code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __a = logging.get_logger(__name__) class lowercase__: """simple docstring""" a :str a :str = None @staticmethod def _lowercase ( ) -> Optional[int]: raise NotImplementedError def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: raise NotImplementedError def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: raise NotImplementedError def _lowercase ( self : Tuple ) -> Union[str, Any]: if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def _lowercase ( cls : Dict ) -> Dict: return f'''`pip install {cls.pip_package or cls.name}`''' class lowercase__( UpperCAmelCase ): """simple docstring""" a :Any = 'optuna' @staticmethod def _lowercase ( ) -> str: return is_optuna_available() def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : int ) -> str: return run_hp_search_optuna(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: return default_hp_space_optuna(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Tuple = 'ray' a :Optional[int] = '\'ray[tune]\'' @staticmethod def _lowercase ( ) -> Any: return is_ray_available() def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Any ) -> str: return run_hp_search_ray(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: return default_hp_space_ray(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase ): """simple docstring""" a :List[str] = 'sigopt' @staticmethod def _lowercase ( ) -> Union[str, Any]: return is_sigopt_available() def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: return run_hp_search_sigopt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: return default_hp_space_sigopt(SCREAMING_SNAKE_CASE_ ) class lowercase__( UpperCAmelCase ): """simple docstring""" a :str = 'wandb' @staticmethod def _lowercase ( ) -> str: return is_wandb_available() def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return run_hp_search_wandb(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]: return default_hp_space_wandb(SCREAMING_SNAKE_CASE_ ) __a = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def a ( ): '''simple docstring''' lowercase_ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case__ ) > 0: lowercase_ = available_backends[0].name if len(snake_case__ ) > 1: logger.info( F'''{len(snake_case__ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
30
import math import flax.linen as nn import jax.numpy as jnp def SCREAMING_SNAKE_CASE_ ( __A : jnp.ndarray , __A : int , __A : float = 1 , __A : float = 1 , __A : float = 1.0e4 , __A : bool = False , __A : float = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" a_ : int = float(embedding_dim // 2 ) a_ : str = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) a_ : Optional[int] = min_timescale * jnp.exp(jnp.arange(__A , dtype=jnp.floataa ) * -log_timescale_increment ) a_ : Optional[int] = jnp.expand_dims(__A , 1 ) * jnp.expand_dims(__A , 0 ) # scale embeddings a_ : str = scale * emb if flip_sin_to_cos: a_ : str = jnp.concatenate([jnp.cos(__A ), jnp.sin(__A )] , axis=1 ) else: a_ : Any = jnp.concatenate([jnp.sin(__A ), jnp.cos(__A )] , axis=1 ) a_ : Optional[int] = jnp.reshape(__A , [jnp.shape(__A )[0], embedding_dim] ) return signal class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int = 32 snake_case__ : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: a_ : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = nn.silu(SCREAMING_SNAKE_CASE__ ) a_ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(SCREAMING_SNAKE_CASE__ ) return temb class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int = 32 snake_case__ : bool = False snake_case__ : float = 1 @nn.compact def __call__( self : str , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: return get_sinusoidal_embeddings( SCREAMING_SNAKE_CASE__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
32
0
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __UpperCamelCase = """base_with_context""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Tuple: snake_case_ = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): snake_case_ = weights[f'layers_{lyr_num}'] snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) snake_case_ = ly_weight['attention'] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: snake_case_ = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): snake_case_ = weights[f'layers_{lyr_num}'] snake_case_ = ly_weight['attention'] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Dict: snake_case_ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=UpperCAmelCase ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): snake_case_ = weights[f'layers_{lyr_num}'] snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) snake_case_ = ly_weight['self_attention'] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case_ = ly_weight['MultiHeadDotProductAttention_0'] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) snake_case_ = jnp.tree_util.tree_map(onp.array , UpperCAmelCase ) snake_case_ = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] snake_case_ = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) snake_case_ = inference.parse_training_gin_file(UpperCAmelCase , UpperCAmelCase ) snake_case_ = inference.InferenceModel(args.checkpoint_path , UpperCAmelCase ) snake_case_ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) snake_case_ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) snake_case_ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) snake_case_ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) snake_case_ = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , UpperCAmelCase ) snake_case_ = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , UpperCAmelCase ) snake_case_ = load_decoder(ta_checkpoint['target']['decoder'] , UpperCAmelCase ) snake_case_ = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) snake_case_ = SpectrogramDiffusionPipeline( notes_encoder=UpperCAmelCase , continuous_encoder=UpperCAmelCase , decoder=UpperCAmelCase , scheduler=UpperCAmelCase , melgan=UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) __UpperCamelCase = parser.parse_args() main(args)
359
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ = frozenset([] ) def a_ ( self) -> Any: torch.manual_seed(0) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=9, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase__, ) snake_case_ = PNDMScheduler(skip_prk_steps=lowerCAmelCase__) torch.manual_seed(0) snake_case_ = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0) snake_case_ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) snake_case_ = CLIPTextModel(lowerCAmelCase__) snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') snake_case_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=0) -> List[str]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched snake_case_ = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) snake_case_ = image.cpu().permute(0, 2, 3, 1)[0] snake_case_ = Image.fromarray(np.uinta(lowerCAmelCase__)).convert('RGB').resize((64, 64)) snake_case_ = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(lowerCAmelCase__).startswith('mps'): snake_case_ = torch.manual_seed(lowerCAmelCase__) else: snake_case_ = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) snake_case_ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a_ ( self) -> Dict: snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.get_dummy_components() snake_case_ = StableDiffusionInpaintPipeline(**lowerCAmelCase__) snake_case_ = sd_pipe.to(lowerCAmelCase__) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__) snake_case_ = self.get_dummy_inputs(lowerCAmelCase__) snake_case_ = sd_pipe(**lowerCAmelCase__).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def a_ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self) -> Union[str, Any]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase__, safety_checker=lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def a_ ( self) -> Optional[int]: snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, torch_dtype=torch.floataa, safety_checker=lowerCAmelCase__, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, output_type='np', ) snake_case_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def a_ ( self) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') snake_case_ = 'stabilityai/stable-diffusion-2-inpainting' snake_case_ = PNDMScheduler.from_pretrained(lowerCAmelCase__, subfolder='scheduler') snake_case_ = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase__, safety_checker=lowerCAmelCase__, scheduler=lowerCAmelCase__, torch_dtype=torch.floataa, ) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() snake_case_ = 'Face of a yellow cat, high resolution, sitting on a park bench' snake_case_ = torch.manual_seed(0) snake_case_ = pipe( prompt=lowerCAmelCase__, image=lowerCAmelCase__, mask_image=lowerCAmelCase__, generator=lowerCAmelCase__, num_inference_steps=2, output_type='np', ) snake_case_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
312
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def lowerCAmelCase ( ): """simple docstring""" __A = {} __A = 2 while True: __A = factor_map.pop(__UpperCamelCase , __UpperCamelCase ) if factor: __A = factor + prime while x in factor_map: x += factor __A = factor else: __A = prime yield prime prime += 1 def lowerCAmelCase ( __UpperCamelCase = 1e1_0 ): """simple docstring""" __A = sieve() __A = 1 while True: __A = next(__UpperCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCamelCase ) n += 2 if __name__ == "__main__": print(solution())
266
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowercase_ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowercase_ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase ( ): """simple docstring""" __A = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __A = bs[:] __A = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 __A = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = set() __A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __A = char return pairs class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : Tuple = VOCAB_FILES_NAMES A_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Dict, _lowerCamelCase : Optional[Any], _lowerCamelCase : List[str], _lowerCamelCase : Dict="replace", _lowerCamelCase : Any="<s>", _lowerCamelCase : Optional[int]="</s>", _lowerCamelCase : Dict="</s>", _lowerCamelCase : List[Any]="<s>", _lowerCamelCase : List[str]="<unk>", _lowerCamelCase : str="<pad>", _lowerCamelCase : Any="<mask>", _lowerCamelCase : Any=False, **_lowerCamelCase : Tuple, ): '''simple docstring''' __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else bos_token __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else eos_token __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else sep_token __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else cls_token __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else unk_token __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(_lowerCamelCase, lstrip=_lowerCamelCase, rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ) else mask_token super().__init__( errors=_lowerCamelCase, bos_token=_lowerCamelCase, eos_token=_lowerCamelCase, unk_token=_lowerCamelCase, sep_token=_lowerCamelCase, cls_token=_lowerCamelCase, pad_token=_lowerCamelCase, mask_token=_lowerCamelCase, add_prefix_space=_lowerCamelCase, **_lowerCamelCase, ) with open(_lowerCamelCase, encoding='''utf-8''' ) as vocab_handle: __A = json.load(_lowerCamelCase ) __A = {v: k for k, v in self.encoder.items()} __A = errors # how to handle errors in decoding __A = bytes_to_unicode() __A = {v: k for k, v in self.byte_encoder.items()} with open(_lowerCamelCase, encoding='''utf-8''' ) as merges_handle: __A = merges_handle.read().split('''\n''' )[1:-1] __A = [tuple(merge.split() ) for merge in bpe_merges] __A = dict(zip(_lowerCamelCase, range(len(_lowerCamelCase ) ) ) ) __A = {} __A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __A = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : List[Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] __A = tuple(_lowerCamelCase ) __A = get_pairs(_lowerCamelCase ) if not pairs: return token while True: __A = min(_lowerCamelCase, key=lambda _lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __A , __A = bigram __A = [] __A = 0 while i < len(_lowerCamelCase ): try: __A = word.index(_lowerCamelCase, _lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __A = j if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __A = tuple(_lowerCamelCase ) __A = new_word if len(_lowerCamelCase ) == 1: break else: __A = get_pairs(_lowerCamelCase ) __A = ''' '''.join(_lowerCamelCase ) __A = word return word def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Dict ): '''simple docstring''' __A = [] for token in re.findall(self.pat, _lowerCamelCase ): __A = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowerCamelCase ).split(''' ''' ) ) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : Dict ): '''simple docstring''' return self.encoder.get(_lowerCamelCase, self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Any ): '''simple docstring''' return self.decoder.get(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : Dict ): '''simple docstring''' __A = ''''''.join(_lowerCamelCase ) __A = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''', errors=self.errors ) return text def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : str, _lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __A = os.path.join( _lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __A = os.path.join( _lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=_lowerCamelCase, ensure_ascii=_lowerCamelCase ) + '''\n''' ) __A = 0 with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) __A = token_index writer.write(''' '''.join(_lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : List[int], _lowerCamelCase : Optional[List[int]] = None, _lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase, token_ids_a=_lowerCamelCase, already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : List[int], _lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : Union[str, Any], _lowerCamelCase : List[str]=False, **_lowerCamelCase : List[Any] ): '''simple docstring''' __A = kwargs.pop('''add_prefix_space''', self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowerCamelCase ) > 0 and not text[0].isspace()): __A = ''' ''' + text return (text, kwargs) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : List[int], _lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : "Conversation" ): '''simple docstring''' __A = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_lowerCamelCase ) __A = ''' '''.join(_lowerCamelCase ) __A = self.encode(_lowerCamelCase ) if len(_lowerCamelCase ) > self.model_max_length: __A = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
266
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__( unittest.TestCase): def __init__( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: str=3 , UpperCamelCase_: Optional[Any]=32 , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Dict=10 , UpperCamelCase_: Union[str, Any]=[10, 20, 30, 40] , UpperCamelCase_: Dict=[1, 1, 2, 1] , UpperCamelCase_: int=True , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Union[str, Any]="relu" , UpperCamelCase_: List[str]=3 , UpperCamelCase_: List[str]=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = embeddings_size __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = num_labels __lowerCamelCase = scope __lowerCamelCase = len(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = self.get_config() return config, pixel_values def lowerCAmelCase__ ( self: List[Any] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Dict ): __lowerCamelCase = FlaxRegNetModel(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] ): __lowerCamelCase = self.num_labels __lowerCamelCase = FlaxRegNetForImageClassification(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : List[str] = False def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = FlaxRegNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self: Union[str, Any] ): return def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCAmelCase__ ( self: Optional[int] ): pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCAmelCase__ ( self: str ): pass def lowerCAmelCase__ ( self: int ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(UpperCamelCase_ ) __lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): def check_hidden_states_output(UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict ): __lowerCamelCase = model_class(UpperCamelCase_ ) __lowerCamelCase = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) __lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , **UpperCamelCase_: str ): return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowerCamelCase__( unittest.TestCase): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ): return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""np""" ) __lowerCamelCase = model(**UpperCamelCase_ ) # verify the logits __lowerCamelCase = (1, 10_00) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __lowerCamelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
29
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
1
"""simple docstring""" import math class _UpperCAmelCase : def __init__( self : Union[str, Any] , A : Optional[int]=0 ) -> Union[str, Any]: # a graph with Node 0,1,...,N-1 lowercase_ : Any = n lowercase_ : Any = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # adjacency matrix for weight lowercase_ : List[Any] = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # dp[i][j] stores minimum distance from i to j def A ( self : List[str] , A : Dict , A : str , A : Optional[Any] ) -> Any: lowercase_ : Any = w def A ( self : Optional[Any] ) -> Tuple: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase_ : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A ( self : Any , A : Tuple , A : Dict ) -> str: return self.dp[u][v] if __name__ == "__main__": __A : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
33
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Any = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : str = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : List[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Dict = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Dict = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Any = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : int = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] )
283
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class __UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE = Features({"audio": Audio()} ) SCREAMING_SNAKE_CASE = Features({"labels": ClassLabel} ) SCREAMING_SNAKE_CASE = "audio" SCREAMING_SNAKE_CASE = "labels" def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : Union[str, Any]): if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , a_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") A = copy.deepcopy(self) A = self.label_schema.copy() A = features[self.label_column] A = label_schema return task_template @property def SCREAMING_SNAKE_CASE__ (self : Any): return { self.audio_column: "audio", self.label_column: "labels", }
359
