code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = BlipImageProcessor() _UpperCAmelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) _UpperCAmelCase = BlipProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def UpperCamelCase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _UpperCAmelCase = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) _UpperCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(UpperCAmelCase , return_tensors='np' ) _UpperCAmelCase = processor(images=UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = processor(text=UpperCAmelCase ) _UpperCAmelCase = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(UpperCAmelCase ) _UpperCAmelCase = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
39
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
1
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
356
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ): '''simple docstring''' UpperCamelCase : List[str] = args.log_outputs UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric UpperCamelCase : List[Any] = load_metric("""wer""" ) UpperCamelCase : Any = load_metric("""cer""" ) # compute metrics UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) # print & log results UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case_ ) with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt' UpperCamelCase : str = f'log_{dataset_id}_targets.txt' with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ): p.write(f'{i}' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f'{i}' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(snake_case_ ,with_indices=snake_case_ ) def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) ) return text def A_ ( snake_case_ : str ): '''simple docstring''' # load dataset UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase : Dict = feature_extractor.sampling_rate # resample audio UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: UpperCamelCase : int = 0 if torch.cuda.is_available() else -1 UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Union[str, Any] ): UpperCamelCase : List[Any] = asr( batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s ) UpperCamelCase : Union[str, Any] = prediction["""text"""] UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ ,snake_case_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) __A : Optional[Any] = parser.parse_args() main(args)
27
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case__ : int = logging.get_logger(__name__) snake_case__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : int = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } snake_case__ : Any = { '''bert-base-uncased''': 512, '''bert-large-uncased''': 512, '''bert-base-cased''': 512, '''bert-large-cased''': 512, '''bert-base-multilingual-uncased''': 512, '''bert-base-multilingual-cased''': 512, '''bert-base-chinese''': 512, '''bert-base-german-cased''': 512, '''bert-large-uncased-whole-word-masking''': 512, '''bert-large-cased-whole-word-masking''': 512, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 512, '''bert-large-cased-whole-word-masking-finetuned-squad''': 512, '''bert-base-cased-finetuned-mrpc''': 512, '''bert-base-german-dbmdz-cased''': 512, '''bert-base-german-dbmdz-uncased''': 512, '''TurkuNLP/bert-base-finnish-cased-v1''': 512, '''TurkuNLP/bert-base-finnish-uncased-v1''': 512, '''wietsedv/bert-base-dutch-cased''': 512, } snake_case__ : Tuple = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = BertTokenizer def __init__( self : Any , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple="[UNK]" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : List[str]="[PAD]" , UpperCamelCase_ : List[Any]="[CLS]" , UpperCamelCase_ : str="[MASK]" , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Tuple , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase : Optional[Any] = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase : List[Any] = do_lower_case lowerCAmelCase : Optional[Any] = strip_accents lowerCAmelCase : Tuple = tokenize_chinese_chars lowerCAmelCase : int = normalizer_class(**UpperCamelCase_ ) lowerCAmelCase : Tuple = do_lower_case def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int=None ): lowerCAmelCase : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): lowerCAmelCase : int = [self.sep_token_id] lowerCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): lowerCAmelCase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
60
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[Any] = ['''image_processor''', '''tokenizer'''] _UpperCAmelCase : Union[str, Any] = '''Pix2StructImageProcessor''' _UpperCAmelCase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int): __lowerCamelCase : List[Any] = False super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def __call__( self : str ,SCREAMING_SNAKE_CASE__ : Any=None ,SCREAMING_SNAKE_CASE__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False ,SCREAMING_SNAKE_CASE__ : Union[bool, str, TruncationStrategy] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[int] = 2_0_4_8 ,SCREAMING_SNAKE_CASE__ : int = 0 ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,**SCREAMING_SNAKE_CASE__ : Dict ,): if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None and not self.image_processor.is_vqa: __lowerCamelCase : Tuple = self.tokenizer __lowerCamelCase : Dict = self.tokenizer( text=SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE__ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE__ ,return_offsets_mapping=SCREAMING_SNAKE_CASE__ ,return_token_type_ids=SCREAMING_SNAKE_CASE__ ,return_length=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __lowerCamelCase : List[Any] = self.image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,max_patches=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) else: # add pixel_values and bbox __lowerCamelCase : List[Any] = self.image_processor( SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,max_patches=SCREAMING_SNAKE_CASE__ ,header_text=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) if text is not None and not self.image_processor.is_vqa: __lowerCamelCase : List[Any] = self.tokenizer( text=SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,max_length=SCREAMING_SNAKE_CASE__ ,stride=SCREAMING_SNAKE_CASE__ ,pad_to_multiple_of=SCREAMING_SNAKE_CASE__ ,return_attention_mask=SCREAMING_SNAKE_CASE__ ,return_overflowing_tokens=SCREAMING_SNAKE_CASE__ ,return_special_tokens_mask=SCREAMING_SNAKE_CASE__ ,return_offsets_mapping=SCREAMING_SNAKE_CASE__ ,return_token_type_ids=SCREAMING_SNAKE_CASE__ ,return_length=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) if "attention_mask" in text_encoding: __lowerCamelCase : List[Any] = text_encoding.pop('attention_mask') if "input_ids" in text_encoding: __lowerCamelCase : Dict = text_encoding.pop('input_ids') else: __lowerCamelCase : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(SCREAMING_SNAKE_CASE__) return encoding_image_processor def lowerCAmelCase ( self : Dict ,*SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : int): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Dict): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) @property def lowerCAmelCase ( self : int): __lowerCamelCase : Dict = self.tokenizer.model_input_names __lowerCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
73
0
'''simple docstring''' SCREAMING_SNAKE_CASE_: int =[ 9_99, 8_00, 7_99, 6_00, 5_99, 5_00, 4_00, 3_99, 3_77, 3_55, 3_33, 3_11, 2_88, 2_66, 2_44, 2_22, 2_00, 1_99, 1_77, 1_55, 1_33, 1_11, 88, 66, 44, 22, 0, ] SCREAMING_SNAKE_CASE_: Union[str, Any] =[ 9_99, 9_76, 9_52, 9_28, 9_05, 8_82, 8_58, 8_57, 8_10, 7_62, 7_15, 7_14, 5_72, 4_29, 4_28, 2_86, 2_85, 2_38, 1_90, 1_43, 1_42, 1_18, 95, 71, 47, 24, 0, ] SCREAMING_SNAKE_CASE_: Optional[int] =[ 9_99, 9_88, 9_77, 9_66, 9_55, 9_44, 9_33, 9_22, 9_11, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_50, 3_00, 2_99, 2_66, 2_33, 2_00, 1_99, 1_79, 1_59, 1_40, 1_20, 1_00, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] SCREAMING_SNAKE_CASE_: str =[ 9_99, 9_95, 9_92, 9_89, 9_85, 9_81, 9_78, 9_75, 9_71, 9_67, 9_64, 9_61, 9_57, 9_56, 9_51, 9_47, 9_42, 9_37, 9_33, 9_28, 9_23, 9_19, 9_14, 9_13, 9_08, 9_03, 8_97, 8_92, 8_87, 8_81, 8_76, 8_71, 8_70, 8_64, 8_58, 8_52, 8_46, 8_40, 8_34, 8_28, 8_27, 8_20, 8_13, 8_06, 7_99, 7_92, 7_85, 7_84, 7_77, 7_70, 7_63, 7_56, 7_49, 7_42, 7_41, 7_33, 7_24, 7_16, 7_07, 6_99, 6_98, 6_88, 6_77, 6_66, 6_56, 6_55, 6_45, 6_34, 6_23, 6_13, 6_12, 5_98, 5_84, 5_70, 5_69, 5_55, 5_41, 5_27, 5_26, 5_05, 4_84, 4_83, 4_62, 4_40, 4_39, 3_96, 3_95, 3_52, 3_51, 3_08, 3_07, 2_64, 2_63, 2_20, 2_19, 1_76, 1_32, 88, 44, 0, ] SCREAMING_SNAKE_CASE_: int =[ 9_99, 9_97, 9_95, 9_92, 9_90, 9_88, 9_86, 9_84, 9_81, 9_79, 9_77, 9_75, 9_72, 9_70, 9_68, 9_66, 9_64, 9_61, 9_59, 9_57, 9_56, 9_54, 9_51, 9_49, 9_46, 9_44, 9_41, 9_39, 9_36, 9_34, 9_31, 9_29, 9_26, 9_24, 9_21, 9_19, 9_16, 9_14, 9_13, 9_10, 9_07, 9_05, 9_02, 8_99, 8_96, 8_93, 8_91, 8_88, 8_85, 8_82, 8_79, 8_77, 8_74, 8_71, 8_70, 8_67, 8_64, 8_61, 8_58, 8_55, 8_52, 8_49, 8_46, 8_43, 8_40, 8_37, 8_34, 8_31, 8_28, 8_27, 8_24, 8_21, 8_17, 8_14, 8_11, 8_08, 8_04, 8_01, 7_98, 7_95, 7_91, 7_88, 7_85, 7_84, 7_80, 7_77, 7_74, 7_70, 7_66, 7_63, 7_60, 7_56, 7_52, 7_49, 7_46, 7_42, 7_41, 7_37, 7_33, 7_30, 7_26, 7_22, 7_18, 7_14, 7_10, 7_07, 7_03, 6_99, 6_98, 6_94, 6_90, 6_85, 6_81, 6_77, 6_73, 6_69, 6_64, 6_60, 6_56, 6_55, 6_50, 6_46, 6_41, 6_36, 6_32, 6_27, 6_22, 6_18, 6_13, 6_12, 6_07, 6_02, 5_96, 5_91, 5_86, 5_80, 5_75, 5_70, 5_69, 5_63, 5_57, 5_51, 5_45, 5_39, 5_33, 5_27, 5_26, 5_19, 5_12, 5_05, 4_98, 4_91, 4_84, 4_83, 4_74, 4_66, 4_57, 4_49, 4_40, 4_39, 4_28, 4_18, 4_07, 3_96, 3_95, 3_81, 3_66, 3_52, 3_51, 3_30, 3_08, 3_07, 2_86, 2_64, 2_63, 2_42, 2_20, 2_19, 1_76, 1_75, 1_32, 1_31, 88, 44, 0, ] SCREAMING_SNAKE_CASE_: Optional[Any] =[ 9_99, 9_91, 9_82, 9_74, 9_66, 9_58, 9_50, 9_41, 9_33, 9_25, 9_16, 9_08, 9_00, 8_99, 8_74, 8_50, 8_25, 8_00, 7_99, 7_00, 6_00, 5_00, 4_00, 3_00, 2_00, 1_00, 0, ] SCREAMING_SNAKE_CASE_: Optional[int] =[ 9_99, 9_92, 9_85, 9_78, 9_71, 9_64, 9_57, 9_49, 9_42, 9_35, 9_28, 9_21, 9_14, 9_07, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_00, 2_99, 2_00, 1_99, 1_00, 99, 0, ] SCREAMING_SNAKE_CASE_: Tuple =[ 9_99, 9_96, 9_92, 9_89, 9_85, 9_82, 9_79, 9_75, 9_72, 9_68, 9_65, 9_61, 9_58, 9_55, 9_51, 9_48, 9_44, 9_41, 9_38, 9_34, 9_31, 9_27, 9_24, 9_20, 9_17, 9_14, 9_10, 9_07, 9_03, 9_00, 8_99, 8_91, 8_84, 8_76, 8_69, 8_61, 8_53, 8_46, 8_38, 8_30, 8_23, 8_15, 8_08, 8_00, 7_99, 7_88, 7_77, 7_66, 7_55, 7_44, 7_33, 7_22, 7_11, 7_00, 6_99, 6_88, 6_77, 6_66, 6_55, 6_44, 6_33, 6_22, 6_11, 6_00, 5_99, 5_85, 5_71, 5_57, 5_42, 5_28, 5_14, 5_00, 4_99, 4_85, 4_71, 4_57, 4_42, 4_28, 4_14, 4_00, 3_99, 3_79, 3_59, 3_40, 3_20, 3_00, 2_99, 2_79, 2_59, 2_40, 2_20, 2_00, 1_99, 1_66, 1_33, 1_00, 99, 66, 33, 0, ]
367
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCAmelCase_ = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): UpperCAmelCase_ = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def lowerCAmelCase_ ( snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = "a" * 10_00 + ".lock" UpperCAmelCase_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 UpperCAmelCase_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
106
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=2 , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=10 , UpperCamelCase=3 , UpperCamelCase=32 * 8 , UpperCamelCase=32 * 8 , UpperCamelCase=4 , UpperCamelCase=64 , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = is_training lowerCamelCase_ = use_auxiliary_loss lowerCamelCase_ = num_queries lowerCamelCase_ = num_channels lowerCamelCase_ = min_size lowerCamelCase_ = max_size lowerCamelCase_ = num_labels lowerCamelCase_ = hidden_dim lowerCamelCase_ = hidden_dim def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCamelCase ) lowerCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase ) lowerCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase ) > 0.5 ).float() lowerCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase ) > 0.5).long() lowerCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def snake_case ( self ): """simple docstring""" lowerCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCamelCase_ = self.num_queries lowerCamelCase_ = self.num_labels lowerCamelCase_ = [1, 1, 1, 1] lowerCamelCase_ = self.num_channels lowerCamelCase_ = 64 lowerCamelCase_ = 128 lowerCamelCase_ = self.hidden_dim lowerCamelCase_ = self.hidden_dim lowerCamelCase_ = self.hidden_dim return config def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = output.encoder_hidden_states lowerCamelCase_ = output.pixel_decoder_hidden_states lowerCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase ) , config.decoder_layers ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" with torch.no_grad(): lowerCamelCase_ = MaskaFormerModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , output_hidden_states=UpperCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = MaskaFormerForUniversalSegmentation(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() def comm_check_on_output(UpperCamelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCamelCase_ = model(pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase ) comm_check_on_output(UpperCamelCase ) lowerCamelCase_ = model( pixel_values=UpperCamelCase , pixel_mask=UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase ) comm_check_on_output(UpperCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowerCamelCase = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = MaskaFormerModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCamelCase , **UpperCamelCase , output_hidden_states=UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*UpperCamelCase ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="Mask2Former is not a generative model" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def snake_case ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCamelCase_ = MaskaFormerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = (self.model_tester.min_size,) * 2 lowerCamelCase_ = { "pixel_values": torch.randn((2, 3, *size) , device=UpperCamelCase ), "mask_labels": torch.randn((2, 10, *size) , device=UpperCamelCase ), "class_labels": torch.zeros(2 , 10 , device=UpperCamelCase ).long(), } lowerCamelCase_ = self.model_tester.get_config() lowerCamelCase_ = MaskaFormerForUniversalSegmentation(UpperCamelCase ).to(UpperCamelCase ) lowerCamelCase_ = model(**UpperCamelCase ) self.assertTrue(outputs.loss is not None ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(UpperCamelCase , **UpperCamelCase , output_hidden_states=UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ).to(UpperCamelCase ) lowerCamelCase_ = model(**UpperCamelCase , output_attentions=UpperCamelCase ) self.assertTrue(outputs.attentions is not None ) def snake_case ( self ): """simple docstring""" if not self.model_tester.is_training: return lowerCamelCase_ = self.all_model_classes[1] lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.train() lowerCamelCase_ = model(UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase ).loss loss.backward() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.all_model_classes[1] lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ).to(UpperCamelCase ) model.train() lowerCamelCase_ = model(UpperCamelCase , mask_labels=UpperCamelCase , class_labels=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a_ : Any = 1e-4 def __snake_case ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def snake_case ( self ): """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def snake_case ( self ): """simple docstring""" lowerCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(UpperCamelCase ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(UpperCamelCase , return_tensors="pt" ).to(UpperCamelCase ) lowerCamelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase ) lowerCamelCase_ = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(UpperCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) lowerCamelCase_ = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(UpperCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) lowerCamelCase_ = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(UpperCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCamelCase ).eval() lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(UpperCamelCase , return_tensors="pt" ).to(UpperCamelCase ) lowerCamelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase ) # masks_queries_logits lowerCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCamelCase_ = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] lowerCamelCase_ = torch.tensor(UpperCamelCase ).to(UpperCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) # class_queries_logits lowerCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCamelCase_ = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(UpperCamelCase ).eval() lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) lowerCamelCase_ = inputs["pixel_values"].to(UpperCamelCase ) lowerCamelCase_ = [el.to(UpperCamelCase ) for el in inputs["mask_labels"]] lowerCamelCase_ = [el.to(UpperCamelCase ) for el in inputs["class_labels"]] with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase ) self.assertTrue(outputs.loss is not None )
55
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Dict , lowercase_ :str = "▁" , lowercase_ :bool = True , lowercase_ :Union[str, AddedToken] = "<unk>" , lowercase_ :Union[str, AddedToken] = "</s>" , lowercase_ :Union[str, AddedToken] = "<pad>" , ) -> str: UpperCAmelCase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } UpperCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase = token_dict['token'] UpperCAmelCase = Tokenizer(Unigram() ) UpperCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) UpperCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ), pre_tokenizers.Digits(individual_digits=lowercase_ ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase = decoders.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) UpperCAmelCase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Union[str, List[str]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Union[str, Any]: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [files] self._tokenizer.train(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :str , lowercase_ :Union[Iterator[str], Iterator[Iterator[str]]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Tuple: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) self._tokenizer.train_from_iterator(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = json.loads(self._tokenizer.to_str() ) UpperCAmelCase = self.special_tokens['unk']['id'] UpperCAmelCase = Tokenizer.from_str(json.dumps(lowercase_ ) )
78
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_lowercase , **_lowercase ): """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
229
'''simple docstring''' import logging from transformers import PretrainedConfig _lowercase = logging.getLogger(__name__) _lowercase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Optional[Any] = '''bertabs''' def __init__( self , _lowercase=30_522 , _lowercase=512 , _lowercase=6 , _lowercase=512 , _lowercase=8 , _lowercase=512 , _lowercase=0.2 , _lowercase=6 , _lowercase=768 , _lowercase=8 , _lowercase=2_048 , _lowercase=0.2 , **_lowercase , ): """simple docstring""" super().__init__(**_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_pos _lowerCAmelCase = enc_layers _lowerCAmelCase = enc_hidden_size _lowerCAmelCase = enc_heads _lowerCAmelCase = enc_ff_size _lowerCAmelCase = enc_dropout _lowerCAmelCase = dec_layers _lowerCAmelCase = dec_hidden_size _lowerCAmelCase = dec_heads _lowerCAmelCase = dec_ff_size _lowerCAmelCase = dec_dropout
229
1
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowerCamelCase__ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' lowerCamelCase__ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' lowerCamelCase__ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' lowerCamelCase__ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' lowerCamelCase__ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[str]: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple=[1, 10, 1_00] , lowerCamelCase__ : str=4 , lowerCamelCase__ : Dict=3.0 ) ->List[str]: '''simple docstring''' if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: _UpperCAmelCase : int = [] _UpperCAmelCase : Tuple = Counter() _UpperCAmelCase : str = 0 _UpperCAmelCase : Any = defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): for candidate in candidates: _UpperCAmelCase : Optional[int] = candidate + '''\n''' + test_case _UpperCAmelCase : str = (test_program, timeout, task_id, completion_id[task_id]) _UpperCAmelCase : Any = executor.submit(lowerCamelCase__ , *lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = future.result() results[result["task_id"]].append((result["completion_id"], result) ) _UpperCAmelCase : Dict = [], [] for result in results.values(): result.sort() _UpperCAmelCase : str = [r[1]['''passed'''] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) _UpperCAmelCase : Any = np.array(lowerCamelCase__ ) _UpperCAmelCase : str = np.array(lowerCamelCase__ ) _UpperCAmelCase : Tuple = k _UpperCAmelCase : Tuple = {F"""pass@{k}""": estimate_pass_at_k(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): def estimator(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[Any] = itertools.repeat(__lowerCAmelCase , len(__lowerCAmelCase ) ) else: assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) _UpperCAmelCase : List[str] = iter(__lowerCAmelCase ) return np.array([estimator(int(__lowerCAmelCase ) , int(__lowerCAmelCase ) , __lowerCAmelCase ) for n, c in zip(__lowerCAmelCase , __lowerCAmelCase )] )
234
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : Dict = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowerCamelCase__ : Any = s_dict.pop(UpperCAmelCase ) elif "subsample" in key: lowerCamelCase__ : Any = s_dict.pop(UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = emb.weight.shape lowerCamelCase__ : str = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = emb.weight.data return lin_layer def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[Any] = torch.load(UpperCAmelCase , map_location='''cpu''' ) lowerCamelCase__ : List[Any] = mam_aaa['''args'''] lowerCamelCase__ : Dict = mam_aaa['''model'''] lowerCamelCase__ : Optional[Any] = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) lowerCamelCase__ : Tuple = state_dict['''decoder.embed_tokens.weight'''].shape[0] lowerCamelCase__ : Tuple = args.share_decoder_input_output_embed lowerCamelCase__ : Dict = [int(UpperCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )] lowerCamelCase__ : str = SpeechaTextConfig( vocab_size=UpperCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(UpperCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCAmelCase , num_beams=5 , max_length=200 , use_cache=UpperCAmelCase , decoder_start_token_id=2 , early_stopping=UpperCAmelCase , ) lowerCamelCase__ : Optional[int] = SpeechaTextForConditionalGeneration(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f" but all the following weights are missing {missing}" ) if tie_embeds: lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase__ : Tuple = lm_head_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _A : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
142
0
def SCREAMING_SNAKE_CASE__ ( __a ): stooge(__a , 0 , len(__a ) - 1 ) return arr def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: snake_case_ ,snake_case_ : List[str] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: snake_case_ : Optional[Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__a , __a , (h - t) ) # Recursively sort last 2/3 elements stooge(__a , i + t , (__a) ) # Recursively sort first 2/3 elements stooge(__a , __a , (h - t) ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""").strip() _SCREAMING_SNAKE_CASE = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
88
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : List[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Optional[int]=None , _A : Dict=False , _A : Dict=False , _A : Optional[Any]=False , ) -> List[str]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[str] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : int = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Optional[Any] = np.asarray(_A ) snake_case_ : Optional[Any] = np.asarray(_A ) if ignore_case: snake_case_ : int = np.char.lower(_A ) snake_case_ : List[str] = np.char.lower(_A ) if ignore_punctuation: snake_case_ : str = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Any = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : int = string.digits.maketrans('' , '' , string.digits ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : Optional[Any] = np.char.translate(_A , table=_A ) snake_case_ : Optional[Any] = predictions == references return {"exact_match": np.mean(_A ) * 100}
88
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : int ) -> Optional[Any]: debug_launcher(test_script.main ) def A_ ( self : List[str] ) -> Optional[int]: debug_launcher(test_ops.main )
50
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] ): __a : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"""{test_file} instead.""" ) __a : Tuple = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __a : List[str] = components[:-1] + [test_fn.replace('.py' , '' )] __a : Optional[Any] = '.'.join(_SCREAMING_SNAKE_CASE ) return test_module_path def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : List[str] = get_module_path(_SCREAMING_SNAKE_CASE ) __a : Dict = importlib.import_module(_SCREAMING_SNAKE_CASE ) return test_module def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : List[str] = [] __a : List[str] = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple ): __a : Any = [] __a : str = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): __a : int = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a : Optional[Any] = getattr(_SCREAMING_SNAKE_CASE , 'all_model_classes' , [] ) if len(_SCREAMING_SNAKE_CASE ) > 0: test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : Any = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Tuple = test_class() if hasattr(_SCREAMING_SNAKE_CASE , 'setUp' ): test.setUp() __a : List[Any] = None if hasattr(_SCREAMING_SNAKE_CASE , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a : List[str] = test.model_tester.__class__ return model_tester def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : int = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] ): __a : List[Any] = get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [] for test_class in test_classes: __a : Any = get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) if tester_class is not None: tester_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : str = get_test_classes(_SCREAMING_SNAKE_CASE ) __a : int = {test_class: get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) for test_class in test_classes} return test_tester_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = get_model_classes(_SCREAMING_SNAKE_CASE ) __a : Optional[int] = { model_class: get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_test_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = get_model_classes(_SCREAMING_SNAKE_CASE ) __a : str = { model_class: get_tester_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o.__name__ elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_json(_SCREAMING_SNAKE_CASE ) for x in o] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {to_json(_SCREAMING_SNAKE_CASE ): to_json(_SCREAMING_SNAKE_CASE ) for k, v in o.items()} else: return o
27
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "vocab.txt"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _SCREAMING_SNAKE_CASE = { "openbmb/cpm-ant-10b": 1024, } def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str: snake_case = collections.OrderedDict() with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as reader: snake_case = reader.readlines() for index, token in enumerate(__lowerCAmelCase ): snake_case = token.rstrip("""\n""" ) snake_case = index return vocab class _lowerCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]="<unk>" , __snake_case : Union[str, Any]=2_00 )-> List[str]: snake_case = vocab snake_case = unk_token snake_case = max_input_chars_per_word def lowerCAmelCase ( self : Any , __snake_case : List[str] )-> List[Any]: snake_case = list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] snake_case = 0 snake_case = [] while start < len(__snake_case ): snake_case = len(__snake_case ) snake_case = None while start < end: snake_case = """""".join(chars[start:end] ) if substr in self.vocab: snake_case = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) snake_case = end return sub_tokens class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = False def __init__( self : int , __snake_case : Tuple , __snake_case : Optional[int]="<d>" , __snake_case : int="</d>" , __snake_case : List[Any]="<s>" , __snake_case : List[str]="</s>" , __snake_case : str="<pad>" , __snake_case : Union[str, Any]="<unk>" , __snake_case : str="</n>" , __snake_case : List[str]="</_>" , __snake_case : Union[str, Any]="left" , **__snake_case : Tuple , )-> Union[str, Any]: requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) snake_case = bod_token snake_case = eod_token snake_case = load_vocab(__snake_case ) snake_case = self.encoder[space_token] snake_case = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) snake_case = {v: k for k, v in self.encoder.items()} snake_case = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase ( self : Optional[int] )-> List[Any]: return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : str )-> Tuple: return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : str )-> List[str]: return self.encoder["\n"] @property def lowerCAmelCase ( self : List[Any] )-> int: return len(self.encoder ) def lowerCAmelCase ( self : Any )-> Any: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __snake_case : Any )-> Union[str, Any]: snake_case = [] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def lowerCAmelCase ( self : str , __snake_case : Tuple , **__snake_case : Dict )-> Optional[int]: snake_case = [i for i in token_ids if i >= 0] snake_case = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : Dict )-> Optional[int]: return token in self.encoder def lowerCAmelCase ( self : Optional[Any] , __snake_case : List[str] )-> str: return "".join(__snake_case ) def lowerCAmelCase ( self : Tuple , __snake_case : int )-> Optional[int]: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : str , __snake_case : List[Any] )-> str: return self.decoder.get(__snake_case , self.unk_token ) def lowerCAmelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None )-> Tuple[str]: if os.path.isdir(__snake_case ): snake_case = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: snake_case = (filename_prefix + """-""" if filename_prefix else """""") + save_directory snake_case = 0 if " " in self.encoder: snake_case = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: snake_case = self.encoder["""\n"""] del self.encoder["\n"] snake_case = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase ( self : Dict , __snake_case : List[int] , __snake_case : List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
3
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCAmelCase ( a_ ): '''simple docstring''' lowerCAmelCase_ = '''dpt''' def __init__( self : Tuple , __lowercase : List[Any]=7_68 , __lowercase : List[Any]=12 , __lowercase : Optional[Any]=12 , __lowercase : List[Any]=30_72 , __lowercase : str="gelu" , __lowercase : Dict=0.0 , __lowercase : Optional[Any]=0.0 , __lowercase : List[str]=0.02 , __lowercase : List[str]=1E-12 , __lowercase : Union[str, Any]=3_84 , __lowercase : Any=16 , __lowercase : Tuple=3 , __lowercase : List[str]=False , __lowercase : Dict=True , __lowercase : List[str]=[2, 5, 8, 11] , __lowercase : Optional[Any]="project" , __lowercase : Union[str, Any]=[4, 2, 1, 0.5] , __lowercase : int=[96, 1_92, 3_84, 7_68] , __lowercase : List[str]=2_56 , __lowercase : int=-1 , __lowercase : List[Any]=False , __lowercase : List[Any]=True , __lowercase : str=0.4 , __lowercase : Optional[Any]=2_55 , __lowercase : Optional[Any]=0.1 , __lowercase : List[Any]=[1, 10_24, 24, 24] , __lowercase : int=[0, 1] , __lowercase : Optional[int]=None , **__lowercase : Optional[Any] , ): """simple docstring""" super().__init__(**lowercase_ ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): logger.info("Initializing the config with a `BiT` backbone." ) snake_case_ = BitConfig(**lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): snake_case_ = backbone_config else: raise ValueError( f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be \'project\' when using `DPT-hybrid` mode." ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of [\'ignore\', \'add\', \'project\']" ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__ ( self : int ): """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
187
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __SCREAMING_SNAKE_CASE ( A_=None ): if subparsers is not None: lowerCAmelCase__ : Optional[Any] = subparsers.add_parser('''test''' ) else: lowerCAmelCase__ : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=A_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=A_ ) return parser def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Optional[int] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: lowerCAmelCase__ : Optional[Any] = script_name else: lowerCAmelCase__ : Any = f'--config_file={args.config_file} {script_name}' lowerCAmelCase__ : List[Any] = ['''accelerate-launch'''] + test_args.split() lowerCAmelCase__ : int = execute_subprocess_async(A_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Any = test_command_parser() lowerCAmelCase__ : List[Any] = parser.parse_args() test_command(A_ ) if __name__ == "__main__": main()
106
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase__ = getLogger(__name__) def _a ( a :Optional[Any] , a :str , a :str , a :int = 8 , a :int = 1_024 , a :Optional[Any]="val" , a :List[str]=None , a :List[str]=False , a :Optional[int]="summarization" , a :Any=None , a :List[Any]=1 , a :Dict = None , a :Tuple="" , **a :str , ) -> Dict: a = str(a ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=a ) a = Path(a ) a = save_dir.joinpath(F"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(a ) a = AutoModelForSeqaSeqLM.from_pretrained(a ).cuda() if fpaa: a = model.half() # determine if we need to increase num_beams use_task_specific_params(a , a ) # update config with task specific params a = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: a = num_return_sequences a = AutoTokenizer.from_pretrained(a ) logger.info(F"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: a = tokenizer.model_max_length if prefix is None: a = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' a = SeqaSeqDataset( a , a , a , max_target_length=1_024 , type_path=a , n_obs=a , prefix=a , **a , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. a = ds.make_sortish_sampler(a , distributed=a , add_extra_examples=a , shuffle=a ) a = DataLoader(a , sampler=a , batch_size=a , collate_fn=ds.collate_fn ) a = [] for batch in tqdm(a ): a = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=a , num_beams=a , **a , ) a = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) a = batch['''ids'''] if num_return_sequences > 1: a = chunks(a , a ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(a ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(a , a ) return results, sampler.num_replicas def _a ( ) -> Dict: a = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=a , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=a , default=a ) parser.add_argument( '''--type_path''' , type=a , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=a , default=-1 , required=a , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=a , default=a , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=a , default=1 , required=a , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=a , default=600 , required=a , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=a , default=a , required=a ) parser.add_argument('''--tgt_lang''' , type=a , default=a , required=a ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) a = time.time() a , a = parser.parse_known_args() a = parse_numeric_n_bool_cl_kwargs(a ) if generate_kwargs and args.local_rank <= 0: print(F"""parsed the following generate kwargs: {generate_kwargs}""" ) a = Path(args.save_dir + '''_tmp''' ) Path(a ).mkdir(exist_ok=a ) # this handles locking. a = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(F"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. a = {} if args.src_lang is not None: a = args.src_lang if args.tgt_lang is not None: a = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=a ) a , a = eval_data_dir( args.data_dir , a , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=a , **a , ) if args.local_rank <= 0: a = Path(args.save_dir ) save_dir.mkdir(exist_ok=a ) a = gather_results_from_each_node(a , a , args.sync_timeout ) a = combine_partial_results(a ) if args.num_return_sequences > 1: a = save_dir.joinpath('''pseudolabel_results.json''' ) print(F"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(a , a ) return a = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(a ) as f: a = [x.rstrip() for x in f.readlines()][: len(a )] # Calculate metrics, save metrics, and save _generations.txt a = '''translation''' in args.task a = calculate_bleu if calc_bleu else calculate_rouge a = '''bleu''' if calc_bleu else '''rouge''' a = score_fn(a , a ) a = len(a ) a = time.time() - start_time a = round(runtime / metrics['''n_obs'''] , 4 ) a = num_replicas # TODO(@stas00): add whatever metadata to metrics a = save_dir.joinpath(F"""{args.type_path}_{metric_name}.json""" ) save_json(a , a , indent=a ) print(a ) write_txt_file(a , save_dir.joinpath(F"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(a , save_dir.joinpath(F"""{args.type_path}.target""" ) ) else: shutil.rmtree(a ) def _a ( a :str ) -> List: a = [] for partial_result in partial_results: records.extend(a ) a = sorted(a , key=lambda a : x["id"] ) a = [x['''pred'''] for x in records] return preds def _a ( a :int , a :Any , a :Optional[int] ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files a = time.time() logger.info('''waiting for all nodes to finish''' ) a = None while (time.time() - start_wait) < timeout: a = list(save_dir.glob('''rank_*.json''' ) ) if len(a ) < num_replicas: continue try: # make sure all json files are fully saved a = lmap(a , a ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
26
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) UpperCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _a ( a :str ) -> Any: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: a = model_type_to_module_name(a ) a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. a = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def _a ( a :Union[str, os.PathLike] , a :Optional[Union[str, os.PathLike]] = None , a :bool = False , a :bool = False , a :Optional[Dict[str, str]] = None , a :Optional[Union[bool, str]] = None , a :Optional[str] = None , a :bool = False , **a :int , ) -> Tuple: a = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class lowercase_ : '''simple docstring''' def __init__( self : Tuple ) ->int: """simple docstring""" raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__UpperCAmelCase ) def __lowerCAmelCase ( cls : int , __UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Dict ) ->List[Any]: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) a = kwargs.pop('''trust_remote_code''' , __UpperCAmelCase ) a = True a , a = FeatureExtractionMixin.get_feature_extractor_dict(__UpperCAmelCase , **__UpperCAmelCase ) a = config_dict.get('''feature_extractor_type''' , __UpperCAmelCase ) a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): a = AutoConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # It could be in `config.feature_extractor_type`` a = getattr(__UpperCAmelCase , '''feature_extractor_type''' , __UpperCAmelCase ) if hasattr(__UpperCAmelCase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: a = feature_extractor_class_from_name(__UpperCAmelCase ) a = feature_extractor_auto_map is not None a = feature_extractor_class is not None or type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING a = resolve_trust_remote_code( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if has_remote_code and trust_remote_code: a = get_class_from_dynamic_module( __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) a = kwargs.pop('''code_revision''' , __UpperCAmelCase ) if os.path.isdir(__UpperCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__UpperCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: a = FEATURE_EXTRACTOR_MAPPING[type(__UpperCAmelCase )] return feature_extractor_class.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowerCAmelCase ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple ) ->Optional[int]: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__UpperCAmelCase , __UpperCAmelCase )
26
1
'''simple docstring''' from collections.abc import Sequence from queue import Queue class _lowercase : '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : str=None ) -> Optional[int]: __lowerCAmelCase = start __lowerCAmelCase = end __lowerCAmelCase = val __lowerCAmelCase = (start + end) // 2 __lowerCAmelCase = left __lowerCAmelCase = right def __repr__( self : Optional[Any] ) -> Tuple: return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class _lowercase : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Sequence , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: __lowerCAmelCase = collection __lowerCAmelCase = function if self.collection: __lowerCAmelCase = self._build_tree(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: self._update_tree(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: return self._query_range(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: if start == end: return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.collection[start] ) __lowerCAmelCase = (start + end) // 2 __lowerCAmelCase = self._build_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE__ ) return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: if node.start == i and node.end == i: __lowerCAmelCase = val return if i <= node.mid: self._update_tree(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: self._update_tree(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.fn(node.left.val , node.right.val ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ) -> Tuple: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , SCREAMING_SNAKE_CASE__ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE__ ) , ) else: # range in right child tree return self._query_range(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] ) -> Tuple: if self.root is not None: __lowerCAmelCase = Queue() queue.put(self.root ) while not queue.empty(): __lowerCAmelCase = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) _A : Optional[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
229
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _lowercase ( datasets.BuilderConfig ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None class _lowercase ( datasets.ArrowBasedBuilder ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = PandasConfig def a ( self : Union[str, Any] ) -> int: return datasets.DatasetInfo(features=self.config.features ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE__ , (str, list, tuple) ): __lowerCAmelCase = data_files if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE__ , gen_kwargs={"""files""": files} ) ) return splits def a ( self : Any , SCREAMING_SNAKE_CASE__ : pa.Table ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowerCAmelCase = table_cast(SCREAMING_SNAKE_CASE__ , self.config.features.arrow_schema ) return pa_table def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: for i, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE__ ) ): with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as f: __lowerCAmelCase = pa.Table.from_pandas(pd.read_pickle(SCREAMING_SNAKE_CASE__ ) ) yield i, self._cast_table(SCREAMING_SNAKE_CASE__ )
229
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def _A ( __magic_name__ , __magic_name__ , __magic_name__=8 ): lowercase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase ( lowercase_ ): def __init__( self :str , _lowercase :UNetaDConditionModel , _lowercase :DDPMScheduler , _lowercase :VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=_lowercase , scheduler=_lowercase , movq=_lowercase , ) lowercase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase ( self :Any , _lowercase :Tuple , _lowercase :Dict , _lowercase :List[str] , _lowercase :List[Any] , _lowercase :str , _lowercase :Optional[Any] ): '''simple docstring''' if latents is None: lowercase__ = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowercase__ = latents.to(_lowercase ) lowercase__ = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase ( self :Tuple , _lowercase :List[str]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase__ = torch.device(f'''cuda:{gpu_id}''' ) lowercase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) def UpperCAmelCase ( self :str , _lowercase :Tuple=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase__ = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=_lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase__ = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase__ , lowercase__ = cpu_offload_with_hook(_lowercase , _lowercase , prev_module_hook=_lowercase ) # We'll offload the last model manually. lowercase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase ( self :Any ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowercase ) def __call__( self :Any , _lowercase :Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowercase :Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowercase :torch.FloatTensor , _lowercase :int = 5_12 , _lowercase :int = 5_12 , _lowercase :int = 1_00 , _lowercase :float = 4.0 , _lowercase :int = 1 , _lowercase :Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase :Optional[torch.FloatTensor] = None , _lowercase :Optional[str] = "pil" , _lowercase :bool = True , ): '''simple docstring''' lowercase__ = self._execution_device lowercase__ = guidance_scale > 1.0 if isinstance(_lowercase , _lowercase ): lowercase__ = torch.cat(_lowercase , dim=0 ) if isinstance(_lowercase , _lowercase ): lowercase__ = torch.cat(_lowercase , dim=0 ) if isinstance(_lowercase , _lowercase ): lowercase__ = torch.cat(_lowercase , dim=0 ) lowercase__ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowercase__ = image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase__ = negative_image_embeds.repeat_interleave(_lowercase , dim=0 ) lowercase__ = hint.repeat_interleave(_lowercase , dim=0 ) lowercase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) lowercase__ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_lowercase ) self.scheduler.set_timesteps(_lowercase , device=_lowercase ) lowercase__ = self.scheduler.timesteps lowercase__ = self.movq.config.latent_channels lowercase__ , lowercase__ = downscale_height_and_width(_lowercase , _lowercase , self.movq_scale_factor ) # create initial latent lowercase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowercase , _lowercase , _lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = {"image_embeds": image_embeds, "hint": hint} lowercase__ = self.unet( sample=_lowercase , timestep=_lowercase , encoder_hidden_states=_lowercase , added_cond_kwargs=_lowercase , return_dict=_lowercase , )[0] if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.split(latents.shape[1] , dim=1 ) lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ , lowercase__ = variance_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase__ , lowercase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step( _lowercase , _lowercase , _lowercase , generator=_lowercase , )[0] # post-processing lowercase__ = self.movq.decode(_lowercase , force_not_quantize=_lowercase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowercase__ = image * 0.5 + 0.5 lowercase__ = image.clamp(0 , 1 ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
363
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _A ( __magic_name__ ): # picklable for multiprocessing return x.sum() def _A ( __magic_name__ ): # picklable for multiprocessing return i + 1 @dataclass class lowerCAmelCase : __lowerCamelCase = 42 __lowerCamelCase = 42 class lowerCAmelCase ( lowercase_ ): def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = {} lowercase__ = [] lowercase__ = 1 lowercase__ = [1, 2] lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": [1, 2], "b": [3, 4]} lowercase__ = {"a": {"1": 1}, "b": 2} lowercase__ = {"a": 1, "b": 2, "c": 3, "d": 4} lowercase__ = {} lowercase__ = [] lowercase__ = 2 lowercase__ = [2, 3] lowercase__ = {"a": 2, "b": 3} lowercase__ = {"a": [2, 3], "b": [4, 5]} lowercase__ = {"a": {"1": 2}, "b": 3} lowercase__ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase ) , _lowercase ) lowercase__ = 2 self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual(map_nested(_lowercase , _lowercase , num_proc=_lowercase ) , _lowercase ) lowercase__ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} lowercase__ = {"a": 2, "b": 0, "c": 2} lowercase__ = { "a": np.eye(2 ).astype(_lowercase ), "b": np.zeros(3 ).astype(_lowercase ), "c": np.ones(2 ).astype(_lowercase ), } self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ) , _lowercase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowercase , _lowercase , map_numpy=_lowercase , num_proc=_lowercase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowercase ): # can't pickle a local lambda map_nested(lambda _lowercase : x + 1 , _lowercase , num_proc=_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = {"a": 1, "b": 2} lowercase__ = {"a": 3, "b": 4} lowercase__ = {"a": 5, "b": 6} lowercase__ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowercase , _lowercase , _lowercase ) ) , _lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' class lowerCAmelCase : __lowerCamelCase = 'bar' lowercase__ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(_lowercase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _A ( __magic_name__ , __magic_name__ , __magic_name__ ): with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: lowercase__ = {f'''{i}''': i for i in range(__magic_name__ )} lowercase__ = map_nested(lambda __magic_name__ : x + 10 , __magic_name__ , num_proc=__magic_name__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class lowerCAmelCase ( lowercase_ ): @require_tf def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers lowercase__ = layers.Dense(2 ) def gen_random_output(): lowercase__ = tf.random.uniform((1, 3) ) return model(_lowercase ).numpy() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_tensorflow=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' import torch def gen_random_output(): lowercase__ = torch.nn.Linear(3 , 2 ) lowercase__ = torch.rand(1 , 3 ) return model(_lowercase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() with temp_seed(42 , set_pytorch=_lowercase ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCAmelCase ( self :str ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowercase__ = gen_random_output() with temp_seed(42 ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(_lowercase , _lowercase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def _A ( __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def _A ( __magic_name__ , __magic_name__ ): lowercase__ = NestedDataStructure(__magic_name__ ).flatten() assert output == expected_output def _A ( ): lowercase__ = A(x=1 , y="foobar" ) lowercase__ = {"x": 1, "y": "foobar"} assert asdict(__magic_name__ ) == expected_output lowercase__ = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} lowercase__ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__magic_name__ ) == expected_output with pytest.raises(__magic_name__ ): asdict([1, A(x=10 , y="foo" )] ) def _A ( __magic_name__ ): return text.split() def _A ( __magic_name__ ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _A ( ): with Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__magic_name__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase__ = [] for yield_time, content in iflatmap_unordered( __magic_name__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__magic_name__ ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__magic_name__ ) == 4
201
