Tuple = [] for i, rect in enumerate(_lowerCamelCase ): A_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCamelCase , opacity=0.7 ) cpu_target.move_to(_lowerCamelCase ) cpu_target.generate_target() A_ : List[str] = 0.46 / 4 A_ : List[Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCamelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowerCamelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowerCamelCase , buff=0.0 ) cpu_targs.append(_lowerCamelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCamelCase ) ) second_animations.append(MoveToTarget(_lowerCamelCase , run_time=1.5 ) ) self.play(*_lowerCamelCase ) self.play(*_lowerCamelCase ) self.wait()
167
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" if num < 0: return False A = num A = 0 while num > 0: A = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
359
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __UpperCamelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = WavaVecaPhonemeCTCTokenizer SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ (self : Tuple): super().setUp() A = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" ") A = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE)))) A = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE) + "\n") def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[Any]=2_0 , __SCREAMING_SNAKE_CASE : Any=5): A = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE)) for i in range(len(__SCREAMING_SNAKE_CASE))] A = list(filter(lambda __SCREAMING_SNAKE_CASE: [t[0]] == tokenizer.encode(t[1] , do_phonemize=__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE)) if max_length is not None and len(__SCREAMING_SNAKE_CASE) > max_length: A = toks[:max_length] if min_length is not None and len(__SCREAMING_SNAKE_CASE) < min_length and len(__SCREAMING_SNAKE_CASE) > 0: while len(__SCREAMING_SNAKE_CASE) < min_length: A = toks + toks # toks_str = [t[1] for t in toks] A = [t[0] for t in toks] # Ensure consistency A = tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) if " " not in output_txt and len(__SCREAMING_SNAKE_CASE) > 1: A = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) ) if with_prefix_space: A = " " + output_txt A = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE) return output_txt, output_ids def SCREAMING_SNAKE_CASE__ (self : List[Any] , **__SCREAMING_SNAKE_CASE : Any): kwargs.update(self.special_tokens_map) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") # check adding a single token tokenizer.add_tokens("xxx") A = tokenizer("m xxx ɪ" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [1_3, 3_9_2, 1_7]) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"]) A = tokenizer("m aaa ɪ ccc" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [1_3, 3_9_3, 1_7, 3_9_5]) # aaa and ccc should be after xxx and 2 after aaa A = tokenizer("maɪ c" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [3, 2_0_0]) # mai should be <unk> (=3) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ h aʊ ɑːɹ j uː") def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , tokenizer(__SCREAMING_SNAKE_CASE , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids) def SCREAMING_SNAKE_CASE__ (self : Any): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : str): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7], ] A = tokenizer.decode(sample_ids[0]) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ | h aʊ | ɑːɹ | j uː |") def SCREAMING_SNAKE_CASE__ (self : str): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , tokenizer(__SCREAMING_SNAKE_CASE , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8], [tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7], ] # fmt: on # decode with word_del_token filter A = tokenizer.decode(sample_ids[0]) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) # decode with no word_del_token filter A = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"]) def SCREAMING_SNAKE_CASE__ (self : Dict): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |")]).strip() , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Dict): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=__SCREAMING_SNAKE_CASE) A = "Hello how are you" A = tokenizer(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us").input_ids A = tokenizer(__SCREAMING_SNAKE_CASE , phonemizer_lang="fr-fr").input_ids self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = tokenizer.decode(__SCREAMING_SNAKE_CASE) A = tokenizer.decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ h aʊ ɑːɹ j uː") self.assertEqual(__SCREAMING_SNAKE_CASE , "ɛ l o h aʊ a ʁ j u") def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how Are you" A = "hello how are you" A = tokenizer(__SCREAMING_SNAKE_CASE).input_ids A = tokenizer(__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") tokenizer.add_tokens(["!", "?"]) tokenizer.add_special_tokens({"cls_token": "$$$"}) # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4], ] # fmt: on A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"]) @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]): A = [d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.get_tokenizer(word_delimiter_token="|") tokenizer.add_tokens("|") # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8] # fmt: on A = tokenizer.decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys()) , 2) self.assertTrue("text" in outputs) self.assertTrue("char_offsets" in