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __UpperCamelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE = WavaVecaPhonemeCTCTokenizer SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ (self : Tuple): super().setUp() A = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" ") A = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE)))) A = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE) + "\n") def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[Any]=2_0 , __SCREAMING_SNAKE_CASE : Any=5): A = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE)) for i in range(len(__SCREAMING_SNAKE_CASE))] A = list(filter(lambda __SCREAMING_SNAKE_CASE: [t[0]] == tokenizer.encode(t[1] , do_phonemize=__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE)) if max_length is not None and len(__SCREAMING_SNAKE_CASE) > max_length: A = toks[:max_length] if min_length is not None and len(__SCREAMING_SNAKE_CASE) < min_length and len(__SCREAMING_SNAKE_CASE) > 0: while len(__SCREAMING_SNAKE_CASE) < min_length: A = toks + toks # toks_str = [t[1] for t in toks] A = [t[0] for t in toks] # Ensure consistency A = tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) if " " not in output_txt and len(__SCREAMING_SNAKE_CASE) > 1: A = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE) ) if with_prefix_space: A = " " + output_txt A = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE) return output_txt, output_ids def SCREAMING_SNAKE_CASE__ (self : List[Any] , **__SCREAMING_SNAKE_CASE : Any): kwargs.update(self.special_tokens_map) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") # check adding a single token tokenizer.add_tokens("xxx") A = tokenizer("m xxx ɪ" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [1_3, 3_9_2, 1_7]) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"]) A = tokenizer("m aaa ɪ ccc" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [1_3, 3_9_3, 1_7, 3_9_5]) # aaa and ccc should be after xxx and 2 after aaa A = tokenizer("maɪ c" , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , [3, 2_0_0]) # mai should be <unk> (=3) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ h aʊ ɑːɹ j uː") def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , tokenizer(__SCREAMING_SNAKE_CASE , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids) def SCREAMING_SNAKE_CASE__ (self : Any): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : str): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7], ] A = tokenizer.decode(sample_ids[0]) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ | h aʊ | ɑːɹ | j uː |") def SCREAMING_SNAKE_CASE__ (self : str): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") self.assertEqual(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , tokenizer(__SCREAMING_SNAKE_CASE , do_phonemize=__SCREAMING_SNAKE_CASE).input_ids) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 1_5, 8, tokenizer.word_delimiter_token_id, 9_8], [tokenizer.word_delimiter_token_id, 2_4, 2_2, tokenizer.word_delimiter_token_id, 5, 2_4, 2_2, 5, 7_7], ] # fmt: on # decode with word_del_token filter A = tokenizer.decode(sample_ids[0]) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"]) # decode with no word_del_token filter A = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , batch_tokens[0]) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"]) def SCREAMING_SNAKE_CASE__ (self : Dict): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|") tokenizer.add_tokens("|") A = "Hello how are you" A = tokenizer.phonemize(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us") A = tokenizer.decode(tokenizer(__SCREAMING_SNAKE_CASE).input_ids , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |")]).strip() , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Dict): A = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=__SCREAMING_SNAKE_CASE) A = "Hello how are you" A = tokenizer(__SCREAMING_SNAKE_CASE , phonemizer_lang="en-us").input_ids A = tokenizer(__SCREAMING_SNAKE_CASE , phonemizer_lang="fr-fr").input_ids self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = tokenizer.decode(__SCREAMING_SNAKE_CASE) A = tokenizer.decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , "h ə l oʊ h aʊ ɑːɹ j uː") self.assertEqual(__SCREAMING_SNAKE_CASE , "ɛ l o h aʊ a ʁ j u") def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") A = "Hello how Are you" A = "hello how are you" A = tokenizer(__SCREAMING_SNAKE_CASE).input_ids A = tokenizer(__SCREAMING_SNAKE_CASE).input_ids self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") tokenizer.add_tokens(["!", "?"]) tokenizer.add_special_tokens({"cls_token": "$$$"}) # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 8, 9_8, 3_9_2, 3_9_2, 3_9_3, 3_9_2, 3_9_2, 3_9_3, 3_9_4, 3_9_4], [2_4, 2_2, 5, 2_4, 2_2, 5, 7_7, tokenizer.pad_token_id, 3_9_4, 3_9_4], ] # fmt: on A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"]) @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]): A = [d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.get_tokenizer(word_delimiter_token="|") tokenizer.add_tokens("|") # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A = [1_1, 5, 5, 5, 1_5, 1_5, tokenizer.pad_token_id, 1_5, 1_5, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 1_5, 8, 8, 8, tokenizer.word_delimiter_token_id, 9_8] # fmt: on A = tokenizer.decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE , filter_word_delimiter_token=__SCREAMING_SNAKE_CASE) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys()) , 2) self.assertTrue("text" in outputs) self.assertTrue("char_offsets" in outputs) self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char")) , outputs.text) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "char") , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"]) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "start_offset") , [0, 1, 4, 7, 9, 1_1, 1_2, 1_5, 1_6]) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "end_offset") , [1, 4, 6, 9, 1_0, 1_2, 1_5, 1_6, 1_7]) def SCREAMING_SNAKE_CASE__ (self : Any): A = self.get_tokenizer(word_delimiter_token="|") def check_list_tuples_equal(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any]): self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) self.assertTrue(isinstance(outputs_list[0] , __SCREAMING_SNAKE_CASE)) # transform list to ModelOutput A = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]}) self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"]) def recursive_check(__SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): [recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) for la, la in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"]) # fmt: off A = [ [1_1, 5, 1_5, tokenizer.pad_token_id, 1_5, 4, 8, 9_8, 3_2, 3_2, 3_2, 3_2, 4, 3_3, tokenizer.word_delimiter_token_id, 3_2, 3_2, 3_3, 3_4, 3_4], [2_4, 2_2, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 2_4, 2_2, 2_2, 2_2, 4, 5, 7_7, tokenizer.pad_token_id, 2_2, 2_2, 4, 3_4, 3_4, 3_4, 3_4], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE) A = [tokenizer.decode(__SCREAMING_SNAKE_CASE , output_char_offsets=__SCREAMING_SNAKE_CASE) for ids in sample_ids] check_list_tuples_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes") def SCREAMING_SNAKE_CASE__ (self : Optional[int]): pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes") def SCREAMING_SNAKE_CASE__ (self : Dict): pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency") def SCREAMING_SNAKE_CASE__ (self : str): pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing") def SCREAMING_SNAKE_CASE__ (self : Optional[int]): pass def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.get_tokenizers(do_lower_case=__SCREAMING_SNAKE_CASE) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A = ["aaaaa bbbbbb", "cccccccccdddddddd"] A = tokenizer.add_tokens(__SCREAMING_SNAKE_CASE) A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE)) self.assertEqual(__SCREAMING_SNAKE_CASE , all_size + len(__SCREAMING_SNAKE_CASE)) A = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__SCREAMING_SNAKE_CASE) self.assertGreaterEqual(len(__SCREAMING_SNAKE_CASE) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) A = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} A = tokenizer.add_special_tokens(__SCREAMING_SNAKE_CASE) A = tokenizer.vocab_size A = len(__SCREAMING_SNAKE_CASE) self.assertNotEqual(__SCREAMING_SNAKE_CASE , 0) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) self.assertEqual(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE)) self.assertEqual(__SCREAMING_SNAKE_CASE , all_size_a + len(__SCREAMING_SNAKE_CASE)) A = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__SCREAMING_SNAKE_CASE) self.assertGreaterEqual(len(__SCREAMING_SNAKE_CASE) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def SCREAMING_SNAKE_CASE__ (self : List[str]): pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.") def SCREAMING_SNAKE_CASE__ (self : List[Any]): pass def SCREAMING_SNAKE_CASE__ (self : Optional[int]): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. A = self.get_tokenizers(fast=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): A = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] A = tokenizer.convert_tokens_to_string(__SCREAMING_SNAKE_CASE) self.assertIsInstance(output["text"] , __SCREAMING_SNAKE_CASE)
57
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = f'''{sampling_rate}''' __magic_name__ = """1""" __magic_name__ = """f32le""" __magic_name__ = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(A_, stdin=subprocess.PIPE, stdout=subprocess.PIPE ) as ffmpeg_process: __magic_name__ = ffmpeg_process.communicate(A_ ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error __magic_name__ = output_stream[0] __magic_name__ = np.frombuffer(A_, np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def a__ ( A_, A_, A_ = "f32le", ): '''simple docstring''' __magic_name__ = f'''{sampling_rate}''' __magic_name__ = """1""" if format_for_conversion == "s16le": __magic_name__ = 2 elif format_for_conversion == "f32le": __magic_name__ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) __magic_name__ = platform.system() if system == "Linux": __magic_name__ = """alsa""" __magic_name__ = """default""" elif system == "Darwin": __magic_name__ = """avfoundation""" __magic_name__ = """:0""" elif system == "Windows": __magic_name__ = """dshow""" __magic_name__ = """default""" __magic_name__ = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] __magic_name__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __magic_name__ = _ffmpeg_stream(A_, A_ ) for item in iterator: yield item def a__ ( A_, A_, A_ = None, A_ = None, A_ = "f32le", ): '''simple docstring''' if stream_chunk_s is not None: __magic_name__ = stream_chunk_s else: __magic_name__ = chunk_length_s __magic_name__ = ffmpeg_microphone(A_, A_, format_for_conversion=A_ ) if format_for_conversion == "s16le": __magic_name__ = np.intaa __magic_name__ = 2 elif format_for_conversion == "f32le": __magic_name__ = np.floataa __magic_name__ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: __magic_name__ = chunk_length_s / 6 __magic_name__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(A_, (int, float) ): __magic_name__ = [stride_length_s, stride_length_s] __magic_name__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __magic_name__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __magic_name__ = datetime.datetime.now() __magic_name__ = datetime.timedelta(seconds=A_ ) for item in chunk_bytes_iter(A_, A_, stride=(stride_left, stride_right), stream=A_ ): # Put everything back in numpy scale __magic_name__ = np.frombuffer(item["""raw"""], dtype=A_ ) __magic_name__ = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) __magic_name__ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def a__ ( A_, A_, A_, A_ = False ): '''simple docstring''' __magic_name__ = b"""""" __magic_name__ , __magic_name__ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) __magic_name__ = 0 for raw in iterator: acc += raw if stream and len(A_ ) < chunk_len: __magic_name__ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(A_ ) >= chunk_len: # We are flushing the accumulator __magic_name__ = (_stride_left, stride_right) __magic_name__ = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: __magic_name__ = False yield item __magic_name__ = stride_left __magic_name__ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(A_ ) > stride_left: __magic_name__ = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: __magic_name__ = False yield item def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = 2**24 # 16Mo try: with subprocess.Popen(A_, stdout=subprocess.PIPE, bufsize=A_ ) as ffmpeg_process: while True: __magic_name__ = ffmpeg_process.stdout.read(A_ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
88
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __lowerCAmelCase : Optional[int] = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } __lowerCAmelCase : Optional[Any] = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' __lowerCAmelCase : Optional[Any] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def a__ ( A_ ): '''simple docstring''' __magic_name__ = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def a__ ( A_ ): '''simple docstring''' return x[0] def a__ ( A_ ): '''simple docstring''' __magic_name__ = get_letter_count(A_ ) __magic_name__ = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(A_ ) __magic_name__ = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=A_ ) __magic_name__ = """""".join(freq_to_letter[freq] ) __magic_name__ = list(freq_to_letter_str.items() ) freq_pairs.sort(key=A_, reverse=A_ ) __magic_name__ = [freq_pair[1] for freq_pair in freq_pairs] return "".join(A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = get_frequency_order(A_ ) __magic_name__ = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
88
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase : Any = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
176
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = IFPipeline _snake_case = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCAmelCase ( self ) -> Any: return self._get_dummy_components() def UpperCAmelCase ( self , A , A=0 ) -> Optional[int]: if str(A ).startswith("""mps""" ): snake_case : List[str] = torch.manual_seed(A ) else: snake_case : Optional[int] = torch.Generator(device=A ).manual_seed(A ) snake_case : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ) -> Any: self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def UpperCAmelCase ( self ) -> List[str]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase ( self ) -> List[str]: self._test_save_load_local() def UpperCAmelCase ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> List[Any]: # if snake_case : Tuple = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) snake_case : Tuple = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=A , tokenizer=A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) snake_case , snake_case : Optional[int] = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() snake_case : List[str] = None snake_case : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A , A , A , A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img snake_case : Any = IFImgaImgPipeline(**pipe_a.components ) snake_case : Dict = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A , A , A , A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting snake_case : Optional[Any] = IFInpaintingPipeline(**pipe_a.components ) snake_case : Any = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A , A , A , A ) def UpperCAmelCase ( self , A , A , A , A ) -> str: # pipeline 1 _start_torch_memory_measurement() snake_case : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Tuple = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) snake_case : Optional[int] = output.images[0] assert image.shape == (6_4, 6_4, 3) snake_case : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 snake_case : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() snake_case : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A ) snake_case : str = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) snake_case : str = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) snake_case : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 snake_case : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def UpperCAmelCase ( self , A , A , A , A ) -> int: # pipeline 1 _start_torch_memory_measurement() snake_case : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A ) snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Union[str, Any] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) snake_case : Optional[int] = output.images[0] assert image.shape == (6_4, 6_4, 3) snake_case : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() snake_case : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : int = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A ) snake_case : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A ) snake_case : int = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , original_image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) snake_case : List[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) snake_case : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 snake_case : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def UpperCAmelCase ( self , A , A , A , A ) -> Any: # pipeline 1 _start_torch_memory_measurement() snake_case : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A ) snake_case : Union[str, Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(A ) snake_case : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Tuple = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , mask_image=A , num_inference_steps=2 , generator=A , output_type="""np""" , ) snake_case : Tuple = output.images[0] assert image.shape == (6_4, 6_4, 3) snake_case : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 snake_case : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() snake_case : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A ) snake_case : Any = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A ) snake_case : str = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(A ) snake_case : List[str] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , mask_image=A , original_image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ) snake_case : List[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) snake_case : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 snake_case : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A , A ) def SCREAMING_SNAKE_CASE__ ( ) -> str: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
176