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=7 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Any=30 , UpperCamelCase__ : Optional[int]=400 , UpperCamelCase__ : str=True , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : int=1 / 255 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : int=[0.5, 0.5, 0.5] , UpperCamelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCamelCase__ : Tuple=True , ) -> List[str]: """simple docstring""" __magic_name__ = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_rescale __magic_name__ = rescale_factor __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = do_pad def _lowercase ( self : Any ) -> int: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def _lowercase ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple=False ) -> int: """simple docstring""" if not batched: __magic_name__ = image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): __magic_name__ , __magic_name__ = image.size else: __magic_name__ , __magic_name__ = image.shape[1], image.shape[2] if w < h: __magic_name__ = int(self.size["""shortest_edge"""] * h / w ) __magic_name__ = self.size["""shortest_edge"""] elif w > h: __magic_name__ = self.size["""shortest_edge"""] __magic_name__ = int(self.size["""shortest_edge"""] * w / h ) else: __magic_name__ = self.size["""shortest_edge"""] __magic_name__ = self.size["""shortest_edge"""] else: __magic_name__ = [] for image in image_inputs: __magic_name__ , __magic_name__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[0] )[0] __magic_name__ = max(UpperCamelCase__ , key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( _A , unittest.TestCase ): '''simple docstring''' a__ = DetrImageProcessor if is_vision_available() else None def _lowercase ( self : Dict ) -> int: """simple docstring""" __magic_name__ = DetrImageProcessingTester(self ) @property def _lowercase ( self : List[str] ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : Any ) -> List[str]: """simple docstring""" __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_rescale""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """rescale_factor""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_pad""" ) ) def _lowercase ( self : str ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) __magic_name__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def _lowercase ( self : Optional[Any] ) -> str: """simple docstring""" __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) __magic_name__ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : Any ) -> List[str]: """simple docstring""" __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self : str ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self : List[Any] ) -> Tuple: """simple docstring""" __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __magic_name__ = json.loads(f.read() ) __magic_name__ = {"""image_id""": 3_9769, """annotations""": target} # encode them __magic_name__ = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) __magic_name__ = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , return_tensors="""pt""" ) # verify pixel values __magic_name__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase__ ) __magic_name__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area __magic_name__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase__ ) ) # verify boxes __magic_name__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase__ ) __magic_name__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id __magic_name__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase__ ) ) # verify is_crowd __magic_name__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase__ ) ) # verify class_labels __magic_name__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase__ ) ) # verify orig_size __magic_name__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase__ ) ) # verify size __magic_name__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase__ ) ) @slow def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __magic_name__ = json.loads(f.read() ) __magic_name__ = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __magic_name__ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __magic_name__ = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) __magic_name__ = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , masks_path=UpperCamelCase__ , return_tensors="""pt""" ) # verify pixel values __magic_name__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , UpperCamelCase__ ) __magic_name__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area __magic_name__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , UpperCamelCase__ ) ) # verify boxes __magic_name__ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , UpperCamelCase__ ) __magic_name__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id __magic_name__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , UpperCamelCase__ ) ) # verify is_crowd __magic_name__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , UpperCamelCase__ ) ) # verify class_labels __magic_name__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , UpperCamelCase__ ) ) # verify masks __magic_name__ = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , UpperCamelCase__ ) # verify orig_size __magic_name__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , UpperCamelCase__ ) ) # verify size __magic_name__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , UpperCamelCase__ ) )
88
def a__ ( A_ ): '''simple docstring''' if not isinstance(A_, A_ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(A_ ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(A_ ) == 1: return True __magic_name__ = series[1] - series[0] for index in range(len(A_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def a__ ( A_ ): '''simple docstring''' if not isinstance(A_, A_ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(A_ ) == 0: raise ValueError("""Input list must be a non empty list""" ) __magic_name__ = 0 for val in series: answer += val return answer / len(A_ ) if __name__ == "__main__": import doctest doctest.testmod()
88
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __A : int = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __snake_case : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : List[Any]=16 , lowerCamelCase : List[str]=13 , lowerCamelCase : Union[str, Any]=7 , lowerCamelCase : List[Any]=14 , lowerCamelCase : Dict=10 , lowerCamelCase : List[Any]=19 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=4 , lowerCamelCase : Optional[int]=True , lowerCamelCase : List[Any]=16 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : List[str]=4 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Any=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : List[str]=[1, 2, 3, 4, 5] , lowerCamelCase : int=25 , lowerCamelCase : List[Any]=5 , ) -> Optional[Any]: lowerCAmelCase_ : Dict = d_model lowerCAmelCase_ : Any = parent lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : Optional[Any] = prediction_length lowerCAmelCase_ : Any = context_length lowerCAmelCase_ : Optional[Any] = cardinality lowerCAmelCase_ : Union[str, Any] = num_time_features lowerCAmelCase_ : str = lags_sequence lowerCAmelCase_ : str = embedding_dimension lowerCAmelCase_ : List[Any] = is_training lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : Optional[int] = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = context_length lowerCAmelCase_ : List[str] = prediction_length + label_length lowerCAmelCase_ : str = label_length lowerCAmelCase_ : Tuple = moving_average lowerCAmelCase_ : Optional[int] = autocorrelation_factor def __lowercase ( self : Any ) -> Any: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __lowercase ( self : Optional[Any] , lowerCamelCase : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase_ : Any = config.context_length + max(config.lags_sequence ) lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCAmelCase_ : Dict = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, _past_length] ) lowerCAmelCase_ : Dict = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCAmelCase_ : Any = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCAmelCase_ : List[Any] = floats_tensor([self.batch_size, config.prediction_length] ) lowerCAmelCase_ : List[Any] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def __lowercase ( self : Any ) -> Optional[int]: lowerCAmelCase_ : Any = self.get_config() lowerCAmelCase_ : List[Any] = self.prepare_autoformer_inputs_dict(lowerCamelCase ) return config, inputs_dict def __lowercase ( self : str ) -> Dict: lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def __lowercase ( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : List[str] ) -> Tuple: lowerCAmelCase_ : Dict = AutoformerModel(config=lowerCamelCase ).to(lowerCamelCase ).eval() lowerCAmelCase_ : List[str] = model(**lowerCamelCase ) lowerCAmelCase_ : Tuple = outputs.encoder_last_hidden_state lowerCAmelCase_ : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : str = model.get_encoder() encoder.save_pretrained(lowerCamelCase ) lowerCAmelCase_ : Dict = AutoformerEncoder.from_pretrained(lowerCamelCase ).to(lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[Any] = model.create_network_inputs(**lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCAmelCase_ : List[str] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCAmelCase_ : List[Any] = encoder(inputs_embeds=lowerCamelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowerCAmelCase_ : List[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCAmelCase_ : Any = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCAmelCase_ : Optional[Any] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCAmelCase_ : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : List[Any] = model.get_decoder() decoder.save_pretrained(lowerCamelCase ) lowerCAmelCase_ : List[Any] = AutoformerDecoder.from_pretrained(lowerCamelCase ).to(lowerCamelCase ) lowerCAmelCase_ : Tuple = decoder( trend=lowerCamelCase , inputs_embeds=lowerCamelCase , encoder_hidden_states=lowerCamelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowercase = (AutoformerForPrediction,) if is_torch_available() else () lowercase = {'feature-extraction': AutoformerModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def __lowercase ( self : Union[str, Any] ) -> int: lowerCAmelCase_ : List[str] = AutoformerModelTester(self ) lowerCAmelCase_ : List[Any] = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def __lowercase ( self : int ) -> Optional[Any]: self.config_tester.run_common_tests() def __lowercase ( self : List[str] ) -> Any: lowerCAmelCase_, lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class(lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(lowerCamelCase , output_loading_info=lowerCamelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def __lowercase ( self : List[Any] ) -> Dict: lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCamelCase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def __lowercase ( self : List[str] ) -> Dict: pass def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase_ : str = inspect.signature(getattr(lowerCamelCase , """forward""" ) ) # The main input is the name of the argument after `self` lowerCAmelCase_ : Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCamelCase ) def __lowercase ( self : List[Any] ) -> int: lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[Any] = model_class(lowerCamelCase ) lowerCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Any = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(lowerCamelCase )] , lowerCamelCase ) def __lowercase ( self : List[Any] ) -> str: lowerCAmelCase_, lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : str = getattr(self.model_tester , """seq_length""" , lowerCamelCase ) lowerCAmelCase_ : Tuple = getattr(self.model_tester , """decoder_seq_length""" , lowerCamelCase ) lowerCAmelCase_ : Tuple = getattr(self.model_tester , """encoder_seq_length""" , lowerCamelCase ) lowerCAmelCase_ : Tuple = getattr(self.model_tester , """d_model""" , lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = getattr(self.model_tester , """num_attention_heads""" , lowerCamelCase ) lowerCAmelCase_ : List[Any] = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCAmelCase_ : str = True lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : Any = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) lowerCAmelCase_ : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Optional[int] = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ : int = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) lowerCAmelCase_ : List[str] = outputs.encoder_attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCAmelCase_ : Optional[int] = len(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCamelCase , lowerCamelCase ) # decoder attentions lowerCAmelCase_ : Union[str, Any] = outputs.decoder_attentions self.assertIsInstance(lowerCamelCase , (list, tuple) ) self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCAmelCase_ : Optional[Any] = outputs.cross_attentions self.assertIsInstance(lowerCamelCase , (list, tuple) ) self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Tuple = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) self.assertEqual(out_len + 2 , len(lowerCamelCase ) ) lowerCAmelCase_ : Tuple = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __lowercase ( self : List[Any] ) -> Optional[int]: super().test_retain_grad_hidden_states_attentions() def UpperCamelCase_ ( A__ : Union[str, Any]="train-batch.pt" ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=A__ , repo_type="""dataset""" ) lowerCAmelCase_ : int = torch.load(A__ , map_location=A__ ) return batch @require_torch @slow class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Optional[int] ) -> int: lowerCAmelCase_ : Union[str, Any] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCamelCase ) lowerCAmelCase_ : int = prepare_batch() with torch.no_grad(): lowerCAmelCase_ : int = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] lowerCAmelCase_ : Tuple = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCamelCase ) lowerCAmelCase_ : int = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def __lowercase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase_ : Optional[int] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCamelCase ) lowerCAmelCase_ : List[str] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state lowerCAmelCase_ : Any = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCamelCase ) lowerCAmelCase_ : Optional[int] = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCamelCase , atol=lowerCamelCase ) ) def __lowercase ( self : Union[str, Any] ) -> List[str]: lowerCAmelCase_ : List[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): lowerCAmelCase_ : int = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) lowerCAmelCase_ : Tuple = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=lowerCamelCase ) lowerCAmelCase_ : int = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCamelCase , rtol=1E-1 ) )
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A : List[str] = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["OwlViTFeatureExtractor"] __A : str = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
1
def _UpperCAmelCase ( a__): '''simple docstring''' a_ : str = [] if len(snake_case__) == 1: return [nums.copy()] for _ in range(len(snake_case__)): a_ : Dict = nums.pop(0) a_ : int = permute(snake_case__) for perm in permutations: perm.append(snake_case__) result.extend(snake_case__) nums.append(snake_case__) return result def _UpperCAmelCase ( a__): '''simple docstring''' def backtrack(a__): if start == len(snake_case__) - 1: output.append(nums[:]) else: for i in range(snake_case__ , len(snake_case__)): a_ : Any = nums[i], nums[start] backtrack(start + 1) a_ : List[str] = nums[i], nums[start] # backtrack a_ : Optional[Any] = [] backtrack(0) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __snake_case : Union[str, Any] = permutea([1, 2, 3]) print(res) doctest.testmod()
248
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class A ( __snake_case ): __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
3
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = BlipImageProcessor() UpperCamelCase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCamelCase = BlipaProcessor(lowerCamelCase_ , lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).tokenizer def lowerCamelCase_ ( self : Optional[int] , **lowerCamelCase_ : Optional[int] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).image_processor def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) UpperCamelCase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipaProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(lowerCamelCase_ , return_tensors="""np""" ) UpperCamelCase = processor(images=lowerCamelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipaProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) UpperCamelCase = """lower newer""" UpperCamelCase = processor(text=lowerCamelCase_ ) UpperCamelCase = tokenizer(lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipaProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) UpperCamelCase = """lower newer""" UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipaProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(lowerCamelCase_ ) UpperCamelCase = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipaProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) UpperCamelCase = """lower newer""" UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
356
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = XLMRobertaTokenizer __lowerCAmelCase = XLMRobertaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def lowerCamelCase_ ( self : Any ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = """<pad>""" UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(lowerCamelCase_ ) , 1002 ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) UpperCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCamelCase_ ( self : int ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCamelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @cached_property def lowerCamelCase_ ( self : Any ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def lowerCamelCase_ ( self : Any ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase_ , f.name ) UpperCamelCase = XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase_ ) UpperCamelCase = pickle.dumps(lowerCamelCase_ ) pickle.loads(lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = """I was born in 92000, and this is falsé.""" UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ ) UpperCamelCase = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(lowerCamelCase_ ) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = """Hello World!""" UpperCamelCase = [0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) UpperCamelCase = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = {"""input_ids""": [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
165
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules( prior=_a , image_encoder=_a , image_processor=_a , scheduler=_a , renderer=_a , ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str: if latents is None: _A : str = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A : Union[str, Any] = latents.to(_a ) _A : int = latents * scheduler.init_noise_sigma return latents def a__ ( self , _a=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A : str = torch.device(F'''cuda:{gpu_id}''' ) _A : Any = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property def a__ ( self ) -> List[Any]: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ ( self , _a , _a , _a , _a , ) -> Tuple: if isinstance(_a , _a ) and isinstance(image[0] , torch.Tensor ): _A : int = torch.cat(_a , axis=0 ) if image[0].ndim == 4 else torch.stack(_a , axis=0 ) if not isinstance(_a , torch.Tensor ): _A : Dict = self.image_processor(_a , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) _A : int = image.to(dtype=self.image_encoder.dtype , device=_a ) _A : List[Any] = self.image_encoder(_a )["""last_hidden_state"""] _A : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _A : Dict = image_embeds.repeat_interleave(_a , dim=0 ) if do_classifier_free_guidance: _A : str = torch.zeros_like(_a ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a = 1 , _a = 25 , _a = None , _a = None , _a = 4.0 , _a = 64 , _a = "pil" , _a = True , ) -> Union[str, Any]: if isinstance(_a , PIL.Image.Image ): _A : List[Any] = 1 elif isinstance(_a , torch.Tensor ): _A : Any = image.shape[0] elif isinstance(_a , _a ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): _A : Union[str, Any] = len(_a ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_a )}''' ) _A : Optional[int] = self._execution_device _A : Tuple = batch_size * num_images_per_prompt _A : List[Any] = guidance_scale > 1.0 _A : Optional[Any] = self._encode_image(_a , _a , _a , _a ) # prior self.scheduler.set_timesteps(_a , device=_a ) _A : Optional[int] = self.scheduler.timesteps _A : List[str] = self.prior.config.num_embeddings _A : int = self.prior.config.embedding_dim _A : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _A : List[Any] = latents.reshape(latents.shape[0] , _a , _a ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : int = self.scheduler.scale_model_input(_a , _a ) _A : Tuple = self.prior( _a , timestep=_a , proj_embedding=_a , ).predicted_image_embedding # remove the variance _A , _A : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _A , _A : Dict = noise_pred.chunk(2 ) _A : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _A : int = self.scheduler.step( _a , timestep=_a , sample=_a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_a ) _A : List[str] = [] for i, latent in enumerate(_a ): print() _A : List[str] = self.renderer.decode( latent[None, :] , _a , size=_a , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_a ) _A : List[Any] = torch.stack(_a ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) _A : List[str] = images.cpu().numpy() if output_type == "pil": _A : List[Any] = [self.numpy_to_pil(_a ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_a )
26
1
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] ) -> Dict: '''simple docstring''' print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def lowerCamelCase ( _UpperCamelCase : Any , _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' __UpperCAmelCase : Any = [[float("""inf""" ) for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): __UpperCAmelCase : Optional[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_UpperCamelCase ): # looping through rows of graph array for i in range(_UpperCamelCase ): # looping through columns of graph array for j in range(_UpperCamelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __UpperCAmelCase : Optional[int] = dist[i][k] + dist[k][j] _print_dist(_UpperCamelCase , _UpperCamelCase ) return dist, v if __name__ == "__main__": UpperCAmelCase : str = int(input('Enter number of vertices: ')) UpperCAmelCase : List[str] = int(input('Enter number of edges: ')) UpperCAmelCase : Optional[int] = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): UpperCAmelCase : Optional[int] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) UpperCAmelCase : Dict = int(input('Enter source:')) UpperCAmelCase : List[Any] = int(input('Enter destination:')) UpperCAmelCase : int = float(input('Enter weight:')) UpperCAmelCase : Optional[int] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
320
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
339
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> bool: return str(__UpperCAmelCase ) == str(__UpperCAmelCase )[::-1] def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> int: return int(__UpperCAmelCase ) + int(str(__UpperCAmelCase )[::-1] ) def lowerCAmelCase_ ( __UpperCAmelCase: int = 1_0000 ) -> int: UpperCamelCase__ : Optional[Any] = [] for num in range(1 , __UpperCAmelCase ): UpperCamelCase__ : str = 0 UpperCamelCase__ : Any = num while iterations < 50: UpperCamelCase__ : List[Any] = sum_reverse(__UpperCAmelCase ) iterations += 1 if is_palindrome(__UpperCAmelCase ): break else: lychrel_nums.append(__UpperCAmelCase ) return len(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
201
0
"""simple docstring""" from math import pi, sqrt, tan def lowercase ( lowerCAmelCase__ : float ) -> float: if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowercase ( lowerCAmelCase__ : float ) -> float: if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def lowercase ( lowerCAmelCase__ : float ) -> float: if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) __a = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(lowerCAmelCase__ , 2 ) * torus_radius * tube_radius def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def lowercase ( lowerCAmelCase__ : float ) -> float: if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) __a = (sidea + sidea + sidea) / 2 __a = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def lowercase ( lowerCAmelCase__ : float ) -> float: if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : float ) -> float: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(F'''Rectangle: {area_rectangle(1_0, 2_0) = }''') print(F'''Square: {area_square(1_0) = }''') print(F'''Triangle: {area_triangle(1_0, 1_0) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }''') print(F'''Parallelogram: {area_parallelogram(1_0, 2_0) = }''') print(F'''Rhombus: {area_rhombus(1_0, 2_0) = }''') print(F'''Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }''') print(F'''Circle: {area_circle(2_0) = }''') print(F'''Ellipse: {area_ellipse(1_0, 2_0) = }''') print("\nSurface Areas of various geometric shapes: \n") print(F'''Cube: {surface_area_cube(2_0) = }''') print(F'''Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }''') print(F'''Sphere: {surface_area_sphere(2_0) = }''') print(F'''Hemisphere: {surface_area_hemisphere(2_0) = }''') print(F'''Cone: {surface_area_cone(1_0, 2_0) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }''') print(F'''Cylinder: {surface_area_cylinder(1_0, 2_0) = }''') print(F'''Torus: {surface_area_torus(2_0, 1_0) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 1_0) = }''') print(F'''Square: {area_reg_polygon(4, 1_0) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 1_0) = }''')
11
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , '''width_multiplier''' ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a=13 , _a=64 , _a=2 , _a=3 , _a="swish" , _a=3 , _a=32 , _a=0.1 , _a=0.02 , _a=True , _a=True , _a=10 , _a=None , _a=0.25 , _a=0.0 , _a=0.0 , ): __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = make_divisible(512 * width_multiplier , divisor=8 ) __a = hidden_act __a = conv_kernel_size __a = output_stride __a = classifier_dropout_prob __a = use_labels __a = is_training __a = num_labels __a = initializer_range __a = scope __a = width_multiplier __a = ffn_dropout __a = attn_dropout def __UpperCAmelCase ( self ): __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCAmelCase ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = MobileViTVaModel(config=_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForImageClassification(_a ) model.to(_a ) model.eval() __a = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _a , _a , _a , _a ): __a = self.num_labels __a = MobileViTVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() __a = model(_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __a = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False def __UpperCAmelCase ( self ): __a = MobileViTVaModelTester(self ) __a = MobileViTVaConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __UpperCAmelCase ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __UpperCAmelCase ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): def check_hidden_states_output(_a , _a , _a ): __a = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_a , _a ) ) __a = outputs.hidden_states __a = 5 self.assertEqual(len(_a ) , _a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __a = 2 for i in range(len(_a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_a , _a , _a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = MobileViTVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowercase ( ) -> str: __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( _a ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) # verify the logits __a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _a ) __a = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits # verify the logits __a = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _a ) __a = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ): __a = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = model.to(_a ) __a = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) __a = prepare_img() __a = image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): __a = model(**_a ) __a = outputs.logits.detach().cpu() __a = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(50, 60)] ) __a = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _a ) __a = image_processor.post_process_semantic_segmentation(outputs=_a ) __a = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _a )
11
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __lowerCAmelCase = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Optional[Any]: if rng is None: _a : int = random.Random() _a : List[Any] = 1 for dim in shape: total_dims *= dim _a : Optional[int] = [] for _ in range(lowerCAmelCase_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) _a : List[Any] = np.array(lowerCAmelCase_ , dtype=jnp.intaa ).reshape(lowerCAmelCase_ ) return output def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _a : Union[str, Any] = ids_tensor(lowerCAmelCase_ , vocab_size=2 , rng=lowerCAmelCase_ ) # make sure that at least one token is attended to for each batch _a : Dict = 1 return attn_mask @require_flax class __magic_name__ : lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = () def __lowercase ( self : List[Any] ): _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _a : Dict = 2 _a : List[str] = inputs['input_ids'].shape[-1] // 2 _a : int = inputs['input_ids'][:max_batch_size, :sequence_length] _a : Any = jnp.ones_like(_UpperCAmelCase ) _a : Tuple = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _a : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _a : List[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __lowercase ( self : Tuple ): _a , _a , _a , _a : List[Any] = self._get_input_ids_and_config() _a : str = False _a : Dict = max_length _a : Union[str, Any] = 0 for model_class in self.all_generative_model_classes: _a : str = model_class(_UpperCAmelCase ) _a : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning _a : List[str] = getattr(_UpperCAmelCase ,_UpperCAmelCase ) _a : List[str] = pt_model_class(_UpperCAmelCase ).eval() _a : Any = load_flax_weights_in_pytorch_model(_UpperCAmelCase ,flax_model.params ) _a : Optional[int] = flax_model.generate(_UpperCAmelCase ).sequences _a : Optional[int] = pt_model.generate(torch.tensor(_UpperCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _a : Any = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def __lowercase ( self : Any ): _a , _a , _a , _a : Union[str, Any] = self._get_input_ids_and_config() _a : Tuple = False _a : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _a : Tuple = model_class(_UpperCAmelCase ) _a : str = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_UpperCAmelCase ) _a : int = jit(model.generate ) _a : str = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowercase ( self : List[str] ): _a , _a , _a , _a : Union[str, Any] = self._get_input_ids_and_config() _a : str = True _a : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _a : Optional[Any] = model_class(_UpperCAmelCase ) _a : Union[str, Any] = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_UpperCAmelCase ) _a : List[str] = jit(model.generate ) _a : Union[str, Any] = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowercase ( self : Tuple ): _a , _a , _a , _a : Optional[int] = self._get_input_ids_and_config() _a : Dict = False _a : Optional[int] = max_length _a : Optional[int] = 2 for model_class in self.all_generative_model_classes: _a : Dict = model_class(_UpperCAmelCase ) _a : Tuple = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_UpperCAmelCase ) _a : Optional[int] = jit(model.generate ) _a : Tuple = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowercase ( self : Optional[Any] ): _a , _a , _a , _a : Dict = self._get_input_ids_and_config() _a : Tuple = False _a : Dict = max_length _a : int = 2 _a : Dict = 2 for model_class in self.all_generative_model_classes: _a : Any = model_class(_UpperCAmelCase ) _a : List[str] = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def __lowercase ( self : str ): _a , _a , _a , _a : Optional[Any] = self._get_input_ids_and_config() _a : List[str] = True _a : Tuple = max_length _a : int = 0.8 _a : List[Any] = 10 _a : List[Any] = 0.3 _a : Optional[int] = 1 _a : Union[str, Any] = 8 _a : int = 9 for model_class in self.all_generative_model_classes: _a : Optional[Any] = model_class(_UpperCAmelCase ) _a : str = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_UpperCAmelCase ) _a : List[str] = jit(model.generate ) _a : Dict = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowercase ( self : int ): _a , _a , _a , _a : Any = self._get_input_ids_and_config() _a : Union[str, Any] = max_length _a : Optional[Any] = 1 _a : List[Any] = 8 _a : Optional[int] = 9 for model_class in self.all_generative_model_classes: _a : Tuple = model_class(_UpperCAmelCase ) _a : Any = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_UpperCAmelCase ) _a : List[str] = jit(model.generate ) _a : Any = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowercase ( self : Optional[int] ): _a , _a , _a , _a : Tuple = self._get_input_ids_and_config() _a : Tuple = max_length _a : Any = 2 _a : Tuple = 1 _a : Any = 8 _a : Optional[int] = 9 for model_class in self.all_generative_model_classes: _a : str = model_class(_UpperCAmelCase ) _a : Tuple = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_UpperCAmelCase ) _a : Tuple = jit(model.generate ) _a : List[Any] = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowercase ( self : Union[str, Any] ): _a , _a , _a , _a : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left _a : Tuple = attention_mask.at[(0, 0)].set(0 ) _a : List[Any] = False _a : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _a : int = model_class(_UpperCAmelCase ) _a : str = model.generate(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_UpperCAmelCase ) _a : List[Any] = jit(model.generate ) _a : List[Any] = jit_generate(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowercase ( self : Optional[Any] ): _a , _a , _a , _a : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left _a : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _a : Dict = True _a : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _a : int = model_class(_UpperCAmelCase ) _a : Dict = model.generate(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_UpperCAmelCase ) _a : Optional[int] = jit(model.generate ) _a : Tuple = jit_generate(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowercase ( self : Optional[int] ): _a , _a , _a , _a : Any = self._get_input_ids_and_config() # pad attention mask on the left _a : Tuple = attention_mask.at[(0, 0)].set(0 ) _a : Dict = 2 _a : List[Any] = max_length for model_class in self.all_generative_model_classes: _a : str = model_class(_UpperCAmelCase ) _a : Optional[Any] = model.generate(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,_UpperCAmelCase ) _a : Optional[Any] = jit(model.generate ) _a : List[str] = jit_generate(_UpperCAmelCase ,attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : Union[str, Any] ): _a : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) _a : Optional[int] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _a : Optional[int] = 'Hello world' _a : Optional[Any] = tokenizer(_UpperCAmelCase ,return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_UpperCAmelCase ,'do_samples' ): model.generate(_UpperCAmelCase ,do_samples=_UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_UpperCAmelCase ,'foo' ): _a : Optional[int] = {'foo': 'bar'} model.generate(_UpperCAmelCase ,**_UpperCAmelCase )
89
'''simple docstring''' def __lowerCamelCase ( ) -> Tuple: for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: _a : Any = 1 _a : Tuple = 2 while i * i <= n: _a : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __lowerCamelCase ( ) -> str: return next(i for i in triangle_number_generator() if count_divisors(lowerCAmelCase_ ) > 500 ) if __name__ == "__main__": print(solution())
89
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowerCAmelCase = "\\n Text data.\n Second line of data." __lowerCAmelCase = "file" @pytest.fixture(scope='''session''' ) def lowercase ( lowerCAmelCase__ : str ) -> Optional[int]: __a = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __a = bytes(snake_case__ , '''utf-8''' ) with zstd.open(snake_case__ , '''wb''' ) as f: f.write(snake_case__ ) return path @pytest.fixture def lowercase ( lowerCAmelCase__ : List[Any] ) -> List[Any]: with open(os.path.join(tmpfs.local_root_dir , snake_case__ ) , '''w''' ) as f: f.write(snake_case__ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ) -> Optional[Any]: __a = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __a = input_paths[compression_format] __a = tmp_path / '''cache''' __a = DownloadConfig(cache_dir=snake_case__ , extract_compressed_file=snake_case__ ) __a = cached_path(snake_case__ , download_config=snake_case__ ) with open(snake_case__ ) as f: __a = f.read() with open(snake_case__ ) as f: __a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> List[str]: __a = '''custom_cache''' __a = '''custom_extracted_dir''' __a = tmp_path / '''custom_extracted_path''' if default_extracted: __a = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , snake_case__ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(snake_case__ ) ) __a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __a = xz_file __a = ( DownloadConfig(extract_compressed_file=snake_case__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=snake_case__ ) ) __a = cached_path(snake_case__ , download_config=snake_case__ ) assert Path(snake_case__ ).parent.parts[-2:] == expected def lowercase ( lowerCAmelCase__ : Tuple ) -> Union[str, Any]: # absolute path __a = str(Path(snake_case__ ).resolve() ) assert cached_path(snake_case__ ) == text_file # relative path __a = str(Path(snake_case__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(snake_case__ ) == text_file def lowercase ( lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: # absolute path __a = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(snake_case__ ): cached_path(snake_case__ ) # relative path __a = '''./__missing_file__.txt''' with pytest.raises(snake_case__ ): cached_path(snake_case__ ) def lowercase ( lowerCAmelCase__ : int ) -> Union[str, Any]: __a = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(snake_case__ ) as f: __a = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ ) def lowercase ( ) -> List[str]: with pytest.raises(snake_case__ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ ) def lowercase ( lowerCAmelCase__ : List[str] ) -> Tuple: __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case__ ): http_get('''https://huggingface.co''' , temp_file=snake_case__ ) with pytest.raises(snake_case__ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ ) def lowercase ( lowerCAmelCase__ : Optional[int] ) -> List[Any]: __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case__ ): ftp_get('''ftp://huggingface.co''' , temp_file=snake_case__ ) with pytest.raises(snake_case__ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , snake_case__ ) def lowercase ( lowerCAmelCase__ : int ) -> int: __a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case__ ): fsspec_get('''s3://huggingface.co''' , temp_file=snake_case__ ) with pytest.raises(snake_case__ ): fsspec_head('''s3://huggingface.co''' )
364
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __A = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __A = json.load(f) @require_torch class A ( unittest.TestCase ): def A__ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' return FSMTTokenizer.from_pretrained(__UpperCAmelCase ) def A__ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__ = FSMTForConditionalGeneration.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def A__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' lowercase__ = F'''facebook/wmt19-{pair}''' lowercase__ = self.get_tokenizer(__UpperCAmelCase ) lowercase__ = self.get_model(__UpperCAmelCase ) lowercase__ = bleu_data[pair]["""src"""] lowercase__ = bleu_data[pair]["""tgt"""] lowercase__ = tokenizer(__UpperCAmelCase , return_tensors="""pt""" , truncation=__UpperCAmelCase , padding="""longest""" ).to(__UpperCAmelCase ) lowercase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase__ = tokenizer.batch_decode( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) lowercase__ = calculate_bleu(__UpperCAmelCase , __UpperCAmelCase ) print(__UpperCAmelCase ) self.assertGreaterEqual(scores["""bleu"""] , __UpperCAmelCase )
164
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A ( snake_case__ ): '''simple docstring''' return (data["data"], data["target"]) def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = XGBClassifier() classifier.fit(snake_case__ , snake_case__ ) return classifier def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = load_iris() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = data_handling(snake_case__ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = train_test_split( snake_case__ , snake_case__ , test_size=0.25 ) SCREAMING_SNAKE_CASE__ = iris["""target_names"""] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE__ = xgboost(snake_case__ , snake_case__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case__ , snake_case__ , snake_case__ , display_labels=snake_case__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
165
0
"""simple docstring""" import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( _UpperCAmelCase ): '''simple docstring''' __lowerCAmelCase = 'naver-clova-ix/donut-base-finetuned-docvqa' __lowerCAmelCase = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __lowerCAmelCase = 'document_qa' __lowerCAmelCase = AutoProcessor __lowerCAmelCase = VisionEncoderDecoderModel __lowerCAmelCase = ['image', 'text'] __lowerCAmelCase = ['text'] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : int = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" __a : int = task_prompt.replace('''{user_input}''' , SCREAMING_SNAKE_CASE_ ) __a : int = self.pre_processor.tokenizer( SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).input_ids __a : List[Any] = self.pre_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _lowerCamelCase ( self , _UpperCAmelCase ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=SCREAMING_SNAKE_CASE_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=SCREAMING_SNAKE_CASE_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=SCREAMING_SNAKE_CASE_ , ).sequences def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Any = self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE_ )[0] __a : Dict = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __a : Union[str, Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __a : int = re.sub(R'''<.*?>''' , '''''' , SCREAMING_SNAKE_CASE_ , count=1 ).strip() # remove first task start token __a : Optional[Any] = self.pre_processor.tokenajson(SCREAMING_SNAKE_CASE_ ) return sequence["answer"]
355
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _lowerCamelCase ( self , _UpperCAmelCase=0 ): __a : Tuple = floats_tensor((1, 3, 128, 128) , rng=random.Random(_UpperCAmelCase ) ) __a : Any = np.random.RandomState(_UpperCAmelCase ) __a : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __a : List[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # warmup pass to apply optimizations __a : Any = pipe(**self.get_dummy_inputs() ) __a : List[str] = self.get_dummy_inputs() __a : Tuple = pipe(**_UpperCAmelCase ).images __a : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : int = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[Any] = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs() __a : str = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ): __a : Optional[Any] = ort.SessionOptions() __a : Any = False return options def _lowerCamelCase ( self ): __a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) # using the PNDM scheduler by default __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Tuple = '''A fantasy landscape, trending on artstation''' __a : Tuple = np.random.RandomState(0 ) __a : int = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : List[Any] = output.images __a : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Any = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCamelCase ( self ): __a : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) __a : str = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __a : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[str] = '''A fantasy landscape, trending on artstation''' __a : str = np.random.RandomState(0 ) __a : str = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : Dict = output.images __a : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Dict = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
188
0
"""simple docstring""" def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Optional[Any] ): """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ), end='''\t''' ) else: print('''INF''', end='''\t''' ) print() def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : str ): """simple docstring""" _a = [[float('''inf''' ) for _ in range(_lowerCAmelCase )] for _ in range(_lowerCAmelCase )] for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): _a = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_lowerCAmelCase ): # looping through rows of graph array for i in range(_lowerCAmelCase ): # looping through columns of graph array for j in range(_lowerCAmelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _a = dist[i][k] + dist[k][j] _print_dist(_lowerCAmelCase, _lowerCAmelCase ) return dist, v if __name__ == "__main__": __snake_case = int(input('''Enter number of vertices: ''')) __snake_case = int(input('''Enter number of edges: ''')) __snake_case = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): __snake_case = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) __snake_case = int(input('''Enter source:''')) __snake_case = int(input('''Enter destination:''')) __snake_case = float(input('''Enter weight:''')) __snake_case = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
320
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() @dataclass class _lowercase : lowercase_ = 4_2 lowercase_ = field(default_factory=__a ) lowercase_ = field(default_factory=__a ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict: lowerCamelCase : Optional[Any] = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__ , nn.Convad ) or isinstance(UpperCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase__ ) def __call__( self , UpperCAmelCase_ ) -> Any: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase__ ) [x.remove() for x in self.handles] return self @property def _UpperCamelCase ( self ) -> List[Any]: return list(filter(lambda UpperCAmelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowercase : lowercase_ = 4_2 lowercase_ = 4_2 lowercase_ = 1 lowercase_ = field(default_factory=__a ) lowercase_ = field(default_factory=__a ) lowercase_ = True def __call__( self , UpperCAmelCase_ ) -> str: lowerCamelCase : List[Any] = Tracker(self.dest )(UpperCamelCase__ ).parametrized lowerCamelCase : Dict = Tracker(self.src )(UpperCamelCase__ ).parametrized lowerCamelCase : str = list(filter(lambda UpperCAmelCase_ : type(UpperCamelCase__ ) not in self.src_skip , UpperCamelCase__ ) ) lowerCamelCase : Union[str, Any] = list(filter(lambda UpperCAmelCase_ : type(UpperCamelCase__ ) not in self.dest_skip , UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ) and self.raise_if_mismatch: raise Exception( F"""Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while""" F""" destination module has {len(UpperCamelCase__ )}.""" ) for dest_m, src_m in zip(UpperCamelCase__ , UpperCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) class _lowercase ( nn.Module ): def __init__( self , UpperCAmelCase_ ) -> Dict: super().__init__() lowerCamelCase : Dict = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), F"""Unexpected layer name {k}""" lowerCamelCase : List[str] = len(UpperCamelCase__ ) + 1 feature_blocks.append((F"""res{block_index}""", v) ) lowerCamelCase : List[Any] = nn.ModuleDict(UpperCamelCase__ ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Tuple: return get_trunk_forward_outputs( UpperCamelCase__ , out_feat_keys=UpperCamelCase__ , feature_blocks=self._feature_blocks , ) class _lowercase ( __a ): def _UpperCamelCase ( self , UpperCAmelCase_ ) -> str: lowerCamelCase : List[Any] = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , UpperCAmelCase_ ) -> Callable[[], Tuple[nn.Module, Dict]]: if x not in self: lowerCamelCase : List[str] = self.convert_name_to_timm(UpperCamelCase__ ) lowerCamelCase : List[str] = partial(lambda: (timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval(), None) ) else: lowerCamelCase : List[str] = super().__getitem__(UpperCamelCase__ ) return val class _lowercase ( __a ): def __getitem__( self , UpperCAmelCase_ ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: lowerCamelCase : Optional[Any] = RegNetModel else: lowerCamelCase : Dict = RegNetForImageClassification return val def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' for from_key, to_key in keys: lowerCamelCase : Any = from_state_dict[from_key].clone() print(F"""Copied key={from_key} to={to_key}""" ) return to_state_dict def UpperCAmelCase ( a_, a_, a_, a_, a_, a_ = True, ): '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): lowerCamelCase , lowerCamelCase : Union[str, Any] = from_model_func() lowerCamelCase : Optional[int] = our_model_func(__UpperCamelCase ).eval() lowerCamelCase : str = ModuleTransfer(src=__UpperCamelCase, dest=__UpperCamelCase, raise_if_mismatch=__UpperCamelCase ) lowerCamelCase : Optional[Any] = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCamelCase ) if from_state_dict is not None: lowerCamelCase : Optional[int] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: lowerCamelCase : Optional[int] = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] lowerCamelCase : int = manually_copy_vissl_head(__UpperCamelCase, our_model.state_dict(), __UpperCamelCase ) our_model.load_state_dict(__UpperCamelCase ) lowerCamelCase : List[str] = our_model(__UpperCamelCase, output_hidden_states=__UpperCamelCase ) lowerCamelCase : Dict = ( our_outputs.logits if isinstance(__UpperCamelCase, __UpperCamelCase ) else our_outputs.last_hidden_state ) lowerCamelCase : int = from_model(__UpperCamelCase ) lowerCamelCase : List[str] = from_output[-1] if type(__UpperCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: lowerCamelCase : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(__UpperCamelCase, __UpperCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=__UpperCamelCase, ) lowerCamelCase : List[str] = 224 if 'seer' not in name else 384 # we can use the convnext one lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=__UpperCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=__UpperCamelCase, ) print(F"""Pushed {name}""" ) def UpperCAmelCase ( a_, a_ = None, a_ = True ): '''simple docstring''' lowerCamelCase : Dict = 'imagenet-1k-id2label.json' lowerCamelCase : Optional[int] = 1000 lowerCamelCase : Union[str, Any] = (1, num_labels) lowerCamelCase : Any = 'huggingface/label-files' lowerCamelCase : Union[str, Any] = num_labels lowerCamelCase : Optional[Any] = json.load(open(cached_download(hf_hub_url(__UpperCamelCase, __UpperCamelCase, repo_type='dataset' ) ), 'r' ) ) lowerCamelCase : Dict = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase : Optional[int] = idalabel lowerCamelCase : str = {v: k for k, v in idalabel.items()} lowerCamelCase : str = partial(__UpperCamelCase, num_labels=__UpperCamelCase, idalabel=__UpperCamelCase, labelaid=__UpperCamelCase ) lowerCamelCase : Optional[Any] = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 1_1110, 2_8280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 1_1110, 2_8280], groups_width=1010 ), } lowerCamelCase : str = NameToOurModelFuncMap() lowerCamelCase : Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(a_, a_ ) -> Tuple[nn.Module, Dict]: lowerCamelCase : str = torch.hub.load_state_dict_from_url(__UpperCamelCase, model_dir=str(__UpperCamelCase ), map_location='cpu' ) lowerCamelCase : Union[str, Any] = model_func() # check if we have a head, if yes add it lowerCamelCase : int = files['classy_state_dict']['base_model']['model'] lowerCamelCase : List[str] = model_state_dict['trunk'] model.load_state_dict(__UpperCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained lowerCamelCase : Tuple = partial( __UpperCamelCase, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) lowerCamelCase : Union[str, Any] = partial( __UpperCamelCase, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) lowerCamelCase : List[str] = partial( __UpperCamelCase, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) lowerCamelCase : Union[str, Any] = partial( __UpperCamelCase, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.5_2 ) ) ), ) # IN1K finetuned lowerCamelCase : Optional[int] = partial( __UpperCamelCase, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) lowerCamelCase : List[str] = partial( __UpperCamelCase, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) lowerCamelCase : List[str] = partial( __UpperCamelCase, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) lowerCamelCase : Optional[int] = partial( __UpperCamelCase, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.5_2 ) ) ), ) if model_name: convert_weight_and_push( __UpperCamelCase, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], __UpperCamelCase, __UpperCamelCase, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __UpperCamelCase, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
369
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) class _lowercase ( __UpperCAmelCase ): lowercase_ = 'encoder-decoder' lowercase_ = True def __init__( self , **UpperCAmelCase_ ) -> str: super().__init__(**UpperCAmelCase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCamelCase : List[Any] = kwargs.pop('encoder' ) lowerCamelCase : Optional[int] = encoder_config.pop('model_type' ) lowerCamelCase : str = kwargs.pop('decoder' ) lowerCamelCase : Dict = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase : int = AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : List[str] = AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : List[str] = True @classmethod def _UpperCamelCase ( cls , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) -> PretrainedConfig: logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) lowerCamelCase : str = True lowerCamelCase : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCamelCase : Union[str, Any] = self.encoder.to_dict() lowerCamelCase : List[Any] = self.decoder.to_dict() lowerCamelCase : Tuple = self.__class__.model_type return output
205
0
from math import pi, sqrt, tan def _UpperCAmelCase (UpperCamelCase__ : float ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _UpperCAmelCase (UpperCamelCase__ : float ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def _UpperCAmelCase (UpperCamelCase__ : float ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) _A : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(UpperCamelCase__ , 2 ) * torus_radius * tube_radius def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def _UpperCAmelCase (UpperCamelCase__ : float ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) _A : int = (sidea + sidea + sidea) / 2 _A : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def _UpperCAmelCase (UpperCamelCase__ : float ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def _UpperCAmelCase (UpperCamelCase__ : float , UpperCamelCase__ : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : float ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print('\nSurface Areas of various geometric shapes: \n') print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