outputs) self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char")) , outputs.text) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "char") , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"]) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "start_offset") , [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6]) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "end_offset") , [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7]) def SCREAMING_SNAKE_CASE__ (self : Any): A = self.get_tokenizer(word_delimiter_token="|") def check_list_tuples_equal(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any]): self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) self.assertTrue(isinstance(outputs_list[0] , __SCREAMING_SNAKE_CASE)) # transform list to ModelOutput A = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]}) self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"]) def recursive_check(__SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): [recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for la, la in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"]) # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4], [2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE) A = [tokenizer.decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE) for ids in sample_ids] check_list_tuples_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes") def SCREAMING_SNAKE_CASE__ (self : Optional[int]): pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes") def SCREAMING_SNAKE_CASE__ (self : Dict): pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency") def SCREAMING_SNAKE_CASE__ (self : str): pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing") def SCREAMING_SNAKE_CASE__ (self : Optional[int]): pass def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.get_tokenizers(do_lower_case=__SCREAMING_SNAKE_CASE) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A = ["aaaaa bbbbbb", "cccccccccdddddddd"] A = tokenizer.add_tokens(__SCREAMING_SNAKE_CASE) A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE)) self.assertEqual(__SCREAMING_SNAKE_CASE , all_size + len(__SCREAMING_SNAKE_CASE)) A = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__SCREAMING_SNAKE_CASE) self.assertGreaterEqual(len(__SCREAMING_SNAKE_CASE) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) A = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} A = tokenizer.add_special_tokens(__SCREAMING_SNAKE_CASE) A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE)) self.assertEqual(__SCREAMING_SNAKE_CASE , all_size_a + len(__SCREAMING_SNAKE_CASE)) A = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__SCREAMING_SNAKE_CASE) self.assertGreaterEqual(len(__SCREAMING_SNAKE_CASE) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def SCREAMING_SNAKE_CASE__ (self : List[str]): pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def SCREAMING_SNAKE_CASE__ (self : List[Any]): pass def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. A = self.get_tokenizers(fast=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): A = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] A = tokenizer.convert_tokens_to_string(__SCREAMING_SNAKE_CASE) self.assertIsInstance(output["text"] , __SCREAMING_SNAKE_CASE)
57
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class SCREAMING_SNAKE_CASE__ ( a__ ): _a = 'decision_transformer' _a = ['past_key_values'] _a = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : str , lowerCAmelCase : str=17 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : Any=128 , lowerCAmelCase : List[str]=4096 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : List[Any]=1024 , lowerCAmelCase : Any=3 , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any="relu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : Tuple=1e-5 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]=5_0256 , lowerCAmelCase : List[Any]=5_0256 , lowerCAmelCase : int=False , lowerCAmelCase : List[str]=False , **lowerCAmelCase : str , ): lowerCAmelCase = state_dim lowerCAmelCase = act_dim lowerCAmelCase = hidden_size lowerCAmelCase = max_ep_len lowerCAmelCase = action_tanh lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = scale_attn_weights lowerCAmelCase = use_cache lowerCAmelCase = scale_attn_by_inverse_layer_idx lowerCAmelCase = reorder_and_upcast_attn lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
155
"""simple docstring""" def _snake_case ( _snake_case : int ): if not isinstance(_snake_case , _snake_case ): raise TypeError('''only integers accepted as input''' ) else: lowerCAmelCase : List[str] = str(abs(_snake_case ) ) lowerCAmelCase : Optional[Any] = [list(_snake_case ) for char in range(len(_snake_case ) )] for index in range(len(_snake_case ) ): num_transpositions[index].pop(_snake_case ) return max( int(''''''.join(list(_snake_case ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
60
0