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _UpperCamelCase ( lowercase__ , lowercase__=False ): try: __SCREAMING_SNAKE_CASE : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __SCREAMING_SNAKE_CASE : Any = default else: # KEY is set, convert it to True or False. try: __SCREAMING_SNAKE_CASE : List[Any] = strtobool(lowercase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value __lowerCAmelCase : Dict =parse_flag_from_env('RUN_SLOW', default=False) def _UpperCamelCase ( lowercase__ ): return unittest.skip('''Test was skipped''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(lowercase__ ) def _UpperCamelCase ( lowercase__=None , lowercase__=None ): if test_case is None: return partial(lowercase__ , version=lowercase__ ) return unittest.skipUnless(is_torch_version('''>=''' , lowercase__ ) , F'''test requires torch version >= {version}''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(lowercase__ ) __lowerCAmelCase : Optional[Any] =( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(lowercase__ ) class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = True @classmethod def __magic_name__( cls :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() @classmethod def __magic_name__( cls :List[Any] ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __magic_name__( self :List[Any] ) -> List[str]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCAmelCase__ ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Any: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :str , lowerCAmelCase__ :Union[mock.Mock, List[mock.Mock]] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[str] = mocks if isinstance(lowerCAmelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = AcceleratorState() __SCREAMING_SNAKE_CASE : Optional[int] = tensor[None].clone().to(state.device ) __SCREAMING_SNAKE_CASE : List[str] = gather(lowercase__ ).cpu() __SCREAMING_SNAKE_CASE : Union[str, Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowercase__ ): return False return True class _lowercase : '''simple docstring''' def __init__( self :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[str]: __SCREAMING_SNAKE_CASE : List[str] = returncode __SCREAMING_SNAKE_CASE : Optional[int] = stdout __SCREAMING_SNAKE_CASE : Dict = stderr async def _UpperCamelCase ( lowercase__ , lowercase__ ): while True: __SCREAMING_SNAKE_CASE : Tuple = await stream.readline() if line: callback(lowercase__ ) else: break async def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False ): if echo: print('''\nRunning: ''' , ''' '''.join(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowercase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowercase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __SCREAMING_SNAKE_CASE : Tuple = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] def tee(lowercase__ , lowercase__ , lowercase__ , lowercase__="" ): __SCREAMING_SNAKE_CASE : Tuple = line.decode('''utf-8''' ).rstrip() sink.append(lowercase__ ) if not quiet: print(lowercase__ , lowercase__ , file=lowercase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowercase__ : tee(lowercase__ , lowercase__ , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowercase__ : tee(lowercase__ , lowercase__ , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=lowercase__ , ) return _RunOutput(await p.wait() , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=None , lowercase__=180 , lowercase__=False , lowercase__=True ): __SCREAMING_SNAKE_CASE : Union[str, Any] = asyncio.get_event_loop() __SCREAMING_SNAKE_CASE : Dict = loop.run_until_complete( _stream_subprocess(lowercase__ , env=lowercase__ , stdin=lowercase__ , timeout=lowercase__ , quiet=lowercase__ , echo=lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = ''' '''.join(lowercase__ ) if result.returncode > 0: __SCREAMING_SNAKE_CASE : int = '''\n'''.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class _lowercase ( A__ ): '''simple docstring''' pass def _UpperCamelCase ( lowercase__ , lowercase__=False ): try: __SCREAMING_SNAKE_CASE : Union[str, Any] = subprocess.check_output(lowercase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowercase__ , '''decode''' ): __SCREAMING_SNAKE_CASE : List[str] = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(lowercase__ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
9
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a :int = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
312
0
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def A_ ( snake_case_ : str ): '''simple docstring''' return "".join(sorted(UpperCAmelCase__ ) ) def A_ ( snake_case_ : str ): '''simple docstring''' return word_by_signature[signature(UpperCAmelCase__ )] __A : str = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') __A : List[Any] = sorted({word.strip().lower() for word in data.splitlines()}) __A : List[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __A : List[str] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
371
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , ): UpperCamelCase : Union[str, Any] = parent UpperCamelCase : str = batch_size UpperCamelCase : int = seq_length UpperCamelCase : Optional[Any] = is_training UpperCamelCase : Any = use_input_lengths UpperCamelCase : Tuple = use_token_type_ids UpperCamelCase : List[Any] = use_labels UpperCamelCase : Union[str, Any] = gelu_activation UpperCamelCase : Dict = sinusoidal_embeddings UpperCamelCase : Optional[int] = causal UpperCamelCase : List[Any] = asm UpperCamelCase : int = n_langs UpperCamelCase : Optional[Any] = vocab_size UpperCamelCase : str = n_special UpperCamelCase : Dict = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : str = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : Any = type_sequence_label_size UpperCamelCase : str = initializer_range UpperCamelCase : str = num_labels UpperCamelCase : Union[str, Any] = num_choices UpperCamelCase : List[str] = summary_type UpperCamelCase : int = use_proj UpperCamelCase : List[str] = scope UpperCamelCase : Dict = bos_token_id def a_ ( self ): UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Union[str, Any] = None if self.use_input_lengths: UpperCamelCase : str = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase : Tuple = None if self.use_token_type_ids: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCamelCase : int = None UpperCamelCase : Dict = None UpperCamelCase : str = None if self.use_labels: UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Dict = ids_tensor([self.batch_size] , 2 ).float() UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a_ ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Optional[int] = XLMModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , lengths=SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , langs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Optional[Any] = XLMWithLMHeadModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : List[str] = XLMForQuestionAnsweringSimple(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : int = XLMForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model( SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , p_mask=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Any = model( SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , cls_index=SCREAMING_SNAKE_CASE_ , is_impossible=SCREAMING_SNAKE_CASE_ , ) ((UpperCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , ) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : Union[str, Any] = XLMForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : int = self.num_labels UpperCamelCase : int = XLMForTokenClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase : List[Any] = self.num_choices UpperCamelCase : Tuple = XLMForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self ): UpperCamelCase : int = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : List[Any] = config_and_inputs UpperCamelCase : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowercase : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase : List[Any] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase : Optional[Any] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): UpperCamelCase : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCamelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def a_ ( self ): UpperCamelCase : List[Any] = XLMModelTester(self ) UpperCamelCase : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , emb_dim=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ): self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( [isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_attentions in attentions] , [True] * len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(SCREAMING_SNAKE_CASE_ ): # adds PAD dummy token UpperCamelCase : int = min_length + idx + 1 UpperCamelCase : Tuple = min_length + idx + 1 UpperCamelCase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 ): self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual( [isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for iter_hidden_states in hidden_states] , [True] * len(SCREAMING_SNAKE_CASE_ ) , ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(SCREAMING_SNAKE_CASE_ ): # adds PAD dummy token UpperCamelCase : List[str] = min_length + idx + 1 UpperCamelCase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(SCREAMING_SNAKE_CASE_ ) , ) pass @slow def a_ ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = XLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def a_ ( self ): UpperCamelCase : Dict = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor([[14, 447]] , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) # the president UpperCamelCase : List[Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , SCREAMING_SNAKE_CASE_ )
27
0
def lowercase__ ( __snake_case : list ): '''simple docstring''' for i in range(len(__snake_case ) - 1 , 0 , -1 ): UpperCAmelCase_ : Dict = False for j in range(__snake_case , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase_ , UpperCAmelCase_ : Any = unsorted[j - 1], unsorted[j] UpperCAmelCase_ : int = True for j in range(__snake_case ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = unsorted[j + 1], unsorted[j] UpperCAmelCase_ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCAmelCase = [int(item) for item in user_input.split(',')] print(F'{cocktail_shaker_sort(unsorted) = }')
29
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
1
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase : Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase__ ( A : Any , A : Optional[int] , A : Union[str, Any] = None , A : Any = None , A : List[str] = None , A : Dict = None , A : Any = None , A : Optional[Any] = False , ): '''simple docstring''' UpperCAmelCase = bnb_quantization_config.load_in_abit UpperCAmelCase = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCAmelCase = [] # custom device map if isinstance(_A , _A ) and len(device_map.keys() ) > 1: UpperCAmelCase = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCAmelCase = get_keys_to_not_convert(_A ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_A ) UpperCAmelCase = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCAmelCase = [] UpperCAmelCase = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_A ) # compatibility with peft UpperCAmelCase = load_in_abit UpperCAmelCase = load_in_abit UpperCAmelCase = get_parameter_device(_A ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCAmelCase = replace_with_bnb_layers(_A , _A , modules_to_not_convert=_A ) # convert param to the right dtype UpperCAmelCase = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCAmelCase = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCAmelCase = getattr(_A , _A , _A ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_A ): param.to(_A ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): UpperCAmelCase = replace_with_bnb_layers( _A , _A , modules_to_not_convert=_A ) UpperCAmelCase = get_quantized_model_device_map( _A , _A , _A , max_memory=_A , no_split_module_classes=_A , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCAmelCase = True UpperCAmelCase = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( _A , _A , _A , dtype=bnb_quantization_config.torch_dtype , offload_folder=_A , offload_state_dict=_A , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_A , device_map=_A , offload_dir=_A ) def lowerCamelCase__ ( A : Union[str, Any] , A : int , A : int=None , A : List[str]=None , A : Union[str, Any]=None ): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): UpperCAmelCase = {'': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(_A , _A ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCAmelCase = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCAmelCase = {} UpperCAmelCase = special_dtypes UpperCAmelCase = no_split_module_classes UpperCAmelCase = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCAmelCase = get_balanced_memory( _A , low_zero=(device_map == '''balanced_low_0''') , max_memory=_A , **_A , ) UpperCAmelCase = max_memory UpperCAmelCase = infer_auto_device_map(_A , **_A ) if isinstance(_A , _A ): # check if don't have any quantized module on the cpu UpperCAmelCase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCAmelCase = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '''\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : List[Any]=None , A : Union[str, Any]=None ): '''simple docstring''' if modules_to_not_convert is None: UpperCAmelCase = [] UpperCAmelCase = _replace_with_bnb_layers( _A , _A , _A , _A ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def lowerCamelCase__ ( A : Union[str, Any] , A : Tuple , A : List[str]=None , A : int=None , ): '''simple docstring''' UpperCAmelCase = False for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase = [] current_key_name.append(_A ) if isinstance(_A , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCAmelCase = '.'.join(_A ) UpperCAmelCase = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCAmelCase = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCAmelCase = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_A , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCAmelCase = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCAmelCase = module.weight.data if module.bias is not None: UpperCAmelCase = module.bias.data bnb_module.requires_grad_(_A ) setattr(_A , _A , _A ) UpperCAmelCase = True if len(list(module.children() ) ) > 0: UpperCAmelCase = _replace_with_bnb_layers( _A , _A , _A , _A ) UpperCAmelCase = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase__ ( A : Union[str, Any] ): '''simple docstring''' with init_empty_weights(): UpperCAmelCase = deepcopy(_A ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCAmelCase = find_tied_parameters(_A ) # For compatibility with Accelerate < 0.18 if isinstance(_A , _A ): UpperCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase = sum(_A , [] ) UpperCAmelCase = len(_A ) > 0 # Check if it is a base model UpperCAmelCase = False if hasattr(_A , '''base_model_prefix''' ): UpperCAmelCase = not hasattr(_A , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase = list(model.named_children() ) UpperCAmelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase = set(_A ) - set(_A ) UpperCAmelCase = list(set(_A ) ) + list(_A ) # remove ".weight" from the keys UpperCAmelCase = ['.weight', '.bias'] UpperCAmelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase = name.replace(_A , '''''' ) filtered_module_names.append(_A ) return filtered_module_names def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for m in model.modules(): if isinstance(_A , bnb.nn.Linearabit ): return True return False def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' return next(parameter.parameters() ).device def lowerCamelCase__ ( A : Dict , A : Dict , A : Tuple , A : Optional[int] , A : Union[str, Any] , A : str , A : int ): '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(_A , _A , 0 , dtype=_A , value=_A ) UpperCAmelCase = param_name UpperCAmelCase = model if "." in tensor_name: UpperCAmelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCAmelCase = getattr(_A , _A ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) UpperCAmelCase = new_module UpperCAmelCase = splits[-1] # offload weights UpperCAmelCase = False offload_weight(module._parameters[tensor_name] , _A , _A , index=_A ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , _A , index=_A , ) else: offload_weight(_A , _A , _A , index=_A ) offload_weight(_A , param_name.replace('''weight''' , '''SCB''' ) , _A , index=_A ) set_module_tensor_to_device(_A , _A , '''meta''' , dtype=_A , value=torch.empty(*param.size() ) )
353
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCamelCase__: def __init__( self : Any , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : float = 0 )-> None: """simple docstring""" UpperCAmelCase , UpperCAmelCase = row, column UpperCAmelCase = [[default_value for c in range(lowerCAmelCase )] for r in range(lowerCAmelCase )] def __str__( self : int )-> str: """simple docstring""" UpperCAmelCase = F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier UpperCAmelCase = 0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase = max(lowerCAmelCase , len(str(lowerCAmelCase ) ) ) UpperCAmelCase = F"""%{max_element_length}s""" # Make string and return def single_line(lowerCAmelCase : list[float] ) -> str: nonlocal string_format_identifier UpperCAmelCase = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowerCAmelCase ) for row_vector in self.array ) return s def __repr__( self : Tuple )-> str: """simple docstring""" return str(self ) def a__( self : str , lowerCAmelCase : tuple[int, int] )-> bool: """simple docstring""" if not (isinstance(lowerCAmelCase , (list, tuple) ) and len(lowerCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int , lowerCAmelCase : tuple[int, int] )-> Any: """simple docstring""" assert self.validate_indicies(lowerCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self : List[str] , lowerCAmelCase : tuple[int, int] , lowerCAmelCase : float )-> None: """simple docstring""" assert self.validate_indicies(lowerCAmelCase ) UpperCAmelCase = value def __add__( self : int , lowerCAmelCase : Matrix )-> Matrix: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = self[r, c] + another[r, c] return result def __neg__( self : Dict )-> Matrix: """simple docstring""" UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = -self[r, c] return result def __sub__( self : Union[str, Any] , lowerCAmelCase : Matrix )-> Matrix: """simple docstring""" return self + (-another) def __mul__( self : Union[str, Any] , lowerCAmelCase : int | float | Matrix )-> Matrix: """simple docstring""" if isinstance(lowerCAmelCase , (int, float) ): # Scalar multiplication UpperCAmelCase = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = self[r, c] * another return result elif isinstance(lowerCAmelCase , lowerCAmelCase ): # Matrix multiplication assert self.column == another.row UpperCAmelCase = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase = F"""Unsupported type given for another ({type(lowerCAmelCase )})""" raise TypeError(lowerCAmelCase ) def a__( self : Optional[Any] )-> Matrix: """simple docstring""" UpperCAmelCase = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase = self[r, c] return result def a__( self : Tuple , lowerCAmelCase : Matrix , lowerCAmelCase : Matrix )-> Any: """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase = v.transpose() UpperCAmelCase = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCAmelCase = 1 print(f"""a^(-1) is {ainv}""" ) # u, v UpperCAmelCase = Matrix(3 , 1 , 0 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1, 2, -3 UpperCAmelCase = Matrix(3 , 1 , 0 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(A , A )}""" ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() testa()
91
0
import math import random def lowercase__ ( __snake_case : float , __snake_case : bool = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.0_2 def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(__snake_case ): # Forward propagation UpperCAmelCase_ : str = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCAmelCase_ : Union[str, Any] = (expected / 100) - layer_a # Error delta UpperCAmelCase_ : Any = layer_1_error * sigmoid_function(__snake_case , __snake_case ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('Expected value: ')) __UpperCAmelCase = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
29
"""simple docstring""" def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = 1 while len(_UpperCamelCase ) < 1e6: constant.append(str(_UpperCamelCase ) ) i += 1 __lowerCAmelCase = "".join(_UpperCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
57
0
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 100 * 2**20, 900 * 2**20] ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , __UpperCamelCase ) lowerCAmelCase_ : str = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowerCAmelCase_ : Union[str, Any] = dataset_size < in_memory_max_size else: lowerCAmelCase_ : Any = False lowerCAmelCase_ : Optional[Any] = is_small_dataset(__UpperCamelCase ) assert result == expected
161