11
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> str: if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=__lowerCamelCase , ) assert hasattr(self , "env") def _lowerCamelCase ( self , __lowerCamelCase) -> Tuple: _A : Dict = F"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings _A : Optional[Any] = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCamelCase , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="py36" , ) def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: TrainingJobAnalytics(__lowerCamelCase).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(2,)]) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: # create estimator _A : Union[str, Any] = self.create_estimator(__lowerCamelCase) # run training estimator.fit() # result dataframe _A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) _A : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _A : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCamelCase)
11
1
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a__( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase_ ( self : Union[str, Any] ): a , a : int = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=__snake_case , dtype=jnp.bfloataa ) a , a : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=__snake_case , from_pt=__snake_case , dtype=jnp.bfloataa ) a : Optional[Any] = controlnet_params a : Any = 'bird' a : Tuple = jax.device_count() a : Union[str, Any] = pipe.prepare_text_inputs([prompts] * num_samples ) a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) a : Optional[Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) a : List[Any] = jax.random.PRNGKey(0 ) a : Optional[int] = jax.random.split(__snake_case , jax.device_count() ) a : List[str] = replicate(__snake_case ) a : str = shard(__snake_case ) a : List[str] = shard(__snake_case ) a : Any = pipe( prompt_ids=__snake_case , image=__snake_case , params=__snake_case , prng_seed=__snake_case , num_inference_steps=50 , jit=__snake_case , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a : List[str] = images[0, 2_53:2_56, 2_53:2_56, -1] a : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a : Any = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowercase_ ( self : str ): a , a : List[str] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=__snake_case , dtype=jnp.bfloataa ) a , a : Dict = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=__snake_case , from_pt=__snake_case , dtype=jnp.bfloataa ) a : List[str] = controlnet_params a : List[Any] = 'Chef in the kitchen' a : List[Any] = jax.device_count() a : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) a : int = pipe.prepare_image_inputs([pose_image] * num_samples ) a : Union[str, Any] = jax.random.PRNGKey(0 ) a : Optional[int] = jax.random.split(__snake_case , jax.device_count() ) a : Optional[Any] = replicate(__snake_case ) a : str = shard(__snake_case ) a : str = shard(__snake_case ) a : Union[str, Any] = pipe( prompt_ids=__snake_case , image=__snake_case , params=__snake_case , prng_seed=__snake_case , num_inference_steps=50 , jit=__snake_case , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a : int = images[0, 2_53:2_56, 2_53:2_56, -1] a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a : List[Any] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
96
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowerCamelCase__ ( _A=None , _A=None ): return field(default_factory=lambda: default , metadata=_A ) @dataclass class a__: lowercase__ = field( metadata={"""help""": """The csv file to plot."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) lowercase__ = field( default=lowerCamelCase__ , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) lowercase__ = field( default=lowerCamelCase__ , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) lowercase__ = list_field( default=lowerCamelCase__ , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def lowerCamelCase__ ( _A ): try: int(_A ) return True except ValueError: return False def lowerCamelCase__ ( _A ): try: float(_A ) return True except ValueError: return False class a__: def __init__( self : Union[str, Any] , __snake_case : Optional[int] ): a : int = args a : Dict = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: a : List[Any] = csv.DictReader(__snake_case ) for row in reader: a : Dict = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None a : Dict = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None a : int = float(row['result'] ) def lowercase_ ( self : int ): a , a : Dict = plt.subplots() a : int = 'Time usage' if self.args.is_time else 'Memory usage' a : int = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): a : Dict = sorted(set(self.result_dict[model_name]['bsz'] ) ) a : Any = sorted(set(self.result_dict[model_name]['seq_len'] ) ) a : Any = self.result_dict[model_name]['result'] ((a) , (a)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) a : int = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: a : Dict = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__snake_case , ) else: a : int = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((a) , (a)) : Optional[int] = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) a : List[str] = np.asarray(__snake_case , __snake_case )[: len(__snake_case )] plt.scatter( __snake_case , __snake_case , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(__snake_case , __snake_case , '--' ) title_str += F""" {label_model_name} vs.""" a : List[Any] = title_str[:-4] a : Optional[Any] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(__snake_case ) plt.xlabel(__snake_case ) plt.ylabel(__snake_case ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowerCamelCase__ ( ): a : Dict = HfArgumentParser(_A ) a : List[str] = parser.parse_args_into_dataclasses()[0] a : Dict = Plot(args=_A ) plot.plot() if __name__ == "__main__": main()
96
1
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
81
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
0
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
366
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCamelCase :Tuple = logging.get_logger(__name__) lowerCamelCase :Optional[int] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase :int = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase :Tuple = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } lowerCamelCase :str = '''▁''' class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__(self , lowercase , lowercase="</s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase=100 , lowercase=None , lowercase = None , lowercase=True , **lowercase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: A_ : Any = [F'<extra_id_{i}>' for i in range(lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens A_ : Tuple = len(set(filter(lambda lowercase : bool("""extra_id""" in str(lowercase ) ) , lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) A_ : str = legacy A_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , extra_ids=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy=lowercase , **lowercase , ) A_ : List[str] = vocab_file A_ : Tuple = extra_ids A_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) @staticmethod def _a (lowercase , lowercase , lowercase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: A_ : Union[str, Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , lowercase , ) return max_model_length @property def _a (self ): return self.sp_model.get_piece_size() + self._extra_ids def _a (self ): A_ : Union[str, Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a (self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase )) + [1] return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1] def _a (self ): return list( set(filter(lambda lowercase : bool(re.search(R"""<extra_id_\d+>""" , lowercase ) ) is not None , self.additional_special_tokens ) ) ) def _a (self ): return [self._convert_token_to_id(lowercase ) for token in self.get_sentinel_tokens()] def _a (self , lowercase ): if len(lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def _a (self , lowercase , lowercase = None ): A_ : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _a (self , lowercase , lowercase = None ): A_ : Optional[Any] = self._add_eos_if_not_present(lowercase ) if token_ids_a is None: return token_ids_a else: A_ : List[Any] = self._add_eos_if_not_present(lowercase ) return token_ids_a + token_ids_a def __getstate__(self ): A_ : int = self.__dict__.copy() A_ : Tuple = None return state def __setstate__(self , lowercase ): A_ : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : Dict = {} A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a (self , lowercase , **lowercase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: A_ : Tuple = SPIECE_UNDERLINE + text.replace(lowercase , """ """ ) return super().tokenize(lowercase , **lowercase ) def _a (self , lowercase , **lowercase ): if not self.legacy: A_ : Dict = text.startswith(lowercase ) if is_first: A_ : str = text[1:] A_ : Optional[int] = self.sp_model.encode(lowercase , out_type=lowercase ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(lowercase ): A_ : Optional[int] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _a (self , lowercase ): if token.startswith("""<extra_id_""" ): A_ : Union[str, Any] = re.match(R"""<extra_id_(\d+)>""" , lowercase ) A_ : str = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase ) def _a (self , lowercase ): if index < self.sp_model.get_piece_size(): A_ : List[Any] = self.sp_model.IdToPiece(lowercase ) else: A_ : Dict = F'<extra_id_{self.vocab_size - 1 - index}>' return token def _a (self , lowercase ): A_ : Union[str, Any] = [] A_ : int = """""" A_ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token A_ : Dict = True A_ : Union[str, Any] = [] else: current_sub_tokens.append(lowercase ) A_ : Optional[Any] = False out_string += self.sp_model.decode(lowercase ) return out_string.strip() def _a (self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Optional[Any] = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: A_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
135
0
'''simple docstring''' import functools from typing import Any def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : list[str] ) -> bool: # Validation if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or len(_lowerCAmelCase ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not all( isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie UpperCAmelCase : dict[str, Any] = {} UpperCAmelCase : str = '''WORD_KEEPER''' for word in words: UpperCAmelCase : int = trie for c in word: if c not in trie_node: UpperCAmelCase : str = {} UpperCAmelCase : Dict = trie_node[c] UpperCAmelCase : str = True UpperCAmelCase : Dict = len(_lowerCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(_lowerCAmelCase : int ) -> bool: if index == len_string: return True UpperCAmelCase : int = trie for i in range(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Tuple = trie_node.get(string[i] , _lowerCAmelCase ) if trie_node is None: return False if trie_node.get(_lowerCAmelCase , _lowerCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
23
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : List[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : Tuple ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : List[str] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Dict , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : str ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] )
188
0
from __future__ import annotations from math import pow, sqrt def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(_UpperCAmelCase , 2 ) - pow(_UpperCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_UpperCAmelCase , 2 ) - pow(_UpperCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_UpperCAmelCase , 2 ) + pow(_UpperCAmelCase , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
369
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __snake_case :Dict = logging.get_logger(__name__) __snake_case :List[str] = {'''vocab_file''': '''spiece.model'''} __snake_case :Dict = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _A ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]="<s>" , __SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , __SCREAMING_SNAKE_CASE : Optional[int]="<sep>" , __SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , __SCREAMING_SNAKE_CASE : List[Any]="<cls>" , __SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , __SCREAMING_SNAKE_CASE : Any=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ): '''simple docstring''' __a = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else mask_token __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __a = 3 __a = do_lower_case __a = remove_space __a = keep_accents __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__SCREAMING_SNAKE_CASE) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''') __a = jieba __a = str.maketrans(''' \n''' , '''\u2582\u2583''') @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self : int): '''simple docstring''' return len(self.sp_model) def _lowerCamelCase ( self : str): '''simple docstring''' __a = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' if self.remove_space: __a = ''' '''.join(inputs.strip().split()) else: __a = inputs __a = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: __a = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE) __a = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE)]) if self.do_lower_case: __a = outputs.lower() return outputs def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = self.preprocess_text(__SCREAMING_SNAKE_CASE) __a = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE) __a = [] for piece in pieces: if len(__SCREAMING_SNAKE_CASE) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): __a = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __a = cur_pieces[1:] else: __a = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(__SCREAMING_SNAKE_CASE) else: new_pieces.append(__SCREAMING_SNAKE_CASE) return new_pieces def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = ''''''.join(__SCREAMING_SNAKE_CASE).replace(__SCREAMING_SNAKE_CASE , ''' ''').strip() return out_string def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE) if token_ids_a is not None: return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE)) + [1, 1] return ([0] * len(__SCREAMING_SNAKE_CASE)) + [1, 1] def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __a = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(__SCREAMING_SNAKE_CASE , '''wb''') as fi: __a = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE) return (out_vocab_file,) def _lowerCamelCase ( self : Any , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = super()._decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = text.replace(''' ''' , '''''').replace('''\u2582''' , ''' ''').replace('''\u2583''' , '''\n''') return text
131
0
"""simple docstring""" from math import isqrt def _A ( lowercase ): """simple docstring""" a =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowercase , lowercase ): a =False return [i for i in range(2 , lowercase ) if is_prime[i]] def _A ( lowercase = 10**8 ): """simple docstring""" a =calculate_prime_numbers(max_number // 2 ) a =0 a =0 a =len(lowercase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
81
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) -> Dict: '''simple docstring''' _lowercase =feature_size _lowercase =sampling_rate _lowercase =padding_value _lowercase =kwargs.pop('padding_side' , 'right' ) _lowercase =kwargs.pop('return_attention_mask' , lowerCAmelCase ) super().__init__(**lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> BatchFeature: '''simple docstring''' if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _lowercase ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCAmelCase ) == 0: if return_attention_mask: _lowercase =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowercase =required_input[0] if isinstance(lowerCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowercase =0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCAmelCase ): _lowercase =required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCAmelCase ): _lowercase ='tf' elif is_torch_tensor(lowerCAmelCase ): _lowercase ='pt' elif isinstance(lowerCAmelCase , (int, float, list, tuple, np.ndarray) ): _lowercase ='np' else: raise ValueError( F'''type of {first_element} unknown: {type(lowerCAmelCase )}. ''' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _lowercase =to_numpy(lowerCAmelCase ) else: _lowercase =[to_numpy(lowerCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy _lowercase =self._get_padding_strategies(padding=lowerCAmelCase , max_length=lowerCAmelCase ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =len(lowerCAmelCase ) if not all(len(lowerCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) _lowercase =[] for i in range(lowerCAmelCase ): _lowercase ={k: v[i] for k, v in processed_features.items()} # truncation _lowercase =self._truncate( lowerCAmelCase , max_length=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) truncated_inputs.append(lowerCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowercase =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _lowercase =PaddingStrategy.MAX_LENGTH _lowercase ={} for i in range(lowerCAmelCase ): # padding _lowercase =self._pad( truncated_inputs[i] , max_length=lowerCAmelCase , padding_strategy=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: _lowercase =[] if value.dtype is np.dtype(np.floataa ): _lowercase =value.astype(np.floataa ) batch_outputs[key].append(lowerCAmelCase ) return BatchFeature(lowerCAmelCase , tensor_type=lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase = None , lowerCAmelCase = None , ) -> dict: '''simple docstring''' _lowercase =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowercase =len(lowerCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowercase =np.ones(len(lowerCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: _lowercase =max_length - len(lowerCAmelCase ) if self.padding_side == "right": if return_attention_mask: _lowercase =np.pad( processed_features['attention_mask'] , (0, difference) ) _lowercase =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowercase =np.pad( lowerCAmelCase , lowerCAmelCase , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _lowercase =np.pad( processed_features['attention_mask'] , (difference, 0) ) _lowercase =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowercase =np.pad( lowerCAmelCase , lowerCAmelCase , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ) -> Any: '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) _lowercase =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =len(lowerCAmelCase ) > max_length if needs_to_be_truncated: _lowercase =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowercase =processed_features['attention_mask'][:max_length] return processed_features def A__ ( self , lowerCAmelCase=False , lowerCAmelCase=None ) -> Optional[int]: '''simple docstring''' if padding is not False: if padding is True: _lowercase =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCAmelCase , lowerCAmelCase ): _lowercase =PaddingStrategy(lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): _lowercase =padding else: _lowercase =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
205
0
'''simple docstring''' from statistics import mean, stdev def lowerCamelCase ( lowerCAmelCase : list , lowerCAmelCase : int = 3 ): """simple docstring""" __magic_name__ : Any = min(lowerCAmelCase ) __magic_name__ : Any = max(lowerCAmelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase ) for x in data] def lowerCamelCase ( lowerCAmelCase : list , lowerCAmelCase : int = 3 ): """simple docstring""" __magic_name__ : List[Any] = mean(lowerCAmelCase ) __magic_name__ : Any = stdev(lowerCAmelCase ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase ) for x in data]
351
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Optional[int] = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[str] = 0 while number > 0: __magic_name__ : str = number % 10 sum_of_digits += last_digit __magic_name__ : Optional[int] = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" __magic_name__ : int = factorial(lowerCAmelCase ) __magic_name__ : Any = split_and_add(lowerCAmelCase ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
275
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase=None , lowercase=None ): # Input as list _lowerCamelCase : Optional[int] = list(poly_a or [0] )[:] _lowerCamelCase : Tuple = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowerCamelCase : Tuple = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _lowerCamelCase : Optional[Any] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _lowerCamelCase : List[str] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _lowerCamelCase : List[str] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _lowerCamelCase : Optional[int] = self.__multiply() def A_ ( self , lowercase ): _lowerCamelCase : Any = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowercase ) <= 1: return dft[0] # _lowerCamelCase : Tuple = self.c_max_length // 2 while next_ncol > 0: _lowerCamelCase : Optional[Any] = [[] for i in range(lowercase )] _lowerCamelCase : List[Any] = self.root**next_ncol # First half of next step _lowerCamelCase : Optional[int] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowercase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _lowerCamelCase : List[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowercase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _lowerCamelCase : Optional[int] = new_dft _lowerCamelCase : int = next_ncol // 2 return dft[0] def A_ ( self ): _lowerCamelCase : Optional[Any] = self.__dft('A' ) _lowerCamelCase : Optional[Any] = self.__dft('B' ) _lowerCamelCase : Union[str, Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _lowerCamelCase : Any = 2 while next_ncol <= self.c_max_length: _lowerCamelCase : Union[str, Any] = [[] for i in range(lowercase )] _lowerCamelCase : Tuple = self.root ** (next_ncol // 2) _lowerCamelCase : str = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _lowerCamelCase : Union[str, Any] = new_inverse_c next_ncol *= 2 # Unpack _lowerCamelCase : Dict = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): _lowerCamelCase : Optional[int] = 'A = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _lowerCamelCase : Any = 'B = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _lowerCamelCase : Optional[Any] = 'A*B = ' + ' + '.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
96
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowercase__ = get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = """dummy_data""" lowerCamelCase__ = """datasets""" lowerCamelCase__ = False def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , lowercase = True , lowercase = None , ): _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : Dict = dataset_name _lowerCamelCase : Union[str, Any] = cache_dir _lowerCamelCase : Dict = use_local_dummy_data _lowerCamelCase : Tuple = config # download_callbacks take a single url as input _lowerCamelCase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root _lowerCamelCase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general _lowerCamelCase : str = str(lowercase ) # to be downloaded _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : int = None @property def A_ ( self ): if self._dummy_file is None: _lowerCamelCase : Tuple = self.download_dummy_data() return self._dummy_file @property def A_ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def A_ ( self ): return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def A_ ( self ): _lowerCamelCase : List[str] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) _lowerCamelCase : int = cached_path( lowercase , cache_dir=self.cache_dir , extract_compressed_file=lowercase , force_extract=lowercase ) return os.path.join(lowercase , self.dummy_file_name ) @property def A_ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def A_ ( self ): if self._bucket_url is None: _lowerCamelCase : List[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def A_ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def A_ ( self , lowercase , *lowercase ): if self.load_existing_dummy_data: # dummy data is downloaded and tested _lowerCamelCase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned _lowerCamelCase : Union[str, Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase , lowercase ): return self.create_dummy_data_dict(lowercase , lowercase ) elif isinstance(lowercase , (list, tuple) ): return self.create_dummy_data_list(lowercase , lowercase ) else: return self.create_dummy_data_single(lowercase , lowercase ) def A_ ( self , lowercase , *lowercase ): return self.download_and_extract(lowercase ) def A_ ( self , lowercase , lowercase ): return self.download_and_extract(lowercase ) def A_ ( self , lowercase , *lowercase , **lowercase ): return path def A_ ( self ): return {} def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[int] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase , lowercase ): for single_url in single_urls: download_callback(lowercase ) else: _lowerCamelCase : List[Any] = single_urls download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase , lowercase ): _lowerCamelCase : List[Any] = [os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) for x in single_urls] else: _lowerCamelCase : Optional[int] = single_urls _lowerCamelCase : List[Any] = os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) _lowerCamelCase : int = value # make sure that values are unique if all(isinstance(lowercase , lowercase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique _lowerCamelCase : List[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def A_ ( self , lowercase , lowercase ): _lowerCamelCase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one _lowerCamelCase : List[str] = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , lowercase ) ) for url in data_url ) _lowerCamelCase : int = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): _lowerCamelCase : List[str] = [data_url[0]] * len(lowercase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : str = os.path.join(lowercase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(lowercase ) return dummy_data_list def A_ ( self , lowercase , lowercase ): for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus _lowerCamelCase : Tuple = os.path.join(lowercase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(lowercase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def A_ ( self ): pass def A_ ( self ): pass def A_ ( self , lowercase ): def _iter_archive_members(lowercase ): # this preserves the order of the members inside the ZIP archive _lowerCamelCase : str = Path(self.dummy_file ).parent _lowerCamelCase : Union[str, Any] = path.relative_to(lowercase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: _lowerCamelCase : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase ) _lowerCamelCase : Optional[int] = Path(lowercase ) _lowerCamelCase : Dict = _iter_archive_members(lowercase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(lowercase ).as_posix(), file_path.open('rb' ) def A_ ( self , lowercase ): if not isinstance(lowercase , lowercase ): _lowerCamelCase : List[str] = [paths] for path in paths: if os.path.isfile(lowercase ): if os.path.basename(lowercase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase ): if os.path.basename(lowercase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(lowercase ): if filename.startswith(('.', '__') ): continue yield os.path.join(lowercase , lowercase )
96
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCAmelCase : def __init__( self : Dict , __snake_case : Dict , __snake_case : str=13 , __snake_case : Dict=7 , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=True , __snake_case : Optional[int]=False , __snake_case : str=True , __snake_case : Optional[int]=99 , __snake_case : List[Any]=32 , __snake_case : Any=5 , __snake_case : Union[str, Any]=4 , __snake_case : List[str]=37 , __snake_case : Optional[Any]="gelu" , __snake_case : Any=0.1 , __snake_case : Any=0.1 , __snake_case : List[Any]=5_12 , __snake_case : Any=16 , __snake_case : Optional[int]=2 , __snake_case : Any=0.02 , __snake_case : List[str]=3 , __snake_case : List[Any]=4 , __snake_case : Tuple=None , ) -> Any: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def lowercase__ ( self : Tuple ) -> int: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : List[str] ) -> Optional[Any]: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , use_stable_embedding=__snake_case , ) def lowercase__ ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Dict , __snake_case : str , __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[Any] ) -> Dict: _lowerCAmelCase = OpenLlamaModel(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case , attention_mask=__snake_case ) _lowerCAmelCase = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : List[Any] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Optional[int] , ) -> Tuple: _lowerCAmelCase = True _lowerCAmelCase = OpenLlamaModel(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) _lowerCAmelCase = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , ) _lowerCAmelCase = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> int: _lowerCAmelCase = OpenLlamaForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : List[str] , __snake_case : List[str] , __snake_case : List[Any] , ) -> List[Any]: _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = OpenLlamaForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass _lowerCAmelCase = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , use_cache=__snake_case , ) _lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCAmelCase = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_hidden_states=__snake_case , )["""hidden_states"""][0] _lowerCAmelCase = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )["""hidden_states"""][0] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _lowercase: Any = (OpenLlamaForCausalLM,) if is_torch_available() else () _lowercase: Optional[int] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _lowercase: Tuple = False _lowercase: Any = False def lowercase__ ( self : int ) -> str: _lowerCAmelCase = OpenLlamaModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ) -> Optional[int]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : Dict ) -> str: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*__snake_case ) def lowercase__ ( self : List[Any] ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = input_dict["""input_ids"""] _lowerCAmelCase = input_ids.ne(1 ).to(__snake_case ) _lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase = OpenLlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : Tuple ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = """single_label_classification""" _lowerCAmelCase = input_dict["""input_ids"""] _lowerCAmelCase = input_ids.ne(1 ).to(__snake_case ) _lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase = OpenLlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : Tuple ) -> int: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = """multi_label_classification""" _lowerCAmelCase = input_dict["""input_ids"""] _lowerCAmelCase = input_ids.ne(1 ).to(__snake_case ) _lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCAmelCase = OpenLlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _lowerCAmelCase = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def lowercase__ ( self : Optional[Any] ) -> int: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def lowercase__ ( self : Dict , __snake_case : Optional[Any] ) -> int: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) _lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase = OpenLlamaModel(__snake_case ) original_model.to(__snake_case ) original_model.eval() _lowerCAmelCase = original_model(__snake_case ).last_hidden_state _lowerCAmelCase = original_model(__snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase = {"""type""": scaling_type, """factor""": 10.0} _lowerCAmelCase = OpenLlamaModel(__snake_case ) scaled_model.to(__snake_case ) scaled_model.eval() _lowerCAmelCase = scaled_model(__snake_case ).last_hidden_state _lowerCAmelCase = scaled_model(__snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1E-5 ) )
220
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: A__ : Tuple =None try: import msvcrt except ImportError: A__ : str =None try: import fcntl except ImportError: A__ : Dict =None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: A__ : Tuple =OSError # Data # ------------------------------------------------ A__ : Optional[Any] =[ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] A__ : Union[str, Any] ='''3.0.12''' A__ : Optional[Any] =None def UpperCamelCase__ ( ): """simple docstring""" global _logger _lowerCAmelCase = _logger or logging.getLogger(__name__ ) return _logger class UpperCAmelCase ( snake_case_ ): def __init__( self : Optional[int] , __snake_case : str ) -> Optional[Any]: _lowerCAmelCase = lock_file return None def __str__( self : Union[str, Any] ) -> Any: _lowerCAmelCase = f"The file lock '{self.lock_file}' could not be acquired." return temp class UpperCAmelCase : def __init__( self : str , __snake_case : str ) -> Tuple: _lowerCAmelCase = lock return None def __enter__( self : Union[str, Any] ) -> Union[str, Any]: return self.lock def __exit__( self : Tuple , __snake_case : List[Any] , __snake_case : int , __snake_case : Optional[int] ) -> Union[str, Any]: self.lock.release() return None class UpperCAmelCase : def __init__( self : List[Any] , __snake_case : str , __snake_case : Tuple=-1 , __snake_case : List[str]=None ) -> Any: _lowerCAmelCase = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long _lowerCAmelCase = self.hash_filename_if_too_long(__snake_case , __snake_case ) # The path to the lock file. _lowerCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _lowerCAmelCase = None # The default timeout value. _lowerCAmelCase = timeout # We use this lock primarily for the lock counter. _lowerCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _lowerCAmelCase = 0 return None @property def lowercase__ ( self : int ) -> List[str]: return self._lock_file @property def lowercase__ ( self : Dict ) -> List[Any]: return self._timeout @timeout.setter def lowercase__ ( self : Tuple , __snake_case : int ) -> Optional[Any]: _lowerCAmelCase = float(__snake_case ) return None def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: raise NotImplementedError() def lowercase__ ( self : Optional[Any] ) -> Any: raise NotImplementedError() @property def lowercase__ ( self : str ) -> Dict: return self._lock_file_fd is not None def lowercase__ ( self : Union[str, Any] , __snake_case : Union[str, Any]=None , __snake_case : List[str]=0.05 ) -> List[str]: # Use the default timeout, if no timeout is provided. if timeout is None: _lowerCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _lowerCAmelCase = id(self ) _lowerCAmelCase = self._lock_file _lowerCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(f"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( f"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(__snake_case ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _lowerCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowercase__ ( self : Dict , __snake_case : Optional[int]=False ) -> Union[str, Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _lowerCAmelCase = id(self ) _lowerCAmelCase = self._lock_file logger().debug(f"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() _lowerCAmelCase = 0 logger().debug(f"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : List[str] ) -> Union[str, Any]: self.acquire() return self def __exit__( self : Union[str, Any] , __snake_case : str , __snake_case : Tuple , __snake_case : Any ) -> int: self.release() return None def __del__( self : Optional[Any] ) -> Any: self.release(force=__snake_case ) return None def lowercase__ ( self : Optional[Any] , __snake_case : str , __snake_case : int ) -> str: _lowerCAmelCase = os.path.basename(__snake_case ) if len(__snake_case ) > max_length and max_length > 0: _lowerCAmelCase = os.path.dirname(__snake_case ) _lowerCAmelCase = str(hash(__snake_case ) ) _lowerCAmelCase = filename[: max_length - len(__snake_case ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__snake_case , __snake_case ) else: return path class UpperCAmelCase ( snake_case_ ): def __init__( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int]=-1 , __snake_case : str=None ) -> Dict: from .file_utils import relative_to_absolute_path super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case ) _lowerCAmelCase = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def lowercase__ ( self : List[str] ) -> Tuple: _lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _lowerCAmelCase = os.open(self._lock_file , __snake_case ) except OSError: pass else: try: msvcrt.locking(__snake_case , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__snake_case ) else: _lowerCAmelCase = fd return None def lowercase__ ( self : List[str] ) -> List[str]: _lowerCAmelCase = self._lock_file_fd _lowerCAmelCase = None msvcrt.locking(__snake_case , msvcrt.LK_UNLCK , 1 ) os.close(__snake_case ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCAmelCase ( snake_case_ ): def __init__( self : Dict , __snake_case : List[Any] , __snake_case : List[Any]=-1 , __snake_case : List[str]=None ) -> Dict: _lowerCAmelCase = os.statvfs(os.path.dirname(__snake_case ) ).f_namemax super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case ) def lowercase__ ( self : Optional[int] ) -> List[Any]: _lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC _lowerCAmelCase = os.open(self._lock_file , __snake_case ) try: fcntl.flock(__snake_case , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__snake_case ) else: _lowerCAmelCase = fd return None def lowercase__ ( self : Optional[int] ) -> Optional[int]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _lowerCAmelCase = self._lock_file_fd _lowerCAmelCase = None fcntl.flock(__snake_case , fcntl.LOCK_UN ) os.close(__snake_case ) return None class UpperCAmelCase ( snake_case_ ): def lowercase__ ( self : Union[str, Any] ) -> Dict: _lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _lowerCAmelCase = os.open(self._lock_file , __snake_case ) except OSError: pass else: _lowerCAmelCase = fd return None def lowercase__ ( self : Any ) -> Optional[Any]: os.close(self._lock_file_fd ) _lowerCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None A__ : Tuple =None if msvcrt: A__ : List[Any] =WindowsFileLock elif fcntl: A__ : Tuple =UnixFileLock else: A__ : Tuple =SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
220
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : str =field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowercase_ : ClassVar[Features] =Features({'''audio''': Audio()} ) lowercase_ : ClassVar[Features] =Features({'''labels''': ClassLabel} ) lowercase_ : str ="audio" lowercase_ : str ="labels" def A__ ( self ,A__): if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.') if not isinstance(features[self.label_column] ,A__): raise ValueError(f'Column {self.label_column} is not a ClassLabel.') lowercase = copy.deepcopy(self) lowercase = self.label_schema.copy() lowercase = features[self.label_column] lowercase = label_schema return task_template @property def A__ ( self): return { self.audio_column: "audio", self.label_column: "labels", }
101
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = '''hf-internal-testing/tiny-random-bert''' __A = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') __A = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Dict = cached_file(UpperCAmelCase , UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) ) with open(os.path.join(UpperCAmelCase , "refs" , "main" ) ) as f: __lowerCamelCase : Dict = f.read() self.assertEqual(UpperCAmelCase , os.path.join(UpperCAmelCase , "snapshots" , UpperCAmelCase , UpperCAmelCase ) ) self.assertTrue(os.path.isfile(UpperCAmelCase ) ) # File is cached at the same place the second time. __lowerCamelCase : Tuple = cached_file(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # Using a specific revision to test the full commit hash. __lowerCamelCase : List[str] = cached_file(UpperCAmelCase , UpperCAmelCase , revision="9b8c223" ) self.assertEqual(UpperCAmelCase , os.path.join(UpperCAmelCase , "snapshots" , UpperCAmelCase , UpperCAmelCase ) ) def lowerCamelCase__ ( self : List[str] ): with self.assertRaisesRegex(UpperCAmelCase , "is not a valid model identifier" ): __lowerCamelCase : Optional[Any] = cached_file("tiny-random-bert" , UpperCAmelCase ) with self.assertRaisesRegex(UpperCAmelCase , "is not a valid git identifier" ): __lowerCamelCase : Dict = cached_file(UpperCAmelCase , UpperCAmelCase , revision="aaaa" ) with self.assertRaisesRegex(UpperCAmelCase , "does not appear to have a file named" ): __lowerCamelCase : List[Any] = cached_file(UpperCAmelCase , "conf" ) def lowerCamelCase__ ( self : str ): with self.assertRaisesRegex(UpperCAmelCase , "does not appear to have a file named" ): __lowerCamelCase : Any = cached_file(UpperCAmelCase , "conf" ) with open(os.path.join(UpperCAmelCase , "refs" , "main" ) ) as f: __lowerCamelCase : List[str] = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCAmelCase , ".no_exist" , UpperCAmelCase , "conf" ) ) ) __lowerCamelCase : List[str] = cached_file(UpperCAmelCase , "conf" , _raise_exceptions_for_missing_entries=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = cached_file(UpperCAmelCase , "conf" , local_files_only=UpperCAmelCase , _raise_exceptions_for_missing_entries=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) __lowerCamelCase : str = mock.Mock() __lowerCamelCase : Union[str, Any] = 500 __lowerCamelCase : Tuple = {} __lowerCamelCase : Dict = HTTPError __lowerCamelCase : Any = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase ) as mock_head: __lowerCamelCase : Any = cached_file(UpperCAmelCase , "conf" , _raise_exceptions_for_connection_errors=UpperCAmelCase ) self.assertIsNone(UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase__ ( self : str ): self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , UpperCAmelCase ) ) def lowerCamelCase__ ( self : Any ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCAmelCase , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCAmelCase , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , UpperCAmelCase , revision="ahaha" ) __lowerCamelCase : str = get_file_from_repo("bert-base-cased" , UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. __lowerCamelCase : Tuple = json.loads(open(UpperCAmelCase , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCamelCase__ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Union[str, Any] = Path(UpperCAmelCase ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(UpperCAmelCase , "a.txt" ) , str(UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(UpperCAmelCase , "b.txt" ) )
135
0
from collections.abc import Sequence def UpperCAmelCase ( _lowerCamelCase = None ): if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) A : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): A : Union[str, Any] = nums[i] A : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __SCREAMING_SNAKE_CASE = int(input("""Enter number of elements : """).strip()) __SCREAMING_SNAKE_CASE = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
366
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def UpperCAmelCase ( _lowerCamelCase ): A : Any = [] for line in lines: A : List[str] = re.sub(R"#.*" , "" , _lowerCamelCase ) # remove comments if line: filtered_lines.append(_lowerCamelCase ) A : str = "\n".join(_lowerCamelCase ) # Make a hash from all this code A : Any = full_str.encode("utf-8" ) return shaaaa(_lowerCamelCase ).hexdigest() # get importable module names and hash for caching __SCREAMING_SNAKE_CASE = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __SCREAMING_SNAKE_CASE = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __SCREAMING_SNAKE_CASE = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __SCREAMING_SNAKE_CASE = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
256
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __magic_name__: str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __magic_name__: Tuple = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __magic_name__: Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Optional[Any] = len([g for position, g in enumerate(_a ) if g == main_target[position]] ) return (item, float(_a )) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Optional[int] = random.randint(0, len(_a ) - 1 ) __magic_name__ : Dict = parent_a[:random_slice] + parent_a[random_slice:] __magic_name__ : Optional[int] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCamelCase ( _A, _A ): """simple docstring""" __magic_name__ : Any = list(_a ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: __magic_name__ : Dict = random.choice(_a ) return "".join(_a ) def UpperCamelCase ( _A, _A, _A, ): """simple docstring""" __magic_name__ : Union[str, Any] = [] # Generate more children proportionally to the fitness score. __magic_name__ : List[Any] = int(parent_a[1] * 100 ) + 1 __magic_name__ : List[Any] = 10 if child_n >= 10 else child_n for _ in range(_a ): __magic_name__ : List[Any] = population_score[random.randint(0, _a )][0] __magic_name__ : Tuple = crossover(parent_a[0], _a ) # Append new string to the population list. pop.append(mutate(_a, _a ) ) pop.append(mutate(_a, _a ) ) return pop def UpperCamelCase ( _A, _A, _A = True ): """simple docstring""" if N_POPULATION < N_SELECTED: __magic_name__ : List[Any] = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_a ) # Verify that the target contains no genes besides the ones inside genes variable. __magic_name__ : Union[str, Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __magic_name__ : int = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_a ) # Generate random starting population. __magic_name__ : Tuple = [] for _ in range(_a ): population.append("""""".join([random.choice(_a ) for i in range(len(_a ) )] ) ) # Just some logs to know what the algorithms is doing. __magic_name__ : int = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_a ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __magic_name__ : Tuple = [evaluate(_a, _a ) for item in population] # Check if there is a matching evolution. __magic_name__ : Any = sorted(_a, key=lambda _A : x[1], reverse=_a ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __magic_name__ : Optional[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_a ) # Normalize population score to be between 0 and 1. __magic_name__ : List[str] = [ (item, score / len(_a )) for item, score in population_score ] # This is selection for i in range(_a ): population.extend(select(population_score[int(_a )], _a, _a ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_a ) > N_POPULATION: break if __name__ == "__main__": __magic_name__: Dict = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) __magic_name__: str = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\" ) __magic_name__ , __magic_name__ , __magic_name__: Optional[Any] = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
342
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCamelCase_ ( _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , ): """simple docstring""" if attention_mask is None: lowerCAmelCase__ : List[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase__ : Dict = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase__ : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase__ : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _a : def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=13 , _SCREAMING_SNAKE_CASE : List[str]=7 , _SCREAMING_SNAKE_CASE : Optional[Any]=True , _SCREAMING_SNAKE_CASE : int=False , _SCREAMING_SNAKE_CASE : List[Any]=99 , _SCREAMING_SNAKE_CASE : List[Any]=16 , _SCREAMING_SNAKE_CASE : Dict=2 , _SCREAMING_SNAKE_CASE : List[str]=4 , _SCREAMING_SNAKE_CASE : Union[str, Any]=4 , _SCREAMING_SNAKE_CASE : Any="gelu" , _SCREAMING_SNAKE_CASE : str=0.1 , _SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE : str=32 , _SCREAMING_SNAKE_CASE : Optional[int]=2 , _SCREAMING_SNAKE_CASE : str=1 , _SCREAMING_SNAKE_CASE : Optional[Any]=0 , _SCREAMING_SNAKE_CASE : List[str]=0.02 , )-> Any: lowerCAmelCase__ : Any = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : Any = seq_length lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Optional[Any] = use_labels lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : List[str] = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = eos_token_id lowerCAmelCase__ : Dict = pad_token_id lowerCAmelCase__ : Optional[Any] = bos_token_id lowerCAmelCase__ : str = initializer_range def UpperCAmelCase__( self : List[str] )-> Any: lowerCAmelCase__ : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase__ : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase__ : List[str] = shift_tokens_right(_SCREAMING_SNAKE_CASE , 1 , 2 ) lowerCAmelCase__ : List[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Optional[Any] = prepare_blenderbot_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, inputs_dict def UpperCAmelCase__( self : List[str] )-> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] )-> str: lowerCAmelCase__ : str = 20 lowerCAmelCase__ : Dict = model_class_name(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase__ : str = model.init_cache(decoder_input_ids.shape[0] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCAmelCase__ : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase__ : Dict = model.decode( decoder_input_ids[:, :-1] , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase__ : Tuple = model.decode( decoder_input_ids[:, -1:] , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : str = model.decode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int )-> Tuple: lowerCAmelCase__ : int = 20 lowerCAmelCase__ : Tuple = model_class_name(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = model.encode(inputs_dict['''input_ids'''] ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCAmelCase__ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase__ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCAmelCase__ : str = model.decode( decoder_input_ids[:, -1:] , _SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_SCREAMING_SNAKE_CASE , decoder_position_ids=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ : Union[str, Any] = model.decode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class _a ( unittest.TestCase): _a : Optional[int] = 99 def UpperCAmelCase__( self : int )-> Tuple: lowerCAmelCase__ : Any = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase__ : Optional[Any] = input_ids.shape[0] lowerCAmelCase__ : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase__( self : List[str] )-> Any: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self._get_config_and_data() lowerCAmelCase__ : Dict = FlaxBlenderbotForConditionalGeneration(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = lm_model(input_ids=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : str )-> Any: lowerCAmelCase__ : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCAmelCase__ : Dict = FlaxBlenderbotForConditionalGeneration(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCAmelCase__ : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase__ : str = lm_model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int )-> Dict: lowerCAmelCase__ : Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCAmelCase__ : int = shift_tokens_right(_SCREAMING_SNAKE_CASE , 1 , 2 ) lowerCAmelCase__ : int = np.equal(_SCREAMING_SNAKE_CASE , 1 ).astype(np.floataa ).sum() lowerCAmelCase__ : int = np.equal(_SCREAMING_SNAKE_CASE , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_SCREAMING_SNAKE_CASE , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _a ( _lowercase , unittest.TestCase , _lowercase): _a : Optional[int] = True _a : List[str] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _a : Dict = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase__( self : Optional[Any] )-> Any: lowerCAmelCase__ : int = FlaxBlenderbotModelTester(self ) def UpperCAmelCase__( self : int )-> Optional[Any]: lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[Any] )-> Tuple: lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Tuple )-> Any: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Tuple = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def encode_jitted(_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str]=None , **_SCREAMING_SNAKE_CASE : List[Any] ): return model.encode(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : str = encode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : Any = encode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase__( self : Optional[Any] )-> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Dict = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowerCAmelCase__ : str = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any ): return model.decode( decoder_input_ids=_SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , encoder_outputs=_SCREAMING_SNAKE_CASE , ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : List[Any] = decode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : Optional[Any] = decode_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__( self : Dict )-> List[str]: for model_class_name in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase__ : List[str] = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase__ : Dict = model(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def UpperCAmelCase__( self : List[Any] )-> Union[str, Any]: lowerCAmelCase__ : Optional[int] = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} lowerCAmelCase__ : Tuple = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCAmelCase__ : Optional[int] = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCAmelCase__ : List[Any] = ['''Sam'''] lowerCAmelCase__ : Dict = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='''jax''' ) lowerCAmelCase__ : List[str] = model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Tuple = '''Sam is a great name. It means "sun" in Gaelic.''' lowerCAmelCase__ : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) assert generated_txt[0].strip() == tgt_text