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = ComputeEnvironment.AMAZON_SAGEMAKER A : int = True A : Dict = 'ml.p3.2xlarge' A : Tuple = 'accelerate_sagemaker_execution_role' A : Optional[Any] = 'hf-sm' A : Tuple = 'us-east-1' A : Any = 1 A : Optional[Any] = 'accelerate-sagemaker-1' A : Dict = '1.6' A : int = '4.4' A : Tuple = 'train.py' A : List[str] = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] A : Optional[int] = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[Any]: # If no defaults are changed, `to_kwargs` returns an empty dict. snake_case_ : int = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args["do_train"] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args["epochs"] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args["learning_rate"] , _SCREAMING_SNAKE_CASE ) assert isinstance(converted_args["max_steps"] , _SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
368
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase__ ( _a : str ): snake_case_ : str = FileLock(str(tmpdir / "foo.lock" ) ) snake_case_ : Optional[Any] = FileLock(str(tmpdir / "foo.lock" ) ) snake_case_ : Any = 0.01 with locka.acquire(): with pytest.raises(_a ): snake_case_ : Optional[int] = time.time() locka.acquire(_a ) assert time.time() - _start > timeout def lowerCAmelCase__ ( _a : Union[str, Any] ): snake_case_ : List[str] = "a" * 10_00 + ".lock" snake_case_ : Optional[int] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(_a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 snake_case_ : int = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_a ): locka.acquire(0 )
36
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''') A__ = BertTokenizer.from_pretrained('''bert-base-uncased''') A__ = bertabert.config.encoder.vocab_size A__ = tokenizer.sep_token_id A__ = tokenizer.cls_token_id A__ = 128 A__ = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''') A__ = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''') A__ = train_dataset.select(range(32)) A__ = val_dataset.select(range(16)) A__ = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase__ : List[str]): # Tokenizer will automatically set [BOS] <text> [EOS] A__ = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=UpperCAmelCase__ , max_length=512) A__ = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=UpperCAmelCase__ , max_length=128) A__ = inputs.input_ids A__ = inputs.attention_mask A__ = outputs.input_ids A__ = outputs.input_ids.copy() A__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] A__ = outputs.attention_mask assert all(len(UpperCAmelCase__) == 512 for x in inputs.input_ids) assert all(len(UpperCAmelCase__) == 128 for x in outputs.input_ids) return batch def _compute_metrics(UpperCAmelCase__ : Tuple): A__ = pred.label_ids A__ = pred.predictions # all unnecessary tokens are removed A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = sum([int(pred_str[i] == label_str[i]) for i in range(len(UpperCAmelCase__))]) / len(UpperCAmelCase__) return {"accuracy": accuracy} # map train dataset A__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset A__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) A__ = self.get_auto_remove_tmp_dir() A__ = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase__ , per_device_train_batch_size=UpperCAmelCase__ , per_device_eval_batch_size=UpperCAmelCase__ , predict_with_generate=UpperCAmelCase__ , evaluation_strategy='''steps''' , do_train=UpperCAmelCase__ , do_eval=UpperCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer A__ = SeqaSeqTrainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , ) # start training trainer.train()
14
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowercase : Optional[Any] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") lowercase : Tuple = parser.parse_args() lowercase : Optional[int] = "cpu" lowercase : Optional[Any] = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" lowercase : Optional[int] = "path-to-your-trained-model" lowercase : List[str] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowercase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowercase : Dict = pipe.to(device) # to channels last lowercase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) lowercase : int = pipe.vae.to(memory_format=torch.channels_last) lowercase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowercase : Optional[int] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowercase : Any = torch.randn(2, 4, 64, 64) lowercase : Optional[int] = torch.rand(1) * 999 lowercase : Optional[Any] = torch.randn(2, 77, 768) lowercase : Optional[Any] = (sample, timestep, encoder_hidden_status) try: lowercase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowercase : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowercase : Tuple = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowercase : Optional[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowercase : Tuple = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowercase : List[str] = 666 lowercase : Tuple = torch.Generator(device).manual_seed(seed) lowercase : Union[str, Any] = {"generator": generator} if args.steps is not None: lowercase : Dict = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowercase : List[str] = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
42
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowerCamelCase : Optional[int] = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' _lowerCamelCase : Dict = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' _lowerCamelCase : Optional[int] = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def A ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def A ( self : Union[str, Any] , lowercase : List[str] , lowercase : List[str] , lowercase : Any=4 , lowercase : Optional[Any]=False ): '''simple docstring''' _snake_case = compute_bleu( reference_corpus=lowercase , translation_corpus=lowercase , max_order=lowercase , smooth=lowercase ) ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