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def __lowerCamelCase ( __UpperCamelCase ) -> np.ndarray: """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def __lowerCamelCase ( __UpperCamelCase ) -> np.ndarray: """simple docstring""" return (gray > 127) & (gray <= 255) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> np.ndarray: """simple docstring""" lowerCAmelCase_ : List[str] = np.zeros_like(__UpperCamelCase ) lowerCAmelCase_ : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCAmelCase_ : List[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCAmelCase_ : List[str] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCAmelCase_ : int = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowercase__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" lowercase__ = np.array(Image.open(lena_path)) # kernel to be applied lowercase__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowercase__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowercase__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
161
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Any = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
232
from torch import nn class _lowercase ( nn.Module ): def __init__( self : Any , snake_case : Dict , snake_case : Union[str, Any] ) -> Dict: """simple docstring""" super().__init__() UpperCamelCase_ : List[Any] = class_size UpperCamelCase_ : List[Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCamelCase_ : int = nn.Linear(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Any ) -> str: """simple docstring""" UpperCamelCase_ : Dict = self.mlp(snake_case ) return logits
175
0
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BICUBIC , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_5_5 , A : bool = True , A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A : List[Any] , ): super().__init__(**A ) _UpperCAmelCase : int = size if size is not None else {"shortest_edge": 2_2_4} _UpperCAmelCase : Tuple = get_size_dict(A , default_to_square=A ) _UpperCAmelCase : int = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _UpperCAmelCase : Union[str, Any] = get_size_dict(A , param_name="crop_size" ) _UpperCAmelCase : str = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Tuple = resample _UpperCAmelCase : List[Any] = do_center_crop _UpperCAmelCase : List[Any] = crop_size _UpperCAmelCase : Tuple = do_rescale _UpperCAmelCase : List[Any] = rescale_factor _UpperCAmelCase : Dict = do_normalize _UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self : Optional[int] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ): _UpperCAmelCase : Tuple = get_size_dict(A , default_to_square=A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCAmelCase : Any = int((2_5_6 / 2_2_4) * size["shortest_edge"] ) _UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(A , size=A , default_to_square=A ) _UpperCAmelCase : str = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( A , size=(size_dict["height"], size_dict["width"]) , resample=A , data_format=A , **A ) def snake_case_ ( self : int , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Optional[Any] , ): _UpperCAmelCase : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(A , size=(size["height"], size["width"]) , data_format=A , **A ) def snake_case_ ( self : List[str] , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ): return rescale(A , scale=A , data_format=A , **A ) def snake_case_ ( self : List[str] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : str , ): return normalize(A , mean=A , std=A , data_format=A , **A ) def snake_case_ ( self : Tuple , A : ImageInput , A : Optional[bool] = None , A : Optional[Dict[str, int]] = None , A : PILImageResampling = None , A : Optional[bool] = None , A : Optional[Dict[str, int]] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, Iterable[float]]] = None , A : Optional[Union[float, Iterable[float]]] = None , A : Optional[TensorType] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : Dict , ): _UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[str] = resample if resample is not None else self.resample _UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCAmelCase : Any = size if size is not None else self.size _UpperCAmelCase : Optional[int] = get_size_dict(A , default_to_square=A ) _UpperCAmelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : List[str] = get_size_dict(A , param_name="crop_size" ) _UpperCAmelCase : List[Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase : Any = [to_numpy_array(A ) for image in images] if do_resize: _UpperCAmelCase : str = [self.resize(A , A , A ) for image in images] if do_center_crop: _UpperCAmelCase : Dict = [self.center_crop(A , A ) for image in images] if do_rescale: _UpperCAmelCase : Dict = [self.rescale(A , A ) for image in images] if do_normalize: _UpperCAmelCase : Optional[int] = [self.normalize(A , A , A ) for image in images] _UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] _UpperCAmelCase : List[Any] = {"pixel_values": images} return BatchFeature(data=A , tensor_type=A )
202
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Any = "\nHuman: <<task>>\n\nAssistant: " _lowerCAmelCase : str = "huggingface-tools/default-prompts" _lowerCAmelCase : Union[str, Any] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int="run" ) -> int: '''simple docstring''' if prompt_or_repo_id is None: _UpperCAmelCase : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , SCREAMING_SNAKE_CASE__ ) is not None: return prompt_or_repo_id _UpperCAmelCase : Dict = cached_file( SCREAMING_SNAKE_CASE__ , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(SCREAMING_SNAKE_CASE__ , "r" , encoding="utf-8" ) as f: return f.read()
202
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __snake_case : def __init__( self ,snake_case ,snake_case=13 ,snake_case=7 ,snake_case=True ,snake_case=True ,snake_case=True ,snake_case=99 ,snake_case=32 ,snake_case=5 ,snake_case=4 ,snake_case=37 ,snake_case="gelu" ,snake_case=0.1 ,snake_case=0.1 ,snake_case=512 ,snake_case=16 ,snake_case=2 ,snake_case=0.02 ,snake_case=3 ,snake_case=4 ,snake_case=None ,): '''simple docstring''' lowercase : str = parent lowercase : List[str] = batch_size lowercase : Dict = seq_length lowercase : Tuple = is_training lowercase : Any = use_token_type_ids lowercase : str = use_labels lowercase : List[str] = vocab_size lowercase : Union[str, Any] = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : Tuple = intermediate_size lowercase : Any = hidden_act lowercase : Any = hidden_dropout_prob lowercase : Optional[int] = attention_probs_dropout_prob lowercase : Optional[int] = max_position_embeddings lowercase : str = type_vocab_size lowercase : Tuple = type_sequence_label_size lowercase : Union[str, Any] = initializer_range lowercase : List[str] = num_labels lowercase : Any = num_choices lowercase : Optional[int] = scope lowercase : Dict = self.vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : Optional[Any] = None if self.use_token_type_ids: lowercase : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase : Any = None lowercase : Dict = None lowercase : Any = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : List[str] = OpenAIGPTConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) lowercase : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : int = OpenAIGPTModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase : Dict = model(snake_case ,token_type_ids=snake_case ,head_mask=snake_case ) lowercase : Union[str, Any] = model(snake_case ,token_type_ids=snake_case ) lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : List[Any] = OpenAIGPTLMHeadModel(snake_case ) model.to(snake_case ) model.eval() lowercase : Dict = model(snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : List[Any] = OpenAIGPTDoubleHeadsModel(snake_case ) model.to(snake_case ) model.eval() lowercase : int = model(snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,*snake_case ): '''simple docstring''' lowercase : List[Any] = self.num_labels lowercase : Any = OpenAIGPTForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() lowercase : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = model(snake_case ,token_type_ids=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Any = config_and_inputs lowercase : int = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __snake_case ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Optional[Any]= ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _a : int= ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _a : str= ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case=False ): '''simple docstring''' lowercase : Tuple = super()._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowercase : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) ,dtype=torch.long ,device=snake_case ,) lowercase : Tuple = inputs_dict["""labels"""] lowercase : Dict = inputs_dict["""labels"""] lowercase : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) ,dtype=torch.long ,device=snake_case ,) lowercase : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=snake_case ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = OpenAIGPTModelTester(self ) lowercase : str = ConfigTester(self ,config_class=snake_case ,n_embd=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = OpenAIGPTModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(snake_case ) lowercase : List[Any] = torch.tensor([[481, 4735, 544]] ,dtype=torch.long ,device=snake_case ) # the president is lowercase : str = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowercase : int = model.generate(snake_case ,do_sample=snake_case ) self.assertListEqual(output_ids[0].tolist() ,snake_case )
20
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __lowercase : Tuple = pytest.mark.integration __lowercase : Optional[int] = {'comet'} __lowercase : List[str] = importlib.util.find_spec('fairseq') is not None __lowercase : str = {'code_eval'} __lowercase : List[Any] = os.name == 'nt' __lowercase : Optional[Any] = {'bertscore', 'frugalscore', 'perplexity'} __lowercase : Optional[Any] = importlib.util.find_spec('transformers') is not None def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self : int , _SCREAMING_SNAKE_CASE : List[Any] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): @wraps(_SCREAMING_SNAKE_CASE ) def wrapper(self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , _SCREAMING_SNAKE_CASE ) return wrapper def lowerCamelCase (): __a : List[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @local class __UpperCamelCase ( parameterized.TestCase ): A_ = {} A_ = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : int = '[...]' __a : Tuple = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , __a ) ).module_path ) __a : Optional[Any] = datasets.load.import_main_class(metric_module.__name__ , dataset=__a ) # check parameters __a : Dict = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__a , metric_module.__name__ ): with self.use_local_metrics(): try: __a : str = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Tuple = '[...]' __a : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , __a ) ).module_path ) # run doctest with self.use_local_metrics(): __a : List[Any] = doctest.testmod(__a , verbose=__a , raise_on_error=__a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__a ): yield else: yield @contextmanager def __UpperCAmelCase ( self ): '''simple docstring''' def load_local_metric(__a , *__a , **__a ): return load_metric(os.path.join('metrics' , __a ) , *__a , **__a ) with patch('datasets.load_metric' ) as mock_load_metric: __a : Dict = load_local_metric yield @classmethod def __UpperCAmelCase ( cls , __a ): '''simple docstring''' def wrapper(__a ): __a : Optional[Any] = contextmanager(__a ) __a : str = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class __UpperCamelCase ( lowerCAmelCase_ ): def __UpperCAmelCase ( self , __a ): '''simple docstring''' assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: __a : Dict = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): import torch def bert_cos_score_idf(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , *_SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : Optional[int] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_SCREAMING_SNAKE_CASE ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: __a : str = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): def load_from_checkpoint(_SCREAMING_SNAKE_CASE : Optional[int] ): class __UpperCamelCase : def __UpperCAmelCase ( self , __a , *__a , **__a ): '''simple docstring''' assert len(__a ) == 2 __a : Dict = [0.19, 0.92] return scores, sum(__a ) / len(__a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: __a : str = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: __a : int = load_from_checkpoint yield def lowerCamelCase (): __a : Optional[Any] = load_metric(os.path.join('metrics' , 'seqeval' ) ) __a : List[str] = 'ERROR' __a : List[str] = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(_SCREAMING_SNAKE_CASE , match=re.escape(_SCREAMING_SNAKE_CASE ) ): metric.compute(predictions=[] , references=[] , scheme=_SCREAMING_SNAKE_CASE )
27
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase__ ( __A ): """simple docstring""" a = ['image_processor', 'tokenizer'] a = 'LayoutLMv2ImageProcessor' a = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Dict , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Optional[Any] ) -> Any: if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowercase , ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowercase , __lowercase ) def __call__( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] = None , __lowerCamelCase : List[str] = None , __lowerCamelCase : List[Any] = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : List[str] = True , __lowerCamelCase : List[str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Any] = None , __lowerCamelCase : List[str] = 0 , __lowerCamelCase : List[str] = None , __lowerCamelCase : Any = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : Optional[int] = False , __lowerCamelCase : Any = False , __lowerCamelCase : List[str] = False , __lowerCamelCase : List[str] = False , __lowerCamelCase : Any = True , __lowerCamelCase : Dict = None , **__lowerCamelCase : Optional[int] , ) -> Any: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor SCREAMING_SNAKE_CASE__ = self.image_processor(images=__lowercase , return_tensors=__lowercase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__lowercase , __lowercase ): SCREAMING_SNAKE_CASE__ = [text] # add batch dimension (as the image processor always adds a batch dimension) SCREAMING_SNAKE_CASE__ = features['''words'''] SCREAMING_SNAKE_CASE__ = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__lowercase , add_special_tokens=__lowercase , padding=__lowercase , truncation=__lowercase , max_length=__lowercase , stride=__lowercase , pad_to_multiple_of=__lowercase , return_token_type_ids=__lowercase , return_attention_mask=__lowercase , return_overflowing_tokens=__lowercase , return_special_tokens_mask=__lowercase , return_offsets_mapping=__lowercase , return_length=__lowercase , verbose=__lowercase , return_tensors=__lowercase , **__lowercase , ) # add pixel values SCREAMING_SNAKE_CASE__ = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: SCREAMING_SNAKE_CASE__ = self.get_overflowing_images(__lowercase , encoded_inputs['''overflow_to_sample_mapping'''] ) SCREAMING_SNAKE_CASE__ = images return encoded_inputs def lowercase_ ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] ) -> str: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image SCREAMING_SNAKE_CASE__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__lowercase ) != len(__lowercase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__lowercase )} and {len(__lowercase )}''' ) return images_with_overflow def lowercase_ ( self : int , *__lowerCamelCase : Dict , **__lowerCamelCase : int ) -> Dict: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def lowercase_ ( self : Dict , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[Any] ) -> str: return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def lowercase_ ( self : int ) -> Optional[Any]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase_ ( self : List[str] ) -> Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowercase , ) return self.image_processor_class @property def lowercase_ ( self : Any ) -> Tuple: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowercase , ) return self.image_processor
359
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] SCREAMING_SNAKE_CASE__ = (low + high) // 2 SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = max_subarray(_A , _A , _A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = max_subarray(_A , mid + 1 , _A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = max_cross_sum(_A , _A , _A , _A ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = float('''-inf''' ), -1 SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = float('''-inf''' ), -1 SCREAMING_SNAKE_CASE__ = 0 for i in range(_A , low - 1 , -1 ): summ += arr[i] if summ > left_sum: SCREAMING_SNAKE_CASE__ = summ SCREAMING_SNAKE_CASE__ = i SCREAMING_SNAKE_CASE__ = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: SCREAMING_SNAKE_CASE__ = summ SCREAMING_SNAKE_CASE__ = i return max_left, max_right, (left_sum + right_sum) def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [randint(1 , _A ) for _ in range(_A )] SCREAMING_SNAKE_CASE__ = time.time() max_subarray(_A , 0 , input_size - 1 ) SCREAMING_SNAKE_CASE__ = time.time() return end - start def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [10, 1_00, 10_00, 1_00_00, 5_00_00, 10_00_00, 20_00_00, 30_00_00, 40_00_00, 50_00_00] SCREAMING_SNAKE_CASE__ = [time_max_subarray(_A ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(_A , _A ): print(_A , '''\t\t''' , _A ) plt.plot(_A , _A ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
218
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__: str = logging.get_logger(__name__) UpperCamelCase__: str = {"vocab_file": "vocab.json"} UpperCamelCase__: Optional[int] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCamelCase__: List[str] = {"mgp-str": 27} class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any]="[GO]" , __snake_case : List[Any]="[GO]" , __snake_case : Union[str, Any]="[s]" , __snake_case : Optional[Any]="[GO]" , **__snake_case : List[Any] ) -> Union[str, Any]: super().__init__( unk_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : Union[str, Any] = json.load(__snake_case ) UpperCAmelCase : Optional[int] = {v: k for k, v in self.vocab.items()} @property def A ( self : Union[str, Any] ) -> List[str]: return len(self.vocab ) def A ( self : Dict ) -> List[Any]: return dict(self.vocab , **self.added_tokens_encoder ) def A ( self : int , __snake_case : Union[str, Any] ) -> Dict: UpperCAmelCase : int = [] for s in text: char_tokens.extend(__snake_case ) return char_tokens def A ( self : Optional[int] , __snake_case : List[str] ) -> List[Any]: return self.vocab.get(__snake_case , self.vocab.get(self.unk_token ) ) def A ( self : Optional[Any] , __snake_case : Optional[int] ) -> int: return self.decoder.get(__snake_case ) def A ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__snake_case ) ) return UpperCAmelCase : List[str] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) return (vocab_file,)
23
"""simple docstring""" def _A (__a = 50 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
91
0
"""simple docstring""" def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if isinstance(A__ , A__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(A__ , A__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __lowerCamelCase = False if num < 0: __lowerCamelCase = True __lowerCamelCase = -num __lowerCamelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A__ ) for e in binary ) return "0b" + "".join(str(A__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
353
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
0