131
0
'''simple docstring''' from __future__ import annotations class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : int = 0 ): """simple docstring""" UpperCAmelCase__ = key def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : int ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCAmelCase__ = """""" for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned UpperCAmelCase__ = """""" for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : int ): """simple docstring""" assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
353
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = GPTSanJapaneseTokenizer lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = {"""do_clean_text""": False, """add_prefix_space""": False} def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase__ = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 UpperCAmelCase__ = {"""unk_token""": """<unk>"""} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , **_UpperCAmelCase : Optional[int] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = """こんにちは、世界。 \nこんばんは、㔺界。😀""" UpperCAmelCase__ = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。 こんばんは、㔺界。""" UpperCAmelCase__ = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" UpperCAmelCase__ = """こんにちは、、、、世界。こんばんは、、、、世界。""" UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。""" UpperCAmelCase__ = """こんばんは、㔺界。😀""" UpperCAmelCase__ = """こんにちは、世界。こんばんは、世界。😀""" UpperCAmelCase__ = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。""" UpperCAmelCase__ = """こんばんは、㔺界。😀""" UpperCAmelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase__ = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase__ = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ = tokenizer.encode("""あンいワ""" ) UpperCAmelCase__ = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) UpperCAmelCase__ = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] UpperCAmelCase__ = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase ) # fmt: off UpperCAmelCase__ = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] UpperCAmelCase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , _UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass
61
0
from __future__ import annotations from cmath import sqrt def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if a == 0: raise ValueError("Coefficient \'a\' must not be zero." ) __snake_case : Optional[Any] = b * b - 4 * a * c __snake_case : List[str] = (-b + sqrt(lowercase__ )) / (2 * a) __snake_case : List[str] = (-b - sqrt(lowercase__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCAmelCase_ ( ): __snake_case : int = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
123
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase (_UpperCAmelCase ): def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=False , A_=True , A_="None" , A_=3 , A_=4 , A_=None , ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = parent __lowerCAmelCase : List[str] = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : List[Any] = is_training __lowerCAmelCase : List[Any] = use_input_mask __lowerCAmelCase : Optional[int] = use_token_type_ids __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : str = vocab_size __lowerCAmelCase : int = hidden_size __lowerCAmelCase : Any = num_hidden_layers __lowerCAmelCase : Any = num_attention_heads __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Union[str, Any] = type_vocab_size __lowerCAmelCase : Union[str, Any] = type_sequence_label_size __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : int = num_labels __lowerCAmelCase : int = num_choices __lowerCAmelCase : List[str] = relative_attention __lowerCAmelCase : Union[str, Any] = position_biased_input __lowerCAmelCase : int = pos_att_type __lowerCAmelCase : List[Any] = scope def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : int = None if self.use_input_mask: __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCAmelCase : List[str] = None if self.use_token_type_ids: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : int = None __lowerCAmelCase : List[str] = None if self.use_labels: __lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.get_config() __lowerCAmelCase : Dict = 300 return config def UpperCamelCase__ ( self , A_ ) ->Union[str, Any]: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = DebertaModel(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : str = model(A_ , attention_mask=A_ , token_type_ids=A_ )[0] __lowerCAmelCase : Any = model(A_ , token_type_ids=A_ )[0] __lowerCAmelCase : List[str] = model(A_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->int: '''simple docstring''' __lowerCAmelCase : Tuple = DebertaForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Union[str, Any] = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Any: '''simple docstring''' __lowerCAmelCase : Any = self.num_labels __lowerCAmelCase : Tuple = DebertaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Union[str, Any] = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->Dict: '''simple docstring''' __lowerCAmelCase : List[Any] = self.num_labels __lowerCAmelCase : Optional[int] = DebertaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : Tuple = model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : List[str] = DebertaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __lowerCAmelCase : int = model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ( __lowerCAmelCase ), ) : Tuple = config_and_inputs __lowerCAmelCase : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : int = DebertaModelTester(self ) __lowerCAmelCase : List[Any] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*A_ ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*A_ ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*A_ ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*A_ ) @slow def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Optional[int] = DebertaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase (unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' pass @slow def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : str = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __lowerCAmelCase : Tuple = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) __lowerCAmelCase : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase : Optional[int] = model(A_ , attention_mask=A_ )[0] # compare the actual values for a slice. __lowerCAmelCase : Optional[Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
275
0
"""simple docstring""" import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :List[Any] = DebertaTokenizer _UpperCAmelCase :Union[str, Any] = True _UpperCAmelCase :Tuple = DebertaTokenizerFast def UpperCAmelCase__ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ : int =[ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] lowerCamelCase_ : Tuple =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCamelCase_ : Dict =["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCamelCase_ : Dict ={"unk_token": "[UNK]"} lowerCamelCase_ : str =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ : str =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def UpperCAmelCase__ ( self : Optional[Any] , **snake_case__ : List[str] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : List[str] ): lowerCamelCase_ : Dict ="lower newer" lowerCamelCase_ : List[Any] ="lower newer" return input_text, output_text def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : Optional[int] =self.get_tokenizer() lowerCamelCase_ : Optional[int] ="lower newer" lowerCamelCase_ : Optional[int] =["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowerCamelCase_ : Optional[Any] =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCamelCase_ : Any =tokens + [tokenizer.unk_token] lowerCamelCase_ : Tuple =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Union[str, Any] =self.get_tokenizer() lowerCamelCase_ : Union[str, Any] =tokenizer("Hello" , "World" ) lowerCamelCase_ : Any =[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , snake_case__ ) @slow def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : Tuple =self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCamelCase_ : Tuple =tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) lowerCamelCase_ : Optional[Any] =tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) lowerCamelCase_ : Optional[Any] =tokenizer.encode( "sequence builders" , add_special_tokens=snake_case__ , add_prefix_space=snake_case__ ) lowerCamelCase_ : List[Any] =tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=snake_case__ , add_prefix_space=snake_case__ ) lowerCamelCase_ : Union[str, Any] =tokenizer.build_inputs_with_special_tokens(snake_case__ ) lowerCamelCase_ : Union[str, Any] =tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Union[str, Any] =[self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCamelCase_ : Optional[int] =tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCamelCase_ : Optional[int] =[ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] lowerCamelCase_ : int =tokenizer(snake_case__ , padding=snake_case__ ) lowerCamelCase_ : List[str] =[tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) for seq in encoding["input_ids"]] # fmt: off lowerCamelCase_ : Optional[Any] ={ "input_ids": [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCamelCase_ : int =[ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , snake_case__ ) for expected, decoded in zip(snake_case__ , snake_case__ ): self.assertEqual(snake_case__ , snake_case__ )
359
"""simple docstring""" import torch def _snake_case ( ) -> Union[str, Any]: if torch.cuda.is_available(): lowerCamelCase_ : int =torch.cuda.device_count() else: lowerCamelCase_ : List[str] =0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
209
0
"""simple docstring""" from typing import Any def _SCREAMING_SNAKE_CASE ( __snake_case : list ): '''simple docstring''' if not input_list: return [] lowercase = [input_list.count(__snake_case ) for value in input_list] lowercase = max(__snake_case ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(__snake_case ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
220
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _UpperCamelCase : Tuple = logging.getLogger() def _SCREAMING_SNAKE_CASE ( __snake_case : Path , __snake_case : list ): '''simple docstring''' lowercase = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) _UpperCamelCase : Union[str, Any] = 'patrickvonplaten/t5-tiny-random' _UpperCamelCase : Union[str, Any] = 'sshleifer/bart-tiny-random' _UpperCamelCase : Tuple = 'sshleifer/tiny-mbart' _UpperCamelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class a ( a_ ): def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' lowercase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() lowercase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(_lowerCamelCase , _lowerCamelCase ) lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) lowercase = 'translation_en_to_de' if model == T5_TINY else 'summarization' lowercase = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): run_generate() assert Path(_lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def UpperCamelCase_ ( self ): self.run_eval_tester(_lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCamelCase_ ( self , _lowerCamelCase ): self.run_eval_tester(_lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' lowercase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() lowercase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } lowercase = Path(self.get_auto_remove_tmp_dir() ) lowercase = str(tmp_dir / 'scores.json' ) lowercase = str(tmp_dir / 'val.target' ) _dump_articles(_lowerCamelCase , text['en'] ) _dump_articles(_lowerCamelCase , text['de'] ) lowercase = 'translation_en_to_de' if model == T5_TINY else 'summarization' lowercase = F'\n run_eval_search.py\n {model}\n {str(_lowerCamelCase )}\n {str(_lowerCamelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(_lowerCamelCase , 'argv' , _lowerCamelCase ): with CaptureStdout() as cs: run_search() lowercase = [' num_beams | length_penalty', model, 'Best score args'] lowercase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(_lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_lowerCamelCase ).exists() os.remove(Path(_lowerCamelCase ) )
220
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase_ : Optional[Any] = {'''vocab_file''': '''spiece.model'''} UpperCamelCase_ : int = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class _a ( __lowerCAmelCase ): def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE="<s>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="<unk>" ,_SCREAMING_SNAKE_CASE="<sep>" ,_SCREAMING_SNAKE_CASE="<pad>" ,_SCREAMING_SNAKE_CASE="<cls>" ,_SCREAMING_SNAKE_CASE="<mask>" ,_SCREAMING_SNAKE_CASE=["<eop>", "<eod>"] ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> None: _snake_case = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase ,remove_space=__UpperCAmelCase ,keep_accents=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,additional_special_tokens=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) _snake_case = 3 _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _snake_case = jieba _snake_case = str.maketrans(" \n" ,"\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowercase ( self ) -> Optional[Any]: return len(self.sp_model ) def _lowercase ( self ) -> List[str]: _snake_case = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self ,_SCREAMING_SNAKE_CASE ) -> str: _snake_case = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: if self.remove_space: _snake_case = " ".join(inputs.strip().split() ) else: _snake_case = inputs _snake_case = outputs.replace("``" ,"\"" ).replace("\'\'" ,"\"" ) if not self.keep_accents: _snake_case = unicodedata.normalize("NFKD" ,__UpperCAmelCase ) _snake_case = "".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _snake_case = outputs.lower() return outputs def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: _snake_case = self.preprocess_text(__UpperCAmelCase ) _snake_case = self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) _snake_case = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _snake_case = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase ,"" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _snake_case = cur_pieces[1:] else: _snake_case = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> Any: return self.sp_model.PieceToId(__UpperCAmelCase ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return self.sp_model.IdToPiece(__UpperCAmelCase ) def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: _snake_case = "".join(__UpperCAmelCase ).replace(__UpperCAmelCase ," " ).strip() return out_string def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( __UpperCAmelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"wb" ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Tuple: _snake_case = super()._decode(*__UpperCAmelCase ,**__UpperCAmelCase ) _snake_case = text.replace(" " ,"" ).replace("\u2582" ," " ).replace("\u2583" ,"\n" ) return text
354
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) UpperCamelCase_ : int = '''pytorch_model.bin''' UpperCamelCase_ : str = '''pytorch_model.bin.index.json''' UpperCamelCase_ : int = '''adapter_config.json''' UpperCamelCase_ : str = '''adapter_model.bin''' UpperCamelCase_ : str = '''adapter_model.safetensors''' UpperCamelCase_ : List[Any] = '''tf_model.h5''' UpperCamelCase_ : Union[str, Any] = '''tf_model.h5.index.json''' UpperCamelCase_ : Tuple = '''model.ckpt''' UpperCamelCase_ : Union[str, Any] = '''flax_model.msgpack''' UpperCamelCase_ : Union[str, Any] = '''flax_model.msgpack.index.json''' UpperCamelCase_ : Dict = '''model.safetensors''' UpperCamelCase_ : List[Any] = '''model.safetensors.index.json''' UpperCamelCase_ : Tuple = '''config.json''' UpperCamelCase_ : List[str] = '''preprocessor_config.json''' UpperCamelCase_ : List[Any] = FEATURE_EXTRACTOR_NAME UpperCamelCase_ : Union[str, Any] = '''generation_config.json''' UpperCamelCase_ : str = '''modelcard.json''' UpperCamelCase_ : List[Any] = '''▁''' UpperCamelCase_ : Tuple = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility UpperCamelCase_ : Any = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. UpperCamelCase_ : Tuple = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] UpperCamelCase_ : str = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __a ( _UpperCamelCase: Optional[Any] ) -> int: """simple docstring""" if version.parse(_UpperCamelCase ) < version.parse(_UpperCamelCase ): if "dev" in min_version: _snake_case = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: _snake_case = F"""This example requires a minimum version of {min_version},""" error_message += F""" but the version found is {__version__}.\n""" raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
142
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __A = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowercase_ = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) lowercase_ = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the training data."} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the validation data."} ) lowercase_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the test data."} ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.") else: lowerCamelCase__: Tuple =self.train_file.split(".")[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase__: Dict =self.validation_file.split(".")[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowercase_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__: Dict =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCamelCase__: Any =training_args.get_process_log_level() logger.setLevel(__a ) datasets.utils.logging.set_verbosity(__a ) transformers.utils.logging.set_verbosity(__a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase__: Dict =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__: str =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__: List[Any] =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase__: str ={"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase__: Any =data_args.train_file.split("." )[-1] lowerCamelCase__: Any =data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase__: Tuple =data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files lowerCamelCase__: int =load_dataset("csv" , data_files=__a , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase__: str =load_dataset("json" , data_files=__a , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase__: Union[str, Any] =raw_datasets["train"].features["label"].names lowerCamelCase__: int =len(__a ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__: Union[str, Any] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowerCamelCase__: Any =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__a , ) lowerCamelCase__: Union[str, Any] =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase__: Optional[Any] ="max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase__: str =False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase__: List[Any] ={"Refused": 0, "Entailed": 1} lowerCamelCase__: int ={0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase__: Optional[Any] =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__a ): # Tokenize the texts def _convert_table_text_to_pandas(__a ): lowerCamelCase__: int =[_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] lowerCamelCase__: Dict =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowerCamelCase__: List[str] =examples["statement"] lowerCamelCase__: Any =list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) lowerCamelCase__: int =tokenizer(__a , __a , padding=__a , max_length=__a , truncation=__a ) lowerCamelCase__: Tuple =examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): lowerCamelCase__: Any =raw_datasets.map( __a , batched=__a , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) lowerCamelCase__: Optional[Any] =raw_datasets["train"] if data_args.max_train_samples is not None: lowerCamelCase__: List[str] =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) lowerCamelCase__: str =raw_datasets["validation"] if data_args.max_eval_samples is not None: lowerCamelCase__: Dict =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) lowerCamelCase__: Optional[int] =raw_datasets["test"] if data_args.max_predict_samples is not None: lowerCamelCase__: str =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__a ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__a ): lowerCamelCase__: List[str] =p.predictions[0] if isinstance(p.predictions , __a ) else p.predictions lowerCamelCase__: Tuple =np.argmax(__a , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase__: Optional[int] =default_data_collator elif training_args.fpaa: lowerCamelCase__: Optional[Any] =DataCollatorWithPadding(__a , pad_to_multiple_of=8 ) else: lowerCamelCase__: List[Any] =None # Initialize our Trainer lowerCamelCase__: Optional[int] =Trainer( model=__a , args=__a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__a , tokenizer=__a , data_collator=__a , ) # Training if training_args.do_train: lowerCamelCase__: Union[str, Any] =None if training_args.resume_from_checkpoint is not None: lowerCamelCase__: Any =training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__: Union[str, Any] =last_checkpoint lowerCamelCase__: Optional[int] =trainer.train(resume_from_checkpoint=__a ) lowerCamelCase__: int =train_result.metrics lowerCamelCase__: Optional[int] =( data_args.max_train_samples if data_args.max_train_samples is not None else len(__a ) ) lowerCamelCase__: List[str] =min(__a , len(__a ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , __a ) trainer.save_metrics("train" , __a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase__: Tuple =trainer.evaluate(eval_dataset=__a ) lowerCamelCase__: List[Any] =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__a ) lowerCamelCase__: Union[str, Any] =min(__a , len(__a ) ) trainer.log_metrics("eval" , __a ) trainer.save_metrics("eval" , __a ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase__: Dict =predict_dataset.remove_columns("label" ) lowerCamelCase__: int =trainer.predict(__a , metric_key_prefix="predict" ).predictions lowerCamelCase__: List[str] =np.argmax(__a , axis=1 ) lowerCamelCase__: List[str] =os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(__a , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(__a ): lowerCamelCase__: Dict =label_list[item] writer.write(F"""{index}\t{item}\n""" ) lowerCamelCase__: List[str] ={"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**__a ) else: trainer.create_model_card(**__a ) def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
10
"""simple docstring""" def lowercase ( a__ : float , a__ : float ) -> float: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
256
0
import math def _a ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if ( not isinstance(UpperCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def _a ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" if ( not isinstance(UpperCAmelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
368
from math import factorial class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , A : Dict , A : Any ) ->Optional[Any]: lowerCamelCase__ : Tuple = real if isinstance(A , A ): lowerCamelCase__ : Optional[int] = [1] * rank else: lowerCamelCase__ : List[Any] = rank def __repr__( self : Tuple ) ->str: return ( F"{self.real}+" F"{'+'.join(str(A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def __lowerCamelCase ( self : List[Any] ) ->List[Any]: lowerCamelCase__ : Tuple = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , A ) def __add__( self : Union[str, Any] , A : int ) ->str: if not isinstance(A , A ): return Dual(self.real + other , self.duals ) lowerCamelCase__ : int = self.duals.copy() lowerCamelCase__ : int = other.duals.copy() if len(A ) > len(A ): o_dual.extend([1] * (len(A ) - len(A )) ) elif len(A ) < len(A ): s_dual.extend([1] * (len(A ) - len(A )) ) lowerCamelCase__ : Optional[Any] = [] for i in range(len(A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , A ) _UpperCAmelCase : List[Any] = __add__ def __sub__( self : Any , A : Dict ) ->int: return self + other * -1 def __mul__( self : Optional[Any] , A : List[Any] ) ->Union[str, Any]: if not isinstance(A , A ): lowerCamelCase__ : Optional[int] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , A ) lowerCamelCase__ : Tuple = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , A ) _UpperCAmelCase : Optional[Any] = __mul__ def __truediv__( self : int , A : List[Any] ) ->Dict: if not isinstance(A , A ): lowerCamelCase__ : Tuple = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , A ) raise ValueError def __floordiv__( self : Dict , A : Union[str, Any] ) ->Union[str, Any]: if not isinstance(A , A ): lowerCamelCase__ : Tuple = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , A ) raise ValueError def __pow__( self : Any , A : List[Any] ) ->Tuple: if n < 0 or isinstance(A , A ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self lowerCamelCase__ : Union[str, Any] = self for _ in range(n - 1 ): x *= self return x def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" if not callable(UpperCAmelCase ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(UpperCAmelCase , (float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError('''differentiate() requires an int as input for order''' ) lowerCamelCase__ : List[str] = Dual(UpperCAmelCase , 1 ) lowerCamelCase__ : Any = func(UpperCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def _a ( UpperCAmelCase ) -> int: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
265
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir('fixtures/test_sentencepiece.model') snake_case_ = get_tests_dir('fixtures/test_sentencepiece_bpe.model') snake_case_ = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): A_ : Any = CamembertTokenizer A_ : List[Any] = CamembertTokenizerFast A_ : Tuple = True A_ : str = True def a (self : str ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case = CamembertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = "<pad>" __snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def a (self : Any ): """simple docstring""" __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowercase_ ) , 1004 ) def a (self : Union[str, Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def a (self : Tuple ): """simple docstring""" __snake_case = CamembertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) __snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __snake_case = "I was born in 92000, and this is falsé." __snake_case = tokenizer.encode(lowercase_ ) __snake_case = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) __snake_case = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) __snake_case = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __snake_case = tokenizer.convert_ids_to_tokens(lowercase_ ) __snake_case = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def a (self : Optional[int] ): """simple docstring""" if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = "I was born in 92000, and this is falsé." __snake_case = tokenizer.tokenize(lowercase_ ) __snake_case = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) __snake_case = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) __snake_case = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(lowercase_ ) __snake_case = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def a (self : List[Any] ): """simple docstring""" __snake_case = {"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __snake_case = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=lowercase_ , )
24
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : str = checkpoint UpperCAmelCase_ : int = {} UpperCAmelCase_ : Optional[int] = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ : List[str] = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ : Optional[Any] = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ : Optional[int] = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ : List[Any] = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ : Union[str, Any] = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ : Any = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ : int = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ : Any = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ : Tuple = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ : List[Any] = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ : Tuple = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ : str = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ : Optional[Any] = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ : List[str] = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ : List[Any] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ : Optional[Any] = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ : Optional[Any] = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ : Dict = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ : Optional[int] = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__lowerCamelCase ) } for i in range(__lowerCamelCase ): UpperCAmelCase_ : Any = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : Dict = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ : Dict = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ : List[str] = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : List[Any] = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ : Tuple = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase_ : str = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ : List[Any] = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ : Union[str, Any] = renew_vae_attention_paths(__lowerCamelCase ) UpperCAmelCase_ : int = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) for i in range(__lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = num_up_blocks - 1 - i UpperCAmelCase_ : Any = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : str = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ : Optional[Any] = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ : Dict = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : List[str] = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ : List[Any] = 2 for i in range(1, num_mid_res_blocks + 1 ): UpperCAmelCase_ : str = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ : Tuple = renew_vae_resnet_paths(__lowerCamelCase ) UpperCAmelCase_ : Tuple = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) UpperCAmelCase_ : Optional[int] = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ : Any = renew_vae_attention_paths(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, additional_replacements=[meta_path], config=__lowerCamelCase ) conv_attn_to_linear(__lowerCamelCase ) return new_checkpoint def __a ( __lowerCamelCase, __lowerCamelCase, ): # Only support V1 UpperCAmelCase_ : List[str] = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ : List[Any] = io.BytesIO(r.content ) UpperCAmelCase_ : Any = OmegaConf.load(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = 512 UpperCAmelCase_ : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ : int = {} with safe_open(__lowerCamelCase, framework="pt", device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ : Tuple = f.get_tensor(__lowerCamelCase ) else: UpperCAmelCase_ : Any = torch.load(__lowerCamelCase, map_location=__lowerCamelCase )["state_dict"] # Convert the VAE model. UpperCAmelCase_ : Dict = create_vae_diffusers_config(__lowerCamelCase, image_size=__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = custom_convert_ldm_vae_checkpoint(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : int = AutoencoderKL(**__lowerCamelCase ) vae.load_state_dict(__lowerCamelCase ) vae.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') _a = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
61
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = ["""image_processor""", """tokenizer"""] __UpperCamelCase = """LayoutLMv3ImageProcessor""" __UpperCamelCase = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self :Union[str, Any] , lowercase_ :Optional[Any]=None , lowercase_ :List[str]=None , **lowercase_ :str ) -> Union[str, Any]: UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) UpperCAmelCase = kwargs.pop('feature_extractor' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :Tuple , lowercase_ :List[str] , lowercase_ :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase_ :Union[List[List[int]], List[List[List[int]]]] = None , lowercase_ :Optional[Union[List[int], List[List[int]]]] = None , lowercase_ :bool = True , lowercase_ :Union[bool, str, PaddingStrategy] = False , lowercase_ :Union[bool, str, TruncationStrategy] = None , lowercase_ :Optional[int] = None , lowercase_ :int = 0 , lowercase_ :Optional[int] = None , lowercase_ :Optional[bool] = None , lowercase_ :Optional[bool] = None , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = False , lowercase_ :bool = True , lowercase_ :Optional[Union[str, TensorType]] = None , **lowercase_ :Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor UpperCAmelCase = self.image_processor(images=lowercase_ , return_tensors=lowercase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase = features['words'] UpperCAmelCase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values UpperCAmelCase = features.pop('pixel_values' ) if return_overflowing_tokens is True: UpperCAmelCase = self.get_overflowing_images(lowercase_ , encoded_inputs['overflow_to_sample_mapping'] ) UpperCAmelCase = images return encoded_inputs def UpperCAmelCase__ ( self :List[str] , lowercase_ :List[Any] , lowercase_ :Dict ) -> Union[str, Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase_ ) != len(lowercase_ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(lowercase_ )} and {len(lowercase_ )}""" ) return images_with_overflow def UpperCAmelCase__ ( self :Dict , *lowercase_ :List[Any] , **lowercase_ :Optional[int] ) -> Tuple: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase__ ( self :List[str] , *lowercase_ :Tuple , **lowercase_ :Optional[int] ) -> Tuple: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCAmelCase__ ( self :str ) -> Optional[Any]: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase__ ( self :Optional[int] ) -> List[str]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase_ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self :List[str] ) -> Optional[int]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowercase_ , ) return self.image_processor
350
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class A_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = WavaVecaPhonemeCTCTokenizer __UpperCamelCase = False def UpperCAmelCase__ ( self :Optional[int] ) -> int: super().setUp() UpperCAmelCase = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase_ ) + '\n' ) def UpperCAmelCase__ ( self :Dict , lowercase_ :Any , lowercase_ :Union[str, Any]=False , lowercase_ :int=20 , lowercase_ :Dict=5 ) -> Tuple[str, list]: UpperCAmelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=lowercase_ )) for i in range(len(lowercase_ ) )] UpperCAmelCase = list(filter(lambda lowercase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=lowercase_ ) , lowercase_ ) ) if max_length is not None and len(lowercase_ ) > max_length: UpperCAmelCase = toks[:max_length] if min_length is not None and len(lowercase_ ) < min_length and len(lowercase_ ) > 0: while len(lowercase_ ) < min_length: UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase = [t[0] for t in toks] # Ensure consistency UpperCAmelCase = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) if " " not in output_txt and len(lowercase_ ) > 1: UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowercase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowercase_ ) ) if with_prefix_space: UpperCAmelCase = ' ' + output_txt UpperCAmelCase = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) return output_txt, output_ids def UpperCAmelCase__ ( self :Union[str, Any] , **lowercase_ :Union[str, Any] ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCAmelCase__ ( self :int ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) UpperCAmelCase = tokenizer('m xxx ɪ' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) UpperCAmelCase = tokenizer('m aaa ɪ ccc' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa UpperCAmelCase = tokenizer('maɪ c' , do_phonemize=lowercase_ ).input_ids self.assertEqual(lowercase_ , [3, 2_00] ) # mai should be <unk> (=3) def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(lowercase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def UpperCAmelCase__ ( self :Dict ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Dict: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] UpperCAmelCase = tokenizer.decode(sample_ids[0] ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def UpperCAmelCase__ ( self :Any ) -> str: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(lowercase_ , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def UpperCAmelCase__ ( self :Any ) -> Any: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(lowercase_ ).input_ids , tokenizer(lowercase_ , do_phonemize=lowercase_ ).input_ids ) def UpperCAmelCase__ ( self :Dict ) -> Union[str, Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter UpperCAmelCase = tokenizer.decode(sample_ids[0] ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter UpperCAmelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=lowercase_ ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ , filter_word_delimiter_token=lowercase_ ) self.assertEqual(lowercase_ , batch_tokens[0] ) self.assertEqual(lowercase_ , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def UpperCAmelCase__ ( self :int ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Optional[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer.phonemize(lowercase_ , phonemizer_lang='en-us' ) UpperCAmelCase = tokenizer.decode(tokenizer(lowercase_ ).input_ids , filter_word_delimiter_token=lowercase_ ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , lowercase_ ) def UpperCAmelCase__ ( self :int ) -> Optional[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=lowercase_ ) UpperCAmelCase = 'Hello how are you' UpperCAmelCase = tokenizer(lowercase_ , phonemizer_lang='en-us' ).input_ids UpperCAmelCase = tokenizer(lowercase_ , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(lowercase_ , lowercase_ ) UpperCAmelCase = tokenizer.decode(lowercase_ ) UpperCAmelCase = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(lowercase_ , 'ɛ l o h aʊ a ʁ j u' ) def UpperCAmelCase__ ( self :int ) -> List[Any]: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) UpperCAmelCase = 'Hello how Are you' UpperCAmelCase = 'hello how are you' UpperCAmelCase = tokenizer(lowercase_ ).input_ids UpperCAmelCase = tokenizer(lowercase_ ).input_ids self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> int: UpperCAmelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertEqual(lowercase_ , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def UpperCAmelCase__ ( lowercase_ :List[str] , lowercase_ :List[str] ) -> List[str]: UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase__ ( self :str ) -> Optional[int]: UpperCAmelCase = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" UpperCAmelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on UpperCAmelCase = tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ , filter_word_delimiter_token=lowercase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[int]: UpperCAmelCase = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(lowercase_ :List[Any] , lowercase_ :str ): self.assertTrue(isinstance(lowercase_ , lowercase_ ) ) self.assertTrue(isinstance(outputs_list[0] , lowercase_ ) ) # transform list to ModelOutput UpperCAmelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(lowercase_ :Any , lowercase_ :str ): if isinstance(lowercase_ , lowercase_ ): [recursive_check(lowercase_ , lowercase_ ) for la, la in zip(lowercase_ , lowercase_ )] self.assertEqual(lowercase_ , lowercase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off UpperCAmelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char UpperCAmelCase = tokenizer.batch_decode(lowercase_ , output_char_offsets=lowercase_ ) UpperCAmelCase = [tokenizer.decode(lowercase_ , output_char_offsets=lowercase_ ) for ids in sample_ids] check_list_tuples_equal(lowercase_ , lowercase_ ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def UpperCAmelCase__ ( self :Any ) -> str: pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def UpperCAmelCase__ ( self :str ) -> List[str]: pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def UpperCAmelCase__ ( self :List[str] ) -> int: pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def UpperCAmelCase__ ( self :List[Any] ) -> Optional[int]: pass def UpperCAmelCase__ ( self :int ) -> Optional[Any]: UpperCAmelCase = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCAmelCase = tokenizer.add_tokens(lowercase_ ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size + len(lowercase_ ) ) UpperCAmelCase = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCAmelCase = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCAmelCase = tokenizer.add_special_tokens(lowercase_ ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = len(lowercase_ ) self.assertNotEqual(lowercase_ , 0 ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , len(lowercase_ ) ) self.assertEqual(lowercase_ , all_size_a + len(lowercase_ ) ) UpperCAmelCase = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=lowercase_ ) self.assertGreaterEqual(len(lowercase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase__ ( self :Tuple ) -> Optional[Any]: pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def UpperCAmelCase__ ( self :int ) -> Any: pass def UpperCAmelCase__ ( self :Tuple ) -> Dict: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. UpperCAmelCase = self.get_tokenizers(fast=lowercase_ , do_lower_case=lowercase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] UpperCAmelCase = tokenizer.convert_tokens_to_string(lowercase_ ) self.assertIsInstance(output['text'] , lowercase_ )
181
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = 'wav2vec2' def __init__( self: Any , UpperCamelCase_: List[str]=32 , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: List[str]=12 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: Optional[Any]=30_72 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Optional[Any]=0.0 , UpperCamelCase_: Dict=0.0 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Tuple=0.02 , UpperCamelCase_: Any=1E-5 , UpperCamelCase_: Any="group" , UpperCamelCase_: Dict="gelu" , UpperCamelCase_: Optional[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_: Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase_: Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase_: List[Any]=False , UpperCamelCase_: Tuple=1_28 , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: Dict=True , UpperCamelCase_: str=0.05 , UpperCamelCase_: str=10 , UpperCamelCase_: Optional[Any]=2 , UpperCamelCase_: Any=0.0 , UpperCamelCase_: Optional[Any]=10 , UpperCamelCase_: Dict=0 , UpperCamelCase_: str=3_20 , UpperCamelCase_: int=2 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: List[Any]=1_00 , UpperCamelCase_: Dict=2_56 , UpperCamelCase_: List[str]=2_56 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Dict="sum" , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: Tuple=False , UpperCamelCase_: Any=2_56 , UpperCamelCase_: Optional[Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , UpperCamelCase_: Optional[int]=(5, 3, 3, 1, 1) , UpperCamelCase_: int=(1, 2, 3, 1, 1) , UpperCamelCase_: Tuple=5_12 , UpperCamelCase_: List[Any]=0 , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: str=2 , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: str=2 , UpperCamelCase_: Union[str, Any]=3 , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Tuple=None , **UpperCamelCase_: List[Any] , ): super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(__lowerCAmelCase ) __lowerCamelCase = list(__lowerCAmelCase ) __lowerCamelCase = list(__lowerCAmelCase ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layerdrop __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size __lowerCamelCase = do_stable_layer_norm __lowerCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowerCamelCase = num_codevectors_per_group __lowerCamelCase = num_codevector_groups __lowerCamelCase = contrastive_logits_temperature __lowerCamelCase = feat_quantizer_dropout __lowerCamelCase = num_negatives __lowerCamelCase = codevector_dim __lowerCamelCase = proj_codevector_dim __lowerCamelCase = diversity_loss_weight # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # adapter __lowerCamelCase = add_adapter __lowerCamelCase = adapter_kernel_size __lowerCamelCase = adapter_stride __lowerCamelCase = num_adapter_layers __lowerCamelCase = output_hidden_size or hidden_size __lowerCamelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = list(__lowerCAmelCase ) __lowerCamelCase = list(__lowerCAmelCase ) __lowerCamelCase = list(__lowerCAmelCase ) __lowerCamelCase = xvector_output_dim @property def lowerCAmelCase__ ( self: Union[str, Any] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
12
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): lowerCamelCase__ = getattr(__snake_case ,__snake_case ) if weight_type is not None: lowerCamelCase__ = getattr(__snake_case ,__snake_case ).shape else: lowerCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = fairseq_model.state_dict() lowerCamelCase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCamelCase__ = None for name, value in fairseq_dict.items(): lowerCamelCase__ = False if "conv_layers" in name: load_conv_layer( __snake_case ,__snake_case ,__snake_case ,__snake_case ,hf_model.config.feat_extract_norm == '''group''' ,) lowerCamelCase__ = True elif name.split('''.''' )[0] == "proj": lowerCamelCase__ = fairseq_model.proj lowerCamelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(__snake_case )[0].split('''.''' )[-2] lowerCamelCase__ = mapped_key.replace('''*''' ,__snake_case ) if "weight_g" in name: lowerCamelCase__ = '''weight_g''' elif "weight_v" in name: lowerCamelCase__ = '''weight_v''' elif "bias" in name: lowerCamelCase__ = '''bias''' elif "weight" in name: lowerCamelCase__ = '''weight''' else: lowerCamelCase__ = None set_recursively(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCamelCase__ = name.split('''.''' ) lowerCamelCase__ = int(items[0] ) lowerCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__snake_case ,__snake_case ,bias=__snake_case ) lowerCamelCase__ = emb.weight.data return lin_layer def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' with open(__snake_case ,'''r''' ,encoding='''utf-8''' ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.split(''' ''' )[0] for line in lines] lowerCamelCase__ = len(__snake_case ) lowerCamelCase__ = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__snake_case ,range(4 ,num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = WavaVecaConfig.from_pretrained(__snake_case ) lowerCamelCase__ = SpeechaTextaConfig.from_pretrained( __snake_case ,vocab_size=__snake_case ,decoder_layers=__snake_case ,do_stable_layer_norm=__snake_case ) lowerCamelCase__ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=__snake_case ,return_attention_mask=__snake_case ,) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowerCamelCase__ = model[0].eval() # set weights for wav2vec2 encoder lowerCamelCase__ = WavaVecaModel(__snake_case ) lowerCamelCase__ = recursively_load_weights_wavaveca(model.encoder ,__snake_case ) lowerCamelCase__ = SpeechaTextaForCausalLM(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() ,strict=__snake_case ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowerCamelCase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowerCamelCase__ = SpeechEncoderDecoderModel(encoder=__snake_case ,decoder=__snake_case ) lowerCamelCase__ = False # add projection layer lowerCamelCase__ = nn.Parameter(projection_layer.weight ) lowerCamelCase__ = nn.Parameter(projection_layer.bias ) lowerCamelCase__ = create_vocab_dict(__snake_case ) with open(os.path.join(__snake_case ,'''vocab.json''' ) ,'''w''' ) as fp: json.dump(__snake_case ,__snake_case ) lowerCamelCase__ = SpeechaTextaTokenizer(os.path.join(__snake_case ,'''vocab.json''' ) ) tokenizer.save_pretrained(__snake_case ) lowerCamelCase__ = hf_wavavec.config.to_dict() lowerCamelCase__ = tokenizer.pad_token_id lowerCamelCase__ = tokenizer.bos_token_id lowerCamelCase__ = tokenizer.eos_token_id lowerCamelCase__ = '''speech_to_text_2''' lowerCamelCase__ = '''wav2vec2''' lowerCamelCase__ = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
209
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class __a( _a ): """simple docstring""" lowerCAmelCase = '''gptsan-japanese''' lowerCAmelCase = [ '''past_key_values''', ] lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self ,_SCREAMING_SNAKE_CASE=36_000 ,_SCREAMING_SNAKE_CASE=1_280 ,_SCREAMING_SNAKE_CASE=1_024 ,_SCREAMING_SNAKE_CASE=8_192 ,_SCREAMING_SNAKE_CASE=4_096 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE="float32" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=0.0_02 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=35_998 ,_SCREAMING_SNAKE_CASE=35_995 ,_SCREAMING_SNAKE_CASE=35_999 ,**_SCREAMING_SNAKE_CASE ,) -> str: UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : int = d_model UpperCAmelCase_ : List[str] = d_ff UpperCAmelCase_ : List[Any] = d_ext UpperCAmelCase_ : Any = d_spout UpperCAmelCase_ : Union[str, Any] = num_switch_layers UpperCAmelCase_ : int = num_ext_layers UpperCAmelCase_ : List[Any] = num_switch_layers + num_ext_layers UpperCAmelCase_ : Any = num_heads UpperCAmelCase_ : str = num_experts UpperCAmelCase_ : Tuple = expert_capacity UpperCAmelCase_ : List[str] = dropout_rate UpperCAmelCase_ : Union[str, Any] = layer_norm_epsilon UpperCAmelCase_ : Any = router_bias UpperCAmelCase_ : Union[str, Any] = router_jitter_noise UpperCAmelCase_ : Any = router_dtype UpperCAmelCase_ : List[Any] = router_ignore_padding_tokens UpperCAmelCase_ : Optional[Any] = output_hidden_states UpperCAmelCase_ : int = output_attentions UpperCAmelCase_ : Dict = initializer_factor UpperCAmelCase_ : str = output_router_logits UpperCAmelCase_ : int = use_cache super().__init__( separator_token_id=_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,)
354
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=100 ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=30 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=3 ,) -> Dict: UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Dict = (image_size // patch_size) ** 2 UpperCAmelCase_ : List[str] = num_patches + 1 def a__ ( self ) -> str: UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,) return config, pixel_values, labels def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = FlaxBeitModel(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = FlaxBeitForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ : Dict = self.type_sequence_label_size UpperCAmelCase_ : int = FlaxBeitForImageClassification(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : List[Any] = FlaxBeitForImageClassification(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ) : List[str] = config_and_inputs UpperCAmelCase_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def a__ ( self ) -> None: UpperCAmelCase_ : List[Any] = FlaxBeitModelTester(self ) UpperCAmelCase_ : List[str] = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,has_text_modality=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def a__ ( self ) -> List[Any]: UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_, UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : List[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ): return model(pixel_values=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase_ : Dict = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase_ : List[str] = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape ,output.shape ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[str]: UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) UpperCAmelCase_ : Optional[int] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class __a( unittest.TestCase ): """simple docstring""" @cached_property def a__ ( self ) -> Dict: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) UpperCAmelCase_ : List[Any] = self.default_image_processor UpperCAmelCase_ : Optional[Any] = prepare_img() UpperCAmelCase_ : Optional[Any] = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).pixel_values # prepare bool_masked_pos UpperCAmelCase_ : Union[str, Any] = np.ones((1, 196) ,dtype=_SCREAMING_SNAKE_CASE ) # forward pass UpperCAmelCase_ : Optional[int] = model(pixel_values=_SCREAMING_SNAKE_CASE ,bool_masked_pos=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = outputs.logits # verify the logits UpperCAmelCase_ : List[str] = (1, 196, 8_192) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-2 ) ) @slow def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) # forward pass UpperCAmelCase_ : Optional[Any] = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase_ : Dict = (1, 1_000) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) ) UpperCAmelCase_ : Dict = 281 self.assertEqual(logits.argmax(-1 ).item() ,_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : str = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : Dict = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) # forward pass UpperCAmelCase_ : Dict = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = outputs.logits # verify the logits UpperCAmelCase_ : Union[str, Any] = (1, 21_841) self.assertEqual(logits.shape ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) ) UpperCAmelCase_ : Dict = 2_396 self.assertEqual(logits.argmax(-1 ).item() ,_SCREAMING_SNAKE_CASE )
235
0