130
from __future__ import annotations _lowerCamelCase : Optional[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowerCamelCase : Optional[int] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a_ ( __lowercase : list[float] ) -> list[float]: _snake_case = [] _snake_case = len(__lowercase ) for i in range(__lowercase ): _snake_case = -1 for j in range(i + 1 , __lowercase ): if arr[i] < arr[j]: _snake_case = arr[j] break result.append(__lowercase ) return result def a_ ( __lowercase : list[float] ) -> list[float]: _snake_case = [] for i, outer in enumerate(__lowercase ): _snake_case = -1 for inner in arr[i + 1 :]: if outer < inner: _snake_case = inner break result.append(__lowercase ) return result def a_ ( __lowercase : list[float] ) -> list[float]: _snake_case = len(__lowercase ) _snake_case = [] _snake_case = [-1] * arr_size for index in reversed(range(__lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _snake_case = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowerCamelCase : Union[str, Any] = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
130
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : str = torch.nn.Linear(2 , 4 ) UpperCAmelCase_ : Tuple = torch.optim.AdamW(model.parameters() , lr=1.0 ) UpperCAmelCase_ : List[Any] = torch.optim.lr_scheduler.OneCycleLR(__snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) UpperCAmelCase_ : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) UpperCAmelCase_ : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__snake_case ) class lowerCamelCase (_snake_case ): '''simple docstring''' @require_cuda def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_UpperCamelCase ): UpperCAmelCase_ : List[str] = Accelerator(cpu=_UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Optional[int] = Accelerator() UpperCAmelCase_ : Dict = GradientState() assert state.num_steps == 1 UpperCAmelCase_ : Any = 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCAmelCase_ : Tuple = False assert state.sync_gradients is False GradientState._reset_state() def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = create_components() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Any = accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : List[str] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = create_components() accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __UpperCAmelCase ( self ) -> Tuple: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_UpperCamelCase , **_UpperCamelCase ): pass with patch('torch.cuda.set_device' , _UpperCamelCase ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): UpperCAmelCase_ : Any = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Tuple = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = create_components() accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = get_signature(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCamelCase ) # make sure random weights don't match load_random_weights(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) < 1E-3 ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = create_components() accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = get_signature(_UpperCamelCase ) # saving hook def save_config(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : str = {'class_name': models[0].__class__.__name__} with open(os.path.join(_UpperCamelCase , 'data.json' ) , 'w' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) # loading hook def load_config(_UpperCamelCase , _UpperCamelCase ): with open(os.path.join(_UpperCamelCase , 'data.json' ) , 'r' ) as f: UpperCAmelCase_ : Optional[Any] = json.load(_UpperCamelCase ) UpperCAmelCase_ : str = config['class_name'] UpperCAmelCase_ : Union[str, Any] = accelerator.register_save_state_pre_hook(_UpperCamelCase ) UpperCAmelCase_ : Any = accelerator.register_load_state_pre_hook(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCamelCase ) # make sure random weights don't match with hooks load_random_weights(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase_ : List[str] = 'random' # make sure loaded weights match with hooks accelerator.load_state(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCamelCase ) # make sure random weights don't match with hooks removed load_random_weights(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCAmelCase_ : Union[str, Any] = 'random' # make sure loaded weights match with hooks removed accelerator.load_state(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Optional[int] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = create_components() UpperCAmelCase_ : Tuple = None # This should work UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertTrue(dummy_obj is None ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : List[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = create_components() UpperCAmelCase_ : List[Any] = [1, 2, 3] # This should work UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertEqual( getattr(_UpperCamelCase , '_is_accelerate_prepared' , _UpperCamelCase ) , _UpperCamelCase , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(_UpperCamelCase , '_is_accelerate_prepared' , _UpperCamelCase ) , _UpperCamelCase , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(_UpperCamelCase , '_is_accelerate_prepared' , _UpperCamelCase ) , _UpperCamelCase , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(_UpperCamelCase , '_is_accelerate_prepared' , _UpperCamelCase ) , _UpperCamelCase , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(_UpperCamelCase , '_is_accelerate_prepared' , _UpperCamelCase ) , _UpperCamelCase , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(_UpperCamelCase , '_is_accelerate_prepared' , _UpperCamelCase ) , _UpperCamelCase , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def __UpperCAmelCase ( self ) -> Dict: from transformers import AutoModelForCausalLM UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=_UpperCamelCase , device_map={'': 0} , ) UpperCAmelCase_ : List[str] = Accelerator() # This should work UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(_UpperCamelCase ) @slow @require_bnb def __UpperCAmelCase ( self ) -> Any: from transformers import AutoModelForCausalLM UpperCAmelCase_ : Optional[int] = Accelerator() with init_empty_weights(): UpperCAmelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() UpperCAmelCase_ : Any = infer_auto_device_map(_UpperCamelCase ) UpperCAmelCase_ : int = 'cpu' UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=_UpperCamelCase , load_in_abit=_UpperCamelCase , llm_inta_enable_fpaa_cpu_offload=_UpperCamelCase ) # This should not work and get value error with self.assertRaises(_UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = accelerator.prepare(_UpperCamelCase ) @slow @require_bnb @require_multi_gpu def __UpperCAmelCase ( self ) -> Optional[Any]: from transformers import AutoModelForCausalLM UpperCAmelCase_ : List[Any] = {'distributed_type': DistributedType.MULTI_GPU} with init_empty_weights(): UpperCAmelCase_ : List[str] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() UpperCAmelCase_ : Optional[Any] = infer_auto_device_map(_UpperCamelCase ) UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=_UpperCamelCase , device_map=_UpperCamelCase , ) UpperCAmelCase_ : str = Accelerator() # This should not work and get value error with self.assertRaises(_UpperCamelCase ): UpperCAmelCase_ : str = accelerator.prepare(_UpperCamelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __UpperCAmelCase ( self ) -> Tuple: from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCAmelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) UpperCAmelCase_ : Tuple = infer_auto_device_map(_UpperCamelCase ) UpperCAmelCase_ : int = 1 UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=_UpperCamelCase , device_map=_UpperCamelCase , ) UpperCAmelCase_ : int = Accelerator() # This should work UpperCAmelCase_ : Any = accelerator.prepare(_UpperCamelCase ) @require_cuda def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = torch.nn.Linear(1_0 , 1_0 ) UpperCAmelCase_ : Dict = torch.optim.SGD(model.parameters() , lr=0.01 ) UpperCAmelCase_ : Any = Accelerator(cpu=_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(_UpperCamelCase )
29
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
38
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : int = "vit" def __init__( self : Any , _lowerCAmelCase : Optional[int]=7_68 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : Dict=12 , _lowerCAmelCase : int=30_72 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : str=1e-12 , _lowerCAmelCase : int=2_24 , _lowerCAmelCase : int=16 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Any=16 , **_lowerCAmelCase : Dict , ): super().__init__(**_lowerCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : Tuple = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : str = image_size __snake_case : str = patch_size __snake_case : Optional[Any] = num_channels __snake_case : List[Any] = qkv_bias __snake_case : Dict = encoder_stride class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : str = version.parse("1.11" ) @property def snake_case__ ( self : Optional[int] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case__ ( self : Optional[Any] ): return 1e-4
20
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def snake_case__ ( self : Any ): __snake_case : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __snake_case : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : List[str] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __snake_case : str = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : Any = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) # load decoder from hub __snake_case : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def snake_case__ ( self : Optional[Any] , **_lowerCAmelCase : Tuple ): __snake_case : int = self.add_kwargs_tokens_map.copy() kwargs.update(_lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , **_lowerCAmelCase : Optional[int] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case__ ( self : Dict , **_lowerCAmelCase : Tuple ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_lowerCAmelCase ) def snake_case__ ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : Union[str, Any] ): __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : Tuple = self.get_feature_extractor() __snake_case : Dict = self.get_decoder() __snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : Tuple = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def snake_case__ ( self : int ): __snake_case : Tuple = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(_lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=_lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def snake_case__ ( self : Dict ): __snake_case : int = self.get_feature_extractor() __snake_case : str = self.get_tokenizer() __snake_case : Dict = self.get_decoder() __snake_case : Any = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : List[Any] = floats_list((3, 10_00) ) __snake_case : Optional[Any] = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Tuple = processor(_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self : Optional[int] ): __snake_case : Any = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = """This is a test string""" __snake_case : Union[str, Any] = processor(text=_lowerCAmelCase ) __snake_case : Dict = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[Any]=(2, 10, 16) , _lowerCAmelCase : str=77 ): np.random.seed(_lowerCAmelCase ) return np.random.rand(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[str] = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[str] = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case : int = processor.decode(_lowerCAmelCase ) __snake_case : Optional[int] = decoder.decode_beams(_lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def snake_case__ ( self : List[str] , _lowerCAmelCase : List[str] ): __snake_case : int = self.get_feature_extractor() __snake_case : Union[str, Any] = self.get_tokenizer() __snake_case : int = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case : Tuple = processor.batch_decode(_lowerCAmelCase ) else: with get_context(_lowerCAmelCase ).Pool() as pool: __snake_case : int = processor.batch_decode(_lowerCAmelCase , _lowerCAmelCase ) __snake_case : int = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: __snake_case : Tuple = decoder.decode_beams_batch(_lowerCAmelCase , _lowerCAmelCase ) __snake_case , __snake_case , __snake_case : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(_lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_lowerCAmelCase , decoded_processor.lm_score ) def snake_case__ ( self : Optional[int] ): __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : int = self.get_tokenizer() __snake_case : str = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : int = self._get_dummy_logits() __snake_case : List[str] = 15 __snake_case : Optional[Any] = -20.0 __snake_case : Tuple = -4.0 __snake_case : List[Any] = processor.batch_decode( _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : List[str] = decoded_processor_out.text __snake_case : str = list(_lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: __snake_case : Dict = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , beam_width=_lowerCAmelCase , beam_prune_logp=_lowerCAmelCase , token_min_logp=_lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][2] for d in decoded_decoder_out] __snake_case : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , _lowerCAmelCase ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _lowerCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , _lowerCAmelCase , atol=1e-3 ) ) def snake_case__ ( self : Any ): __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : Dict = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) __snake_case : Any = self._get_dummy_logits() __snake_case : Any = 2.0 __snake_case : int = 5.0 __snake_case : Optional[int] = -20.0 __snake_case : Optional[int] = True __snake_case : Any = processor.batch_decode( _lowerCAmelCase , alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) __snake_case : str = decoded_processor_out.text __snake_case : int = list(_lowerCAmelCase ) decoder.reset_params( alpha=_lowerCAmelCase , beta=_lowerCAmelCase , unk_score_offset=_lowerCAmelCase , lm_score_boundary=_lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: __snake_case : Tuple = decoder.decode_beams_batch( _lowerCAmelCase , _lowerCAmelCase , ) __snake_case : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , _lowerCAmelCase ) __snake_case : List[str] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : Union[str, Any] = os.listdir(_lowerCAmelCase ) __snake_case : List[str] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __snake_case : Dict = WavaVecaProcessorWithLM.from_pretrained(_lowerCAmelCase ) __snake_case : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __snake_case : List[str] = os.listdir(_lowerCAmelCase ) __snake_case : List[Any] = os.listdir(_lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Optional[Any] ): __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : str = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = floats_list((3, 10_00) ) __snake_case : Union[str, Any] = processor_wavaveca(_lowerCAmelCase , return_tensors="""np""" ) __snake_case : Union[str, Any] = processor_auto(_lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case : Dict = self._get_dummy_logits() __snake_case : List[Any] = processor_wavaveca.batch_decode(_lowerCAmelCase ) __snake_case : List[Any] = processor_auto.batch_decode(_lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def snake_case__ ( self : str ): __snake_case : int = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , decoder=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def snake_case__ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ): __snake_case : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def