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Union[str, Any] , _A :List[Any]=0.01 , _A :Optional[Any]=1_000 ) -> Tuple: '''simple docstring''' __A = p_stop __A = max_length def __iter__( self :List[Any] ) -> Optional[Any]: '''simple docstring''' __A = 0 __A = False while not stop and count < self.max_length: yield count count += 1 __A = random.random() < self.p_stop class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :List[Any] , _A :Tuple , _A :int , _A :Tuple=False , _A :str=True ) -> Optional[int]: '''simple docstring''' __A = [ BatchSamplerShard(_A , 2 , _A , split_batches=_A , even_batches=_A ) for i in range(2 ) ] __A = [list(_A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_A ) for shard in batch_sampler_shards] , [len(_A ) for e in expected] ) self.assertListEqual(_A , _A ) def lowercase_ ( self :Any ) -> int: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A ) def lowercase_ ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) def lowercase_ ( self :Tuple ) -> List[str]: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[[0, 1]], []] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) def lowercase_ ( self :Optional[Any] ) -> Tuple: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[[0, 1]], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) def lowercase_ ( self :Tuple ) -> Dict: '''simple docstring''' __A = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __A = [BatchSamplerShard(_A , 2 , _A , even_batches=_A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase_ ( self :int , _A :Optional[Any] , _A :List[str] , _A :Dict , _A :Any=False , _A :str=2 , _A :Any=False ) -> Dict: '''simple docstring''' random.seed(_A ) __A = list(_A ) __A = [ IterableDatasetShard( _A , batch_size=_A , drop_last=_A , num_processes=_A , process_index=_A , split_batches=_A , ) for i in range(_A ) ] __A = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_A ) iterable_dataset_lists.append(list(_A ) ) __A = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __A = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_A ) , len(_A ) ) self.assertTrue(len(_A ) % shard_batch_size == 0 ) __A = [] for idx in range(0 , len(_A ) , _A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_A ) < len(_A ): reference += reference self.assertListEqual(_A , reference[: len(_A )] ) def lowercase_ ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' __A = 42 __A = RandomIterableDataset() self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) # Edge case with a very small dataset __A = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) def lowercase_ ( self :Optional[Any] ) -> List[str]: '''simple docstring''' __A = BatchSampler(range(16 ) , batch_size=4 , drop_last=_A ) __A = SkipBatchSampler(_A , 2 ) self.assertListEqual(list(_A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :List[str] ) -> Any: '''simple docstring''' __A = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :Any ) -> Dict: '''simple docstring''' __A = DataLoader(list(range(16 ) ) , batch_size=4 ) __A = skip_first_batches(_A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :Tuple ) -> Optional[Any]: '''simple docstring''' __A = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase_ ( self :Dict ) -> Any: '''simple docstring''' Accelerator() __A = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
161
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[Any] = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] a__ : str = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
161
1
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def snake_case__ ( __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[str]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=__lowerCamelCase ) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' _a = field( metadata={'help': 'The csv file to plot.'} , ) _a = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) _a = field( default=lowerCAmelCase_ , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) _a = field( default=lowerCAmelCase_ , metadata={'help': 'Disable logarithmic scale when plotting'} , ) _a = field( default=lowerCAmelCase_ , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) _a = field( default=lowerCAmelCase_ , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) _a = list_field( default=lowerCAmelCase_ , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def snake_case__ ( __lowerCamelCase : Dict ): """simple docstring""" try: int(__lowerCamelCase ) return True except ValueError: return False def snake_case__ ( __lowerCamelCase : Any ): """simple docstring""" try: float(__lowerCamelCase ) return True except ValueError: return False class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str, lowerCamelCase : str )-> Optional[int]: lowerCamelCase__ : int =args lowerCamelCase__ : Optional[Any] =defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file, newline='''''' ) as csv_file: lowerCamelCase__ : Optional[Any] =csv.DictReader(lowerCamelCase_ ) for row in reader: lowerCamelCase__ : str =row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None lowerCamelCase__ : str =int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None lowerCamelCase__ : Union[str, Any] =float(row['''result'''] ) def snake_case ( self : List[str] )-> str: lowerCamelCase__ , lowerCamelCase__ : List[Any] =plt.subplots() lowerCamelCase__ : Optional[int] ='''Time usage''' if self.args.is_time else '''Memory usage''' lowerCamelCase__ : Optional[Any] =title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowerCamelCase__ : Optional[int] =sorted(set(self.result_dict[model_name]['''bsz'''] ) ) lowerCamelCase__ : Tuple =sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) lowerCamelCase__ : Optional[int] =self.result_dict[model_name]['''result'''] ((lowerCamelCase__) , (lowerCamelCase__)) : Tuple =( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowerCamelCase__ : Optional[int] =( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowerCamelCase__ : Optional[Any] =np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results], dtype=lowerCamelCase_, ) else: lowerCamelCase__ : str =np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results], dtype=np.floataa, ) ((lowerCamelCase__) , (lowerCamelCase__)) : Any =( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) lowerCamelCase__ : Any =np.asarray(lowerCamelCase_, lowerCamelCase_ )[: len(lowerCamelCase_ )] plt.scatter( lowerCamelCase_, lowerCamelCase_, label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(lowerCamelCase_, lowerCamelCase_, '''--''' ) title_str += F''' {label_model_name} vs.''' lowerCamelCase__ : Tuple =title_str[:-4] lowerCamelCase__ : Tuple ='''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(lowerCamelCase_ ) plt.xlabel(lowerCamelCase_ ) plt.ylabel(lowerCamelCase_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : List[str] =HfArgumentParser(__lowerCamelCase ) lowerCamelCase__ : Dict =parser.parse_args_into_dataclasses()[0] lowerCamelCase__ : List[str] =Plot(args=__lowerCamelCase ) plot.plot() if __name__ == "__main__": main()
355
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowercase : Tuple = False class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : List[Any] )-> Dict: lowerCamelCase__ : str =VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) lowerCamelCase__ : Dict =torch.manual_seed(0 ) lowerCamelCase__ : str =pipe( image=lowerCamelCase, generator=lowerCamelCase, guidance_scale=7.5, num_inference_steps=50, output_type='''numpy''', ).images lowerCamelCase__ : Dict =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : List[Any] =np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
272
0
"""simple docstring""" import os def __magic_name__ ( __snake_case : str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as input_file: lowercase : Dict = [ [int(__snake_case ) for element in line.split("," )] for line in input_file.readlines() ] lowercase : List[Any] = len(__snake_case ) lowercase : int = len(matrix[0] ) lowercase : Optional[int] = [[-1 for _ in range(__snake_case )] for _ in range(__snake_case )] for i in range(__snake_case ): lowercase : int = matrix[i][0] for j in range(1 , __snake_case ): for i in range(__snake_case ): lowercase : Optional[int] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __snake_case ): lowercase : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"{solution() = }")
202
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a__ ( unittest.TestCase ): def __magic_name__ ( self ): lowercase : Optional[int] = "laion/clap-htsat-unfused" lowercase : Optional[int] = tempfile.mkdtemp() def __magic_name__ ( self , **_a ): return RobertaTokenizer.from_pretrained(self.checkpoint , **_a ) def __magic_name__ ( self , **_a ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_a ) def __magic_name__ ( self ): shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ): lowercase : Optional[int] = self.get_tokenizer() lowercase : List[Any] = self.get_feature_extractor() lowercase : Dict = ClapProcessor(tokenizer=_a , feature_extractor=_a ) processor.save_pretrained(self.tmpdirname ) lowercase : int = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _a ) def __magic_name__ ( self ): lowercase : Tuple = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase : Optional[int] = self.get_feature_extractor(do_normalize=_a , padding_value=1.0 ) lowercase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _a ) def __magic_name__ ( self ): lowercase : List[Any] = self.get_feature_extractor() lowercase : List[str] = self.get_tokenizer() lowercase : int = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Dict = floats_list((3, 1_000) ) lowercase : str = feature_extractor(_a , return_tensors="np" ) lowercase : Dict = processor(audios=_a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ ( self ): lowercase : Dict = self.get_feature_extractor() lowercase : int = self.get_tokenizer() lowercase : Dict = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Optional[Any] = "This is a test string" lowercase : Any = processor(text=_a ) lowercase : List[Any] = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ): lowercase : Optional[int] = self.get_feature_extractor() lowercase : Any = self.get_tokenizer() lowercase : Union[str, Any] = ClapProcessor(tokenizer=_a , feature_extractor=_a ) lowercase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase : str = processor.batch_decode(_a ) lowercase : Optional[int] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __magic_name__ ( self ): lowercase : List[Any] = self.get_feature_extractor() lowercase : Union[str, Any] = self.get_tokenizer() lowercase : Any = ClapProcessor(tokenizer=_a , feature_extractor=_a ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
202
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __UpperCamelCase ( unittest.TestCase ): @property def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.dummy_uncond_unet __a : Dict = KarrasVeScheduler() __a : List[str] = KarrasVePipeline(unet=__a , scheduler=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : int = torch.manual_seed(0 ) __a : Any = pipe(num_inference_steps=2 , generator=__a , output_type='numpy' ).images __a : Dict = torch.manual_seed(0 ) __a : Optional[Any] = pipe(num_inference_steps=2 , generator=__a , output_type='numpy' , return_dict=__a )[0] __a : Dict = image[0, -3:, -3:, -1] __a : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a : Optional[int] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = 'google/ncsnpp-celebahq-256' __a : str = UNetaDModel.from_pretrained(__a ) __a : Dict = KarrasVeScheduler() __a : Optional[Any] = KarrasVePipeline(unet=__a , scheduler=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __a : Tuple = torch.manual_seed(0 ) __a : str = pipe(num_inference_steps=20 , generator=__a , output_type='numpy' ).images __a : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __a : List[str] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
370
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('iterations must be defined as integers' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) __a : Dict = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_SCREAMING_SNAKE_CASE ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
294
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( __lowercase ): @staticmethod @abstractmethod def __UpperCAmelCase ( UpperCAmelCase__ : ArgumentParser ) -> str: raise NotImplementedError() @abstractmethod def __UpperCAmelCase ( self : List[Any] ) -> str: raise NotImplementedError()
4
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'git_vision_model' def __init__( self , __snake_case=768 , __snake_case=3072 , __snake_case=12 , __snake_case=12 , __snake_case=3 , __snake_case=224 , __snake_case=16 , __snake_case="quick_gelu" , __snake_case=1e-5 , __snake_case=0.0 , __snake_case=0.02 , **__snake_case , ) -> int: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =intermediate_size __a =num_hidden_layers __a =num_attention_heads __a =num_channels __a =patch_size __a =image_size __a =initializer_range __a =attention_dropout __a =layer_norm_eps __a =hidden_act @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) __a , __a =cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": __a =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__snake_case , **__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'git' def __init__( self , __snake_case=None , __snake_case=3_0522 , __snake_case=768 , __snake_case=6 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=1024 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=False , __snake_case=101 , __snake_case=102 , __snake_case=None , **__snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , pad_token_id=__snake_case , **__snake_case ) if vision_config is None: __a ={} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) __a =GitVisionConfig(**__snake_case ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_act __a =intermediate_size __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =initializer_range __a =layer_norm_eps __a =position_embedding_type __a =use_cache __a =tie_word_embeddings __a =num_image_with_embedding __a =bos_token_id __a =eos_token_id def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.vision_config.to_dict() __a =self.__class__.model_type return output
218
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A_ : List[Any] =TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A_ : List[str] =TaTokenizerFast A_ : Dict ={"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str =[ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] =["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] =["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A_ : Optional[Any] =_LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
80
"""simple docstring""" import mpmath # for roots of unity import numpy as np class __a : def __init__( self , a__=None , a__=None ): # Input as list _lowerCamelCase = list(poly_a or [0] )[:] _lowerCamelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowerCamelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _lowerCamelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _lowerCamelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _lowerCamelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _lowerCamelCase = self.__multiply() def snake_case_ ( self , a__ ): _lowerCamelCase = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(a__ ) <= 1: return dft[0] # _lowerCamelCase = self.c_max_length // 2 while next_ncol > 0: _lowerCamelCase = [[] for i in range(a__ )] _lowerCamelCase = self.root**next_ncol # First half of next step _lowerCamelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _lowerCamelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _lowerCamelCase = new_dft _lowerCamelCase = next_ncol // 2 return dft[0] def snake_case_ ( self ): _lowerCamelCase = self.__dft('A' ) _lowerCamelCase = self.__dft('B' ) _lowerCamelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _lowerCamelCase = 2 while next_ncol <= self.c_max_length: _lowerCamelCase = [[] for i in range(a__ )] _lowerCamelCase = self.root ** (next_ncol // 2) _lowerCamelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _lowerCamelCase = new_inverse_c next_ncol *= 2 # Unpack _lowerCamelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): _lowerCamelCase = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _lowerCamelCase = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _lowerCamelCase = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
80
1
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) UpperCAmelCase_ : List[str] = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ UpperCAmelCase_ : Tuple = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ UpperCAmelCase_ : Union[str, Any] = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def _A (__a , __a , __a=False , __a=False , __a=True , __a=False , __a="dummy_doc" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = {doc: key_lines} SCREAMING_SNAKE_CASE_ : List[str] = {doc: sys_lines} SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = reader.get_doc_mentions(__a , key_doc_lines[doc] , __a ) key_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE_ : Optional[Any] = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = reader.get_doc_mentions(__a , sys_doc_lines[doc] , __a ) sys_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE_ : Union[str, Any] = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) if remove_nested: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = reader.remove_nested_coref_mentions(__a , __a ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = reader.remove_nested_coref_mentions(__a , __a ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE_ : Optional[Any] = reader.get_mention_assignments(__a , __a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = reader.get_mention_assignments(__a , __a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( '''Number of resulting singleton clusters in the key ''' f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' '''files, respectively''' ) return doc_coref_infos def _A (__a , __a , __a , __a , __a , __a , __a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_coref_infos(__a , __a , __a , __a , __a , __a ) SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : str = 0 for name, metric in metrics: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = evaluator.evaluate_documents(__a , __a , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} ) logger.info( name.ljust(10 ) , f'Recall: {recall * 1_00:.2f}' , f' Precision: {precision * 1_00:.2f}' , f' F1: {fa * 1_00:.2f}' , ) if conll_subparts_num == 3: SCREAMING_SNAKE_CASE_ : Tuple = (conll / 3) * 1_00 logger.info(f'CoNLL score: {conll:.2f}' ) output_scores.update({'''conll_score''': conll} ) return output_scores def _A (__a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: SCREAMING_SNAKE_CASE_ : Any = line.split()[5] if not parse_col == "-": SCREAMING_SNAKE_CASE_ : Any = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''')), '''references''': datasets.Sequence(datasets.Value('''string''')), }) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Dict=True , lowercase_ : Optional[Any]=False , lowercase_ : Optional[Any]=False , lowercase_ : Dict=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: SCREAMING_SNAKE_CASE_ : Union[str, Any] = util.check_gold_parse_annotation(lowercase_) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''') # util.parse_key_file(key_file) # key_file = key_file + ".parsed" SCREAMING_SNAKE_CASE_ : Optional[Any] = evaluate( key_lines=lowercase_ , sys_lines=lowercase_ , metrics=lowercase_ , NP_only=lowercase_ , remove_nested=lowercase_ , keep_singletons=lowercase_ , min_span=lowercase_ , ) return score
91