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : list[int] , _lowerCAmelCase : str ) -> list[int]: UpperCAmelCase : Optional[Any] = int(_lowerCAmelCase ) # Initialize Result UpperCAmelCase : List[Any] = [] # Traverse through all denomination for denomination in reversed(_lowerCAmelCase ): # Find denominations while int(_lowerCAmelCase ) >= int(_lowerCAmelCase ): total_value -= int(_lowerCAmelCase ) answer.append(_lowerCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCamelCase__: int = [] UpperCamelCase__: Optional[Any] = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): UpperCamelCase__: int = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(F"Denomination {i}: ").strip())) UpperCamelCase__: int = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter UpperCamelCase__: Any = [1, 2, 5, 10, 20, 50, 100, 500, 2000] UpperCamelCase__: Any = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(F"Following is minimal change for {value}: ") UpperCamelCase__: Union[str, Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
23
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Dict , A : int , A : int , A : int , A : Union[str, Any]=0.0 , A : Optional[int] = None , A : str = "geglu" , A : Optional[int] = None , A : bool = False , A : bool = False , A : bool = False , A : bool = False , A : bool = True , A : str = "layer_norm" , A : bool = False , ) ->Any: super().__init__() lowerCamelCase__ : int = only_cross_attention lowerCamelCase__ : Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' lowerCamelCase__ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCamelCase__ : Optional[Any] = AdaLayerNorm(A , A ) elif self.use_ada_layer_norm_zero: lowerCamelCase__ : int = AdaLayerNormZero(A , A ) else: lowerCamelCase__ : Dict = nn.LayerNorm(A , elementwise_affine=A ) lowerCamelCase__ : Any = Attention( query_dim=A , heads=A , dim_head=A , dropout=A , bias=A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=A , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCamelCase__ : Tuple = ( AdaLayerNorm(A , A ) if self.use_ada_layer_norm else nn.LayerNorm(A , elementwise_affine=A ) ) lowerCamelCase__ : int = Attention( query_dim=A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=A , dim_head=A , dropout=A , bias=A , upcast_attention=A , ) # is self-attn if encoder_hidden_states is none else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Tuple = None # 3. Feed-forward lowerCamelCase__ : Optional[int] = nn.LayerNorm(A , elementwise_affine=A ) lowerCamelCase__ : Union[str, Any] = FeedForward(A , dropout=A , activation_fn=A , final_dropout=A ) # let chunk size default to None lowerCamelCase__ : str = None lowerCamelCase__ : Tuple = 0 def __lowerCamelCase ( self : Any , A : Optional[int] , A : int ) ->List[str]: # Sets chunk feed-forward lowerCamelCase__ : List[Any] = chunk_size lowerCamelCase__ : List[str] = dim def __lowerCamelCase ( self : str , A : torch.FloatTensor , A : Optional[torch.FloatTensor] = None , A : Optional[torch.FloatTensor] = None , A : Optional[torch.FloatTensor] = None , A : Optional[torch.LongTensor] = None , A : Dict[str, Any] = None , A : Optional[torch.LongTensor] = None , ) ->Tuple: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: lowerCamelCase__ : Union[str, Any] = self.norma(A , A ) elif self.use_ada_layer_norm_zero: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = self.norma( A , A , A , hidden_dtype=hidden_states.dtype ) else: lowerCamelCase__ : List[str] = self.norma(A ) lowerCamelCase__ : str = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCamelCase__ : Any = self.attna( A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=A , **A , ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Any = gate_msa.unsqueeze(1 ) * attn_output lowerCamelCase__ : Optional[int] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCamelCase__ : int = ( self.norma(A , A ) if self.use_ada_layer_norm else self.norma(A ) ) lowerCamelCase__ : int = self.attna( A , encoder_hidden_states=A , attention_mask=A , **A , ) lowerCamelCase__ : Any = attn_output + hidden_states # 3. Feed-forward lowerCamelCase__ : Union[str, Any] = self.norma(A ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[int] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) lowerCamelCase__ : Optional[int] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCamelCase__ : Optional[int] = torch.cat( [self.ff(A ) for hid_slice in norm_hidden_states.chunk(A , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: lowerCamelCase__ : Optional[int] = self.ff(A ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[Any] = gate_mlp.unsqueeze(1 ) * ff_output lowerCamelCase__ : List[Any] = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , A : int , A : Optional[int] = None , A : int = 4 , A : float = 0.0 , A : str = "geglu" , A : bool = False , ) ->int: super().__init__() lowerCamelCase__ : List[Any] = int(dim * mult ) lowerCamelCase__ : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCamelCase__ : int = GELU(A , A ) if activation_fn == "gelu-approximate": lowerCamelCase__ : Optional[int] = GELU(A , A , approximate='''tanh''' ) elif activation_fn == "geglu": lowerCamelCase__ : Any = GEGLU(A , A ) elif activation_fn == "geglu-approximate": lowerCamelCase__ : int = ApproximateGELU(A , A ) lowerCamelCase__ : Union[str, Any] = nn.ModuleList([] ) # project in self.net.append(A ) # project dropout self.net.append(nn.Dropout(A ) ) # project out self.net.append(nn.Linear(A , A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(A ) ) def __lowerCamelCase ( self : Dict , A : List[Any] ) ->Optional[Any]: for module in self.net: lowerCamelCase__ : int = module(A ) return hidden_states class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Tuple , A : int , A : int , A : str = "none" ) ->Optional[Any]: super().__init__() lowerCamelCase__ : List[Any] = nn.Linear(A , A ) lowerCamelCase__ : Any = approximate def __lowerCamelCase ( self : List[str] , A : Tuple ) ->str: if gate.device.type != "mps": return F.gelu(A , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __lowerCamelCase ( self : List[str] , A : str ) ->Optional[int]: lowerCamelCase__ : List[str] = self.proj(A ) lowerCamelCase__ : Optional[int] = self.gelu(A ) return hidden_states class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Tuple , A : int , A : int ) ->Dict: super().__init__() lowerCamelCase__ : Optional[Any] = nn.Linear(A , dim_out * 2 ) def __lowerCamelCase ( self : List[Any] , A : List[Any] ) ->Tuple: if gate.device.type != "mps": return F.gelu(A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __lowerCamelCase ( self : Any , A : Union[str, Any] ) ->Any: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.proj(A ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(A ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , A : int , A : int ) ->str: super().__init__() lowerCamelCase__ : Optional[int] = nn.Linear(A , A ) def __lowerCamelCase ( self : Union[str, Any] , A : Dict ) ->Optional[Any]: lowerCamelCase__ : List[str] = self.proj(A ) return x * torch.sigmoid(1.7_02 * x ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : int , A : Dict , A : Optional[Any] ) ->str: super().__init__() lowerCamelCase__ : List[str] = nn.Embedding(A , A ) lowerCamelCase__ : str = nn.SiLU() lowerCamelCase__ : int = nn.Linear(A , embedding_dim * 2 ) lowerCamelCase__ : Optional[Any] = nn.LayerNorm(A , elementwise_affine=A ) def __lowerCamelCase ( self : int , A : Union[str, Any] , A : Union[str, Any] ) ->Union[str, Any]: lowerCamelCase__ : Union[str, Any] = self.linear(self.silu(self.emb(A ) ) ) lowerCamelCase__ , lowerCamelCase__ : List[str] = torch.chunk(A , 2 ) lowerCamelCase__ : Any = self.norm(A ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : str , A : Optional[Any] , A : int ) ->str: super().__init__() lowerCamelCase__ : Union[str, Any] = CombinedTimestepLabelEmbeddings(A , A ) lowerCamelCase__ : int = nn.SiLU() lowerCamelCase__ : List[str] = nn.Linear(A , 6 * embedding_dim , bias=A ) lowerCamelCase__ : str = nn.LayerNorm(A , elementwise_affine=A , eps=1e-6 ) def __lowerCamelCase ( self : List[str] , A : Any , A : List[Any] , A : Tuple , A : Dict=None ) ->Union[str, Any]: lowerCamelCase__ : List[Any] = self.linear(self.silu(self.emb(A , A , hidden_dtype=A ) ) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = emb.chunk(6 , dim=1 ) lowerCamelCase__ : List[Any] = self.norm(A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , A : int , A : int , A : int , A : Optional[str] = None , A : float = 1e-5 ) ->Any: super().__init__() lowerCamelCase__ : int = num_groups lowerCamelCase__ : List[str] = eps if act_fn is None: lowerCamelCase__ : Tuple = None else: lowerCamelCase__ : Dict = get_activation(A ) lowerCamelCase__ : Any = nn.Linear(A , out_dim * 2 ) def __lowerCamelCase ( self : List[str] , A : Optional[int] , A : str ) ->Tuple: if self.act: lowerCamelCase__ : Union[str, Any] = self.act(A ) lowerCamelCase__ : Optional[Any] = self.linear(A ) lowerCamelCase__ : Optional[Any] = emb[:, :, None, None] lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = emb.chunk(2 , dim=1 ) lowerCamelCase__ : str = F.group_norm(A , self.num_groups , eps=self.eps ) lowerCamelCase__ : Dict = x * (1 + scale) + shift return x
142
0
'''simple docstring''' from collections.abc import Callable def __lowerCamelCase ( __snake_case : Callable[[float], float], __snake_case : float, __snake_case : float ) -> float: """simple docstring""" A__ : float =a A__ : float =b if function(__snake_case ) == 0: # one of the a or b is a root for the function return a elif function(__snake_case ) == 0: return b elif ( function(__snake_case ) * function(__snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: A__ : float =start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__snake_case ) == 0: return mid elif function(__snake_case ) * function(__snake_case ) < 0: A__ : Tuple =mid else: A__ : Any =mid A__ : str =start + (end - start) / 2.0 return mid def __lowerCamelCase ( __snake_case : float ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
136
'''simple docstring''' def __lowerCamelCase ( __snake_case : int ) -> bool: """simple docstring""" if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True A__ : Any =4 A__ : int =(1 << p) - 1 for _ in range(p - 2 ): A__ : Dict =((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
136
1
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = int(UpperCAmelCase_ ) if decimal in (0, 1): # Exit cases for the recursion return str(UpperCAmelCase_ ) lowerCamelCase_ ,lowerCamelCase_ = divmod(UpperCAmelCase_ , 2 ) return binary_recursive(UpperCAmelCase_ ) + str(UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : str ): lowerCamelCase_ = str(UpperCAmelCase_ ).strip() if not number: raise ValueError("No input value was provided" ) lowerCamelCase_ = "-" if number.startswith("-" ) else "" lowerCamelCase_ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return F'''{negative}0b{binary_recursive(int(UpperCAmelCase_ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
55
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowerCamelCase ( _lowercase ) -> Optional[Any]: return getitem, k def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: return setitem, k, v def __lowerCamelCase ( _lowercase ) -> int: return delitem, k def __lowerCamelCase ( _lowercase , _lowercase , *_lowercase ) -> Optional[Any]: try: return fun(_lowercase , *_lowercase ), None except Exception as e: return None, e a : List[str] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a : List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a : int = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a : List[Any] = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a : Optional[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : List[str] = HashMap(initial_block_size=4 ) UpperCAmelCase : Dict = {} for _, (fun, *args) in enumerate(_lowercase ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = _run_operation(_lowercase , _lowercase , *_lowercase ) UpperCAmelCase , UpperCAmelCase : Any = _run_operation(_lowercase , _lowercase , *_lowercase ) assert my_res == py_res assert str(_lowercase ) == str(_lowercase ) assert set(_lowercase ) == set(_lowercase ) assert len(_lowercase ) == len(_lowercase ) assert set(my.items() ) == set(py.items() ) def __lowerCamelCase ( ) -> List[Any]: def is_public(_lowercase ) -> bool: return not name.startswith("""_""" ) UpperCAmelCase : int = {name for name in dir({} ) if is_public(_lowercase )} UpperCAmelCase : Any = {name for name in dir(HashMap() ) if is_public(_lowercase )} assert dict_public_names > hash_public_names
265
0
'''simple docstring''' def UpperCamelCase_( snake_case : int = 1_0_0_0 ): '''simple docstring''' snake_case_ = 3 snake_case_ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
92
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE : Optional[int] = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
92
1
"""simple docstring""" from __future__ import annotations def __lowercase ( _a , _a = None , _a = None ): if start is None: snake_case_ : Optional[int] = 0 if end is None: snake_case_ : Dict = len(lowerCAmelCase__ ) - 1 if start >= end: return snake_case_ : str = (start + end) // 2 slowsort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) slowsort(lowerCAmelCase__ , mid + 1 , lowerCAmelCase__ ) if sequence[end] < sequence[mid]: snake_case_ : Optional[Any] = sequence[mid], sequence[end] slowsort(lowerCAmelCase__ , lowerCAmelCase__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
264
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = LEDTokenizer lowerCAmelCase__ = LEDTokenizerFast lowerCAmelCase__ = True def lowercase_ ( self : int ): '''simple docstring''' super().setUp() UpperCAmelCase__ : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase__ : Any = {'''unk_token''': '''<unk>'''} UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def lowercase_ ( self : Optional[int] , **_A : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Tuple , _A : List[str] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowercase_ ( self : List[Any] ): '''simple docstring''' return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def lowercase_ ( self : Any ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase__ : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Union[str, Any] = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase__ : int = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : List[str] = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''labels''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) @require_torch def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Optional[Any] = tokenizer(text_target=_A , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Any = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = ['''A long paragraph for summarization.'''] UpperCAmelCase__ : List[Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Optional[Any] = tokenizer(_A , return_tensors='''pt''' ) UpperCAmelCase__ : int = tokenizer(text_target=_A , return_tensors='''pt''' ) UpperCAmelCase__ : str = inputs['''input_ids'''] UpperCAmelCase__ : Tuple = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Tuple = ['''Summary of the text.''', '''Another summary.'''] UpperCAmelCase__ : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase__ : List[str] = tokenizer(_A , padding=_A ) UpperCAmelCase__ : str = [[0] * len(_A ) for x in encoded_output['''input_ids''']] UpperCAmelCase__ : Any = tokenizer.pad(_A ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass def lowercase_ ( self : Dict ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Any = '''A, <mask> AllenNLP sentence.''' UpperCAmelCase__ : Dict = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) UpperCAmelCase__ : Optional[int] = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) UpperCAmelCase__ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) UpperCAmelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
181
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCAmelCase ( snake_case_ ): _lowercase: BigBirdConfig _lowercase: jnp.dtype = jnp.floataa _lowercase: bool = True def lowercase__ ( self : List[str] ) -> int: super().setup() _lowerCAmelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self : List[Any] , *__snake_case : int , **__snake_case : int ) -> List[str]: _lowerCAmelCase = super().__call__(*__snake_case , **__snake_case ) _lowerCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCAmelCase ( snake_case_ ): _lowercase: Tuple = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" def cross_entropy(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): _lowerCAmelCase = logits.shape[-1] _lowerCAmelCase = (labels[..., None] == jnp.arange(lowerCAmelCase )[None]).astype("""f4""" ) _lowerCAmelCase = jax.nn.log_softmax(lowerCAmelCase , axis=-1 ) _lowerCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _lowerCAmelCase = reduction(lowerCAmelCase ) return loss _lowerCAmelCase = partial(lowerCAmelCase , reduction=jnp.mean ) _lowerCAmelCase = cross_entropy(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = cross_entropy(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = cross_entropy(lowerCAmelCase , lowerCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCAmelCase : _lowercase: str = "google/bigbird-roberta-base" _lowercase: int = 3000 _lowercase: int = 10500 _lowercase: int = 128 _lowercase: int = 3 _lowercase: int = 1 _lowercase: int = 5 # tx_args _lowercase: float = 3E-5 _lowercase: float = 0.0 _lowercase: int = 20000 _lowercase: float = 0.0095 _lowercase: str = "bigbird-roberta-natural-questions" _lowercase: str = "training-expt" _lowercase: str = "data/nq-training.jsonl" _lowercase: str = "data/nq-validation.jsonl" def lowercase__ ( self : List[str] ) -> Optional[Any]: os.makedirs(self.base_dir , exist_ok=__snake_case ) _lowerCAmelCase = os.path.join(self.base_dir , self.save_dir ) _lowerCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class UpperCAmelCase : _lowercase: int _lowercase: int = 4096 # no dynamic padding on TPUs def __call__( self : Optional[Any] , __snake_case : int ) -> str: _lowerCAmelCase = self.collate_fn(__snake_case ) _lowerCAmelCase = jax.tree_util.tree_map(__snake_case , __snake_case ) return batch def lowercase__ ( self : Optional[Any] , __snake_case : Any ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.fetch_inputs(features["""input_ids"""] ) _lowerCAmelCase = { """input_ids""": jnp.array(__snake_case , dtype=jnp.intaa ), """attention_mask""": jnp.array(__snake_case , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def lowercase__ ( self : Optional[int] , __snake_case : list ) -> List[Any]: _lowerCAmelCase = [self._fetch_inputs(__snake_case ) for ids in input_ids] return zip(*__snake_case ) def lowercase__ ( self : str , __snake_case : list ) -> List[str]: _lowerCAmelCase = [1 for _ in range(len(__snake_case ) )] while len(__snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): """simple docstring""" if seed is not None: _lowerCAmelCase = dataset.shuffle(seed=lowerCAmelCase ) for i in range(len(lowerCAmelCase ) // batch_size ): _lowerCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCAmelCase ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" def loss_fn(lowerCAmelCase ): _lowerCAmelCase = model_inputs.pop("""start_labels""" ) _lowerCAmelCase = model_inputs.pop("""end_labels""" ) _lowerCAmelCase = model_inputs.pop("""pooled_labels""" ) _lowerCAmelCase = state.apply_fn(**lowerCAmelCase , params=lowerCAmelCase , dropout_rng=lowerCAmelCase , train=lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = outputs return state.loss_fn( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) _lowerCAmelCase , _lowerCAmelCase = jax.random.split(lowerCAmelCase ) _lowerCAmelCase = jax.value_and_grad(lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = grad_fn(state.params ) _lowerCAmelCase = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) _lowerCAmelCase = jax.lax.pmean(lowerCAmelCase , """batch""" ) _lowerCAmelCase = state.apply_gradients(grads=lowerCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase__ ( lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = model_inputs.pop("""start_labels""" ) _lowerCAmelCase = model_inputs.pop("""end_labels""" ) _lowerCAmelCase = model_inputs.pop("""pooled_labels""" ) _lowerCAmelCase = state.apply_fn(**lowerCAmelCase , params=state.params , train=lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = outputs _lowerCAmelCase = state.loss_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class UpperCAmelCase ( train_state.TrainState ): _lowercase: Callable = struct.field(pytree_node=snake_case_ ) @dataclass class UpperCAmelCase : _lowercase: Args _lowercase: Callable _lowercase: Callable _lowercase: Callable _lowercase: Callable _lowercase: wandb _lowercase: Callable = None def lowercase__ ( self : str , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Tuple=None ) -> Optional[Any]: _lowerCAmelCase = model.params _lowerCAmelCase = TrainState.create( apply_fn=model.__call__ , params=__snake_case , tx=__snake_case , loss_fn=__snake_case , ) if ckpt_dir is not None: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = restore_checkpoint(__snake_case , __snake_case ) _lowerCAmelCase = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } _lowerCAmelCase , _lowerCAmelCase = build_tx(**__snake_case ) _lowerCAmelCase = train_state.TrainState( step=__snake_case , apply_fn=model.__call__ , params=__snake_case , tx=__snake_case , opt_state=__snake_case , ) _lowerCAmelCase = args _lowerCAmelCase = data_collator _lowerCAmelCase = lr _lowerCAmelCase = params _lowerCAmelCase = jax_utils.replicate(__snake_case ) return state def lowercase__ ( self : List[str] , __snake_case : str , __snake_case : Tuple , __snake_case : Optional[Any] ) -> Any: _lowerCAmelCase = self.args _lowerCAmelCase = len(__snake_case ) // args.batch_size _lowerCAmelCase = jax.random.PRNGKey(0 ) _lowerCAmelCase = jax.random.split(__snake_case , jax.device_count() ) for epoch in range(args.max_epochs ): _lowerCAmelCase = jnp.array(0 , dtype=jnp.floataa ) _lowerCAmelCase = get_batched_dataset(__snake_case , args.batch_size , seed=__snake_case ) _lowerCAmelCase = 0 for batch in tqdm(__snake_case , total=__snake_case , desc=f"Running EPOCH-{epoch}" ): _lowerCAmelCase = self.data_collator(__snake_case ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.train_step_fn(__snake_case , __snake_case , **__snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: _lowerCAmelCase = jax_utils.unreplicate(state.step ) _lowerCAmelCase = running_loss.item() / i _lowerCAmelCase = self.scheduler_fn(state_step - 1 ) _lowerCAmelCase = self.evaluate(__snake_case , __snake_case ) _lowerCAmelCase = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(__snake_case ) ) self.logger.log(__snake_case , commit=__snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"-e{epoch}-s{i}" , state=__snake_case ) def lowercase__ ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Dict ) -> List[str]: _lowerCAmelCase = get_batched_dataset(__snake_case , self.args.batch_size ) _lowerCAmelCase = len(__snake_case ) // self.args.batch_size _lowerCAmelCase = jnp.array(0 , dtype=jnp.floataa ) _lowerCAmelCase = 0 for batch in tqdm(__snake_case , total=__snake_case , desc="""Evaluating ... """ ): _lowerCAmelCase = self.data_collator(__snake_case ) _lowerCAmelCase = self.val_step_fn(__snake_case , **__snake_case ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def lowercase__ ( self : Dict , __snake_case : Dict , __snake_case : Dict ) -> Optional[Any]: _lowerCAmelCase = jax_utils.unreplicate(__snake_case ) print(f"SAVING CHECKPOINT IN {save_dir}" , end=""" ... """ ) self.model_save_fn(__snake_case , params=state.params ) with open(os.path.join(__snake_case , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__snake_case , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(__snake_case , """data_collator.joblib""" ) ) with open(os.path.join(__snake_case , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , __snake_case ) print("""DONE""" ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" print(f"RESTORING CHECKPOINT FROM {save_dir}" , end=""" ... """ ) with open(os.path.join(lowerCAmelCase , """flax_model.msgpack""" ) , """rb""" ) as f: _lowerCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(lowerCAmelCase , """opt_state.msgpack""" ) , """rb""" ) as f: _lowerCAmelCase = from_bytes(state.opt_state , f.read() ) _lowerCAmelCase = joblib.load(os.path.join(lowerCAmelCase , """args.joblib""" ) ) _lowerCAmelCase = joblib.load(os.path.join(lowerCAmelCase , """data_collator.joblib""" ) ) with open(os.path.join(lowerCAmelCase , """training_state.json""" ) , """r""" ) as f: _lowerCAmelCase = json.load(lowerCAmelCase ) _lowerCAmelCase = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = num_train_steps - warmup_steps _lowerCAmelCase = optax.linear_schedule(init_value=lowerCAmelCase , end_value=lowerCAmelCase , transition_steps=lowerCAmelCase ) _lowerCAmelCase = optax.linear_schedule(init_value=lowerCAmelCase , end_value=1e-7 , transition_steps=lowerCAmelCase ) _lowerCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" def weight_decay_mask(lowerCAmelCase ): _lowerCAmelCase = traverse_util.flatten_dict(lowerCAmelCase ) _lowerCAmelCase = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCAmelCase ) _lowerCAmelCase = scheduler_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = optax.adamw(learning_rate=lowerCAmelCase , weight_decay=lowerCAmelCase , mask=lowerCAmelCase ) return tx, lr
220
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _lowerCAmelCase = test_metrics @require_cpu def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase__ ( self : Tuple ) -> Tuple: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase__ ( self : Union[str, Any] ) -> str: self.test_metrics.main() @require_multi_gpu def lowercase__ ( self : str ) -> List[str]: print(f"Found {torch.cuda.device_count()} devices." ) _lowerCAmelCase = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
220
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase__ = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (DDPMScheduler,) def __lowercase ( self , **_a ) -> Any: _a : List[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_a ) return config def __lowercase ( self ) -> Any: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a ) def __lowercase ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __lowercase ( self ) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def __lowercase ( self ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_a ) def __lowercase ( self ) -> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __lowercase ( self ) -> Dict: self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def __lowercase ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __lowercase ( self ) -> int: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=_a ) def __lowercase ( self ) -> int: _a : int = self.scheduler_classes[0] _a : List[Any] = self.get_scheduler_config() _a : Dict = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def __lowercase ( self ) -> Tuple: _a : int = self.scheduler_classes[0] _a : int = self.get_scheduler_config() _a : int = scheduler_class(**_a ) _a : Optional[int] = len(_a ) _a : Optional[Any] = self.dummy_model() _a : str = self.dummy_sample_deter _a : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual _a : str = model(_a , _a ) # 2. predict previous mean of sample x_t-1 _a : Optional[int] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _a : List[Any] = pred_prev_sample _a : str = torch.sum(torch.abs(_a ) ) _a : Optional[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __lowercase ( self ) -> Optional[Any]: _a : Optional[int] = self.scheduler_classes[0] _a : Optional[Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) _a : Union[str, Any] = scheduler_class(**_a ) _a : Dict = len(_a ) _a : int = self.dummy_model() _a : Tuple = self.dummy_sample_deter _a : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual _a : Dict = model(_a , _a ) # 2. predict previous mean of sample x_t-1 _a : int = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _a : str = pred_prev_sample _a : str = torch.sum(torch.abs(_a ) ) _a : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __lowercase ( self ) -> Dict: _a : Union[str, Any] = self.scheduler_classes[0] _a : Tuple = self.get_scheduler_config() _a : Any = scheduler_class(**_a ) _a : Optional[Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=_a ) _a : Optional[int] = scheduler.timesteps for i, timestep in enumerate(_a ): if i == len(_a ) - 1: _a : Dict = -1 else: _a : Tuple = timesteps[i + 1] _a : Optional[Any] = scheduler.previous_timestep(_a ) _a : Optional[Any] = prev_t.item() self.assertEqual(_a , _a ) def __lowercase ( self ) -> Optional[Any]: _a : Dict = self.scheduler_classes[0] _a : List[str] = self.get_scheduler_config() _a : Tuple = scheduler_class(**_a ) _a : str = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(_a , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def __lowercase ( self ) -> str: _a : List[str] = self.scheduler_classes[0] _a : List[str] = self.get_scheduler_config() _a : Dict = scheduler_class(**_a ) _a : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _a : Optional[Any] = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def __lowercase ( self ) -> Optional[int]: _a : Dict = self.scheduler_classes[0] _a : Union[str, Any] = self.get_scheduler_config() _a : int = scheduler_class(**_a ) _a : str = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
235
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
211
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[str] = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1_024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1_024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1e-5, '''token_type_vocab_size''': 2, } lowerCAmelCase__ : int = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ : List[Any] = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=_a , output_all_encodings=_a , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , _a ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ : Union[str, Any] = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ : Optional[Any] = os.path.join(get_home_dir() , '''models''' ) lowerCAmelCase__ : Optional[int] = _load_vocab(_a , _a , _a , cls=_a ) lowerCAmelCase__ : Any = nlp.model.BERTModel( _a , len(_a ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=_a , use_token_type_embed=_a , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=_a , use_decoder=_a , ) original_bort.load_parameters(_a , cast_dtype=_a , ignore_extra=_a ) lowerCAmelCase__ : Tuple = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ : int = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(_a ), } lowerCAmelCase__ : str = BertConfig.from_dict(_a ) lowerCAmelCase__ : Optional[Any] = BertForMaskedLM(_a ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_a ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_a , _a ): lowerCAmelCase__ : Dict = hf_param.shape lowerCAmelCase__ : List[str] = to_torch(params[gluon_param] ) lowerCAmelCase__ : Any = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param lowerCAmelCase__ : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) lowerCAmelCase__ : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) lowerCAmelCase__ : Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) lowerCAmelCase__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ : BertSelfAttention = layer.attention.self lowerCAmelCase__ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) lowerCAmelCase__ : str = check_and_map_params( self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) lowerCAmelCase__ : int = check_and_map_params( self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) lowerCAmelCase__ : Optional[Any] = check_and_map_params( self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) lowerCAmelCase__ : Any = check_and_map_params( self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) lowerCAmelCase__ : Any = check_and_map_params( self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output lowerCAmelCase__ : BertSelfOutput = layer.attention.output lowerCAmelCase__ : Dict = check_and_map_params( self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' ) lowerCAmelCase__ : Optional[int] = check_and_map_params( self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' ) lowerCAmelCase__ : int = check_and_map_params( self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' ) lowerCAmelCase__ : List[str] = check_and_map_params( self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate lowerCAmelCase__ : BertIntermediate = layer.intermediate lowerCAmelCase__ : Union[str, Any] = check_and_map_params( intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) lowerCAmelCase__ : Union[str, Any] = check_and_map_params( intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output lowerCAmelCase__ : BertOutput = layer.output lowerCAmelCase__ : Optional[int] = check_and_map_params( bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) lowerCAmelCase__ : int = check_and_map_params( bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) lowerCAmelCase__ : Optional[int] = check_and_map_params( bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) lowerCAmelCase__ : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) lowerCAmelCase__ : List[str] = tokenizer.encode_plus(_a )['''input_ids'''] # Get gluon output lowerCAmelCase__ : str = mx.nd.array([input_ids] ) lowerCAmelCase__ : List[str] = original_bort(inputs=_a , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_a ) lowerCAmelCase__ : Optional[int] = BertModel.from_pretrained(_a ) hf_bort_model.eval() lowerCAmelCase__ : Tuple = tokenizer.encode_plus(_a , return_tensors='''pt''' ) lowerCAmelCase__ : Optional[Any] = hf_bort_model(**_a )[0] lowerCAmelCase__ : str = output_gluon[0].asnumpy() lowerCAmelCase__ : Optional[Any] = output_hf[0].detach().numpy() lowerCAmelCase__ : str = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ : int = np.allclose(_a , _a , atol=1e-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , _a ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
211
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" lowercase_ = parent lowercase_ = 1_3 lowercase_ = 7 lowercase_ = True lowercase_ = True lowercase_ = True lowercase_ = 9_9 lowercase_ = 3_2 lowercase_ = 2 lowercase_ = 4 lowercase_ = 3_7 lowercase_ = """gelu""" lowercase_ = 0.1 lowercase_ = 0.1 lowercase_ = 5_1_2 lowercase_ = 1_6 lowercase_ = 2 lowercase_ = 0.02 lowercase_ = 3 lowercase_ = 4 lowercase_ = None def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Any): """simple docstring""" ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = self.prepare_config_and_inputs() lowercase_ = True lowercase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = TFEsmModel(config=lowerCAmelCase_) lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase_ = model(lowerCAmelCase_) lowercase_ = [input_ids, input_mask] lowercase_ = model(lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , ): """simple docstring""" lowercase_ = True lowercase_ = TFEsmModel(config=lowerCAmelCase_) lowercase_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } lowercase_ = model(lowerCAmelCase_) lowercase_ = [input_ids, input_mask] lowercase_ = model(lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_) # Also check the case where encoder outputs are not passed lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = TFEsmForMaskedLM(config=lowerCAmelCase_) lowercase_ = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any): """simple docstring""" lowercase_ = self.num_labels lowercase_ = TFEsmForTokenClassification(config=lowerCAmelCase_) lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowercase__ = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = TFEsmModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7) def _UpperCAmelCase ( self : List[str]): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Dict): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = TFEsmModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @unittest.skip("""Protein models do not support embedding resizing.""") def _UpperCAmelCase ( self : str): """simple docstring""" pass @unittest.skip("""Protein models do not support embedding resizing.""") def _UpperCAmelCase ( self : int): """simple docstring""" pass def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase_ = model.get_bias() assert isinstance(lowerCAmelCase_ , lowerCAmelCase_) for k, v in name.items(): assert isinstance(lowerCAmelCase_ , tf.Variable) else: lowercase_ = model.get_output_embeddings() assert x is None lowercase_ = model.get_bias() assert name is None @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""") lowercase_ = tf.constant([[0, 1, 2, 3, 4, 5]]) lowercase_ = model(lowerCAmelCase_)[0] lowercase_ = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape) , lowerCAmelCase_) # compare the actual values for a slice. lowercase_ = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2)) @slow def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""") lowercase_ = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]]) lowercase_ = model(lowerCAmelCase_)[0] # compare the actual values for a slice. lowercase_ = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
136
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "gpt_neox" def __init__( self : Union[str, Any] , lowerCAmelCase_ : str=5_0_4_3_2 , lowerCAmelCase_ : List[Any]=6_1_4_4 , lowerCAmelCase_ : str=4_4 , lowerCAmelCase_ : Tuple=6_4 , lowerCAmelCase_ : Optional[int]=2_4_5_7_6 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Any=0.25 , lowerCAmelCase_ : int=1_0_0_0_0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : List[Any]=1E-5 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = rotary_pct lowercase_ = rotary_emb_base lowercase_ = attention_dropout lowercase_ = hidden_dropout lowercase_ = classifier_dropout lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_cache lowercase_ = tie_word_embeddings lowercase_ = use_parallel_residual lowercase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase_) or len(self.rope_scaling) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''') lowercase_ = self.rope_scaling.get("""type""" , lowerCAmelCase_) lowercase_ = self.rope_scaling.get("""factor""" , lowerCAmelCase_) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''') if rope_scaling_factor is None or not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''')
136
1
from __future__ import annotations from collections import deque class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : list[dict] = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(_UpperCamelCase ) self.set_fail_transitions() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Union[str, Any] = 0 for character in keyword: UpperCAmelCase_ : Optional[Any] = self.find_next_state(_UpperCamelCase , _UpperCamelCase ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase_ : List[Any] = len(self.adlist ) - 1 else: UpperCAmelCase_ : Tuple = next_state self.adlist[current_state]["output"].append(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> None: UpperCAmelCase_ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCamelCase ) UpperCAmelCase_ : Tuple = 0 while q: UpperCAmelCase_ : int = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.adlist[r]['fail_state'] while ( self.find_next_state(_UpperCamelCase , self.adlist[child]['value'] ) is None and state != 0 ): UpperCAmelCase_ : Dict = self.adlist[state]['fail_state'] UpperCAmelCase_ : Optional[int] = self.find_next_state( _UpperCamelCase , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Tuple = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> dict[str, list[int]]: UpperCAmelCase_ : dict = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase_ : Optional[Any] = 0 for i in range(len(_UpperCamelCase ) ): while ( self.find_next_state(_UpperCamelCase , string[i] ) is None and current_state != 0 ): UpperCAmelCase_ : int = self.adlist[current_state]['fail_state'] UpperCAmelCase_ : Any = self.find_next_state(_UpperCamelCase , string[i] ) if next_state is None: UpperCAmelCase_ : Optional[int] = 0 else: UpperCAmelCase_ : int = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase_ : Dict = [] result[key].append(i - len(_UpperCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
350
from __future__ import annotations def lowercase__ ( __snake_case : list[int] , __snake_case : int ): '''simple docstring''' if len(__snake_case ) < k or k < 0: raise ValueError('Invalid Input' ) UpperCAmelCase_ : int = sum(array[:k] ) for i in range(len(__snake_case ) - k ): UpperCAmelCase_ : List[Any] = current_sum - array[i] + array[i + k] UpperCAmelCase_ : List[Any] = max(__snake_case , __snake_case ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __UpperCAmelCase = [randint(-1000, 1000) for i in range(100)] __UpperCAmelCase = randint(0, 110) print(F'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
145
0
def _a ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] ): # Check if the input is valid if not len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = equationa __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = equationa # Calculate the determinants of the matrices __lowerCAmelCase = aa * ba - aa * ba __lowerCAmelCase = ca * ba - ca * ba __lowerCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __lowerCAmelCase = determinant_x / determinant __lowerCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
92
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): class a__ : def __init__( self , _A ): """simple docstring""" __lowerCAmelCase = metric_id class a__ : _a : Optional[int] = [MetricMock(snake_case__ ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ): if "tmp_path" in args: __lowerCAmelCase = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(SCREAMING_SNAKE_CASE_ , match="https://huggingface.co/docs/evaluate" ): func(*SCREAMING_SNAKE_CASE_ )
92
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def A_ ( snake_case_ : Tuple ): '''simple docstring''' UpperCamelCase : int = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(snake_case_ ,snake_case_ ) def A_ ( snake_case_ : int ): '''simple docstring''' UpperCamelCase , UpperCamelCase : str = emb.weight.shape UpperCamelCase : List[Any] = nn.Linear(snake_case_ ,snake_case_ ,bias=snake_case_ ) UpperCamelCase : List[Any] = emb.weight.data return lin_layer def A_ ( snake_case_ : Dict ,snake_case_ : Optional[Any]="facebook/mbart-large-en-ro" ,snake_case_ : List[Any]=False ,snake_case_ : Optional[Any]=False ): '''simple docstring''' UpperCamelCase : Dict = torch.load(snake_case_ ,map_location="""cpu""" )["""model"""] remove_ignore_keys_(snake_case_ ) UpperCamelCase : int = state_dict["""encoder.embed_tokens.weight"""].shape[0] UpperCamelCase : int = MBartConfig.from_pretrained(snake_case_ ,vocab_size=snake_case_ ) if mbart_aa and finetuned: UpperCamelCase : Union[str, Any] = """relu""" UpperCamelCase : Tuple = state_dict["""decoder.embed_tokens.weight"""] UpperCamelCase : List[Any] = MBartForConditionalGeneration(snake_case_ ) model.model.load_state_dict(snake_case_ ) if finetuned: UpperCamelCase : Tuple = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') __A : List[Any] = parser.parse_args() __A : Any = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
27
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class lowerCamelCase ( _UpperCAmelCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=3.6 ): UpperCamelCase : Dict = tokenizer UpperCamelCase : Optional[Any] = tokenizer.bos_token_id UpperCamelCase : Any = dataset UpperCamelCase : List[str] = seq_length UpperCamelCase : Optional[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self ): UpperCamelCase : Dict = iter(self.dataset ) UpperCamelCase : Union[str, Any] = True while more_examples: UpperCamelCase , UpperCamelCase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(SCREAMING_SNAKE_CASE_ )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: UpperCamelCase : Dict = False break UpperCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )["""input_ids"""] UpperCamelCase : str = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , self.seq_length ): UpperCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(SCREAMING_SNAKE_CASE_ ) == self.seq_length: yield torch.tensor(SCREAMING_SNAKE_CASE_ ) def A_ ( snake_case_ : List[Any] ): '''simple docstring''' UpperCamelCase : Dict = {"""streaming""": True} UpperCamelCase : Optional[int] = load_dataset(args.dataset_name ,split="""train""" ,**snake_case_ ) UpperCamelCase : Optional[int] = ConstantLengthDataset(snake_case_ ,snake_case_ ,seq_length=args.seq_length ) UpperCamelCase : List[Any] = DataLoader(snake_case_ ,batch_size=args.batch_size ) return eval_dataloader def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' model.eval() UpperCamelCase : Dict = [] for step, batch in enumerate(snake_case_ ): with torch.no_grad(): UpperCamelCase : List[Any] = model(snake_case_ ,labels=snake_case_ ) UpperCamelCase : Any = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(snake_case_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break UpperCamelCase : Dict = torch.mean(torch.cat(snake_case_ ) ) try: UpperCamelCase : Dict = torch.exp(snake_case_ ) except OverflowError: UpperCamelCase : Optional[int] = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator __A : List[Any] = Accelerator() # Parse configuration __A : str = HfArgumentParser(EvaluationArguments) __A : List[Any] = parser.parse_args() set_seed(args.seed) # Logging __A : Any = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer __A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) __A : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader __A : int = create_dataloader(args) # Prepare everything with our `accelerator`. __A , __A : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') __A , __A : Tuple = evaluate(args) logger.info(F'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
27
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class a ( a_ ): UpperCAmelCase_ : "DiagonalGaussianDistribution" class a ( a_, a_ ): UpperCAmelCase_ : List[Any] =True @register_to_config def __init__( self , _lowerCamelCase = 3 , _lowerCamelCase = 3 , _lowerCamelCase = ("DownEncoderBlock2D",) , _lowerCamelCase = ("UpDecoderBlock2D",) , _lowerCamelCase = (6_4,) , _lowerCamelCase = 1 , _lowerCamelCase = "silu" , _lowerCamelCase = 4 , _lowerCamelCase = 3_2 , _lowerCamelCase = 3_2 , _lowerCamelCase = 0.1_8_2_1_5 , ): super().__init__() # pass init params to Encoder lowercase = Encoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , down_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , act_fn=_lowerCamelCase , norm_num_groups=_lowerCamelCase , double_z=_lowerCamelCase , ) # pass init params to Decoder lowercase = Decoder( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , up_block_types=_lowerCamelCase , block_out_channels=_lowerCamelCase , layers_per_block=_lowerCamelCase , norm_num_groups=_lowerCamelCase , act_fn=_lowerCamelCase , ) lowercase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) lowercase = nn.Convad(_lowerCamelCase , _lowerCamelCase , 1 ) lowercase = False lowercase = False # only relevant if vae tiling is enabled lowercase = self.config.sample_size lowercase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) lowercase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) lowercase = 0.2_5 def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ): if isinstance(_lowerCamelCase , (Encoder, Decoder) ): lowercase = value def UpperCamelCase_ ( self , _lowerCamelCase = True ): lowercase = use_tiling def UpperCamelCase_ ( self ): self.enable_tiling(_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = True def UpperCamelCase_ ( self ): lowercase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self ): lowercase = {} def fn_recursive_add_processors(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if hasattr(_lowerCamelCase , 'set_processor' ): lowercase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , _lowerCamelCase , _lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return processors def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = len(self.attn_processors.keys() ) if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(_lowerCamelCase )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if hasattr(_lowerCamelCase , 'set_processor' ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): module.set_processor(_lowerCamelCase ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , _lowerCamelCase , _lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCamelCase_ ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_lowerCamelCase , return_dict=_lowerCamelCase ) if self.use_slicing and x.shape[0] > 1: lowercase = [self.encoder(_lowerCamelCase ) for x_slice in x.split(1 )] lowercase = torch.cat(_lowerCamelCase ) else: lowercase = self.encoder(_lowerCamelCase ) lowercase = self.quant_conv(_lowerCamelCase ) lowercase = DiagonalGaussianDistribution(_lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_lowerCamelCase , return_dict=_lowerCamelCase ) lowercase = self.post_quant_conv(_lowerCamelCase ) lowercase = self.decoder(_lowerCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase ) @apply_forward_hook def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = True ): if self.use_slicing and z.shape[0] > 1: lowercase = [self._decode(_lowerCamelCase ).sample for z_slice in z.split(1 )] lowercase = torch.cat(_lowerCamelCase ) else: lowercase = self._decode(_lowerCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = min(a.shape[2] , b.shape[2] , _lowerCamelCase ) for y in range(_lowerCamelCase ): lowercase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = min(a.shape[3] , b.shape[3] , _lowerCamelCase ) for x in range(_lowerCamelCase ): lowercase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = True ): lowercase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) lowercase = int(self.tile_latent_min_size * self.tile_overlap_factor ) lowercase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. lowercase = [] for i in range(0 , x.shape[2] , _lowerCamelCase ): lowercase = [] for j in range(0 , x.shape[3] , _lowerCamelCase ): lowercase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] lowercase = self.encoder(_lowerCamelCase ) lowercase = self.quant_conv(_lowerCamelCase ) row.append(_lowerCamelCase ) rows.append(_lowerCamelCase ) lowercase = [] for i, row in enumerate(_lowerCamelCase ): lowercase = [] for j, tile in enumerate(_lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowercase = self.blend_v(rows[i - 1][j] , _lowerCamelCase , _lowerCamelCase ) if j > 0: lowercase = self.blend_h(row[j - 1] , _lowerCamelCase , _lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_lowerCamelCase , dim=3 ) ) lowercase = torch.cat(_lowerCamelCase , dim=2 ) lowercase = DiagonalGaussianDistribution(_lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = True ): lowercase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) lowercase = int(self.tile_sample_min_size * self.tile_overlap_factor ) lowercase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. lowercase = [] for i in range(0 , z.shape[2] , _lowerCamelCase ): lowercase = [] for j in range(0 , z.shape[3] , _lowerCamelCase ): lowercase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] lowercase = self.post_quant_conv(_lowerCamelCase ) lowercase = self.decoder(_lowerCamelCase ) row.append(_lowerCamelCase ) rows.append(_lowerCamelCase ) lowercase = [] for i, row in enumerate(_lowerCamelCase ): lowercase = [] for j, tile in enumerate(_lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowercase = self.blend_v(rows[i - 1][j] , _lowerCamelCase , _lowerCamelCase ) if j > 0: lowercase = self.blend_h(row[j - 1] , _lowerCamelCase , _lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_lowerCamelCase , dim=3 ) ) lowercase = torch.cat(_lowerCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , ): lowercase = sample lowercase = self.encode(_lowerCamelCase ).latent_dist if sample_posterior: lowercase = posterior.sample(generator=_lowerCamelCase ) else: lowercase = posterior.mode() lowercase = self.decode(_lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCamelCase )
220
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _UpperCamelCase : Optional[Any] = TypeVar('T') class a ( Generic[T] ): def __init__( self , _lowerCamelCase = True ): lowercase = {} # dictionary of lists lowercase = directed def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) self.adj_list[destination_vertex].append(_lowerCamelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) lowercase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_lowerCamelCase ) lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase = [destination_vertex] lowercase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) lowercase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase = [destination_vertex] lowercase = [] return self def __repr__( self ): return pformat(self.adj_list )
220
1
"""simple docstring""" def _lowerCamelCase( a , a , a = 0 , a = 0 ): __a = right or len(a ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a , a , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
268
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller SCREAMING_SNAKE_CASE__:List[str] = 3 def _lowerCamelCase( a ): print("Generating primitive root of p" ) while True: __a = random.randrange(3 , a ) if pow(a , 2 , a ) == 1: continue if pow(a , a , a ) == 1: continue return g def _lowerCamelCase( a ): print("Generating prime p..." ) __a = rabin_miller.generate_large_prime(a ) # select large prime number. __a = primitive_root(a ) # one primitive root on modulo p. __a = random.randrange(3 , a ) # private_key -> have to be greater than 2 for safety. __a = cryptomath.find_mod_inverse(pow(a , a , a ) , a ) __a = (key_size, e_a, e_a, p) __a = (key_size, d) return public_key, private_key def _lowerCamelCase( a , a ): if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print("\nWARNING:" ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() __a , __a = generate_key(a ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , "w" ) as fo: fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , "w" ) as fo: fo.write(F"{private_key[0]},{private_key[1]}" ) def _lowerCamelCase( ): print("Making key files..." ) make_key_files("elgamal" , 2_0_4_8 ) print("Key files generation successful" ) if __name__ == "__main__": main()
268