snake_case__ ( self : Dict ): __snake_case : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : List[str] = self._get_dummy_logits()[0] __snake_case : str = processor.decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def snake_case__ ( self : List[str] ): __snake_case : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __snake_case : Optional[int] = self._get_dummy_logits() __snake_case : int = processor.batch_decode(_lowerCAmelCase , output_word_offsets=_lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def snake_case__ ( self : Optional[Any] ): import torch __snake_case : Optional[Any] = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=_lowerCAmelCase ) __snake_case : Any = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) __snake_case : List[Any] = iter(_lowerCAmelCase ) __snake_case : Optional[int] = next(_lowerCAmelCase ) __snake_case : str = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __snake_case : str = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case : List[str] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __snake_case : Dict = model(_lowerCAmelCase ).logits.cpu().numpy() __snake_case : Any = processor.decode(logits[0] , output_word_offsets=_lowerCAmelCase ) __snake_case : Optional[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case : Dict = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __snake_case : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , _lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(_lowerCAmelCase , """word""" ) ) , output.text ) # output times __snake_case : Dict = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """start_time""" ) ) __snake_case : Optional[Any] = torch.tensor(self.get_from_offsets(_lowerCAmelCase , """end_time""" ) ) # fmt: off __snake_case : Optional[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __snake_case : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=0.01 ) )
20
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
140
"""simple docstring""" def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = 1 while len(_UpperCamelCase ) < 1e6: constant.append(str(_UpperCamelCase ) ) i += 1 __lowerCAmelCase = "".join(_UpperCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
57
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''MCTCTFeatureExtractor''' lowerCamelCase_ = '''AutoTokenizer''' def __init__( self , lowercase , lowercase ): """simple docstring""" super().__init__(lowercase , lowercase ) A_ : Dict = self.feature_extractor A_ : Tuple = False def __call__( self , *lowercase , **lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A_ : str = kwargs.pop('raw_speech' ) else: A_ : List[str] = kwargs.pop('audio' , lowercase ) A_ : List[Any] = kwargs.pop('sampling_rate' , lowercase ) A_ : str = kwargs.pop('text' , lowercase ) if len(lowercase ) > 0: A_ : str = args[0] A_ : Tuple = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A_ : Optional[int] = self.feature_extractor(lowercase , *lowercase , sampling_rate=lowercase , **lowercase ) if text is not None: A_ : List[Any] = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif audio is None: return encodings else: A_ : Tuple = encodings['input_ids'] return inputs def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowercase , **lowercase ) A_ : Optional[int] = kwargs.pop('input_features' , lowercase ) A_ : List[Any] = kwargs.pop('labels' , lowercase ) if len(lowercase ) > 0: A_ : str = args[0] A_ : Union[str, Any] = args[1:] if input_features is not None: A_ : List[Any] = self.feature_extractor.pad(lowercase , *lowercase , **lowercase ) if labels is not None: A_ : List[str] = self.tokenizer.pad(lowercase , **lowercase ) if labels is None: return input_features elif input_features is None: return labels else: A_ : int = labels['input_ids'] return input_features def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" return self.tokenizer.decode(*lowercase , **lowercase ) @contextmanager def lowerCAmelCase_ ( self ): """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A_ : Optional[int] = True A_ : str = self.tokenizer yield A_ : Any = self.feature_extractor A_ : Dict = False
192
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : int = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : Optional[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = self.dummy_uncond_unet A_ : List[Any] = DDIMScheduler() A_ : Any = self.dummy_vq_model A_ : int = LDMPipeline(unet=lowercase , vqvae=lowercase , scheduler=lowercase ) ldm.to(lowercase ) ldm.set_progress_bar_config(disable=lowercase ) A_ : Any = torch.manual_seed(0 ) A_ : Dict = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' ).images A_ : Any = torch.manual_seed(0 ) A_ : List[str] = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase )[0] A_ : Union[str, Any] = image[0, -3:, -3:, -1] A_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) A_ : List[str] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) A_ : str = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(lowercase ) ldm.set_progress_bar_config(disable=lowercase ) A_ : Any = torch.manual_seed(0 ) A_ : List[str] = ldm(generator=lowercase , num_inference_steps=5 , output_type='numpy' ).images A_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) A_ : Tuple = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) A_ : Dict = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
192
1