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def lowercase__ ( __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=3 , __snake_case : Any=16 , __snake_case : int = 10 , __snake_case : int = 2 ): '''simple docstring''' def get_dataset(__snake_case : Optional[Any] ): UpperCAmelCase_ : Optional[Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Any = get_dataset(__snake_case ) UpperCAmelCase_ : str = get_dataset(__snake_case ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(__snake_case , shuffle=__snake_case , batch_size=__snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowercase__ ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple=None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [] for epoch in range(__snake_case ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = batch UpperCAmelCase_ : List[Any] = model(__snake_case ) UpperCAmelCase_ : int = torch.nn.functional.mse_loss(__snake_case , __snake_case ) accelerator.backward(__snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self ) -> Optional[Any]: super().__init__() UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : Optional[int] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: return x * self.a + self.b class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Optional[int] = ProjectConfiguration(total_limit=1 , project_dir=_UpperCamelCase , automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Dict = Accelerator(project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[Any] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Tuple = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial UpperCAmelCase_ : Any = os.path.join(_UpperCamelCase , 'initial' ) accelerator.save_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() UpperCAmelCase_ : Union[str, Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(_UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_UpperCamelCase , 'checkpoint' ) accelerator.save_state(_UpperCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(_UpperCamelCase ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() ((UpperCAmelCase_) , (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = model.a.item(), model.b.item() UpperCAmelCase_ : Optional[int] = optimizer.state_dict() # Train partially set_seed(4_2 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_UpperCamelCase ) UpperCAmelCase_ : List[Any] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = train(2 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Dict = optimizer.state_dict() self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : Union[str, Any] = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Any = Accelerator() with self.assertRaises(_UpperCamelCase ) as ve: accelerator.register_for_checkpointing(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) UpperCAmelCase_ : Dict = torch.optim.lr_scheduler.StepLR(_UpperCamelCase , step_size=1 , gamma=0.99 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save initial accelerator.save_state() UpperCAmelCase_ : Dict = scheduler.state_dict() train(3 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertNotEqual(_UpperCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(_UpperCamelCase , scheduler.state_dict() ) def __UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_UpperCamelCase , total_limit=2 ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_UpperCamelCase , project_config=_UpperCamelCase ) UpperCAmelCase_ : str = accelerator.prepare(_UpperCamelCase ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCamelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '/tmp/accelerate/state_checkpointing' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1E-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
29
0
lowercase_ = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowercase_ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowercase_ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
269
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Optional[Any] = 'transfo-xl' _UpperCamelCase : Any = ['mems'] _UpperCamelCase : Any = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , a : Optional[int]=267_735 , a : str=[20_000, 40_000, 200_000] , a : str=1_024 , a : str=1_024 , a : int=16 , a : Optional[int]=64 , a : Optional[int]=4_096 , a : int=4 , a : Tuple=False , a : Any=18 , a : Tuple=1_600 , a : Union[str, Any]=1_000 , a : str=True , a : Dict=True , a : Any=0 , a : List[Any]=-1 , a : List[Any]=True , a : Tuple=0.1 , a : List[Any]=0.0 , a : Optional[Any]=True , a : int="normal" , a : Optional[Any]=0.01 , a : str=0.01 , a : List[Any]=0.02 , a : List[Any]=1E-5 , a : Optional[Any]=0 , **a : Optional[int] , )-> Optional[int]: """simple docstring""" lowercase__ = vocab_size lowercase__ = [] self.cutoffs.extend(a ) if proj_share_all_but_first: lowercase__ = [False] + [True] * len(self.cutoffs ) else: lowercase__ = [False] + [False] * len(self.cutoffs ) lowercase__ = d_model lowercase__ = d_embed lowercase__ = d_head lowercase__ = d_inner lowercase__ = div_val lowercase__ = pre_lnorm lowercase__ = n_layer lowercase__ = n_head lowercase__ = mem_len lowercase__ = same_length lowercase__ = attn_type lowercase__ = clamp_len lowercase__ = sample_softmax lowercase__ = adaptive lowercase__ = dropout lowercase__ = dropatt lowercase__ = untie_r lowercase__ = init lowercase__ = init_range lowercase__ = proj_init_std lowercase__ = init_std lowercase__ = layer_norm_epsilon super().__init__(eos_token_id=a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE_ ( self : Any , a : Optional[int] )-> Optional[int]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
269
1
"""simple docstring""" import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = AutoencoderKL lowercase__ = "sample" lowercase__ = 1e-2 @property def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : List[Any] = 4 _snake_case : Tuple = 3 _snake_case : Dict = (32, 32) _snake_case : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(a_ ) return {"sample": image} @property def UpperCamelCase_ ( self: str ): '''simple docstring''' return (3, 32, 32) @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return (3, 32, 32) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Tuple = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } _snake_case : Dict = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' pass def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skipIf(torch_device == """mps""", """Gradient checkpointing skipped on MPS""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.prepare_init_args_and_inputs_for_common() _snake_case : str = self.model_class(**a_ ) model.to(a_ ) assert not model.is_gradient_checkpointing and model.training _snake_case : List[str] = model(**a_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() _snake_case : str = torch.randn_like(a_ ) _snake_case : int = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing _snake_case : int = self.model_class(**a_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(a_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training _snake_case : Tuple = model_a(**a_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() _snake_case : int = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) _snake_case : List[Any] = dict(model.named_parameters() ) _snake_case : List[Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data, named_params_a[name].grad.data, atol=5E-5 ) ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""", output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertEqual(len(loading_info["""missing_keys"""] ), 0 ) model.to(a_ ) _snake_case : List[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : str = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) _snake_case : Tuple = model.to(a_ ) model.eval() if torch_device == "mps": _snake_case : int = torch.manual_seed(0 ) else: _snake_case : Tuple = torch.Generator(device=a_ ).manual_seed(0 ) _snake_case : List[str] = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0 ), ) _snake_case : Union[str, Any] = image.to(a_ ) with torch.no_grad(): _snake_case : List[str] = model(a_, sample_posterior=a_, generator=a_ ).sample _snake_case : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": _snake_case : Any = torch.tensor( [ -4.00_78E-01, -3.83_23E-04, -1.26_81E-01, -1.14_62E-01, 2.00_95E-01, 1.08_93E-01, -8.82_47E-02, -3.03_61E-01, -9.86_44E-03, ] ) elif torch_device == "cpu": _snake_case : Dict = torch.tensor( [-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] ) else: _snake_case : List[Any] = torch.tensor( [-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] ) self.assertTrue(torch_all_close(a_, a_, rtol=1E-2 ) ) @slow class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: List[str], a_: List[Any], a_: List[Any] ): '''simple docstring''' return f"gaussian_noise_s={seed}_shape={'_'.join([str(a_ ) for s in shape] )}.npy" def UpperCamelCase_ ( self: str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self: str, a_: List[str]=0, a_: Tuple=(4, 3, 512, 512), a_: Optional[Any]=False ): '''simple docstring''' _snake_case : str = torch.floataa if fpaa else torch.floataa _snake_case : int = torch.from_numpy(load_hf_numpy(self.get_file_format(a_, a_ ) ) ).to(a_ ).to(a_ ) return image def UpperCamelCase_ ( self: Any, a_: Optional[int]="CompVis/stable-diffusion-v1-4", a_: str=False ): '''simple docstring''' _snake_case : str = """fp16""" if fpaa else None _snake_case : Optional[int] = torch.floataa if fpaa else torch.floataa _snake_case : Union[str, Any] = AutoencoderKL.from_pretrained( a_, subfolder="""vae""", torch_dtype=a_, revision=a_, ) model.to(a_ ).eval() return model def UpperCamelCase_ ( self: Union[str, Any], a_: List[str]=0 ): '''simple docstring''' if torch_device == "mps": return torch.manual_seed(a_ ) return torch.Generator(device=a_ ).manual_seed(a_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def UpperCamelCase_ ( self: Dict, a_: Any, a_: Any, a_: int ): '''simple docstring''' _snake_case : str = self.get_sd_vae_model() _snake_case : str = self.get_sd_image(a_ ) _snake_case : Dict = self.get_generator(a_ ) with torch.no_grad(): _snake_case : str = model(a_, generator=a_, sample_posterior=a_ ).sample assert sample.shape == image.shape _snake_case : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() _snake_case : Optional[int] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(a_, a_, atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]], [47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]], # fmt: on ] ) @require_torch_gpu def UpperCamelCase_ ( self: Tuple, a_: int, a_: Dict ): '''simple docstring''' _snake_case : Tuple = self.get_sd_vae_model(fpaa=a_ ) _snake_case : Tuple = self.get_sd_image(a_, fpaa=a_ ) _snake_case : Tuple = self.get_generator(a_ ) with torch.no_grad(): _snake_case : Optional[int] = model(a_, generator=a_, sample_posterior=a_ ).sample assert sample.shape == image.shape _snake_case : Dict = sample[-1, -2:, :2, -2:].flatten().float().cpu() _snake_case : Tuple = torch.tensor(a_ ) assert torch_all_close(a_, a_, atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]], [47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]], # fmt: on ] ) def UpperCamelCase_ ( self: List[str], a_: Tuple, a_: List[Any], a_: int ): '''simple docstring''' _snake_case : List[Any] = self.get_sd_vae_model() _snake_case : Union[str, Any] = self.get_sd_image(a_ ) with torch.no_grad(): _snake_case : Optional[int] = model(a_ ).sample assert sample.shape == image.shape _snake_case : int = sample[-1, -2:, -2:, :2].flatten().float().cpu() _snake_case : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(a_, a_, atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]], [37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]], # fmt: on ] ) @require_torch_gpu def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[int], a_: Any ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_sd_vae_model() _snake_case : List[str] = self.get_sd_image(a_, shape=(3, 4, 64, 64) ) with torch.no_grad(): _snake_case : Union[str, Any] = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] _snake_case : Union[str, Any] = sample[-1, -2:, :2, -2:].flatten().cpu() _snake_case : List[Any] = torch.tensor(a_ ) assert torch_all_close(a_, a_, atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]], [16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]], # fmt: on ] ) @require_torch_gpu def UpperCamelCase_ ( self: Union[str, Any], a_: Optional[Any], a_: int ): '''simple docstring''' _snake_case : Tuple = self.get_sd_vae_model(fpaa=a_ ) _snake_case : Union[str, Any] = self.get_sd_image(a_, shape=(3, 4, 64, 64), fpaa=a_ ) with torch.no_grad(): _snake_case : Any = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] _snake_case : int = sample[-1, -2:, :2, -2:].flatten().float().cpu() _snake_case : Tuple = torch.tensor(a_ ) assert torch_all_close(a_, a_, atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available(), reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCamelCase_ ( self: Any, a_: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.get_sd_vae_model(fpaa=a_ ) _snake_case : List[Any] = self.get_sd_image(a_, shape=(3, 4, 64, 64), fpaa=a_ ) with torch.no_grad(): _snake_case : Optional[int] = model.decode(a_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _snake_case : List[str] = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a_, a_, atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available(), reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCamelCase_ ( self: str, a_: Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = self.get_sd_vae_model() _snake_case : Any = self.get_sd_image(a_, shape=(3, 4, 64, 64) ) with torch.no_grad(): _snake_case : int = model.decode(a_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): _snake_case : Union[str, Any] = model.decode(a_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a_, a_, atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]], [47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]], # fmt: on ] ) def UpperCamelCase_ ( self: Dict, a_: Tuple, a_: Tuple ): '''simple docstring''' _snake_case : str = self.get_sd_vae_model() _snake_case : int = self.get_sd_image(a_ ) _snake_case : Dict = self.get_generator(a_ ) with torch.no_grad(): _snake_case : Dict = model.encode(a_ ).latent_dist _snake_case : Dict = dist.sample(generator=a_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] _snake_case : Optional[int] = sample[0, -1, -3:, -3:].flatten().cpu() _snake_case : Tuple = torch.tensor(a_ ) _snake_case : List[Any] = 3E-3 if torch_device != """mps""" else 1E-2 assert torch_all_close(a_, a_, atol=a_ )
64
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def snake_case__ ( _A: str ) -> str: '''simple docstring''' if not sentence: return "" lowerCAmelCase = dict(zip(_A , _A ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
272
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) UpperCAmelCase = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
"""simple docstring""" def lowerCamelCase (a_ :int) -> None: lowercase :Tuple = generate_pascal_triangle(a_) for row_idx in range(a_): # Print left spaces for _ in range(num_rows - row_idx - 1): print(end=''' ''') # Print row values for col_idx in range(row_idx + 1): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''') else: print(triangle[row_idx][col_idx] , end='''''') print() def lowerCamelCase (a_ :int) -> list[list[int]]: if not isinstance(a_ , a_): raise TypeError('''The input value of \'num_rows\' should be \'int\'''') if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''') lowercase :list[list[int]] = [] for current_row_idx in range(a_): lowercase :Union[str, Any] = populate_current_row(a_ , a_) triangle.append(a_) return triangle def lowerCamelCase (a_ :list[list[int]] , a_ :int) -> list[int]: lowercase :List[str] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowercase , lowercase :Dict = 1, 1 for current_col_idx in range(1 , a_): calculate_current_element( a_ , a_ , a_ , a_) return current_row def lowerCamelCase (a_ :list[list[int]] , a_ :list[int] , a_ :int , a_ :int , ) -> None: lowercase :str = triangle[current_row_idx - 1][current_col_idx - 1] lowercase :Dict = triangle[current_row_idx - 1][current_col_idx] lowercase :Any = above_to_left_elt + above_to_right_elt def lowerCamelCase (a_ :int) -> list[list[int]]: if not isinstance(a_ , a_): raise TypeError('''The input value of \'num_rows\' should be \'int\'''') if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''') lowercase :list[list[int]] = [[1]] for row_index in range(1 , a_): lowercase :Union[str, Any] = [0] + result[-1] + [0] lowercase :Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row lowercase :List[str] = sum(divmod(a_ , 2)) lowercase :Dict = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1) ] lowercase :Optional[int] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowercase :Dict = row_first_half + row_second_half result.append(a_) return result def lowerCamelCase () -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(a_ :Callable , a_ :int) -> None: lowercase :int = F"""{func.__name__}({value})""" lowercase :Union[str, Any] = timeit(F"""__main__.{call}""" , setup='''import __main__''') # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""") for value in range(15): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(a_ , a_) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
172
0
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE__) -> List[str]: # preprocessing the first row for i in range(1 , len(matrix[0])): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(UpperCamelCase__)): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(UpperCamelCase__)): for j in range(1 , len(matrix[0])): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1]) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
111
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar _snake_case = TypeVar('_T') class UpperCamelCase ( Generic[_T] ): def __init__( self : Optional[int] , UpperCAmelCase__ : Iterable[_T] | None = None ) -> None: _a : list[_T] = list(iterable or [] ) _a : list[_T] = [] def __len__( self : str ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self : List[str] ) -> str: return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : _T ) -> None: self._stacka.append(UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> _T: _a : Any = self._stacka.pop _a : Union[str, Any] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
294
0