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowercase_ = logging.get_logger(__name__) @add_end_docstrings(A ) class __A ( A ): '''simple docstring''' def __init__(self , **A ) -> List[str]: """simple docstring""" super().__init__(**A ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__(self , A , **A ) -> Union[str, Any]: """simple docstring""" return super().__call__(A , **A ) def a__ (self , **A ) -> Union[str, Any]: """simple docstring""" _a = {} if "candidate_labels" in kwargs: _a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: _a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def a__ (self , A , A=None , A="This is a photo of {}." ) -> Optional[Any]: """simple docstring""" _a = load_image(A ) _a = self.image_processor(images=[image] , return_tensors=self.framework ) _a = candidate_labels _a = [hypothesis_template.format(A ) for x in candidate_labels] _a = self.tokenizer(A , return_tensors=self.framework , padding=A ) _a = [text_inputs] return inputs def a__ (self , A ) -> List[str]: """simple docstring""" _a = model_inputs.pop('''candidate_labels''' ) _a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , A ): _a = text_inputs[0] else: # Batching case. _a = text_inputs[0][0] _a = self.model(**A , **A ) _a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def a__ (self , A ) -> str: """simple docstring""" _a = model_outputs.pop('''candidate_labels''' ) _a = model_outputs['''logits'''][0] if self.framework == "pt": _a = logits.softmax(dim=-1 ).squeeze(-1 ) _a = probs.tolist() if not isinstance(A , A ): _a = [scores] elif self.framework == "tf": _a = stable_softmax(A , axis=-1 ) _a = probs.numpy().tolist() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) _a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(A , A ) , key=lambda A : -x[0] ) ] return result
211
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[Any] = 'MCTCTFeatureExtractor' __lowerCamelCase : Optional[Any] = 'AutoTokenizer' def __init__(self , A , A ) -> Dict: """simple docstring""" super().__init__(A , A ) _a = self.feature_extractor _a = False def __call__(self , *A , **A ) -> Optional[int]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*A , **A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _a = kwargs.pop('''raw_speech''' ) else: _a = kwargs.pop('''audio''' , A ) _a = kwargs.pop('''sampling_rate''' , A ) _a = kwargs.pop('''text''' , A ) if len(A ) > 0: _a = args[0] _a = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _a = self.feature_extractor(A , *A , sampling_rate=A , **A ) if text is not None: _a = self.tokenizer(A , **A ) if text is None: return inputs elif audio is None: return encodings else: _a = encodings['''input_ids'''] return inputs def a__ (self , *A , **A ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*A , **A ) def a__ (self , *A , **A ) -> Tuple: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*A , **A ) _a = kwargs.pop('''input_features''' , A ) _a = kwargs.pop('''labels''' , A ) if len(A ) > 0: _a = args[0] _a = args[1:] if input_features is not None: _a = self.feature_extractor.pad(A , *A , **A ) if labels is not None: _a = self.tokenizer.pad(A , **A ) if labels is None: return input_features elif input_features is None: return labels else: _a = labels['''input_ids'''] return input_features def a__ (self , *A , **A ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*A , **A ) @contextmanager def a__ (self ) -> Dict: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _a = True _a = self.tokenizer yield _a = self.feature_extractor _a = False
211
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup _A : Optional[Any] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def _a ( UpperCAmelCase ) -> str: """simple docstring""" # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": _A : Dict = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') _A : int = parser.parse_args() if args.check_lib: _A : Dict = importlib.import_module('transformers') _A : Tuple = Path(transformers_module.__file__).parent else: _A : Optional[int] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
350
import pprint import requests _A : Any = 'https://zenquotes.io/api' def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def _a ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _A : Optional[Any] = random_quotes() pprint.pprint(response)
265
0
from __future__ import annotations from scipy.special import comb # type: ignore class snake_case__ : """simple docstring""" def __init__( self : Any , __lowerCamelCase : list[tuple[float, float]] ) -> Tuple: a = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. a = len(__lowerCamelCase ) - 1 def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : float ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." a = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __lowerCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__lowerCamelCase ) , 5 ) == 1 return output_values def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : float ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." a = self.basis_function(__lowerCamelCase ) a = 0.0 a = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : float = 0.01 ) -> List[str]: from matplotlib import pyplot as plt # type: ignore a = [] # x coordinates of points to plot a = [] # y coordinates of points to plot a = 0.0 while t <= 1: a = self.bezier_curve_function(__lowerCamelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size a = [i[0] for i in self.list_of_points] a = [i[1] for i in self.list_of_points] plt.plot( __lowerCamelCase , __lowerCamelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(__lowerCamelCase , __lowerCamelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
107
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = '''bridgetower_vision_model''' def __init__( self : int , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Dict=1_6 , lowerCAmelCase__ : int=2_8_8 , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : int=1e-05 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : int=True , lowerCAmelCase__ : int=False , **lowerCAmelCase__ : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : str = image_size _UpperCAmelCase : List[Any] = initializer_factor _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Optional[Any] = stop_gradient _UpperCAmelCase : List[str] = share_layernorm _UpperCAmelCase : List[str] = remove_last_layer @classmethod def _lowerCAmelCase ( cls : Optional[Any] , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Any ) -> "PretrainedConfig": """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Any = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get("model_type" ) == "bridgetower": _UpperCAmelCase : Optional[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = '''bridgetower_text_model''' def __init__( self : int , lowerCAmelCase__ : Optional[int]=5_0_2_6_5 , lowerCAmelCase__ : Tuple=7_6_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Optional[Any]=3_0_7_2 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : int=5_1_4 , lowerCAmelCase__ : List[Any]=1 , lowerCAmelCase__ : Any=1e-05 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : List[Any]="absolute" , lowerCAmelCase__ : Optional[Any]=True , **lowerCAmelCase__ : Any , ) -> List[Any]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : int = initializer_factor _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Optional[Any] = position_embedding_type _UpperCAmelCase : Optional[int] = use_cache _UpperCAmelCase : Optional[Any] = pad_token_id _UpperCAmelCase : Union[str, Any] = bos_token_id _UpperCAmelCase : int = eos_token_id @classmethod def _lowerCAmelCase ( cls : Tuple , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Dict ) -> "PretrainedConfig": """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : str = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get("model_type" ) == "bridgetower": _UpperCAmelCase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Any = '''bridgetower''' def __init__( self : List[str] , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : Dict=7_6_8 , lowerCAmelCase__ : Any=1 , lowerCAmelCase__ : List[str]=1e-05 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="add" , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Optional[int]=6 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Optional[Any] , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = kwargs.pop("text_config_dict" , lowerCAmelCase__ ) _UpperCAmelCase : int = kwargs.pop("vision_config_dict" , lowerCAmelCase__ ) super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = share_cross_modal_transformer_layers _UpperCAmelCase : int = hidden_act _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Tuple = initializer_factor _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Tuple = share_link_tower_layers _UpperCAmelCase : List[str] = link_tower_type _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Optional[int] = tie_word_embeddings _UpperCAmelCase : int = init_layernorm_from_vision_encoder if text_config is None: _UpperCAmelCase : str = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: _UpperCAmelCase : Union[str, Any] = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) _UpperCAmelCase : str = BridgeTowerTextConfig(**lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = BridgeTowerVisionConfig(**lowerCAmelCase__ ) @classmethod def _lowerCAmelCase ( cls : Union[str, Any] , lowerCAmelCase__ : BridgeTowerTextConfig , lowerCAmelCase__ : BridgeTowerVisionConfig , **lowerCAmelCase__ : Union[str, Any] ) -> Any: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Union[str, Any] = self.text_config.to_dict() _UpperCAmelCase : Union[str, Any] = self.vision_config.to_dict() _UpperCAmelCase : List[str] = self.__class__.model_type return output
145
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCAmelCase : Any = logging.getLogger(__name__) @dataclass class lowercase : __lowercase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowercase : Optional[str] = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __lowercase : bool = field(default=_SCREAMING_SNAKE_CASE , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class lowercase : __lowercase : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) __lowercase : Optional[str] = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) __lowercase : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) UpperCamelCase = import_module('tasks' ) try: UpperCamelCase = getattr(lowercase , model_args.task_type ) UpperCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task UpperCamelCase = token_classification_task.get_labels(data_args.labels ) UpperCamelCase = dict(enumerate(lowercase ) ) UpperCamelCase = len(lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , idalabel=lowercase , labelaid={label: i for i, label in enumerate(lowercase )} , cache_dir=model_args.cache_dir , ) UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) UpperCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , ) # Get datasets UpperCamelCase = ( TokenClassificationDataset( token_classification_task=lowercase , data_dir=data_args.data_dir , tokenizer=lowercase , labels=lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCamelCase = ( TokenClassificationDataset( token_classification_task=lowercase , data_dir=data_args.data_dir , tokenizer=lowercase , labels=lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowercase , lowercase ) -> Tuple[List[int], List[int]]: UpperCamelCase = np.argmax(lowercase , axis=2 ) UpperCamelCase , UpperCamelCase = preds.shape UpperCamelCase = [[] for _ in range(lowercase )] UpperCamelCase = [[] for _ in range(lowercase )] for i in range(lowercase ): for j in range(lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowercase ) -> Dict: UpperCamelCase , UpperCamelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowercase , lowercase ), "precision": precision_score(lowercase , lowercase ), "recall": recall_score(lowercase , lowercase ), "f1": fa_score(lowercase , lowercase ), } # Data collator UpperCamelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase = Trainer( model=lowercase , args=lowercase , train_dataset=lowercase , eval_dataset=lowercase , compute_metrics=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) UpperCamelCase = trainer.evaluate() UpperCamelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(lowercase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , lowercase , lowercase ) writer.write('%s = %s\n' % (key, value) ) results.update(lowercase ) # Predict if training_args.do_predict: UpperCamelCase = TokenClassificationDataset( token_classification_task=lowercase , data_dir=data_args.data_dir , tokenizer=lowercase , labels=lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) UpperCamelCase , UpperCamelCase , UpperCamelCase = trainer.predict(lowercase ) UpperCamelCase , UpperCamelCase = align_predictions(lowercase , lowercase ) UpperCamelCase = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(lowercase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , lowercase , lowercase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions UpperCamelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(lowercase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(lowercase , lowercase , lowercase ) return results def A ( lowercase ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
371
import os import sys import unittest _UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = find_backend(' if not is_torch_available():' ) self.assertEqual(A_ , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCamelCase = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(A_ , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCamelCase = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(A_ , 'torch_and_transformers_and_onnx' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , A_ ) self.assertIn('torch_and_transformers' , A_ ) self.assertIn('flax_and_transformers' , A_ ) self.assertIn('torch_and_transformers_and_onnx' , A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(A_ , '\nCONSTANT = None\n' ) UpperCamelCase = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( A_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) UpperCamelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' UpperCamelCase = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' UpperCamelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , A_ )
110
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __UpperCamelCase ( nn.Module ): def __init__( self , __a = 16 , __a = 88 , __a = None , __a = 1 , __a = 0.0 , __a = 32 , __a = None , __a = False , __a = None , __a = None , __a = "geglu" , __a = None , ): '''simple docstring''' super().__init__() __a : List[Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__a , attention_head_dim=__a , in_channels=__a , num_layers=__a , dropout=__a , norm_num_groups=__a , cross_attention_dim=__a , attention_bias=__a , sample_size=__a , num_vector_embeds=__a , activation_fn=__a , num_embeds_ada_norm=__a , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __a : List[Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __a : Optional[int] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __a : List[Any] = [1, 0] def __UpperCAmelCase ( self , __a , __a , __a=None , __a=None , __a=None , __a = True , ): '''simple docstring''' __a : Optional[int] = hidden_states __a : Dict = [] __a : Union[str, Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __a : str = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __a : List[str] = self.transformer_index_for_condition[i] __a : List[str] = self.transformers[transformer_index]( __a , encoder_hidden_states=__a , timestep=__a , cross_attention_kwargs=__a , return_dict=__a , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __a : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __a : Tuple = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__a )
27
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : Tuple = logging.get_logger(__name__) __lowercase : List[Any] = torch.device('cpu') def lowerCamelCase (): __a : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' __a : Tuple = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : int = dct.pop(_SCREAMING_SNAKE_CASE ) __a : Tuple = val def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : Dict = [] for k in state_dict.keys(): __a : List[Any] = k if ".pwconv" in k: __a : List[Any] = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: __a : Dict = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: __a : Optional[int] = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: __a : List[Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: __a : Union[str, Any] = k_new.split('.' ) if ls[2].isdigit(): __a : Union[str, Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: __a : Union[str, Any] = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Union[str, Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __a : List[str] = 1_000 __a : Tuple = 'huggingface/label-files' __a : str = 'imagenet-1k-id2label.json' __a : Dict = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __a : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __a : Any = idalabel __a : str = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __a : Dict = [3, 3, 6, 4] __a : int = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __a : Dict = [3, 3, 9, 6] __a : List[str] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __a : Dict = [4, 3, 10, 5] __a : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __a : Tuple = [4, 4, 12, 6] __a : Dict = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): __a : List[Any] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='cpu' , check_hash=_SCREAMING_SNAKE_CASE ) else: __a : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) __a : Optional[Any] = checkpoint __a : Dict = create_rename_keys(_SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model __a : Tuple = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) # prepare test inputs __a : Tuple = prepare_img() __a : str = ViTImageProcessor.from_pretrained('preprocessor_config' ) __a : Tuple = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # compare outputs from both models __a : List[Any] = get_expected_output(_SCREAMING_SNAKE_CASE ) __a : Dict = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') __lowercase : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
27
1
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, list[float]]: """simple docstring""" snake_case_ : str = list(range(len(_UpperCamelCase ) ) ) snake_case_ : List[Any] = [v / w for v, w in zip(_UpperCamelCase , _UpperCamelCase )] index.sort(key=lambda _UpperCamelCase : ratio[i] , reverse=_UpperCamelCase ) snake_case_ : float = 0 snake_case_ : list[float] = [0] * len(_UpperCamelCase ) for i in index: if weight[i] <= capacity: snake_case_ : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: snake_case_ : Optional[int] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
279
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) lowerCAmelCase_ = None lowerCAmelCase_ = { '''7B''': 1_1_0_0_8, '''13B''': 1_3_8_2_4, '''30B''': 1_7_9_2_0, '''65B''': 2_2_0_1_6, '''70B''': 2_8_6_7_2, } lowerCAmelCase_ = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=1 , _UpperCamelCase=256 ) -> Optional[int]: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[Any]: """simple docstring""" with open(_UpperCamelCase , '''r''' ) as f: return json.load(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" with open(_UpperCamelCase , '''w''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ) -> Optional[Any]: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : int = os.path.join(_UpperCamelCase , '''tmp''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : Dict = read_json(os.path.join(_UpperCamelCase , '''params.json''' ) ) snake_case_ : Tuple = NUM_SHARDS[model_size] snake_case_ : Optional[Any] = params['''n_layers'''] snake_case_ : int = params['''n_heads'''] snake_case_ : Dict = n_heads // num_shards snake_case_ : List[Any] = params['''dim'''] snake_case_ : str = dim // n_heads snake_case_ : Any = 10_000.0 snake_case_ : Any = 1.0 / (base ** (torch.arange(0 , _UpperCamelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case_ : Optional[Any] = params['''n_kv_heads'''] # for GQA / MQA snake_case_ : Optional[Any] = n_heads_per_shard // num_key_value_heads snake_case_ : List[Any] = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case_ : str = n_heads snake_case_ : Optional[int] = n_heads_per_shard snake_case_ : str = dim # permute for sliced rotary def permute(_UpperCamelCase , _UpperCamelCase=n_heads , _UpperCamelCase=dim , _UpperCamelCase=dim ): return w.view(_UpperCamelCase , dima // n_heads // 2 , 2 , _UpperCamelCase ).transpose(1 , 2 ).reshape(_UpperCamelCase , _UpperCamelCase ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case_ : Optional[Any] = torch.load(os.path.join(_UpperCamelCase , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded snake_case_ : Union[str, Any] = [ torch.load(os.path.join(_UpperCamelCase , f'''consolidated.{i:02d}.pth''' ) , map_location='''cpu''' ) for i in range(_UpperCamelCase ) ] snake_case_ : Optional[Any] = 0 snake_case_ : str = {'''weight_map''': {}} for layer_i in range(_UpperCamelCase ): snake_case_ : Optional[int] = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case_ : str = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case_ : Union[str, Any] = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case_ : int = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : Optional[int] = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) snake_case_ : int = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for i in range(_UpperCamelCase ) ] , dim=0 , ).reshape(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Optional[int] = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_UpperCamelCase )] , dim=1 ) snake_case_ : Dict = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_UpperCamelCase )] , dim=0 ) snake_case_ : Union[str, Any] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_UpperCamelCase )] , dim=1 ) snake_case_ : Optional[int] = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_UpperCamelCase )] , dim=0 ) snake_case_ : str = inv_freq for k, v in state_dict.items(): snake_case_ : Dict = filename param_count += v.numel() torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ : Any = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case_ : List[str] = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: snake_case_ : Dict = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(_UpperCamelCase )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(_UpperCamelCase )] , dim=0 ), } for k, v in state_dict.items(): snake_case_ : List[str] = filename param_count += v.numel() torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) # Write configs snake_case_ : int = {'''total_size''': param_count * 2} write_json(_UpperCamelCase , os.path.join(_UpperCamelCase , '''pytorch_model.bin.index.json''' ) ) snake_case_ : str = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 snake_case_ : Optional[int] = params['''multiple_of'''] if '''multiple_of''' in params else 256 snake_case_ : Optional[Any] = LlamaConfig( hidden_size=_UpperCamelCase , intermediate_size=compute_intermediate_size(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=_UpperCamelCase , ) config.save_pretrained(_UpperCamelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) snake_case_ : Union[str, Any] = LlamaForCausalLM.from_pretrained(_UpperCamelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_UpperCamelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(_UpperCamelCase , safe_serialization=_UpperCamelCase ) shutil.rmtree(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case_ : Union[str, Any] = tokenizer_class(_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) def lowerCamelCase_ ( ) -> int: """simple docstring""" snake_case_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=_UpperCamelCase , help='''Whether or not to save using `safetensors`.''' ) snake_case_ : Dict = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case_ : Dict = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , _UpperCamelCase ) if __name__ == "__main__": main()
279
1
"""simple docstring""" from __future__ import annotations lowerCamelCase_ = list[tuple[int, int]] lowerCamelCase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class UpperCamelCase_ : def __init__( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float , lowerCAmelCase_ : Node | None , ) -> Dict: UpperCAmelCase_ : List[str] = pos_x UpperCAmelCase_ : str = pos_y UpperCAmelCase_ : Any = (pos_y, pos_x) UpperCAmelCase_ : Optional[Any] = goal_x UpperCAmelCase_ : Tuple = goal_y UpperCAmelCase_ : Tuple = g_cost UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : Optional[int] = self.calculate_heuristic() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> float: UpperCAmelCase_ : Any = abs(self.pos_x - self.goal_x ) UpperCAmelCase_ : int = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> bool: return self.f_cost < other.f_cost class UpperCamelCase_ : def __init__( self : str , lowerCAmelCase_ : tuple[int, int] , lowerCAmelCase_ : tuple[int, int] ) -> Any: UpperCAmelCase_ : List[str] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = [self.start] UpperCAmelCase_ : list[Node] = [] UpperCAmelCase_ : Optional[Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCAmelCase_ : Any = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: UpperCAmelCase_ : Union[str, Any] = True return self.retrace_path(lowerCAmelCase_ ) self.closed_nodes.append(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self.get_successors(lowerCAmelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path UpperCAmelCase_ : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase_ ) else: self.open_nodes.append(lowerCAmelCase_ ) if not self.reached: return [self.start.pos] return None def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Node ) -> list[Node]: UpperCAmelCase_ : Tuple = [] for action in delta: UpperCAmelCase_ : List[str] = parent.pos_x + action[1] UpperCAmelCase_ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase_ , lowerCAmelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase_ , ) ) return successors def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Node | None ) -> Path: UpperCAmelCase_ : List[str] = node UpperCAmelCase_ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCAmelCase_ : Tuple = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCamelCase_ = (0, 0) lowerCamelCase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') lowerCamelCase_ = GreedyBestFirst(init, goal) lowerCamelCase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCamelCase_ = 2 for elem in grid: print(elem)
268
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCamelCase_ : def __init__( self : str ) -> Dict: UpperCAmelCase_ : List[Any] = "" UpperCAmelCase_ : int = "" UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[Any] = 256 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : List[str] = 0 def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict ) -> Optional[Any]: UpperCAmelCase_ : Dict = cva.imread(lowerCAmelCase_ , 0 ) UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.img ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCAmelCase_ : List[Any] = np.sum(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): UpperCAmelCase_ : List[Any] = x[i] / self.k self.sk += prk UpperCAmelCase_ : Optional[Any] = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase_ : Any = int(last % last ) UpperCAmelCase_ : List[str] = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase_ : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase_ : Any = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase_ : Tuple = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: plt.hist(self.img.ravel() , 256 , [0, 256] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCamelCase_ = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') lowerCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
268
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCAmelCase__ ( A_ ): __a = """sew-d""" def __init__( self : Optional[int] , _lowerCamelCase : Tuple=32 , _lowerCamelCase : Union[str, Any]=768 , _lowerCamelCase : Tuple=12 , _lowerCamelCase : Any=12 , _lowerCamelCase : List[str]=3072 , _lowerCamelCase : Any=2 , _lowerCamelCase : str=512 , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : int=("p2c", "c2p") , _lowerCamelCase : Any="layer_norm" , _lowerCamelCase : Dict="gelu_python" , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : List[Any]=0.1 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : int=0.1 , _lowerCamelCase : Optional[int]=0.0_2 , _lowerCamelCase : List[Any]=1e-7 , _lowerCamelCase : List[str]=1e-5 , _lowerCamelCase : Optional[Any]="group" , _lowerCamelCase : Dict="gelu" , _lowerCamelCase : Union[str, Any]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowerCamelCase : Optional[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowerCamelCase : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowerCamelCase : List[str]=False , _lowerCamelCase : Dict=128 , _lowerCamelCase : Optional[int]=16 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Union[str, Any]=0.0_5 , _lowerCamelCase : int=10 , _lowerCamelCase : Any=2 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : List[str]=10 , _lowerCamelCase : List[Any]=0 , _lowerCamelCase : Union[str, Any]="mean" , _lowerCamelCase : str=False , _lowerCamelCase : int=False , _lowerCamelCase : Union[str, Any]=256 , _lowerCamelCase : int=0 , _lowerCamelCase : Tuple=1 , _lowerCamelCase : Any=2 , **_lowerCamelCase : str , ): super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) _snake_case = hidden_size _snake_case = feat_extract_norm _snake_case = feat_extract_activation _snake_case = list(_lowerCamelCase ) _snake_case = list(_lowerCamelCase ) _snake_case = list(_lowerCamelCase ) _snake_case = conv_bias _snake_case = num_conv_pos_embeddings _snake_case = num_conv_pos_embedding_groups _snake_case = len(self.conv_dim ) _snake_case = num_hidden_layers _snake_case = intermediate_size _snake_case = squeeze_factor _snake_case = max_position_embeddings _snake_case = position_buckets _snake_case = share_att_key _snake_case = relative_attention _snake_case = norm_rel_ebd _snake_case = list(_lowerCamelCase ) _snake_case = hidden_act _snake_case = num_attention_heads _snake_case = hidden_dropout _snake_case = attention_dropout _snake_case = activation_dropout _snake_case = feat_proj_dropout _snake_case = final_dropout _snake_case = layer_norm_eps _snake_case = feature_layer_norm_eps _snake_case = initializer_range _snake_case = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case = apply_spec_augment _snake_case = mask_time_prob _snake_case = mask_time_length _snake_case = mask_time_min_masks _snake_case = mask_feature_prob _snake_case = mask_feature_length _snake_case = mask_feature_min_masks # ctc loss _snake_case = ctc_loss_reduction _snake_case = ctc_zero_infinity # sequence classification _snake_case = use_weighted_layer_sum _snake_case = classifier_proj_size @property def lowercase ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
40
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase__ : def __init__( self : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Dict=3 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Optional[int]=32 * 8 , _lowerCamelCase : Dict=4 , _lowerCamelCase : Optional[int]=64 , ): _snake_case = parent _snake_case = batch_size _snake_case = is_training _snake_case = use_auxiliary_loss _snake_case = num_queries _snake_case = num_channels _snake_case = min_size _snake_case = max_size _snake_case = num_labels _snake_case = hidden_dim _snake_case = hidden_dim def lowercase ( self : List[str] ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) _snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) _snake_case = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() _snake_case = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() _snake_case = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self : Optional[Any] ): _snake_case = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _snake_case = self.num_queries _snake_case = self.num_labels _snake_case = [1, 1, 1, 1] _snake_case = self.num_channels _snake_case = 64 _snake_case = 128 _snake_case = self.hidden_dim _snake_case = self.hidden_dim _snake_case = self.hidden_dim return config def lowercase ( self : Any ): _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.prepare_config_and_inputs() _snake_case = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : int ): _snake_case = output.encoder_hidden_states _snake_case = output.pixel_decoder_hidden_states _snake_case = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def lowercase ( self : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False ): with torch.no_grad(): _snake_case = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] ): _snake_case = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _snake_case = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) _snake_case = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) _snake_case = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __a = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __a = False __a = False __a = False __a = False def lowercase ( self : int ): _snake_case = MaskaFormerModelTester(self ) _snake_case = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def lowercase ( self : Dict ): self.config_tester.run_common_tests() def lowercase ( self : Tuple ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : Any ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase ( self : Dict ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase ( self : int ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase ( self : Optional[int] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase ( self : str ): pass def lowercase ( self : Optional[int] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def lowercase ( self : Optional[int] ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _snake_case = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : List[Any] ): _snake_case = (self.model_tester.min_size,) * 2 _snake_case = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowerCamelCase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowerCamelCase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowerCamelCase ).long(), } _snake_case = self.model_tester.get_config() _snake_case = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def lowercase ( self : Union[str, Any] ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def lowercase ( self : str ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) _snake_case = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self : str ): if not self.model_tester.is_training: return _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def lowercase ( self : Optional[int] ): _snake_case = self.all_model_classes[1] _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs() _snake_case = True _snake_case = True _snake_case = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() _snake_case = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) _snake_case = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _snake_case = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _snake_case = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _snake_case = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCAmelCase__ = 1e-4 def _UpperCAmelCase ( ) -> Tuple: _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase ( self : Optional[Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self : Any ): _snake_case = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) _snake_case = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) _snake_case = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : str ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) _snake_case = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 384, 384) ) with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) # masks_queries_logits _snake_case = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _snake_case = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] _snake_case = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits _snake_case = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _snake_case = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def lowercase ( self : Optional[int] ): _snake_case = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() _snake_case = self.default_image_processor _snake_case = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _snake_case = inputs['''pixel_values'''].to(_lowerCamelCase ) _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''mask_labels''']] _snake_case = [el.to(_lowerCamelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _snake_case = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
40
1
import math def UpperCamelCase( __UpperCamelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase( __UpperCamelCase : float = 0.1 ): lowerCAmelCase_ : Optional[Any] = 3 lowerCAmelCase_ : List[str] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 ,(j + 2) * (j + 2) ,j + 1 ): primes += is_prime(__UpperCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
103
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging a : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , A , A , ) -> Optional[Any]: super().__init__() self.register_modules( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , ) def _lowercase( self , A = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def _lowercase( self ) -> Dict: self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self , A , A = 512 , A = 512 , A = 50 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , A = None , **A , ) -> List[Any]: if isinstance(A , A ): UpperCAmelCase : List[str] = 1 elif isinstance(A , A ): UpperCAmelCase : Dict = len(A ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(A )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(A )}.''' ) # get prompt text embeddings UpperCAmelCase : List[str] = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCAmelCase : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCAmelCase : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = text_embeddings.shape UpperCAmelCase : List[str] = text_embeddings.repeat(1 , A , 1 ) UpperCAmelCase : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase : List[str] if negative_prompt is None: UpperCAmelCase : Any = [""""""] elif type(A ) is not type(A ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=''' f''' {type(A )}.''' ) elif isinstance(A , A ): UpperCAmelCase : Optional[int] = [negative_prompt] elif batch_size != len(A ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: UpperCAmelCase : Any = negative_prompt UpperCAmelCase : Dict = text_input_ids.shape[-1] UpperCAmelCase : List[Any] = self.tokenizer( A , padding="""max_length""" , max_length=A , truncation=A , return_tensors="""pt""" , ) UpperCAmelCase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : int = uncond_embeddings.shape[1] UpperCAmelCase : List[Any] = uncond_embeddings.repeat(A , A , 1 ) UpperCAmelCase : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCAmelCase : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase : Dict = torch.randn( A , generator=A , device="""cpu""" , dtype=A ).to(self.device ) UpperCAmelCase : int = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: UpperCAmelCase : int = torch.randn( A , generator=A , device=self.device , dtype=A ) UpperCAmelCase : int = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase : Optional[Any] = latents_reference.to(self.device ) UpperCAmelCase : Tuple = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCAmelCase : int = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCAmelCase : List[str] = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCAmelCase : Union[str, Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCAmelCase : Union[str, Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCAmelCase : Optional[int] = 0 if dx < 0 else dx UpperCAmelCase : List[str] = 0 if dy < 0 else dy UpperCAmelCase : Union[str, Any] = max(-dx , 0 ) UpperCAmelCase : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCAmelCase : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase : int = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase : Optional[Any] = {} if accepts_eta: UpperCAmelCase : List[str] = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : str = self.scheduler.scale_model_input(A , A ) # predict the noise residual UpperCAmelCase : Any = self.unet(A , A , encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : Any = noise_pred.chunk(2 ) UpperCAmelCase : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : Dict = self.scheduler.step(A , A , A , **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) UpperCAmelCase : Union[str, Any] = 1 / 0.1_8_2_1_5 * latents UpperCAmelCase : Tuple = self.vae.decode(A ).sample UpperCAmelCase : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCAmelCase : int = self.feature_extractor(self.numpy_to_pil(A ) , return_tensors="""pt""" ).to( self.device ) UpperCAmelCase , UpperCAmelCase : int = self.safety_checker( images=A , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCAmelCase : Any = None if output_type == "pil": UpperCAmelCase : int = self.numpy_to_pil(A ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
265
0
"""simple docstring""" def a__ ( __UpperCamelCase ): for i in range(len(__snake_case ) - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = unsorted[j - 1], unsorted[j] SCREAMING_SNAKE_CASE_ = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = unsorted[j + 1], unsorted[j] SCREAMING_SNAKE_CASE_ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() A : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() A : Tuple = [int(item) for item in user_input.split(",")] print(f"{cocktail_shaker_sort(unsorted) = }")
362
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( __UpperCamelCase ): return x + 2 class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) SCREAMING_SNAKE_CASE_ = "x = y" SCREAMING_SNAKE_CASE_ = {"y": 5} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 5, "y": 5} ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = "y = add_two(x)" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result is None assert "tried to execute add_two" in out.out def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "x = 3\ny = 5" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = "text = f'This is x: {x}.'" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__magic_name__ , {"x": 3, "text": "This is x: 3."} ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = "if x <= 3:\n y = 2\nelse:\n y = 5" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 2} ) SCREAMING_SNAKE_CASE_ = {"x": 8} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 8, "y": 5} ) def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertListEqual(__magic_name__ , [3, 5] ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "y = x" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 3} ) def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]\ntest_list[1]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = "x = 0\nfor i in range(3):\n x = i" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"range": range} , state=__magic_name__ ) assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 2, "i": 2} )
305
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase__ = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
288
import socket def _a ( ): """simple docstring""" lowercase__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase__ = socket.gethostname() lowercase__ = 1_23_12 sock.connect((host, port) ) sock.send(B'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: lowercase__ = sock.recv(10_24 ) if not data: break out_file.write(SCREAMING_SNAKE_CASE ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
110
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __lowerCAmelCase : _lowercase : Optional[int] = None def _lowercase ( self ) -> int: '''simple docstring''' a__ : int =self.feature_extraction_class(**self.feat_extract_dict ) a__ : str =json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCAmelCase__ ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : Optional[Any] =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Any =os.path.join(lowerCAmelCase__ , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCAmelCase__ ) a__ : List[str] =self.feature_extraction_class.from_json_file(lowerCAmelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : str =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[Any] =feat_extract_first.save_pretrained(lowerCAmelCase__ )[0] check_json_file_has_correct_format(lowerCAmelCase__ ) a__ : Optional[Any] =self.feature_extraction_class.from_pretrained(lowerCAmelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Any =self.feature_extraction_class() self.assertIsNotNone(lowerCAmelCase__ )
148
from __future__ import annotations class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : int =TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(lowerCAmelCase__ ) != 0: a__ : List[str] =len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCAmelCase__ ) != cols: raise error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise error a__ : List[Any] =rows else: a__ : str =[] def _lowercase ( self ) -> list[list[int]]: '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.rows ) @property def _lowercase ( self ) -> int: '''simple docstring''' return len(self.rows[0] ) @property def _lowercase ( self ) -> tuple[int, int]: '''simple docstring''' return (self.num_rows, self.num_columns) @property def _lowercase ( self ) -> bool: '''simple docstring''' return self.order[0] == self.order[1] def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : str =[ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def _lowercase ( self ) -> int: '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowercase ( self ) -> bool: '''simple docstring''' return bool(self.determinant() ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : List[str] =[ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCAmelCase__ ).determinant() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) return -1 * self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Matrix: '''simple docstring''' return Matrix( [ [self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowercase ( self ) -> Matrix: '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : Dict =[ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def _lowercase ( self ) -> Matrix: '''simple docstring''' a__ : Union[str, Any] =self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: '''simple docstring''' return str(self.rows ) def __str__( self ) -> str: '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(lowerCAmelCase__ ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> None: '''simple docstring''' a__ : List[str] =TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(lowerCAmelCase__ ) else: a__ : Tuple =self.rows[0:position] + [row] + self.rows[position:] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> None: '''simple docstring''' a__ : str =TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in column: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: a__ : Optional[Any] =[self.rows[i] + [column[i]] for i in range(self.num_rows )] else: a__ : Any =[ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , lowerCAmelCase__ ) -> bool: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self , lowerCAmelCase__ ) -> bool: '''simple docstring''' return not self == other def __neg__( self ) -> Matrix: '''simple docstring''' return self * -1 def __add__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if isinstance(lowerCAmelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(lowerCAmelCase__ , lowerCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self , lowerCAmelCase__ ) -> Matrix: '''simple docstring''' if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) a__ : Tuple =self for _ in range(other - 1 ): result *= self return result @classmethod def _lowercase ( cls , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' return sum(row[i] * column[i] for i in range(len(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
148
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } lowerCAmelCase_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 lowerCAmelCase_ = 3 lowerCAmelCase_ = 4 class __lowerCAmelCase ( _a ): lowerCamelCase_ : int = VOCAB_FILES_NAMES lowerCamelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : str = '''left''' def __init__(self , __magic_name__ , __magic_name__=False , __magic_name__=True , __magic_name__=False , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="<unk>" , __magic_name__="<sep>" , __magic_name__="<pad>" , __magic_name__="<cls>" , __magic_name__="<mask>" , __magic_name__=["<eop>", "<eod>"] , __magic_name__ = None , **__magic_name__ , ) -> None: '''simple docstring''' snake_case_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token snake_case_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , remove_space=__magic_name__ , keep_accents=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) snake_case_ : Any = 3 snake_case_ : List[str] = do_lower_case snake_case_ : str = remove_space snake_case_ : Dict = keep_accents snake_case_ : Any = vocab_file snake_case_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) @property def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return len(self.sp_model ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Dict = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> List[Any]: '''simple docstring''' snake_case_ : str = self.__dict__.copy() snake_case_ : str = None return state def __setstate__(self , __magic_name__ ) -> int: '''simple docstring''' snake_case_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ : Optional[int] = {} snake_case_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase (self , __magic_name__ ) -> Tuple: '''simple docstring''' if self.remove_space: snake_case_ : str = ''' '''.join(inputs.strip().split() ) else: snake_case_ : List[Any] = inputs snake_case_ : Tuple = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: snake_case_ : Any = unicodedata.normalize('''NFKD''' , __magic_name__ ) snake_case_ : str = ''''''.join([c for c in outputs if not unicodedata.combining(__magic_name__ )] ) if self.do_lower_case: snake_case_ : List[Any] = outputs.lower() return outputs def lowerCamelCase (self , __magic_name__ ) -> List[str]: '''simple docstring''' snake_case_ : Dict = self.preprocess_text(__magic_name__ ) snake_case_ : str = self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) snake_case_ : Any = [] for piece in pieces: if len(__magic_name__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): snake_case_ : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__magic_name__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ : str = cur_pieces[1:] else: snake_case_ : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__magic_name__ ) else: new_pieces.append(__magic_name__ ) return new_pieces def lowerCamelCase (self , __magic_name__ ) -> Any: '''simple docstring''' return self.sp_model.PieceToId(__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> Optional[int]: '''simple docstring''' return self.sp_model.IdToPiece(__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def lowerCamelCase (self , __magic_name__ , __magic_name__ = False , __magic_name__ = None , __magic_name__ = True , **__magic_name__ , ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = kwargs.pop('''use_source_tokenizer''' , __magic_name__ ) snake_case_ : Dict = self.convert_ids_to_tokens(__magic_name__ , skip_special_tokens=__magic_name__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ : int = [] snake_case_ : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__magic_name__ ) ) snake_case_ : List[Any] = [] sub_texts.append(__magic_name__ ) else: current_sub_text.append(__magic_name__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__magic_name__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens snake_case_ : Optional[int] = ''''''.join(__magic_name__ ) snake_case_ : Optional[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ : Dict = self.clean_up_tokenization(__magic_name__ ) return clean_text else: return text def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : Tuple = [self.sep_token_id] snake_case_ : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCamelCase (self , __magic_name__ , __magic_name__ = None , __magic_name__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) if token_ids_a is not None: return ([0] * len(__magic_name__ )) + [1] + ([0] * len(__magic_name__ )) + [1, 1] return ([0] * len(__magic_name__ )) + [1, 1] def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> List[int]: '''simple docstring''' snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCamelCase (self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__magic_name__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Tuple = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , '''wb''' ) as fi: snake_case_ : int = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,)
279
from math import factorial lowerCAmelCase_ = {str(digit): factorial(digit) for digit in range(1_0)} def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_UpperCamelCase ) ) def lowerCamelCase_ ( _UpperCamelCase = 60 , _UpperCamelCase = 1_000_000 ) -> int: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length snake_case_ : Optional[Any] = 0 # the cached sizes of the previous chains snake_case_ : dict[int, int] = {} for start_chain_element in range(1 , _UpperCamelCase ): # The temporary set will contain the elements of the chain snake_case_ : List[str] = set() snake_case_ : List[Any] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. snake_case_ : Any = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_UpperCamelCase ) chain_set_length += 1 snake_case_ : List[Any] = digit_factorial_sum(_UpperCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] snake_case_ : List[str] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
279
1
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =[] for line in lines: __lowercase =re.sub(r'#.*' , '' , lowerCAmelCase__ ) # remove comments if line: filtered_lines.append(lowerCAmelCase__ ) __lowercase ='\n'.join(lowerCAmelCase__ ) # Make a hash from all this code __lowercase =full_str.encode('utf-8' ) return shaaaa(lowerCAmelCase__ ).hexdigest() # get importable module names and hash for caching lowerCamelCase = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name lowerCamelCase = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
360