"""simple docstring""" import numpy class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : numpy.ndarray , lowercase_ : numpy.ndarray): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. SCREAMING_SNAKE_CASE_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. SCREAMING_SNAKE_CASE_ : Union[str, Any] = numpy.random.rand( 4 , 3) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. SCREAMING_SNAKE_CASE_ : List[Any] = numpy.random.rand(3 , 1) # Real output values provided. SCREAMING_SNAKE_CASE_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. SCREAMING_SNAKE_CASE_ : Dict = numpy.zeros(output_array.shape) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights)) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. SCREAMING_SNAKE_CASE_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. SCREAMING_SNAKE_CASE_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return self.layer_between_second_hidden_layer_and_output def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , ) SCREAMING_SNAKE_CASE_ : Tuple = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , ) SCREAMING_SNAKE_CASE_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : numpy.ndarray , lowercase_ : int , lowercase_ : bool): '''simple docstring''' for iteration in range(1 , iterations + 1): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.feedforward() self.back_propagation() if give_loss: SCREAMING_SNAKE_CASE_ : str = numpy.mean(numpy.square(output - self.feedforward())) print(F'Iteration {iteration} Loss: {loss}') def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : numpy.ndarray): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = input_arr SCREAMING_SNAKE_CASE_ : Any = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) SCREAMING_SNAKE_CASE_ : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return int(self.layer_between_second_hidden_layer_and_output > 0.6) def _A (__a ) -> numpy.ndarray: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def _A (__a ) -> numpy.ndarray: """simple docstring""" return (value) * (1 - (value)) def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. SCREAMING_SNAKE_CASE_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. SCREAMING_SNAKE_CASE_ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=__a , output_array=__a ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__a , iterations=10 , give_loss=__a ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "feature_extractor"] __UpperCamelCase = "TvltImageProcessor" __UpperCamelCase = "TvltFeatureExtractor" def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' super().__init__(image_processor=lowercase_ , feature_extractor=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_extractor def __call__( self : Any , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : str=None , lowercase_ : int=False , lowercase_ : Union[str, Any]=False , *lowercase_ : List[Any] , **lowercase_ : List[str] , ): '''simple docstring''' if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''') SCREAMING_SNAKE_CASE_ : Any = None if images is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(lowercase_ , mask_pixel=lowercase_ , *lowercase_ , **lowercase_) if images_mixed is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(lowercase_ , is_mixed=lowercase_ , *lowercase_ , **lowercase_) if audio is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor( lowercase_ , *lowercase_ , sampling_rate=lowercase_ , mask_audio=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = {} if audio is not None: output_dict.update(lowercase_) if images is not None: output_dict.update(lowercase_) if images_mixed_dict is not None: output_dict.update(lowercase_) return output_dict @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.model_input_names SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
318
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor a__ : Optional[Any] = logging.get_logger(__name__) class lowercase_ ( a__ ): def __init__( self , *a , **a ): warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , a , ) super().__init__(*a , **a )
80
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a__ : Any = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def _UpperCamelCase ( __A , __A=None , __A=None , __A=None ) -> int: '''simple docstring''' UpperCamelCase__ = True while ask_again: UpperCamelCase__ = input(__A ) try: if default is not None and len(__A ) == 0: return default return convert_value(__A ) if convert_value is not None else result except Exception: if error_message is not None: print(__A ) def _UpperCamelCase ( __A , __A=[] , __A=None , __A=0 ) -> Any: '''simple docstring''' UpperCamelCase__ = BulletMenu(__A , __A ) UpperCamelCase__ = menu.run(default_choice=__A ) return convert_value(__A ) if convert_value is not None else result def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' UpperCamelCase__ = int(__A ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = int(__A ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' UpperCamelCase__ = int(__A ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _UpperCamelCase ( __A ) -> str: '''simple docstring''' UpperCamelCase__ = int(__A ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _UpperCamelCase ( __A ) -> Any: '''simple docstring''' UpperCamelCase__ = int(__A ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _UpperCamelCase ( __A ) -> Dict: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class lowercase_ ( argparse.RawDescriptionHelpFormatter ): def __a ( self , a , a , a , a ): UpperCamelCase__ = super()._format_usage(a , a , a , a ) UpperCamelCase__ = usage.replace("<command> [<args>] " , "" ) return usage
80
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : int = """openai/whisper-base""" _lowerCAmelCase : Optional[Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _lowerCAmelCase : Tuple = """transcriber""" _lowerCAmelCase : Optional[Any] = WhisperProcessor _lowerCAmelCase : Union[str, Any] = WhisperForConditionalGeneration _lowerCAmelCase : List[str] = ["""audio"""] _lowerCAmelCase : List[str] = ["""text"""] def _snake_case ( self : Union[str, Any] , lowercase_ : List[Any] ): return self.pre_processor(lowercase_ , return_tensors='''pt''' ).input_features def _snake_case ( self : Tuple , lowercase_ : Dict ): return self.model.generate(inputs=lowercase_ ) def _snake_case ( self : Optional[Any] , lowercase_ : Union[str, Any] ): return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
155
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ : Union[str, Any] = get_tests_dir('''fixtures''') class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): # A mock response for an HTTP head request to emulate server down snake_case_ : Any = mock.Mock() snake_case_ : Tuple = 500 snake_case_ : Dict = {} snake_case_ : Optional[Any] = HTTPError snake_case_ : Optional[int] = {} # Download this model to make sure it's in the cache. snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowercase_ ) as mock_head: snake_case_ : Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self : Optional[int] ): # This test is for deprecated behavior and can be removed in v5 snake_case_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase): @classmethod def _snake_case ( cls : List[Any] ): snake_case_ : Dict = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _snake_case ( cls : int ): try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def _snake_case ( self : Any ): snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''test-feature-extractor''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): CustomFeatureExtractor.register_for_auto_class() snake_case_ : int = CustomFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) snake_case_ : List[str] = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
155
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __snake_case : Union[str, Any] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
269
"""simple docstring""" import re def _lowercase ( __snake_case ) -> str: if len(re.findall("[ATCG]" ,__snake_case ) ) != len(__snake_case ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" ,"TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
269
1
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 1_0, "max_num_jobs": 1}, [range(1_0 )]), ({"num_shards": 1_0, "max_num_jobs": 1_0}, [range(SCREAMING_SNAKE_CASE , i + 1 ) for i in range(1_0 )]), ({"num_shards": 1, "max_num_jobs": 1_0}, [range(1 )]), ({"num_shards": 1_0, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({"num_shards": 3, "max_num_jobs": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = _distribute_shards(**SCREAMING_SNAKE_CASE ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 1_0, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[str] = _split_gen_kwargs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if expected is RuntimeError: with pytest.raises(SCREAMING_SNAKE_CASE ): _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Optional[Any] = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE ) assert out == expected
367
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def a__ ( SCREAMING_SNAKE_CASE : str ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def a__ ( ): '''simple docstring''' with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" lowerCAmelCase : List[str] = [1, 2, 3] with pytest.raises(SCREAMING_SNAKE_CASE ): with parallel_backend("unsupported backend" ): map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=2 ) with pytest.raises(SCREAMING_SNAKE_CASE ): with parallel_backend("unsupported backend" ): map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Tuple = [1, 2] lowerCAmelCase : int = {"a": 1, "b": 2} lowerCAmelCase : List[str] = {"a": [1, 2], "b": [3, 4]} lowerCAmelCase : Dict = {"a": {"1": 1}, "b": 2} lowerCAmelCase : Tuple = {"a": 1, "b": 2, "c": 3, "d": 4} lowerCAmelCase : Any = [2, 3] lowerCAmelCase : Any = {"a": 2, "b": 3} lowerCAmelCase : Optional[int] = {"a": [2, 3], "b": [4, 5]} lowerCAmelCase : Optional[int] = {"a": {"1": 2}, "b": 3} lowerCAmelCase : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
133
0
"""simple docstring""" import os import sys import transformers SCREAMING_SNAKE_CASE = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
247
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : str= { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any= [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any= [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _a : Any= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
172
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _UpperCAmelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _UpperCAmelCase = 128022 _UpperCAmelCase = 128028 @require_sentencepiece class UpperCAmelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = MaMaaaTokenizer lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True def lowerCAmelCase_ ( self ): """simple docstring""" super().setUp() A_ : Tuple = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] A_ : Any = dict(zip(lowercase , range(len(lowercase ) ) ) ) A_ : List[str] = Path(self.tmpdirname ) save_json(lowercase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowercase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) A_ : int = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self , **lowercase ): """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = '</s>' A_ : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = self.get_tokenizer() A_ : Tuple = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(lowercase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def lowerCAmelCase_ ( self ): """simple docstring""" pass def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = self.get_tokenizer() A_ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [2, 3, 4, 5, 6] , ) A_ : int = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowercase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) A_ : Union[str, Any] = tokenizer.convert_tokens_to_string(lowercase ) self.assertEqual(lowercase , 'This is a test' ) @slow def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = {'input_ids': [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = '''facebook/m2m100_418M''' lowerCamelCase_ = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] lowerCamelCase_ = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off lowerCamelCase_ = [EN_CODE, 5_9_3, 1_9_4_9, 1_1_5_7_8_1, 4, 7_1_5_8_6, 4_2_3_4, 6_0_6_3_3, 1_2_6_2_3_3, 4_3_2, 1_2_3_8_0_8, 1_5_5_9_2, 1_1_9_7, 1_1_7_1_3_2, 1_2_0_6_1_8, 5, 2] @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" A_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) A_ : Any = 1 return cls def lowerCAmelCase_ ( self ): """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 1_2_8_0_6_3 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = self.tokenizer.get_vocab() self.assertEqual(len(lowercase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = 'en' A_ : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" self.assertIn(lowercase , self.tokenizer.all_special_ids ) # fmt: off A_ : Any = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on A_ : str = self.tokenizer.decode(lowercase , skip_special_tokens=lowercase ) A_ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase ) self.assertEqual(lowercase , lowercase ) self.assertNotIn(self.tokenizer.eos_token , lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = tempfile.mkdtemp() A_ : Dict = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowercase ) A_ : Optional[Any] = MaMaaaTokenizer.from_pretrained(lowercase ) self.assertDictEqual(new_tok.lang_token_to_id , lowercase ) @require_torch def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = 'en' A_ : List[str] = 'fr' A_ : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase , return_tensors='pt' ) A_ : int = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: A_ : Tuple = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) A_ : Optional[Any] = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) A_ : Dict = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(lowercase ) , { # en_XX, A, test, EOS 'input_ids': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 1_2_8_0_0_6, } , )
192
from math import isqrt def UpperCamelCase ( __lowercase : int ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 ,isqrt(__lowercase ) + 1 ) ) def UpperCamelCase ( __lowercase : int = 10**6 ): '''simple docstring''' A_ : Optional[Any] = 0 A_ : List[str] = 1 A_ : Dict = 7 while prime_candidate < max_prime: primes_count += is_prime(__lowercase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
192
1
'''simple docstring''' import numpy class __lowercase : def __init__(self , A , A ): lowerCamelCase_ : Optional[int] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCamelCase_ : Optional[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCamelCase_ : Tuple = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCamelCase_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCamelCase_ : Optional[int] = numpy.zeros(output_array.shape ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCamelCase_ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCamelCase_ : List[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCamelCase_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase__ (self , A , A , A ): for iteration in range(1 , iterations + 1 ): lowerCamelCase_ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCamelCase_ : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"""Iteration {iteration} Loss: {loss}""" ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = input_arr lowerCamelCase_ : List[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCamelCase_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCamelCase_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowercase_ ( _lowercase ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCamelCase_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCamelCase_ : Dict = TwoHiddenLayerNeuralNetwork( input_array=_lowercase , output_array=_lowercase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowercase , iterations=10 , give_loss=_lowercase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
318
'''simple docstring''' from itertools import permutations def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_ : int = [7, 11, 13, 17] for i, test in enumerate(_lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( _lowercase = 10 ) -> int: '''simple docstring''' return sum( int(''''''.join(map(_lowercase , _lowercase ) ) ) for num in permutations(range(_lowercase ) ) if is_substring_divisible(_lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
318
1
from math import factorial class A : def __init__(self , lowerCAmelCase , lowerCAmelCase ): __lowercase= real if isinstance(lowerCAmelCase , lowerCAmelCase ): __lowercase= [1] * rank else: __lowercase= rank def __repr__(self ): return ( f'{self.real}+' f'{"+".join(str(lowerCAmelCase )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def _A (self ): __lowercase= self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowerCAmelCase ) def __add__(self , lowerCAmelCase ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): return Dual(self.real + other , self.duals ) __lowercase= self.duals.copy() __lowercase= other.duals.copy() if len(lowerCAmelCase ) > len(lowerCAmelCase ): o_dual.extend([1] * (len(lowerCAmelCase ) - len(lowerCAmelCase )) ) elif len(lowerCAmelCase ) < len(lowerCAmelCase ): s_dual.extend([1] * (len(lowerCAmelCase ) - len(lowerCAmelCase )) ) __lowercase= [] for i in range(len(lowerCAmelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowerCAmelCase ) UpperCamelCase_ : int =__add__ def __sub__(self , lowerCAmelCase ): return self + other * -1 def __mul__(self , lowerCAmelCase ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): __lowercase= [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowerCAmelCase ) __lowercase= [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCAmelCase ) UpperCamelCase_ : Tuple =__mul__ def __truediv__(self , lowerCAmelCase ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): __lowercase= [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowerCAmelCase ) raise ValueError def __floordiv__(self , lowerCAmelCase ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): __lowercase= [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowerCAmelCase ) raise ValueError def __pow__(self , lowerCAmelCase ): if n < 0 or isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self __lowercase= self for _ in range(n - 1 ): x *= self return x def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: '''simple docstring''' if not callable(lowercase__ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(lowercase__ , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(lowercase__ , lowercase__ ): raise ValueError('differentiate() requires an int as input for order' ) __lowercase= Dual(lowercase__ , 1 ) __lowercase= func(lowercase__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
304
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
1
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : int=13 , lowerCAmelCase : int=30 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : str=3 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Union[str, Any]=32 , lowerCAmelCase : Optional[Any]=5 , lowerCAmelCase : int=4 , lowerCAmelCase : str=37 , lowerCAmelCase : str="gelu" , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : List[str]=10 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=2 , ): lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = scope lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase = (image_size // patch_size) ** 2 lowerCAmelCase = num_patches + 2 def __lowercase ( self : str ): lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def __lowercase ( self : List[Any] ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowercase ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] ): lowerCAmelCase = DeiTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : str , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): lowerCAmelCase = DeiTForMaskedImageModeling(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase = 1 lowerCAmelCase = DeiTForMaskedImageModeling(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowercase ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Dict ): lowerCAmelCase = self.type_sequence_label_size lowerCAmelCase = DeiTForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase = 1 lowerCAmelCase = DeiTForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : List[str] ): lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _a , _a , unittest.TestCase ): _a = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _a = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _a = False _a = False _a = False def __lowercase ( self : Any ): lowerCAmelCase = DeiTModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 ) def __lowercase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def __lowercase ( self : int ): pass def __lowercase ( self : Dict ): lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def __lowercase ( self : Optional[Any] ): lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowerCAmelCase ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def __lowercase ( self : Dict ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def __lowercase ( self : Any ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) def __lowercase ( self : str , lowerCAmelCase : Dict , lowerCAmelCase : int , lowerCAmelCase : Optional[Any]=False ): lowerCAmelCase = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowercase ( self : List[str] ): if not self.model_tester.is_training: return lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowerCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.train() lowerCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) lowerCAmelCase = model(**lowerCAmelCase ).loss loss.backward() def __lowercase ( self : Optional[Any] ): lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase = False lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowerCAmelCase = model_class(lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase ) model.train() lowerCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) lowerCAmelCase = model(**lowerCAmelCase ).loss loss.backward() def __lowercase ( self : List[Any] ): lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase ), *get_values(lowerCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type['title']}''' ): lowerCAmelCase = problem_type["""title"""] lowerCAmelCase = problem_type["""num_labels"""] lowerCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.train() lowerCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if problem_type["num_labels"] > 1: lowerCAmelCase = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowerCAmelCase = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase ) as warning_list: lowerCAmelCase = model(**lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __lowercase ( self : str ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = DeiTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowercase () -> Dict: '''simple docstring''' lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def __lowercase ( self : Any ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def __lowercase ( self : Any ): lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( lowerCAmelCase ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**lowerCAmelCase ) # verify the logits lowerCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __lowercase ( self : List[str] ): lowerCAmelCase = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ) lowerCAmelCase = inputs.pixel_values.to(lowerCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCAmelCase = model(lowerCAmelCase )