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = XLMTokenizer lowerCAmelCase__ = False def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __lowercase =dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase)))) __lowercase =['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w') as fp: fp.write(json.dumps(_lowerCAmelCase)) with open(self.merges_file , 'w') as fp: fp.write('\n'.join(_lowerCAmelCase)) def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : Any): '''simple docstring''' __lowercase ='lower newer' __lowercase ='lower newer' return input_text, output_text def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =XLMTokenizer(self.vocab_file , self.merges_file) __lowercase ='lower' __lowercase =['low', 'er</w>'] __lowercase =tokenizer.tokenize(_lowerCAmelCase) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase) __lowercase =tokens + ['<unk>'] __lowercase =[1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , _lowerCAmelCase) @slow def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =XLMTokenizer.from_pretrained('xlm-mlm-en-2048') __lowercase =tokenizer.encode('sequence builders' , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase) __lowercase =tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
48
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _A : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Any=12 , __UpperCAmelCase : List[str]=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Dict=99 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Union[str, Any]=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : int=4 , __UpperCAmelCase : Dict=37 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Tuple=512 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : Dict=None , ): a : int = parent a : List[Any] = batch_size a : Any = seq_length a : List[str] = is_training a : int = use_input_mask a : List[str] = use_labels a : Optional[int] = vocab_size a : Union[str, Any] = hidden_size a : int = projection_dim a : int = num_hidden_layers a : Dict = num_attention_heads a : Any = intermediate_size a : str = dropout a : List[Any] = attention_dropout a : Optional[int] = max_position_embeddings a : Any = initializer_range a : List[Any] = scope a : Tuple = bos_token_id def __snake_case ( self : int): a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a : Dict = None if self.use_input_mask: a : int = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: a : Any = input_mask.numpy() a , a : Tuple = input_mask.shape a : int = np.random.randint(1 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(__UpperCAmelCase): a : int = 1 a : List[Any] = 0 a : Optional[Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(__UpperCAmelCase) def __snake_case ( self : Tuple): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any]): a : Optional[Any] = TFBlipTextModel(config=__UpperCAmelCase) a : Any = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , training=__UpperCAmelCase) a : Optional[Any] = model(__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def __snake_case ( self : Optional[int]): a : Optional[int] = self.prepare_config_and_inputs() a , a , a : str = config_and_inputs a : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : int = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase : str = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Optional[Any] = False def __snake_case ( self : Dict): a : Any = BlipTextModelTester(self) a : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def __snake_case ( self : int): self.config_tester.run_common_tests() def __snake_case ( self : List[Any]): a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def __snake_case ( self : int): pass def __snake_case ( self : Dict): pass @unittest.skip(reason="Blip does not use inputs_embeds") def __snake_case ( self : List[str]): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def __snake_case ( self : List[Any]): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING") def __snake_case ( self : Dict): pass @slow def __snake_case ( self : str): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : str = TFBlipTextModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : int=True): super().test_pt_tf_model_equivalence(allow_missing_keys=__UpperCAmelCase)
40
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _A ( _a ): """simple docstring""" UpperCAmelCase : str = """naver-clova-ix/donut-base-finetuned-docvqa""" UpperCAmelCase : Tuple = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) UpperCAmelCase : List[str] = """document_qa""" UpperCAmelCase : str = AutoProcessor UpperCAmelCase : Optional[int] = VisionEncoderDecoderModel UpperCAmelCase : int = ["""image""", """text"""] UpperCAmelCase : int = ["""text"""] def __init__( self : Tuple , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Any): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.") super().__init__(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Tuple , __UpperCAmelCase : "Image" , __UpperCAmelCase : str): a : Any = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" a : Union[str, Any] = task_prompt.replace("{user_input}" , __UpperCAmelCase) a : Optional[Any] = self.pre_processor.tokenizer( __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors="pt").input_ids a : Any = self.pre_processor(__UpperCAmelCase , return_tensors="pt").pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __snake_case ( self : int , __UpperCAmelCase : int): return self.model.generate( inputs["pixel_values"].to(self.device) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__UpperCAmelCase , ).sequences def __snake_case ( self : str , __UpperCAmelCase : List[Any]): a : Union[str, Any] = self.pre_processor.batch_decode(__UpperCAmelCase)[0] a : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , "") a : Any = sequence.replace(self.pre_processor.tokenizer.pad_token , "") a : Optional[Any] = re.sub(r"<.*?>" , "" , __UpperCAmelCase , count=1).strip() # remove first task start token a : List[str] = self.pre_processor.tokenajson(__UpperCAmelCase) return sequence["answer"]
40
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : List[Any] = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = "maskformer-swin" _UpperCamelCase : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=None , a__=None , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : Dict = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : int = embed_dim _lowerCAmelCase : Optional[Any] = depths _lowerCAmelCase : List[str] = len(a__ ) _lowerCAmelCase : List[Any] = num_heads _lowerCAmelCase : Tuple = window_size _lowerCAmelCase : List[Any] = mlp_ratio _lowerCAmelCase : Optional[Any] = qkv_bias _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = drop_path_rate _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Tuple = use_absolute_embeddings _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(a__ ) - 1) ) _lowerCAmelCase : int = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(a__ ) + 1 )] _lowerCAmelCase : int = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
369
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A : def __init__( self , a__ , a__=2 , a__=3 , a__=4 , a__=2 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=36 , a__=3 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=6 , a__=6 , a__=3 , a__=4 , a__=None , a__=1000 , ): _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : str = image_size _lowerCAmelCase : str = patch_size _lowerCAmelCase : str = text_seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : List[str] = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Dict = coordinate_size _lowerCAmelCase : Optional[int] = shape_size _lowerCAmelCase : str = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase : Optional[int] = text_seq_length _lowerCAmelCase : Any = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase : Any = self.text_seq_length + self.image_seq_length def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Optional[Any] = bbox[i, j, 3] _lowerCAmelCase : List[str] = bbox[i, j, 1] _lowerCAmelCase : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : int = bbox[i, j, 2] _lowerCAmelCase : Optional[int] = bbox[i, j, 0] _lowerCAmelCase : Optional[int] = t _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_input_mask: _lowerCAmelCase : int = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCAmelCase : int = None _lowerCAmelCase : int = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCAmelCase : str = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = LayoutLMvaModel(config=a__ ) model.to(a__ ) model.eval() # text + image _lowerCAmelCase : Optional[Any] = model(a__ , pixel_values=a__ ) _lowerCAmelCase : Any = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ ) _lowerCAmelCase : List[Any] = model(a__ , bbox=a__ , pixel_values=a__ , token_type_ids=a__ ) _lowerCAmelCase : Tuple = model(a__ , bbox=a__ , pixel_values=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCAmelCase : Dict = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCAmelCase : Optional[Any] = model(pixel_values=a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = self.num_labels _lowerCAmelCase : int = LayoutLMvaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : str = LayoutLMvaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Dict = LayoutLMvaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Any = config_and_inputs _lowerCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False _UpperCamelCase : Any = False _UpperCamelCase : int = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __A ( self , a__ , a__ , a__ , a__ , a__ ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __A ( self ): _lowerCAmelCase : Any = LayoutLMvaModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self , a__ , a__ , a__=False ): _lowerCAmelCase : List[str] = copy.deepcopy(a__ ) if model_class in get_values(a__ ): _lowerCAmelCase : Optional[int] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(a__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a__ ): _lowerCAmelCase : List[Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in get_values(a__ ): _lowerCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) _lowerCAmelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: _lowerCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: _lowerCAmelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=a__ , ) return inputs_dict def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : int = type self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def __A ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = LayoutLMvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class __A ( unittest.TestCase ): @cached_property def __A ( self ): return LayoutLMvaImageProcessor(apply_ocr=a__ ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : Optional[int] = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(a__ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Dict = image_processor(images=a__ , return_tensors="""pt""" ).pixel_values.to(a__ ) _lowerCAmelCase : Optional[Any] = torch.tensor([[1, 2]] ) _lowerCAmelCase : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCAmelCase : str = model( input_ids=input_ids.to(a__ ) , bbox=bbox.to(a__ ) , pixel_values=pixel_values.to(a__ ) , ) # verify the logits _lowerCAmelCase : Optional[int] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , a__ ) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-4 ) )
126
0
'''simple docstring''' import numpy as np class lowerCAmelCase__ : def __init__( self ): """simple docstring""" lowercase_ : Optional[int] = (0, 0) lowercase_ : Dict = None lowercase_ : Optional[int] = 0 lowercase_ : List[Any] = 0 lowercase_ : Dict = 0 def __eq__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.position == cell.position def _snake_case ( self ): """simple docstring""" print(self.position ) class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE=(5, 5) ): """simple docstring""" lowercase_ : Union[str, Any] = np.zeros(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = world_size[0] lowercase_ : Dict = world_size[1] def _snake_case ( self ): """simple docstring""" print(self.w ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[str] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowercase_ : str = cell.position[0] lowercase_ : int = cell.position[1] lowercase_ : Optional[int] = [] for n in neughbour_cord: lowercase_ : Optional[Any] = current_x + n[0] lowercase_ : List[str] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowercase_ : str = Cell() lowercase_ : List[str] = (x, y) lowercase_ : Any = cell neighbours.append(__SCREAMING_SNAKE_CASE ) return neighbours def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Any = [] lowercase_ : int = [] _open.append(__SCREAMING_SNAKE_CASE ) while _open: lowercase_ : str = np.argmin([n.f for n in _open] ) lowercase_ : Any = _open[min_f] _closed.append(_open.pop(__SCREAMING_SNAKE_CASE ) ) if current == goal: break for n in world.get_neigbours(__SCREAMING_SNAKE_CASE ): for c in _closed: if c == n: continue lowercase_ : Optional[int] = current.g + 1 lowercase_ , lowercase_ : str = n.position lowercase_ , lowercase_ : int = goal.position lowercase_ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 lowercase_ : Optional[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = [] while current.parent is not None: path.append(current.position ) lowercase_ : Dict = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _lowercase : Optional[int] = Gridworld() # Start position and goal _lowercase : List[str] = Cell() _lowercase : Optional[Any] = (0, 0) _lowercase : Union[str, Any] = Cell() _lowercase : Optional[Any] = (4, 4) print(f"""path from {start.position} to {goal.position}""") _lowercase : Any = astar(world, start, goal) # Just for visual reasons. for i in s: _lowercase : List[Any] = 1 print(world.w)
93
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowercase__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase__ = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : Dict , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] , **_UpperCAmelCase : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] , **_UpperCAmelCase : str ) -> Dict: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ (self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" lowercase__ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowercase__ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(_UpperCAmelCase , return_tensors="""np""" ) lowercase__ = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase__ (self : Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = processor(text=_UpperCAmelCase ) lowercase__ = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase__ (self : List[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowercase__ = """lower newer""" lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
305
0
"""simple docstring""" import math import unittest def _lowerCAmelCase ( UpperCAmelCase : int ): '''simple docstring''' assert isinstance(UpperCAmelCase , UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __a ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _lowerCAmelCase ( self : Optional[int] ): with self.assertRaises(lowercase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
354
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE : Union[str, Any] = """ResNetConfig""" # Base docstring _SCREAMING_SNAKE_CASE : str = """microsoft/resnet-50""" _SCREAMING_SNAKE_CASE : List[Any] = [1, 2_0_4_8, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE : Tuple = """microsoft/resnet-50""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """tiger cat""" _SCREAMING_SNAKE_CASE : Optional[Any] = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __a ( nn.Module ): """simple docstring""" def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 3 , lowercase_ : int = 1 , lowercase_ : str = "relu" ): super().__init__() UpperCamelCase__ : Optional[Any] =nn.Convad( lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , bias=lowercase_ ) UpperCamelCase__ : Tuple =nn.BatchNormad(lowercase_ ) UpperCamelCase__ : int =ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor ): UpperCamelCase__ : List[Any] =self.convolution(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.normalization(lowercase_ ) UpperCamelCase__ : Optional[int] =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowercase_ : ResNetConfig ): super().__init__() UpperCamelCase__ : Any =ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) UpperCamelCase__ : Tuple =nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) UpperCamelCase__ : Any =config.num_channels def _lowerCAmelCase ( self : str , lowercase_ : Tensor ): UpperCamelCase__ : Optional[Any] =pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCamelCase__ : Dict =self.embedder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.pooler(lowercase_ ) return embedding class __a ( nn.Module ): """simple docstring""" def __init__( self : Tuple , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 ): super().__init__() UpperCamelCase__ : int =nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_ ) UpperCamelCase__ : Optional[int] =nn.BatchNormad(lowercase_ ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ): UpperCamelCase__ : Dict =self.convolution(lowercase_ ) UpperCamelCase__ : Dict =self.normalization(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" ): super().__init__() UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1 UpperCamelCase__ : str =( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : List[str] =nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , activation=lowercase_ ) , ) UpperCamelCase__ : Any =ACTaFN[activation] def _lowerCAmelCase ( self : str , lowercase_ : Tuple ): UpperCamelCase__ : Any =hidden_state UpperCamelCase__ : Union[str, Any] =self.layer(lowercase_ ) UpperCamelCase__ : str =self.shortcut(lowercase_ ) hidden_state += residual UpperCamelCase__ : str =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : str , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , lowercase_ : str = "relu" , lowercase_ : int = 4 ): super().__init__() UpperCamelCase__ : Optional[Any] =in_channels != out_channels or stride != 1 UpperCamelCase__ : Union[str, Any] =out_channels // reduction UpperCamelCase__ : str =( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) UpperCamelCase__ : int =nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 ) , ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , ) UpperCamelCase__ : List[Any] =ACTaFN[activation] def _lowerCAmelCase ( self : Tuple , lowercase_ : Optional[int] ): UpperCamelCase__ : Dict =hidden_state UpperCamelCase__ : str =self.layer(lowercase_ ) UpperCamelCase__ : Tuple =self.shortcut(lowercase_ ) hidden_state += residual UpperCamelCase__ : Optional[int] =self.activation(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowercase_ : ResNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 , lowercase_ : int = 2 , ): super().__init__() UpperCamelCase__ : Dict =ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer UpperCamelCase__ : Union[str, Any] =nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase_ , lowercase_ , stride=lowercase_ , activation=config.hidden_act ) , *[layer(lowercase_ , lowercase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def _lowerCAmelCase ( self : Tuple , lowercase_ : Tensor ): UpperCamelCase__ : Optional[Any] =input for layer in self.layers: UpperCamelCase__ : Tuple =layer(lowercase_ ) return hidden_state class __a ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowercase_ : ResNetConfig ): super().__init__() UpperCamelCase__ : Optional[Any] =nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCamelCase__ : int =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_ ) ) def _lowerCAmelCase ( self : Dict , lowercase_ : Tensor , lowercase_ : bool = False , lowercase_ : bool = True ): UpperCamelCase__ : int =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCamelCase__ : Union[str, Any] =hidden_states + (hidden_state,) UpperCamelCase__ : List[str] =stage_module(lowercase_ ) if output_hidden_states: UpperCamelCase__ : Optional[Any] =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase_ , hidden_states=lowercase_ , ) class __a ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ResNetConfig SCREAMING_SNAKE_CASE_ = 'resnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' SCREAMING_SNAKE_CASE_ = True def _lowerCAmelCase ( self : str , lowercase_ : Optional[int] ): if isinstance(lowercase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowerCAmelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Dict=False ): if isinstance(lowercase_ , lowercase_ ): UpperCamelCase__ : str =value _SCREAMING_SNAKE_CASE : int = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _SCREAMING_SNAKE_CASE : Optional[int] = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.', snake_case__, ) class __a ( snake_case__ ): """simple docstring""" def __init__( self : Union[str, Any] , lowercase_ : List[Any] ): super().__init__(lowercase_ ) UpperCamelCase__ : Dict =config UpperCamelCase__ : str =ResNetEmbeddings(lowercase_ ) UpperCamelCase__ : str =ResNetEncoder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ): UpperCamelCase__ : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Tuple =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Optional[Any] =self.embedder(lowercase_ ) UpperCamelCase__ : Union[str, Any] =self.encoder( lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : int =encoder_outputs[0] UpperCamelCase__ : List[Any] =self.pooler(lowercase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ', snake_case__, ) class __a ( snake_case__ ): """simple docstring""" def __init__( self : Dict , lowercase_ : Union[str, Any] ): super().__init__(lowercase_ ) UpperCamelCase__ : Any =config.num_labels UpperCamelCase__ : Dict =ResNetModel(lowercase_ ) # classification head UpperCamelCase__ : Any =nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[torch.LongTensor] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , ): UpperCamelCase__ : Dict =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : List[Any] =self.resnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : Tuple =outputs.pooler_output if return_dict else outputs[1] UpperCamelCase__ : Union[str, Any] =self.classifier(lowercase_ ) UpperCamelCase__ : int =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase__ : List[str] ='''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase__ : Dict ='''single_label_classification''' else: UpperCamelCase__ : str ='''multi_label_classification''' if self.config.problem_type == "regression": UpperCamelCase__ : Union[str, Any] =MSELoss() if self.num_labels == 1: UpperCamelCase__ : Optional[Any] =loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCamelCase__ : Dict =loss_fct(lowercase_ , lowercase_ ) elif self.config.problem_type == "single_label_classification": UpperCamelCase__ : List[Any] =CrossEntropyLoss() UpperCamelCase__ : List[Any] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCamelCase__ : Optional[Any] =BCEWithLogitsLoss() UpperCamelCase__ : List[str] =loss_fct(lowercase_ , lowercase_ ) if not return_dict: UpperCamelCase__ : Tuple =(logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ', snake_case__, ) class __a ( snake_case__, snake_case__ ): """simple docstring""" def __init__( self : str , lowercase_ : List[Any] ): super().__init__(lowercase_ ) super()._init_backbone(lowercase_ ) UpperCamelCase__ : str =[config.embedding_size] + config.hidden_sizes UpperCamelCase__ : Optional[int] =ResNetEmbeddings(lowercase_ ) UpperCamelCase__ : Dict =ResNetEncoder(lowercase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @replace_return_docstrings(output_type=lowercase_ , config_class=_CONFIG_FOR_DOC ) def _lowerCAmelCase ( self : int , lowercase_ : Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None ): UpperCamelCase__ : Union[str, Any] =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Any =self.embedder(lowercase_ ) UpperCamelCase__ : Optional[Any] =self.encoder(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) UpperCamelCase__ : str =outputs.hidden_states UpperCamelCase__ : Optional[int] =() for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: UpperCamelCase__ : int =(feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase_ , )
157
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ): """simple docstring""" snake_case : Optional[Any] = parent snake_case : int = batch_size snake_case : List[Any] = seq_length snake_case : Tuple = is_training snake_case : Tuple = use_token_type_ids snake_case : Union[str, Any] = use_labels snake_case : Optional[int] = vocab_size snake_case : List[Any] = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : str = intermediate_size snake_case : List[Any] = hidden_act snake_case : Any = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : Any = max_position_embeddings snake_case : List[str] = type_vocab_size snake_case : List[str] = type_sequence_label_size snake_case : Any = initializer_range snake_case : int = num_labels snake_case : Any = num_choices snake_case : Optional[Any] = scope snake_case : str = self.vocab_size - 1 def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Any = None if self.use_token_type_ids: snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : int = None snake_case : Optional[Any] = None snake_case : Optional[Any] = None if self.use_labels: snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Optional[Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) snake_case : Optional[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : str = OpenAIGPTModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() snake_case : List[str] = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE ) snake_case : Any = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Union[str, Any] = OpenAIGPTLMHeadModel(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() snake_case : str = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[str] = OpenAIGPTDoubleHeadsModel(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() snake_case : List[str] = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[str] = self.num_labels snake_case : Tuple = OpenAIGPTForSequenceClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = model(SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Dict = config_and_inputs snake_case : Tuple = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): a__ : Union[str, Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) a__ : Dict = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly a__ : str = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" snake_case : Any = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE , ) snake_case : Optional[Any] = inputs_dict["labels"] snake_case : str = inputs_dict["labels"] snake_case : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=SCREAMING_SNAKE_CASE , ) snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) return inputs_dict def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = OpenAIGPTModelTester(self ) snake_case : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , n_embd=37 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Tuple = OpenAIGPTModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(SCREAMING_SNAKE_CASE ) snake_case : int = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) # the president is snake_case : List[Any] = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case : Optional[Any] = model.generate(SCREAMING_SNAKE_CASE , do_sample=SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() , SCREAMING_SNAKE_CASE )
148
"""simple docstring""" from collections import deque class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : int = process_name # process name snake_case : Dict = arrival_time # arrival time of the process # completion time of finished process or last interrupted time snake_case : Tuple = arrival_time snake_case : Optional[int] = burst_time # remaining burst time snake_case : int = 0 # total time of the process wait in ready queue snake_case : List[Any] = 0 # time from arrival time to completion time class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): """simple docstring""" snake_case : str = number_of_queues # time slice of queues that round robin algorithm applied snake_case : Any = time_slices # unfinished process is in this ready_queue snake_case : Tuple = queue # current time snake_case : List[Any] = current_time # finished process is in this sequence queue snake_case : deque[Process] = deque() def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : str = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return [q.burst_time for q in queue] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : deque[Process] = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE ) != 0: snake_case : Union[str, Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 snake_case : Union[str, Any] = 0 # set the process's turnaround time because it is finished snake_case : Any = self.current_time - cp.arrival_time # set the completion time snake_case : Dict = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE ) self.finish_queue.extend(SCREAMING_SNAKE_CASE ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE ) ): snake_case : str = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time snake_case : Optional[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished snake_case : List[str] = 0 # set the finish time snake_case : List[Any] = self.current_time # update the process' turnaround time because it is finished snake_case : Union[str, Any] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE ) self.finish_queue.extend(SCREAMING_SNAKE_CASE ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase_ ( self ): """simple docstring""" for i in range(self.number_of_queues - 1 ): snake_case , snake_case : List[str] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __A = Process("P1", 0, 53) __A = Process("P2", 0, 17) __A = Process("P3", 0, 68) __A = Process("P4", 0, 24) __A = 3 __A = [17, 25] __A = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) __A = Process("P1", 0, 53) __A = Process("P2", 0, 17) __A = Process("P3", 0, 68) __A = Process("P4", 0, 24) __A = 3 __A = [17, 25] __A = deque([Pa, Pa, Pa, Pa]) __A = MLFQ(number_of_queues, time_slices, queue, 0) __A = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( f'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( f'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
148
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Any = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
206
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowercase : lowercase__ : Dict = LEDConfig lowercase__ : List[str] = {} lowercase__ : Union[str, Any] = """gelu""" def __init__( self : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Dict=13 , _UpperCamelCase : Optional[int]=7 , _UpperCamelCase : int=True , _UpperCamelCase : List[Any]=False , _UpperCamelCase : Dict=99 , _UpperCamelCase : Optional[Any]=32 , _UpperCamelCase : Any=2 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : Union[str, Any]=37 , _UpperCamelCase : str=0.1 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Union[str, Any]=20 , _UpperCamelCase : str=2 , _UpperCamelCase : Optional[Any]=1 , _UpperCamelCase : Optional[int]=0 , _UpperCamelCase : int=4 , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after SCREAMING_SNAKE_CASE = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests SCREAMING_SNAKE_CASE = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __snake_case( self : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = tf.concat( [tf.zeros_like(_UpperCamelCase )[:, :-1], tf.ones_like(_UpperCamelCase )[:, -1:]] , axis=-1 , ) SCREAMING_SNAKE_CASE = global_attention_mask return config, inputs_dict def __snake_case( self : Any , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = TFLEDModel(config=_UpperCamelCase ).get_decoder() SCREAMING_SNAKE_CASE = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE = input_ids[:1, :] SCREAMING_SNAKE_CASE = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE = 1 # first forward pass SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = model(_UpperCamelCase , attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-3 ) def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Union[str, Any]=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowercase ( a , a , unittest.TestCase ): lowercase__ : Optional[int] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowercase__ : List[Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowercase__ : int = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ : List[Any] = True lowercase__ : List[str] = False lowercase__ : List[str] = False lowercase__ : Union[str, Any] = False def __snake_case( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = TFLEDModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase ) def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __snake_case( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCamelCase ) def __snake_case( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = tf.zeros_like(inputs_dict["attention_mask"] ) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.model_tester.seq_length SCREAMING_SNAKE_CASE = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_UpperCamelCase : Dict ): SCREAMING_SNAKE_CASE = outputs.decoder_attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_UpperCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_attentions] SCREAMING_SNAKE_CASE = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) SCREAMING_SNAKE_CASE = len(_UpperCamelCase ) self.assertEqual(config.output_hidden_states , _UpperCamelCase ) check_encoder_attentions_output(_UpperCamelCase ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCamelCase ) check_decoder_attentions_output(_UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCamelCase ) check_encoder_attentions_output(_UpperCamelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCamelCase ) check_encoder_attentions_output(_UpperCamelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def __snake_case( self : str ) -> str: '''simple docstring''' pass def __lowerCamelCase (UpperCAmelCase__ : Optional[int] ): return tf.constant(UpperCAmelCase__ , dtype=tf.intaa ) _lowerCamelCase : str = 1e-4 @slow @require_tf class lowercase ( unittest.TestCase ): def __snake_case( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here SCREAMING_SNAKE_CASE = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = (1, 1_024, 768) self.assertEqual(output.shape , _UpperCamelCase ) # change to expected output here SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCamelCase , atol=1e-3 ) def __snake_case( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here SCREAMING_SNAKE_CASE = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) SCREAMING_SNAKE_CASE = prepare_led_inputs_dict(model.config , _UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase )[0] SCREAMING_SNAKE_CASE = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , _UpperCamelCase ) # change to expected output here SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCamelCase , atol=1e-3 , rtol=1e-3 )
206
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __a = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __a = [0, 2_5, 5_0] __a = [2_5, 5_0, 7_5] __a = fuzz.membership.trimf(X, abca) __a = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __a = np.ones(7_5) __a = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) __a = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __a = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __a = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __a = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __a = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __a = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __a = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __a = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
30
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = """blip_2_vision_model""" def __init__( self , UpperCamelCase__=1408 , UpperCamelCase__=6144 , UpperCamelCase__=39 , UpperCamelCase__=16 , UpperCamelCase__=224 , UpperCamelCase__=14 , UpperCamelCase__="gelu" , UpperCamelCase__=0.00001 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-10 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Optional[Any]: super().__init__(**UpperCamelCase__ ) lowerCamelCase : Dict = hidden_size lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : List[str] = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : Dict = patch_size lowerCamelCase : Tuple = image_size lowerCamelCase : Dict = initializer_range lowerCamelCase : Union[str, Any] = attention_dropout lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : str = qkv_bias @classmethod def _lowercase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : List[str] = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": lowerCamelCase : Optional[int] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Dict = """blip_2_qformer""" def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=2 , UpperCamelCase__=1408 , **UpperCamelCase__ , ) -> int: super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase : Optional[int] = vocab_size lowerCamelCase : int = hidden_size lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : Union[str, Any] = num_attention_heads lowerCamelCase : int = hidden_act lowerCamelCase : Optional[Any] = intermediate_size lowerCamelCase : Dict = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Dict = max_position_embeddings lowerCamelCase : List[str] = initializer_range lowerCamelCase : List[str] = layer_norm_eps lowerCamelCase : int = position_embedding_type lowerCamelCase : Tuple = cross_attention_frequency lowerCamelCase : Optional[int] = encoder_hidden_size @classmethod def _lowercase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : str = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": lowerCamelCase : int = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : List[str] = """blip-2""" lowerCamelCase_ : int = True def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=32 , **UpperCamelCase__ ) -> str: super().__init__(**UpperCamelCase__ ) if vision_config is None: lowerCamelCase : List[Any] = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: lowerCamelCase : List[Any] = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: lowerCamelCase : Any = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) lowerCamelCase : Optional[int] = BlipaVisionConfig(**UpperCamelCase__ ) lowerCamelCase : str = BlipaQFormerConfig(**UpperCamelCase__ ) lowerCamelCase : List[str] = text_config["model_type"] if "model_type" in text_config else "opt" lowerCamelCase : str = CONFIG_MAPPING[text_model_type](**UpperCamelCase__ ) lowerCamelCase : Optional[Any] = self.text_config.tie_word_embeddings lowerCamelCase : int = self.text_config.is_encoder_decoder lowerCamelCase : Optional[Any] = num_query_tokens lowerCamelCase : int = self.vision_config.hidden_size lowerCamelCase : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase : Dict = 1.0 lowerCamelCase : List[Any] = 0.02 @classmethod def _lowercase ( cls , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) -> str: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase__ , ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Tuple = copy.deepcopy(self.__dict__ ) lowerCamelCase : Tuple = self.vision_config.to_dict() lowerCamelCase : int = self.qformer_config.to_dict() lowerCamelCase : Optional[Any] = self.text_config.to_dict() lowerCamelCase : int = self.__class__.model_type return output
48
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _UpperCAmelCase : List[Any] = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None , _UpperCAmelCase=None ) -> Dict: return field(default_factory=lambda: default , metadata=_UpperCAmelCase ) @dataclass class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 @dataclass class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = field(default="""toto""", metadata={"""help""": """help message"""} ) @dataclass class lowerCAmelCase : UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = None class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """titi""" UpperCAmelCase__ = """toto""" class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """titi""" UpperCAmelCase__ = """toto""" UpperCAmelCase__ = 42 @dataclass class lowerCAmelCase : UpperCAmelCase__ = "toto" def A_ ( self : Tuple ) -> List[str]: lowerCamelCase__ : Tuple = BasicEnum(self.foo ) @dataclass class lowerCAmelCase : UpperCAmelCase__ = "toto" def A_ ( self : Dict ) -> int: lowerCamelCase__ : List[str] = MixedTypeEnum(self.foo ) @dataclass class lowerCAmelCase : UpperCAmelCase__ = None UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """help message"""} ) UpperCAmelCase__ = None UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[] ) @dataclass class lowerCAmelCase : UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[1, 2, 3] ) UpperCAmelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) UpperCAmelCase__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowerCAmelCase : UpperCAmelCase__ = field() UpperCAmelCase__ = field() UpperCAmelCase__ = field() def A_ ( self : List[Any] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = BasicEnum(self.required_enum ) @dataclass class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = field() UpperCAmelCase__ = None UpperCAmelCase__ = field(default="""toto""", metadata={"""help""": """help message"""} ) UpperCAmelCase__ = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class lowerCAmelCase : UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = None @dataclass class lowerCAmelCase : UpperCAmelCase__ = None UpperCAmelCase__ = field(default=__UpperCamelCase, metadata={"""help""": """help message"""} ) UpperCAmelCase__ = None UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[] ) class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Any , UpperCAmelCase : argparse.ArgumentParser , UpperCAmelCase : argparse.ArgumentParser ) -> Dict: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCamelCase__ : Dict = {k: v for k, v in vars(UpperCAmelCase ).items() if k != 'container'} lowerCamelCase__ : Optional[int] = {k: v for k, v in vars(UpperCAmelCase ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , UpperCAmelCase ) and yy.get('choices' , UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](UpperCAmelCase ) , yy['type'](UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Dict: lowerCamelCase__ : Union[str, Any] = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument('--bar' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument('--baz' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument('--flag' , type=UpperCAmelCase , default=UpperCAmelCase , const=UpperCAmelCase , nargs='?' ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : List[str] = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((lowerCamelCase__) , ) : Union[str, Any] = parser.parse_args_into_dataclasses(UpperCAmelCase , look_for_args_file=UpperCAmelCase ) self.assertFalse(example.flag ) def A_ ( self : Dict ) -> Dict: lowerCamelCase__ : List[Any] = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : str = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=UpperCAmelCase ) expected.add_argument('--baz' , default='toto' , type=UpperCAmelCase , help='help message' ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Optional[int] ) -> int: lowerCamelCase__ : str = argparse.ArgumentParser() expected.add_argument('--foo' , type=UpperCAmelCase , default=UpperCAmelCase , const=UpperCAmelCase , nargs='?' ) expected.add_argument('--baz' , type=UpperCAmelCase , default=UpperCAmelCase , const=UpperCAmelCase , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=UpperCAmelCase , dest='baz' ) expected.add_argument('--opt' , type=UpperCAmelCase , default=UpperCAmelCase ) lowerCamelCase__ : int = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase ) for dataclass_type in dataclass_types: lowerCamelCase__ : Any = HfArgumentParser(UpperCAmelCase ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Dict = parser.parse_args([] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , baz=UpperCAmelCase , opt=UpperCAmelCase ) ) lowerCamelCase__ : Tuple = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , baz=UpperCAmelCase , opt=UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , baz=UpperCAmelCase , opt=UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , baz=UpperCAmelCase , opt=UpperCAmelCase ) ) lowerCamelCase__ : int = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , baz=UpperCAmelCase , opt=UpperCAmelCase ) ) def A_ ( self : Any ) -> Tuple: lowerCamelCase__ : Optional[Any] = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : int = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Dict = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCamelCase__ : Any = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCamelCase__ : Tuple = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCamelCase__ : Dict = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCamelCase__ : Tuple = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) lowerCamelCase__ : List[str] = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def A_ ( self : Optional[int] ) -> Optional[int]: @dataclass class lowerCAmelCase : UpperCAmelCase__ = "toto" lowerCamelCase__ : str = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : List[str] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Any = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) lowerCamelCase__ : Union[str, Any] = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) lowerCamelCase__ : List[Any] = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def A_ ( self : List[Any] ) -> int: lowerCamelCase__ : List[str] = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : List[str] = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=UpperCAmelCase ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=UpperCAmelCase ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=UpperCAmelCase ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=UpperCAmelCase ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : int = parser.parse_args([] ) self.assertEqual( UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCamelCase__ : Any = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def A_ ( self : List[str] ) -> List[Any]: lowerCamelCase__ : Any = argparse.ArgumentParser() expected.add_argument('--foo' , default=UpperCAmelCase , type=UpperCAmelCase ) expected.add_argument('--bar' , default=UpperCAmelCase , type=UpperCAmelCase , help='help message' ) expected.add_argument('--baz' , default=UpperCAmelCase , type=UpperCAmelCase ) expected.add_argument('--ces' , nargs='+' , default=[] , type=UpperCAmelCase ) expected.add_argument('--des' , nargs='+' , default=[] , type=UpperCAmelCase ) lowerCamelCase__ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase ) for dataclass_type in dataclass_types: lowerCamelCase__ : int = HfArgumentParser(UpperCAmelCase ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(UpperCAmelCase , Namespace(foo=UpperCAmelCase , bar=UpperCAmelCase , baz=UpperCAmelCase , ces=[] , des=[] ) ) lowerCamelCase__ : int = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(UpperCAmelCase , Namespace(foo=12 , bar=3.1_4 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def A_ ( self : Optional[int] ) -> List[Any]: lowerCamelCase__ : int = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : Dict = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument('--required_str' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=UpperCAmelCase , ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Dict ) -> Optional[int]: lowerCamelCase__ : int = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=UpperCAmelCase , required=UpperCAmelCase ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=UpperCAmelCase , ) expected.add_argument('--opt' , type=UpperCAmelCase , default=UpperCAmelCase ) expected.add_argument('--baz' , default='toto' , type=UpperCAmelCase , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=UpperCAmelCase ) self.argparsersEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Dict ) -> Optional[int]: lowerCamelCase__ : Dict = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } lowerCamelCase__ : Optional[int] = parser.parse_dict(UpperCAmelCase )[0] lowerCamelCase__ : int = BasicExample(**UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Any ) -> Dict: lowerCamelCase__ : str = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : Dict = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(UpperCAmelCase , parser.parse_dict , UpperCAmelCase , allow_extra_keys=UpperCAmelCase ) def A_ ( self : List[str] ) -> List[Any]: lowerCamelCase__ : Dict = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Optional[Any] = os.path.join(UpperCAmelCase , 'temp_json' ) os.mkdir(UpperCAmelCase ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : List[Any] = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] lowerCamelCase__ : str = BasicExample(**UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> Tuple: lowerCamelCase__ : Tuple = HfArgumentParser(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : List[Any] = os.path.join(UpperCAmelCase , 'temp_yaml' ) os.mkdir(UpperCAmelCase ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] lowerCamelCase__ : int = BasicExample(**UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ : List[Any] = HfArgumentParser(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase )
45
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[Any] = get_failure_array(_UpperCAmelCase ) # 2) Step through text searching for pattern lowerCamelCase__ , lowerCamelCase__ : List[str] = 0, 0 # index into text, pattern while i < len(_UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(_UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowerCamelCase__ : str = failure[j - 1] continue i += 1 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: lowerCamelCase__ : int = [0] lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Any = 1 while j < len(_UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowerCamelCase__ : int = failure[i - 1] continue j += 1 failure.append(_UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) _UpperCAmelCase : Union[str, Any] = """abc1abc12""" _UpperCAmelCase : List[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _UpperCAmelCase : Dict = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _UpperCAmelCase : Any = """ABABX""" _UpperCAmelCase : Union[str, Any] = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) _UpperCAmelCase : int = """AAAB""" _UpperCAmelCase : str = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) _UpperCAmelCase : Optional[Any] = """abcdabcy""" _UpperCAmelCase : List[Any] = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) _UpperCAmelCase : str = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
45
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase = logging.get_logger(__name__) class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""pixel_values"""] def __init__( self :Union[str, Any] , lowerCamelCase_ :bool = True , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :int = 0.9 , lowerCamelCase_ :PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ :bool = True , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :Union[int, float] = 1 / 255 , lowerCamelCase_ :bool = True , lowerCamelCase_ :bool = True , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , **lowerCamelCase_ :Tuple , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) lowerCamelCase__ : str =size if size is not None else {'shortest_edge': 224} lowerCamelCase__ : List[str] =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCamelCase__ : str =get_size_dict(lowerCamelCase_ , param_name='crop_size' ) lowerCamelCase__ : Tuple =do_resize lowerCamelCase__ : List[Any] =size lowerCamelCase__ : List[str] =crop_pct lowerCamelCase__ : Union[str, Any] =resample lowerCamelCase__ : List[str] =do_center_crop lowerCamelCase__ : List[str] =crop_size lowerCamelCase__ : List[Any] =do_rescale lowerCamelCase__ : List[str] =rescale_factor lowerCamelCase__ : Tuple =do_normalize lowerCamelCase__ : int =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase__ : List[Any] =image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :Optional[float] = None , lowerCamelCase_ :PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :Any , ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: lowerCamelCase__ : Optional[int] =int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowerCamelCase__ : Union[str, Any] =int(size['height'] / crop_pct ) else: lowerCamelCase__ : Any =(int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(lowerCamelCase_ ) ) lowerCamelCase__ : Tuple =get_resize_output_image_size(lowerCamelCase_ , size=lowerCamelCase_ , default_to_square=lowerCamelCase_ ) else: if "shortest_edge" in size: lowerCamelCase__ : str =get_resize_output_image_size(lowerCamelCase_ , size=size['shortest_edge'] , default_to_square=lowerCamelCase_ ) elif "height" in size and "width" in size: lowerCamelCase__ : Union[str, Any] =(size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(lowerCamelCase_ ) ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Dict[str, int] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :str , ): """simple docstring""" lowerCamelCase__ : Tuple =get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowerCamelCase_ , size=(size['height'], size['width']) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :int , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Union[int, float] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :List[str] , ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[Any] , lowerCamelCase_ :np.ndarray , lowerCamelCase_ :Union[float, List[float]] , lowerCamelCase_ :Union[float, List[float]] , lowerCamelCase_ :Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ :Tuple , ): """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Any , lowerCamelCase_ :ImageInput , lowerCamelCase_ :bool = None , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :int = None , lowerCamelCase_ :PILImageResampling = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :Dict[str, int] = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :float = None , lowerCamelCase_ :bool = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[float, List[float]]] = None , lowerCamelCase_ :Optional[Union[str, TensorType]] = None , lowerCamelCase_ :ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase_ :List[str] , ): """simple docstring""" lowerCamelCase__ : Dict =do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Union[str, Any] =crop_pct if crop_pct is not None else self.crop_pct lowerCamelCase__ : Tuple =resample if resample is not None else self.resample lowerCamelCase__ : Any =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : Optional[Any] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Optional[int] =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : Optional[Any] =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : List[str] =image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : List[Any] =image_std if image_std is not None else self.image_std lowerCamelCase__ : int =size if size is not None else self.size lowerCamelCase__ : Tuple =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) lowerCamelCase__ : Dict =crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : str =get_size_dict(lowerCamelCase_ , param_name='crop_size' ) lowerCamelCase__ : Dict =make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCamelCase__ : List[str] =[to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: lowerCamelCase__ : Tuple =[self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , crop_pct=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: lowerCamelCase__ : Union[str, Any] =[self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: lowerCamelCase__ : str =[self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: lowerCamelCase__ : Optional[Any] =[self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] lowerCamelCase__ : Optional[Any] =[to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] lowerCamelCase__ : List[str] ={'pixel_values': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
126
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _SCREAMING_SNAKE_CASE = 2_5_0_0_0_4 _SCREAMING_SNAKE_CASE = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = MBartTokenizer __lowerCAmelCase = MBartTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def lowerCamelCase_ ( self : Any ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = MBartTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = MBartTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) UpperCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCamelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) UpperCamelCase = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(lowerCamelCase_ ) UpperCamelCase = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __lowerCAmelCase = """facebook/mbart-large-en-ro""" __lowerCAmelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __lowerCAmelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __lowerCAmelCase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def lowerCamelCase_ ( cls : List[Any] ): """simple docstring""" UpperCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) UpperCamelCase = 1 return cls def lowerCamelCase_ ( self : Dict ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_0020 ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] UpperCamelCase = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) UpperCamelCase = 10 UpperCamelCase = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_0026, 25_0001] ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) UpperCamelCase = MBartTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) UpperCamelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors="""pt""" ) UpperCamelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors="""pt""" ) UpperCamelCase = targets["""input_ids"""] UpperCamelCase = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[62, 3034, 2, 25_0004]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_0001, } , )
165
import argparse _SCREAMING_SNAKE_CASE = """docs/source/_static/js/custom.js""" def lowercase( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' with open(UpperCamelCase_ , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 UpperCamelCase = f"""const stableVersion = \"v{version}\"\n""" # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f""" \"v{version}\": \"v{version}\",\n""" with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") _SCREAMING_SNAKE_CASE = parser.parse_args() update_custom_js(args.version)
165
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( _lowercase , unittest.TestCase ): __lowerCamelCase : Optional[Any] =ConsistencyModelPipeline __lowerCamelCase : List[Any] =UNCONDITIONAL_IMAGE_GENERATION_PARAMS __lowerCamelCase : Any =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __lowerCamelCase : Union[str, Any] =frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Dict=False ): '''simple docstring''' if class_cond: __a = self.dummy_cond_unet else: __a = self.dummy_uncond_unet # Default to CM multistep sampler __a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __a = { "unet": unet, "scheduler": scheduler, } return components def UpperCamelCase_ ( self : int , __lowercase : Any , __lowercase : List[Any]=0 ): '''simple docstring''' if str(__lowerCamelCase ).startswith("""mps""" ): __a = torch.manual_seed(__lowerCamelCase ) else: __a = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __a = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = "cpu" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = ConsistencyModelPipeline(**__lowerCamelCase ) __a = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_dummy_inputs(__lowerCamelCase ) __a = pipe(**__lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = "cpu" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components(class_cond=__lowerCamelCase ) __a = ConsistencyModelPipeline(**__lowerCamelCase ) __a = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_dummy_inputs(__lowerCamelCase ) __a = 0 __a = pipe(**__lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = "cpu" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = ConsistencyModelPipeline(**__lowerCamelCase ) __a = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_dummy_inputs(__lowerCamelCase ) __a = 1 __a = None __a = pipe(**__lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = "cpu" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components(class_cond=__lowerCamelCase ) __a = ConsistencyModelPipeline(**__lowerCamelCase ) __a = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_dummy_inputs(__lowerCamelCase ) __a = 1 __a = None __a = 0 __a = pipe(**__lowerCamelCase ).images assert image.shape == (1, 32, 32, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Optional[Any]=0 , __lowercase : Tuple=False , __lowercase : int="cpu" , __lowercase : List[str]=torch.floataa , __lowercase : Optional[Any]=(1, 3, 64, 64) ): '''simple docstring''' __a = torch.manual_seed(__lowerCamelCase ) __a = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: __a = self.get_fixed_latents(seed=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase , shape=__lowerCamelCase ) __a = latents return inputs def UpperCamelCase_ ( self : int , __lowercase : Union[str, Any]=0 , __lowercase : List[Any]="cpu" , __lowercase : Tuple=torch.floataa , __lowercase : List[str]=(1, 3, 64, 64) ): '''simple docstring''' if type(__lowerCamelCase ) == str: __a = torch.device(__lowerCamelCase ) __a = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __a = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) return latents def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __a = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_inputs() __a = pipe(**__lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __a = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_inputs() __a = 1 __a = None __a = pipe(**__lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __a = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_inputs(get_fixed_latents=__lowerCamelCase , device=__lowerCamelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowerCamelCase , enable_math=__lowerCamelCase , enable_mem_efficient=__lowerCamelCase ): __a = pipe(**__lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' __a = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __a = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __a = ConsistencyModelPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) pipe.to(torch_device=__lowerCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_inputs(get_fixed_latents=__lowerCamelCase , device=__lowerCamelCase ) __a = 1 __a = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowerCamelCase , enable_math=__lowerCamelCase , enable_mem_efficient=__lowerCamelCase ): __a = pipe(**__lowerCamelCase ).images assert image.shape == (1, 64, 64, 3) __a = image[0, -3:, -3:, -1] __a = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
302
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _UpperCamelCase ( snake_case__ ) -> List[str]: return 1.0 / (1.0 + np.exp(-_outputs )) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: __UpperCAmelCase : List[str] = np.max(_outputs, axis=-1, keepdims=snake_case__ ) __UpperCAmelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=snake_case__ ) class _snake_case ( _lowercase ): lowerCamelCase__: Optional[Any] = "sigmoid" lowerCamelCase__: Dict = "softmax" lowerCamelCase__: Optional[int] = "none" @add_end_docstrings( _lowercase , R"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class _snake_case ( _lowercase ): lowerCamelCase__: List[Any] = False lowerCamelCase__: Any = ClassificationFunction.NONE def __init__( self: Union[str, Any] , **__lowerCamelCase: List[Any] ) -> Optional[int]: super().__init__(**__lowerCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: str="" , **__lowerCamelCase: str ) -> Tuple: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __UpperCAmelCase : Optional[int] = tokenizer_kwargs __UpperCAmelCase : str = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: __UpperCAmelCase : List[Any] = self.model.config.return_all_scores if isinstance(__lowerCamelCase , __lowerCamelCase ) or top_k is None: __UpperCAmelCase : Dict = top_k __UpperCAmelCase : str = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , __lowerCamelCase , ) if return_all_scores: __UpperCAmelCase : Any = None else: __UpperCAmelCase : Union[str, Any] = 1 if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Any = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __UpperCAmelCase : Any = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: Any , *__lowerCamelCase: Dict , **__lowerCamelCase: int ) -> Dict: __UpperCAmelCase : Any = super().__call__(*__lowerCamelCase , **__lowerCamelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __UpperCAmelCase : Optional[Any] = "top_k" not in kwargs if isinstance(args[0] , __lowerCamelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Dict , **__lowerCamelCase: Optional[int] ) -> Dict[str, GenericTensor]: __UpperCAmelCase : Tuple = self.framework if isinstance(__lowerCamelCase , __lowerCamelCase ): return self.tokenizer(**__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) == 1 and isinstance(inputs[0] , __lowerCamelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__lowerCamelCase , **__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Optional[Any] ) -> List[Any]: return self.model(**__lowerCamelCase ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Tuple , __lowerCamelCase: List[str]=None , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: int=True ) -> Dict: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __UpperCAmelCase : Union[str, Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __UpperCAmelCase : str = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: __UpperCAmelCase : Any = self.model.config.function_to_apply else: __UpperCAmelCase : Optional[Any] = ClassificationFunction.NONE __UpperCAmelCase : Tuple = model_outputs["logits"][0] __UpperCAmelCase : Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __UpperCAmelCase : Optional[Any] = sigmoid(__lowerCamelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: __UpperCAmelCase : Any = softmax(__lowerCamelCase ) elif function_to_apply == ClassificationFunction.NONE: __UpperCAmelCase : str = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __UpperCAmelCase : int = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__lowerCamelCase ) ] if not _legacy: dict_scores.sort(key=lambda __lowerCamelCase : x["score"] , reverse=__lowerCamelCase ) if top_k is not None: __UpperCAmelCase : Tuple = dict_scores[:top_k] return dict_scores
157
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase__ : Union[str, Any] = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = ['OwlViTFeatureExtractor'] lowercase__ : List[str] = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : str = 16 lowercase__ : int = 32 def a__ ( lowercase : Accelerator, lowercase : int = 16 ) -> List[str]: """simple docstring""" _UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCamelCase = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(lowercase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=lowercase, max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCamelCase = datasets.map( lowercase, batched=lowercase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(lowercase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCamelCase = 16 elif accelerator.mixed_precision != "no": _UpperCamelCase = 8 else: _UpperCamelCase = None return tokenizer.pad( lowercase, padding='''longest''', max_length=lowercase, pad_to_multiple_of=lowercase, return_tensors='''pt''', ) # Instantiate dataloaders. _UpperCamelCase = DataLoader( tokenized_datasets['''train'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) _UpperCamelCase = DataLoader( tokenized_datasets['''validation'''], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : str = mocked_dataloaders # noqa: F811 def a__ ( lowercase : List[Any], lowercase : List[str] ) -> Any: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', lowercase ) == "1": _UpperCamelCase = 2 # Initialize accelerator _UpperCamelCase = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase = config['''lr'''] _UpperCamelCase = int(config['''num_epochs'''] ) _UpperCamelCase = int(config['''seed'''] ) _UpperCamelCase = int(config['''batch_size'''] ) _UpperCamelCase = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase ) def inner_training_loop(lowercase : List[Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCamelCase = AdamW(params=model.parameters(), lr=lowercase ) _UpperCamelCase , _UpperCamelCase = get_dataloaders(lowercase, lowercase ) # Instantiate scheduler _UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase, num_warmup_steps=100, num_training_steps=(len(lowercase ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = accelerator.prepare( lowercase, lowercase, lowercase, lowercase, lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase = model(**lowercase ) _UpperCamelCase = outputs.logits.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase, references=lowercase, ) _UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowercase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=lowercase, default=lowercase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase, lowercase ) if __name__ == "__main__": main()
287
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase :str = logging.get_logger(__name__) lowerCamelCase :Dict = '''▁''' lowerCamelCase :List[str] = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } lowerCamelCase :Tuple = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } lowerCamelCase :Tuple = { '''facebook/s2t-small-librispeech-asr''': 1_0_2_4, } lowerCamelCase :Dict = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] lowerCamelCase :str = {'''mustc''': MUSTC_LANGS} class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = MAX_MODEL_INPUT_SIZES __SCREAMING_SNAKE_CASE : Optional[Any] = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__(self , lowercase , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="<pad>" , lowercase="<unk>" , lowercase=False , lowercase=False , lowercase=None , lowercase=None , lowercase = None , **lowercase , ): A_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , do_upper_case=lowercase , do_lower_case=lowercase , tgt_lang=lowercase , lang_codes=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) A_ : Tuple = do_upper_case A_ : List[str] = do_lower_case A_ : List[str] = load_json(lowercase ) A_ : int = {v: k for k, v in self.encoder.items()} A_ : Any = spm_file A_ : List[Any] = load_spm(lowercase , self.sp_model_kwargs ) if lang_codes is not None: A_ : Tuple = lang_codes A_ : Union[str, Any] = LANGUAGES[lang_codes] A_ : Optional[int] = [F'<lang:{lang}>' for lang in self.langs] A_ : Dict = {lang: self.sp_model.PieceToId(F'<lang:{lang}>' ) for lang in self.langs} A_ : int = self.lang_tokens A_ : Any = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A_ : Tuple = {} @property def _a (self ): return len(self.encoder ) @property def _a (self ): return self._tgt_lang @tgt_lang.setter def _a (self , lowercase ): A_ : Optional[int] = new_tgt_lang self.set_tgt_lang_special_tokens(lowercase ) def _a (self , lowercase ): A_ : Tuple = self.lang_code_to_id[tgt_lang] A_ : Optional[Any] = [lang_code_id] def _a (self , lowercase ): return self.sp_model.encode(lowercase , out_type=lowercase ) def _a (self , lowercase ): return self.encoder.get(lowercase , self.encoder[self.unk_token] ) def _a (self , lowercase ): return self.decoder.get(lowercase , self.unk_token ) def _a (self , lowercase ): A_ : Dict = [] A_ : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A_ : Optional[Any] = self.sp_model.decode(lowercase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A_ : Any = [] else: current_sub_tokens.append(lowercase ) A_ : Optional[int] = self.sp_model.decode(lowercase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _a (self , lowercase , lowercase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _a (self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) A_ : Tuple = [1] * len(self.prefix_tokens ) A_ : List[str] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def _a (self ): A_ : int = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): A_ : Dict = self.__dict__.copy() A_ : Dict = None return state def __setstate__(self , lowercase ): A_ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : List[Any] = {} A_ : Any = load_spm(self.spm_file , self.sp_model_kwargs ) def _a (self , lowercase , lowercase = None ): A_ : Tuple = Path(lowercase ) assert save_dir.is_dir(), F'{save_directory} should be a directory' A_ : List[str] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) A_ : str = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase ) elif not os.path.isfile(self.spm_file ): with open(lowercase , """wb""" ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (str(lowercase ), str(lowercase )) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = sentencepiece.SentencePieceProcessor(**lowerCamelCase__ ) spm.Load(str(lowerCamelCase__ ) ) return spm def a ( lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """r""" ) as f: return json.load(lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' with open(lowerCamelCase__ , """w""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=2 )
206
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCamelCase :Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( __UpperCAmelCase ): def __init__(self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): super().__init__() self.register_modules( vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , ) def _a (self , lowercase = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def _a (self ): self.enable_attention_slicing(lowercase ) @torch.no_grad() def __call__(self , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 50 , lowercase = 7.5 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , lowercase = None , lowercase = 1 , lowercase = None , **lowercase , ): if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = 1 elif isinstance(lowercase , lowercase ): A_ : Any = len(lowercase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowercase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase , lowercase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowercase )}.' ) # get prompt text embeddings A_ : Optional[Any] = self.tokenizer( lowercase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A_ : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) A_ : Dict = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A_ : Any = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_, A_, A_ : Tuple = text_embeddings.shape A_ : Optional[Any] = text_embeddings.repeat(1 , lowercase , 1 ) A_ : Any = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ : List[str] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ : List[str] if negative_prompt is None: A_ : Optional[int] = [""""""] elif type(lowercase ) is not type(lowercase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(lowercase )} !=' F' {type(lowercase )}.' ) elif isinstance(lowercase , lowercase ): A_ : Dict = [negative_prompt] elif batch_size != len(lowercase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(lowercase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: A_ : Dict = negative_prompt A_ : int = text_input_ids.shape[-1] A_ : List[Any] = self.tokenizer( lowercase , padding="""max_length""" , max_length=lowercase , truncation=lowercase , return_tensors="""pt""" , ) A_ : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ : Optional[Any] = uncond_embeddings.shape[1] A_ : str = uncond_embeddings.repeat(lowercase , lowercase , 1 ) A_ : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A_ : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ : Tuple = torch.randn( lowercase , generator=lowercase , device="""cpu""" , dtype=lowercase ).to(self.device ) A_ : int = torch.randn(lowercase , generator=lowercase , device="""cpu""" , dtype=lowercase ).to( self.device ) else: A_ : int = torch.randn( lowercase , generator=lowercase , device=self.device , dtype=lowercase ) A_ : str = torch.randn(lowercase , generator=lowercase , device=self.device , dtype=lowercase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) A_ : str = latents_reference.to(self.device ) A_ : Tuple = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A_ : Optional[int] = (latents_shape[3] - latents_shape_reference[3]) // 2 A_ : Optional[int] = (latents_shape[2] - latents_shape_reference[2]) // 2 A_ : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A_ : int = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A_ : Optional[Any] = 0 if dx < 0 else dx A_ : Optional[Any] = 0 if dy < 0 else dy A_ : Optional[int] = max(-dx , 0 ) A_ : List[str] = max(-dy , 0 ) # import pdb # pdb.set_trace() A_ : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ : Any = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ : Dict = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ : Any = {} if accepts_eta: A_ : Optional[int] = eta for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance A_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Tuple = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual A_ : List[str] = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample # perform guidance if do_classifier_free_guidance: A_, A_ : str = noise_pred.chunk(2 ) A_ : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ : List[str] = self.scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase , lowercase , lowercase ) A_ : List[str] = 1 / 0.1_82_15 * latents A_ : List[str] = self.vae.decode(lowercase ).sample A_ : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A_ : Union[str, Any] = self.feature_extractor(self.numpy_to_pil(lowercase ) , return_tensors="""pt""" ).to( self.device ) A_, A_ : Optional[int] = self.safety_checker( images=lowercase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A_ : Tuple = None if output_type == "pil": A_ : Tuple = self.numpy_to_pil(lowercase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase , nsfw_content_detected=lowercase )
206
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase = logging.getLogger(__name__) class _a ( lowerCamelCase__ ): def __init__( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int=None ) -> Tuple: """simple docstring""" super().__init__( snake_case__ , question_encoder_tokenizer=snake_case__ , generator_tokenizer=snake_case__ , index=snake_case__ , init_retrieval=snake_case__ , ) lowercase__ = None def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] ) -> Optional[Any]: """simple docstring""" logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually lowercase__ = self._infer_socket_ifname() # avoid clash with the NCCL port lowercase__ = str(distributed_port + 1 ) lowercase__ = dist.new_group(ranks=snake_case__ , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def lowerCamelCase_ ( self: Any , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: Dict=torch.floataa ) -> int: """simple docstring""" lowercase__ = torch.empty(snake_case__ , dtype=snake_case__ ) dist.scatter(snake_case__ , src=0 , scatter_list=snake_case__ , group=self.process_group ) return target_tensor def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" lowercase__ = psutil.net_if_addrs() # a hacky way to deal with varying network interface names lowercase__ = next((addr for addr in addrs if addr.startswith('''e''' )) , snake_case__ ) return ifname def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: Dict ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): lowercase__ = self._main_retrieve(snake_case__ , snake_case__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(snake_case__ ) # distributed training lowercase__ = dist.get_world_size(group=self.process_group ) # gather logic lowercase__ = None if self._is_main(): lowercase__ = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(snake_case__ )] dist.gather(torch.tensor(snake_case__ ) , dst=0 , gather_list=snake_case__ , group=self.process_group ) # scatter logic lowercase__ = question_hidden_states.shape[0] lowercase__ = [] lowercase__ = [] if self._is_main(): assert len(snake_case__ ) == world_size lowercase__ = self._main_retrieve(torch.cat(snake_case__ ).numpy() , snake_case__ ) lowercase__ = torch.tensor(snake_case__ ), torch.tensor(snake_case__ ) lowercase__ = self._chunk_tensor(snake_case__ , snake_case__ ) lowercase__ = self._chunk_tensor(snake_case__ , snake_case__ ) lowercase__ = self._scattered(snake_case__ , [n_queries, n_docs] , target_type=torch.intaa ) lowercase__ = self._scattered(snake_case__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(snake_case__ )
362
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : int = '''git_vision_model''' def __init__( self: Tuple , UpperCamelCase_: Optional[int]=768 , UpperCamelCase_: Optional[int]=3_072 , UpperCamelCase_: Optional[int]=12 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: Any=3 , UpperCamelCase_: str=224 , UpperCamelCase_: int=16 , UpperCamelCase_: Any="quick_gelu" , UpperCamelCase_: Union[str, Any]=1E-5 , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: Tuple=0.02 , **UpperCamelCase_: str , ) -> Optional[int]: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_channels lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def lowerCamelCase_ ( cls: Optional[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: List[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCamelCase_ ) lowercase__ , lowercase__ = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": lowercase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''git''' def __init__( self: Optional[Any] , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: List[str]=30_522 , UpperCamelCase_: List[Any]=768 , UpperCamelCase_: List[Any]=6 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: Any=3_072 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: str=1_024 , UpperCamelCase_: Any=0.02 , UpperCamelCase_: str=1E-1_2 , UpperCamelCase_: Optional[int]=0 , UpperCamelCase_: Optional[Any]="absolute" , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: List[Any]=False , UpperCamelCase_: List[Any]=101 , UpperCamelCase_: int=102 , UpperCamelCase_: List[str]=None , **UpperCamelCase_: int , ) -> Union[str, Any]: """simple docstring""" super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) if vision_config is None: lowercase__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) lowercase__ = GitVisionConfig(**UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = tie_word_embeddings lowercase__ = num_image_with_embedding lowercase__ = bos_token_id lowercase__ = eos_token_id def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
93
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowercase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ) -> List[str]: return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ) -> int: __a = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] __a = [] if args.gold_data_mode == "qa": __a = pd.read_csv(lowerCAmelCase__ , sep='''\t''' , header=lowerCAmelCase__ ) for answer_list in data[1]: __a = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: __a = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] __a = [[reference] for reference in references] __a = __a = __a = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __a = 1_00.0 * em / total __a = 1_00.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def lowercase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any ) -> Any: __a = args.k __a = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] __a = [line.strip() for line in open(lowerCAmelCase__ , '''r''' ).readlines()] __a = __a = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __a = set(hypo.split('''\t''' )[:k] ) __a = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __a = 1_00.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> Dict: def strip_title(lowerCAmelCase__ : Tuple ): if title.startswith('''"''' ): __a = title[1:] if title.endswith('''"''' ): __a = title[:-1] return title __a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors='''pt''' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )['''input_ids'''].to(args.device ) __a = rag_model.rag.question_encoder(lowerCAmelCase__ ) __a = question_enc_outputs[0] __a = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) __a = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __a = [] for docs in all_docs: __a = [strip_title(lowerCAmelCase__ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(lowerCAmelCase__ ) ) return provenance_strings def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any ) -> Any: with torch.no_grad(): __a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors='''pt''' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) __a = inputs_dict.input_ids.to(args.device ) __a = inputs_dict.attention_mask.to(args.device ) __a = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __a = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info('''Q: {} - A: {}'''.format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def lowercase ( ) -> Optional[Any]: __a = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=lowerCAmelCase__ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=lowerCAmelCase__ , choices=['''exact''', '''compressed''', '''legacy'''] , type=lowerCAmelCase__ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=lowerCAmelCase__ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=lowerCAmelCase__ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=lowerCAmelCase__ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=lowerCAmelCase__ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=lowerCAmelCase__ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=lowerCAmelCase__ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=lowerCAmelCase__ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=lowerCAmelCase__ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=lowerCAmelCase__ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) __a = parser.parse_args() __a = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> str: __a = {} if args.model_type is None: __a = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): __a = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration __a = args.n_docs if args.index_name is not None: __a = args.index_name if args.index_path is not None: __a = args.index_path else: __a = BartForConditionalGeneration __a = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , lowerCAmelCase__ ) __a = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k __a = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(lowerCAmelCase__ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): __a = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __a = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: __a = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: __a = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: __a = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write('''\n'''.join(lowerCAmelCase__ ) + '''\n''' ) preds_file.flush() __a = [] if len(lowerCAmelCase__ ) > 0: __a = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write('''\n'''.join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowercase_ = get_args() main(args)
45
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 1_0 lowercase_ = 2_5_6 def lowercase ( lowerCAmelCase__ : List[str] ) -> Optional[MinHash]: if len(lowerCAmelCase__ ) < MIN_NUM_TOKENS: return None __a = MinHash(num_perm=lowerCAmelCase__ ) for token in set(lowerCAmelCase__ ): min_hash.update(token.encode() ) return min_hash def lowercase ( lowerCAmelCase__ : str ) -> Set[str]: return {t for t in NON_ALPHA.split(lowerCAmelCase__ ) if len(t.strip() ) > 0} class __lowerCAmelCase : '''simple docstring''' def __init__( self , *, _a = 0.85 , ): __a = duplication_jaccard_threshold __a = NUM_PERM __a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a , _a ): __a = self._index.query(_a ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(_a , _a ) if len(_a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_a ) break else: self._duplicate_clusters[close_duplicates[0]].add(_a ) def __UpperCAmelCase ( self ): __a = [] for base, duplicates in self._duplicate_clusters.items(): __a = [base] + list(_a ) # reformat the cluster to be a list of dict __a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_a ) return duplicate_clusters def __UpperCAmelCase ( self , _a ): __a = self.get_duplicate_clusters() with open(_a , '''w''' ) as f: json.dump(_a , _a ) def lowercase ( lowerCAmelCase__ : List[str] ) -> int: __a , __a = element __a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowercase ( lowerCAmelCase__ : Type[Dataset] ) -> str: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase__ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def lowercase ( lowerCAmelCase__ : Type[Dataset] , lowerCAmelCase__ : float ) -> Dict: __a = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase__ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase__ , lowerCAmelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> float: __a = get_tokens(lowerCAmelCase__ ) __a = get_tokens(lowerCAmelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowercase_ = None def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any: __a = [] for elementa in cluster: __a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(lowerCAmelCase__ , lowerCAmelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __a = 1 extremes.append(lowerCAmelCase__ ) return extremes def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: global _shared_dataset __a = dataset __a = [] __a = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase__ , lowerCAmelCase__ , ) , total=len(lowerCAmelCase__ ) , ): extremes_list.append(lowerCAmelCase__ ) return extremes_list def lowercase ( lowerCAmelCase__ : Type[Dataset] , lowerCAmelCase__ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: __a = make_duplicate_clusters(lowerCAmelCase__ , lowerCAmelCase__ ) __a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __a = {} __a = find_extremes(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for extremes in extremes_clusters: for element in extremes: __a = element __a = duplicate_indices - set(extreme_dict.keys() ) __a = dataset.filter(lambda lowerCAmelCase__ , lowerCAmelCase__ : idx not in remove_indices , with_indices=lowerCAmelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __a = element['''base_index'''] in extreme_dict if element["is_extreme"]: __a = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(lowerCAmelCase__ )}''' ) print(f'''Number of duplicate clusters: {len(lowerCAmelCase__ )}''' ) print(f'''Files in duplicate cluster: {len(lowerCAmelCase__ )}''' ) print(f'''Unique files in duplicate cluster: {len(lowerCAmelCase__ )}''' ) print(f'''Filtered dataset size: {len(lowerCAmelCase__ )}''' ) return ds_filter, duplicate_clusters
45
1
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _lowerCamelCase = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE : bool , _SCREAMING_SNAKE_CASE : bool ) -> List[Any]: """simple docstring""" def run_func(_SCREAMING_SNAKE_CASE : List[Any] ): @wraps(_SCREAMING_SNAKE_CASE ) def run_in_eager_mode(*_SCREAMING_SNAKE_CASE : List[Any] , **_SCREAMING_SNAKE_CASE : Union[str, Any] ): return func(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @wraps(_SCREAMING_SNAKE_CASE ) @tf.function(experimental_compile=_SCREAMING_SNAKE_CASE ) def run_in_graph_mode(*_SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : List[Any] ): return func(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> ["tf.Tensor"]: """simple docstring""" UpperCAmelCase_ : str = random.Random() UpperCAmelCase_ : List[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_SCREAMING_SNAKE_CASE , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _snake_case (__SCREAMING_SNAKE_CASE): __A : TensorFlowBenchmarkArguments __A : PretrainedConfig __A : str ="TensorFlow" @property def UpperCamelCase__ ( self ): return tf.__version__ def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): # initialize GPU on separate process UpperCAmelCase_ : Optional[int] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ : str = self._prepare_inference_func(_snake_case ,_snake_case ,_snake_case ) return self._measure_speed(_inference ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ : List[Any] = self._prepare_train_func(_snake_case ,_snake_case ,_snake_case ) return self._measure_speed(_train ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,_snake_case ) UpperCAmelCase_ : Dict = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ : Tuple = self._prepare_inference_func(_snake_case ,_snake_case ,_snake_case ) return self._measure_memory(_inference ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] ,_snake_case ) UpperCAmelCase_ : int = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase_ : Dict = self._prepare_train_func(_snake_case ,_snake_case ,_snake_case ) return self._measure_memory(_train ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase_ : int = ( hasattr(_snake_case ,"architectures" ) and isinstance(config.architectures ,_snake_case ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ : Tuple = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ : Any = __import__("transformers" ,fromlist=[model_class] ) UpperCAmelCase_ : Any = getattr(_snake_case ,_snake_case ) UpperCAmelCase_ : List[Any] = model_cls(_snake_case ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase_ : int = TF_MODEL_MAPPING[config.__class__](_snake_case ) # encoder-decoder has vocab size saved differently UpperCAmelCase_ : List[Any] = config.vocab_size if hasattr(_snake_case ,"vocab_size" ) else config.encoder.vocab_size UpperCAmelCase_ : List[str] = random_input_ids(_snake_case ,_snake_case ,_snake_case ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_forward(): return model(_snake_case ,decoder_input_ids=_snake_case ,training=_snake_case ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_forward(): return model(_snake_case ,training=_snake_case ) UpperCAmelCase_ : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case ): UpperCAmelCase_ : Dict = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase_ : str = ( hasattr(_snake_case ,"architectures" ) and isinstance(config.architectures ,_snake_case ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ : List[str] = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ : Optional[int] = __import__("transformers" ,fromlist=[model_class] ) UpperCAmelCase_ : List[str] = getattr(_snake_case ,_snake_case ) UpperCAmelCase_ : Dict = model_cls(_snake_case ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase_ : Optional[int] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_snake_case ) # encoder-decoder has vocab size saved differently UpperCAmelCase_ : Optional[Any] = config.vocab_size if hasattr(_snake_case ,"vocab_size" ) else config.encoder.vocab_size UpperCAmelCase_ : Tuple = random_input_ids(_snake_case ,_snake_case ,_snake_case ) @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase_ : List[str] = model(_snake_case ,decoder_input_ids=_snake_case ,labels=_snake_case ,training=_snake_case )[0] UpperCAmelCase_ : int = tf.gradients(_snake_case ,model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode ,self.args.use_xla ) def encoder_train(): UpperCAmelCase_ : Dict = model(_snake_case ,labels=_snake_case ,training=_snake_case )[0] UpperCAmelCase_ : Any = tf.gradients(_snake_case ,model.trainable_variables ) return gradients UpperCAmelCase_ : Dict = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCamelCase__ ( self ,_snake_case ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(_snake_case ,repeat=1 ,number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase_ : Dict = timeit.repeat( _snake_case ,repeat=self.args.repeat ,number=10 ,) return min(_snake_case ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def UpperCamelCase__ ( self ,_snake_case ): logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase_ : List[Any] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase_ : Any = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase_ : Optional[Any] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase_ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(_snake_case ) UpperCAmelCase_ : Union[str, Any] = meminfo.used UpperCAmelCase_ : List[Any] = Memory(_snake_case ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase_ : Any = None else: UpperCAmelCase_ : Any = measure_peak_memory_cpu(_snake_case ) UpperCAmelCase_ : Dict = Memory(_snake_case ) if isinstance(_snake_case ,_snake_case ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase_ : int = stop_memory_tracing(_snake_case ) if memory is None: UpperCAmelCase_ : int = summary.total else: UpperCAmelCase_ : Optional[int] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
364
'''simple docstring''' import re def a__ ( _SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" if len(re.findall("[ATCG]" , _SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
67
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase (A__ ,A__ ,unittest.TestCase ): lowerCamelCase__ : Union[str, Any] = StableDiffusionSAGPipeline lowerCamelCase__ : Optional[Any] = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ : int = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ : str = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ : Tuple = False def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any]=0 ) -> Optional[Any]: if str(__UpperCAmelCase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) SCREAMING_SNAKE_CASE__ = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """.""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sag_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """.""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sag_pipe( [prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="""np""" ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE__ = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) SCREAMING_SNAKE_CASE__ = sag_pipe.to(__UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """.""" SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = sag_pipe( [prompt] , width=7_6_8 , height=5_1_2 , generator=__UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
165
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType A_ : Dict = logging.get_logger(__name__) A_ : Any = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class lowerCamelCase (A__ ): lowerCamelCase__ : Tuple = 'deberta-v2' def __init__( self : Any , __UpperCAmelCase : Optional[Any]=1_2_8_1_0_0 , __UpperCAmelCase : Optional[Any]=1_5_3_6 , __UpperCAmelCase : List[Any]=2_4 , __UpperCAmelCase : str=2_4 , __UpperCAmelCase : Optional[int]=6_1_4_4 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[Any]=5_1_2 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : int=0.02 , __UpperCAmelCase : Any=1e-7 , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Optional[Any]=0 , __UpperCAmelCase : Union[str, Any]="gelu" , **__UpperCAmelCase : Any , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = relative_attention SCREAMING_SNAKE_CASE__ = max_relative_positions SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = position_biased_input # Backwards compatibility if type(__UpperCAmelCase ) == str: SCREAMING_SNAKE_CASE__ = [x.strip() for x in pos_att_type.lower().split("""|""" )] SCREAMING_SNAKE_CASE__ = pos_att_type SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = kwargs.get("""pooler_hidden_size""" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = pooler_dropout SCREAMING_SNAKE_CASE__ = pooler_hidden_act class lowerCamelCase (A__ ): @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 1_2 def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs(preprocessor=__UpperCAmelCase , framework=__UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
165
1
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : Optional[int] = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } lowercase : Dict = { """Salesforce/codegen-350M-mono""": 2_0_4_8, } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : List[str] = VOCAB_FILES_NAMES __A : Tuple = PRETRAINED_VOCAB_FILES_MAP __A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[str] = ["""input_ids""", """attention_mask"""] __A : Dict = CodeGenTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="<|endoftext|>" , lowercase="<|endoftext|>" , lowercase="<|endoftext|>" , lowercase=False , **lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , unk_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) if kwargs.pop('add_bos_token' , _lowercase): a__ : Optional[Any] = kwargs.pop('name_or_path' , '') raise ValueError( 'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.' 'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n' F'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' F'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' 'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.' ' so that the fast tokenizer works correctly.') a__ : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , _lowercase) != add_prefix_space: a__ : Tuple = getattr(_lowercase , pre_tok_state.pop('type')) a__ : str = add_prefix_space a__ : Dict = pre_tok_class(**_lowercase) a__ : Tuple = add_prefix_space def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : Optional[int] = kwargs.get('is_split_into_words' , _lowercase) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowercase , **_lowercase) def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : Union[str, Any] = kwargs.get('is_split_into_words' , _lowercase) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowercase , **_lowercase) def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__ : Dict = self._tokenizer.model.save(_lowercase , name=_lowercase) return tuple(_lowercase) def __lowercase ( self , lowercase , lowercase = False , lowercase = None , lowercase = None , **lowercase , ) -> str: '''simple docstring''' a__ : List[Any] = super().decode( token_ids=_lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , **_lowercase , ) if truncate_before_pattern is not None and len(_lowercase) > 0: a__ : Dict = self.truncate(_lowercase , _lowercase) return decoded_text def __lowercase ( self , lowercase , lowercase) -> Tuple: '''simple docstring''' def find_re(lowercase , lowercase , lowercase): a__ : int = pattern.search(_lowercase , _lowercase) return m.start() if m else -1 a__ : Any = [re.compile(_lowercase , re.MULTILINE) for pattern in truncate_before_pattern] a__ : Optional[int] = list(re.finditer('^print' , _lowercase , re.MULTILINE)) if len(_lowercase) > 1: a__ : List[str] = completion[: prints[1].start()] a__ : str = list(re.finditer('^def' , _lowercase , re.MULTILINE)) if len(_lowercase) > 1: a__ : Optional[int] = completion[: defs[1].start()] a__ : Tuple = 0 a__ : Tuple = [ pos for pos in [find_re(_lowercase , _lowercase , _lowercase) for terminal in terminals] if pos != -1 ] if len(_lowercase) > 0: return completion[: min(_lowercase)] else: return completion
366
def A_ ( A__ , A__ , A__ ) -> float: if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate a__ : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly a__ : List[Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
225
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCamelCase__: str = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[Any] , __snake_case : List[str] , __snake_case : Dict = None , __snake_case : Tuple = None , __snake_case : str = None , __snake_case : Tuple = True , ) -> List[str]: UpperCAmelCase : Any = [file for file in os.listdir(__snake_case ) if os.path.isfile(os.path.join(__snake_case , __snake_case ) )] if identifier is not None: UpperCAmelCase : List[str] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__snake_case , __snake_case ): for n_ in n_identifier: UpperCAmelCase : Any = [file for file in files if n_ not in file] else: UpperCAmelCase : Union[str, Any] = [file for file in files if n_identifier not in file] UpperCAmelCase : Any = ignore_files or [] ignore_files.append('''__init__.py''' ) UpperCAmelCase : Dict = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __snake_case ) if only_modules: UpperCAmelCase : List[Any] = file.split('''.''' )[0] try: UpperCAmelCase : List[Any] = getattr(__snake_case , __snake_case ) UpperCAmelCase : Union[str, Any] = doctest.DocTestSuite(__snake_case ) UpperCAmelCase : Optional[Any] = unittest.TextTestRunner().run(__snake_case ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase : List[str] = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def A ( self : List[Any] ) -> Tuple: UpperCAmelCase : Optional[Any] = Path('''src/transformers''' ) UpperCAmelCase : Dict = """modeling""" UpperCAmelCase : Optional[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__snake_case , identifier=__snake_case , ignore_files=__snake_case ) def A ( self : Optional[int] ) -> int: UpperCAmelCase : Any = Path('''src/transformers''' ) UpperCAmelCase : Union[str, Any] = """tokenization""" self.analyze_directory(__snake_case , identifier=__snake_case ) def A ( self : Dict ) -> List[Any]: UpperCAmelCase : List[str] = Path('''src/transformers''' ) UpperCAmelCase : Dict = """configuration""" self.analyze_directory(__snake_case , identifier=__snake_case ) def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : List[str] = Path('''src/transformers''' ) UpperCAmelCase : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__snake_case , n_identifier=__snake_case ) def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Union[str, Any] = Path('''docs/source''' ) UpperCAmelCase : Tuple = ["""favicon.ico"""] self.analyze_directory(__snake_case , ignore_files=__snake_case , only_modules=__snake_case )
23
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Tuple = """camembert""" def __init__( self , __magic_name__=3_0_5_2_2 , __magic_name__=7_6_8 , __magic_name__=1_2 , __magic_name__=1_2 , __magic_name__=3_0_7_2 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_2 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , __magic_name__="absolute" , __magic_name__=True , __magic_name__=None , **__magic_name__ , ): super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) lowerCamelCase : int = vocab_size lowerCamelCase : int = hidden_size lowerCamelCase : int = num_hidden_layers lowerCamelCase : int = num_attention_heads lowerCamelCase : Optional[int] = hidden_act lowerCamelCase : List[Any] = intermediate_size lowerCamelCase : Tuple = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : Optional[int] = max_position_embeddings lowerCamelCase : str = type_vocab_size lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : int = layer_norm_eps lowerCamelCase : Any = position_embedding_type lowerCamelCase : Optional[int] = use_cache lowerCamelCase : Union[str, Any] = classifier_dropout class A__ ( __SCREAMING_SNAKE_CASE): @property def UpperCamelCase__ ( self ): if self.task == "multiple-choice": lowerCamelCase : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
287
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowercase : List[str] = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') _lowercase : Optional[int] = parser.parse_args() _lowercase : List[str] = """cpu""" _lowercase : Tuple = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" _lowercase : int = """path-to-your-trained-model""" _lowercase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowercase : Union[str, Any] = pipe.to(device) # to channels last _lowercase : List[str] = pipe.unet.to(memory_format=torch.channels_last) _lowercase : Any = pipe.vae.to(memory_format=torch.channels_last) _lowercase : Tuple = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowercase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowercase : Dict = torch.randn(2, 4, 64, 64) _lowercase : Any = torch.rand(1) * 9_99 _lowercase : str = torch.randn(2, 77, 7_68) _lowercase : Optional[int] = (sample, timestep, encoder_hidden_status) try: _lowercase : str = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowercase : int = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowercase : str = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowercase : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowercase : Dict = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowercase : Any = 6_66 _lowercase : int = torch.Generator(device).manual_seed(seed) _lowercase : int = {"""generator""": generator} if args.steps is not None: _lowercase : List[Any] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowercase : List[Any] = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
352
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=_lowerCAmelCase ): a__ : Union[str, Any] = ["onnx"] def __init__( self : Any , *_lowercase : Dict , **_lowercase : Any ): requires_backends(self , ['''onnx'''] ) @classmethod def a ( cls : str , *_lowercase : List[Any] , **_lowercase : int ): requires_backends(cls , ['''onnx'''] ) @classmethod def a ( cls : Union[str, Any] , *_lowercase : List[str] , **_lowercase : Optional[int] ): requires_backends(cls , ['''onnx'''] )
86
0