155
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : Optional[Any] ): lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = BlipImageProcessor() lowerCAmelCase = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCAmelCase = BlipProcessor(lowerCAmelCase , lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __lowercase ( self : Optional[Any] , **lowerCAmelCase : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).tokenizer def __lowercase ( self : List[Any] , **lowerCAmelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase ).image_processor def __lowercase ( self : Dict ): shutil.rmtree(self.tmpdirname ) def __lowercase ( self : str ): lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self : List[str] ): lowerCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0 ) lowerCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(lowerCAmelCase , return_tensors="""np""" ) lowerCAmelCase = processor(images=lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = processor(text=lowerCAmelCase ) lowerCAmelCase = tokenizer(lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase ): processor() def __lowercase ( self : List[Any] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(lowerCAmelCase ) lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : Optional[int] ): lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = BlipProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase ) lowerCAmelCase = """lower newer""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=lowerCAmelCase , images=lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
155
1
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class A__ ( A__ ): def A ( self : Optional[int] , _a : int=None , _a : Optional[Any]=None , _a : Tuple=None , **_a : int ) -> Union[str, Any]: '''simple docstring''' if tokenize_kwargs is None: _SCREAMING_SNAKE_CASE ={} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) _SCREAMING_SNAKE_CASE =truncation _SCREAMING_SNAKE_CASE =tokenize_kwargs _SCREAMING_SNAKE_CASE ={} if return_tensors is not None: _SCREAMING_SNAKE_CASE =return_tensors return preprocess_params, {}, postprocess_params def A ( self : Union[str, Any] , _a : int , **_a : int ) -> Dict[str, GenericTensor]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.framework _SCREAMING_SNAKE_CASE =self.tokenizer(_a , return_tensors=_a , **_a ) return model_inputs def A ( self : Optional[Any] , _a : Optional[int] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model(**_a ) return model_outputs def A ( self : Tuple , _a : Optional[int] , _a : Optional[int]=False ) -> str: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Tuple , *_a : List[Any] , **_a : Optional[int] ) -> List[str]: '''simple docstring''' return super().__call__(*_a , **_a )
363
'''simple docstring''' import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
114
0
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case ): '''simple docstring''' @register_to_config def __init__(self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ = False , ): '''simple docstring''' super().__init__() __snake_case : Optional[int] = nn.Embedding(a_ , a_ ) __snake_case : Union[str, Any] = nn.Embedding(a_ , a_ ) __snake_case : List[str] = False __snake_case : List[Any] = nn.Dropout(p=a_ ) __snake_case : Tuple = TaConfig( vocab_size=a_ , d_model=a_ , num_heads=a_ , d_kv=a_ , d_ff=a_ , dropout_rate=a_ , feed_forward_proj=a_ , is_decoder=a_ , is_encoder_decoder=a_ , ) __snake_case : Union[str, Any] = nn.ModuleList() for lyr_num in range(a_ ): __snake_case : Tuple = TaBlock(a_ ) self.encoders.append(a_ ) __snake_case : Optional[int] = TaLayerNorm(a_ ) __snake_case : List[str] = nn.Dropout(p=a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = self.token_embedder(a_ ) __snake_case : Any = encoder_input_tokens.shape[1] __snake_case : str = torch.arange(a_ , device=encoder_input_tokens.device ) x += self.position_encoding(a_ ) __snake_case : Any = self.dropout_pre(a_ ) # inverted the attention mask __snake_case : Dict = encoder_input_tokens.size() __snake_case : Optional[int] = self.get_extended_attention_mask(a_ , a_ ) for lyr in self.encoders: __snake_case : Any = lyr(a_ , a_ )[0] __snake_case : Dict = self.layer_norm(a_ ) return self.dropout_post(a_ ), encoder_inputs_mask
102
from typing import Any class __lowerCAmelCase : def __init__( self : List[Any] , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = data _UpperCAmelCase = None class __lowerCAmelCase : def __init__( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = None def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase = temp.next print() def UpperCamelCase ( self : Any , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = Node(snake_case__ ) _UpperCAmelCase = self.head _UpperCAmelCase = new_node def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Optional[Any] ): """simple docstring""" if node_data_a == node_data_a: return else: _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": lowercase_ : Union[str, Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
133
0
def SCREAMING_SNAKE_CASE__ ( __a = 10**9 ): snake_case_ : str = 1 snake_case_ : int = 2 snake_case_ : Optional[int] = 0 snake_case_ : List[str] = 0 snake_case_ : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value snake_case_ : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
88
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class SCREAMING_SNAKE_CASE_ : __magic_name__: int = MBartConfig __magic_name__: str = {} __magic_name__: Union[str, Any] = "gelu" def __init__( self : List[str] , _A : Optional[int] , _A : List[Any]=13 , _A : List[Any]=7 , _A : Dict=True , _A : Tuple=False , _A : Optional[Any]=99 , _A : Dict=32 , _A : str=2 , _A : str=4 , _A : Tuple=37 , _A : Tuple=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[int]=20 , _A : Dict=2 , _A : List[str]=1 , _A : Union[str, Any]=0 , ) -> List[Any]: """simple docstring""" snake_case_ : str = parent snake_case_ : List[str] = batch_size snake_case_ : List[str] = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : Optional[int] = use_labels snake_case_ : Dict = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Optional[Any] = eos_token_id snake_case_ : Tuple = pad_token_id snake_case_ : int = bos_token_id def UpperCAmelCase_ ( self : List[str] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) snake_case_ : Union[str, Any] = prepare_mbart_inputs_dict(_A , _A , _A ) return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , _A : Optional[Any] , _A : int ) -> str: """simple docstring""" snake_case_ : Dict = TFMBartModel(config=_A ).get_decoder() snake_case_ : Any = inputs_dict['input_ids'] snake_case_ : List[Any] = input_ids[:1, :] snake_case_ : Dict = inputs_dict['attention_mask'][:1, :] snake_case_ : Tuple = inputs_dict['head_mask'] snake_case_ : List[Any] = 1 # first forward pass snake_case_ : Any = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) snake_case_ ,snake_case_ : str = outputs.to_tuple() snake_case_ : int = past_key_values[1] def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ): if attention_mask is None: snake_case_ : Optional[int] = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: Tuple = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __magic_name__: int = (TFMBartForConditionalGeneration,) if is_tf_available() else () __magic_name__: Union[str, Any] = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __magic_name__: Tuple = True __magic_name__: Tuple = False __magic_name__: Any = False def UpperCAmelCase_ ( self : Any , _A : Union[str, Any] , _A : List[Any] , _A : str , _A : int , _A : Dict ) -> Union[str, Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFMBartModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_A ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __magic_name__: Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", ] __magic_name__: Union[str, Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] __magic_name__: List[Any] = "facebook/mbart-large-en-ro" @cached_property def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" snake_case_ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase_ ( self : Optional[int] , **_A : str ) -> int: """simple docstring""" snake_case_ : List[str] = self.translate_src_text(**_A ) self.assertListEqual(self.expected_text , _A ) def UpperCAmelCase_ ( self : Union[str, Any] , **_A : Dict ) -> int: """simple docstring""" snake_case_ : Optional[Any] = self.tokenizer(self.src_text , **_A , return_tensors='tf' ) snake_case_ : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) snake_case_ : Any = self.tokenizer.batch_decode(_A , skip_special_tokens=_A ) return generated_words @slow def UpperCAmelCase_ ( self : str ) -> List[str]: """simple docstring""" self._assert_generated_batch_equal_expected()
88
1
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient A_ : List[Any] = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def UpperCamelCase (lowercase_: List[Any] ) -> Dict: A__ : int = test_results.split(""" """ ) A__ : Optional[int] = 0 A__ : List[Any] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A__ : Any = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCamelCase (lowercase_: Union[str, Any] ) -> Union[str, Any]: A__ : List[str] = {} A__ : Dict = None A__ : str = False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""" , lowercase_ ): A__ : Optional[int] = True A__ : Any = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): A__ : str = line A__ : Optional[int] = False return failures class _a : '''simple docstring''' def __init__( self , A__ , A__ ): A__ : Tuple = title A__ : List[str] = doc_test_results["""time_spent"""].split(""",""" )[0] A__ : Optional[Any] = doc_test_results["""success"""] A__ : Optional[Any] = doc_test_results["""failures"""] A__ : str = self.n_success + self.n_failures # Failures and success of the modeling tests A__ : Union[str, Any] = doc_test_results @property def __A ( self ): A__ : Tuple = [self._time_spent] A__ : Optional[Any] = 0 for time in time_spent: A__ : Optional[Any] = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(A__ ) == 1: A__ : str = [0, 0, time_parts[0]] A__ , A__ , A__ : Union[str, Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds A__ , A__ , A__ : str = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F"""{int(A__ )}h{int(A__ )}m{int(A__ )}s""" @property def __A ( self ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def __A ( self ): return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __A ( self ): return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __A ( self ): A__ : Dict = 40 A__ : Optional[int] = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(A__ , A__ )} A__ : Dict = """""" for category, failures in category_failures.items(): if len(A__ ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(A__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def __A ( self ): A__ : List[str] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(A__ ) @staticmethod def __A ( ): A__ : Optional[Any] = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(A__ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=A__ , ) def __A ( self ): print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) A__ : Tuple = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed.""" A__ : Optional[Any] = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=A__ , ) def __A ( self , A__ , A__ , A__ , A__ ): A__ : Dict = """""" for key, value in failures.items(): A__ : Union[str, Any] = value[:200] + """ [Truncated]""" if len(A__ ) > 250 else value failures_text += F"""*{key}*\n_{value}_\n\n""" A__ : Dict = job_name A__ : List[Any] = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: A__ : str = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def __A ( self ): if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) A__ : Tuple = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) A__ : List[Any] = sorted(self.doc_test_results.items() , key=lambda A__ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): A__ : Union[str, Any] = F"""*Num failures* :{len(job_result['failed'] )} \n""" A__ : Optional[int] = job_result["""failures"""] A__ : List[str] = self.get_reply_blocks(A__ , A__ , A__ , text=A__ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F"""Results for {job}""" , blocks=A__ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def UpperCamelCase () -> Any: A__ : List[Any] = os.environ["""GITHUB_RUN_ID"""] A__ : Any = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" A__ : Dict = requests.get(lowercase_ ).json() A__ : Any = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A__ : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowercase_ ): A__ : Optional[int] = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , lowercase_ ) return {} def UpperCamelCase (lowercase_: str ) -> Any: A__ : List[Any] = {} if os.path.exists(lowercase_ ): A__ : List[str] = os.listdir(lowercase_ ) for file in files: try: with open(os.path.join(lowercase_ , lowercase_ ) , encoding="""utf-8""" ) as f: A__ : List[str] = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(lowercase_ , lowercase_ )}.""" ) from e return _artifact def UpperCamelCase () -> Tuple: class _a : '''simple docstring''' def __init__( self , A__ ): A__ : str = name A__ : str = [] def __str__( self ): return self.name def __A ( self , A__ ): self.paths.append({"""name""": self.name, """path""": path} ) A__ : Dict[str, Artifact] = {} A__ : Any = filter(os.path.isdir , os.listdir() ) for directory in directories: A__ : List[Any] = directory if artifact_name not in _available_artifacts: A__ : Dict = Artifact(lowercase_ ) _available_artifacts[artifact_name].add_path(lowercase_ ) return _available_artifacts if __name__ == "__main__": A_ : Optional[int] = get_job_links() A_ : Any = retrieve_available_artifacts() A_ : List[str] = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' A_ : Tuple = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job A_ : Dict = github_actions_job_links.get('run_doctests') A_ : str = available_artifacts['doc_tests_gpu_test_reports'].paths[0] A_ : List[Any] = retrieve_artifact(artifact_path['name']) if "stats" in artifact: A_ , A_ , A_ : int = handle_test_results(artifact['stats']) A_ : List[Any] = failed A_ : Optional[Any] = success A_ : List[Any] = time_spent[1:-1] + ', ' A_ : Dict = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): A_ : Tuple = line.replace('FAILED ', '') A_ : Optional[int] = line.split()[0].replace('\n', '') if "::" in line: A_ , A_ : Optional[int] = line.split('::') else: A_ , A_ : List[str] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): A_ : Optional[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) A_ : List[str] = all_failures[test] if test in all_failures else 'N/A' A_ : Optional[int] = failure break A_ : List[Any] = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
192
import argparse from collections import defaultdict import yaml A_ : List[str] = 'docs/source/en/_toctree.yml' def UpperCamelCase (lowercase_: Optional[int] ) -> List[str]: A__ : Dict = defaultdict(lowercase_ ) A__ : Optional[int] = [] A__ : Union[str, Any] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(lowercase_ ) A__ : Optional[int] = new_doc_list A__ : Optional[int] = [key for key, value in counts.items() if value > 1] A__ : Optional[Any] = [] for duplicate_key in duplicates: A__ : List[Any] = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(lowercase_ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) A__ : Dict = sorted(lowercase_ , key=lambda lowercase_ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowercase_ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(lowercase_ ) # Sort return overview_doc def UpperCamelCase (lowercase_: Tuple=False ) -> List[Any]: with open(lowercase_ , encoding="""utf-8""" ) as f: A__ : Dict = yaml.safe_load(f.read() ) # Get to the API doc A__ : List[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ : Union[str, Any] = content[api_idx]["""sections"""] # Then to the model doc A__ : Dict = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 A__ : List[Any] = api_doc[scheduler_idx]["""sections"""] A__ : Union[str, Any] = clean_doc_toc(lowercase_ ) A__ : Optional[int] = False if new_scheduler_doc != scheduler_doc: A__ : List[Any] = True if overwrite: A__ : Optional[int] = new_scheduler_doc if diff: if overwrite: A__ : Tuple = api_doc with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def UpperCamelCase (lowercase_: Dict=False ) -> Optional[Any]: with open(lowercase_ , encoding="""utf-8""" ) as f: A__ : int = yaml.safe_load(f.read() ) # Get to the API doc A__ : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ : List[str] = content[api_idx]["""sections"""] # Then to the model doc A__ : List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 A__ : Dict = False A__ : Tuple = api_doc[pipeline_idx]["""sections"""] A__ : Tuple = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: A__ : List[Any] = pipeline_doc["""section"""] A__ : Dict = clean_doc_toc(lowercase_ ) if overwrite: A__ : Optional[Any] = new_sub_pipeline_doc new_pipeline_docs.append(lowercase_ ) # sort overall pipeline doc A__ : Optional[int] = clean_doc_toc(lowercase_ ) if new_pipeline_docs != pipeline_docs: A__ : int = True if overwrite: A__ : List[Any] = new_pipeline_docs if diff: if overwrite: A__ : Union[str, Any] = api_doc with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A_ : str = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
192
1
import re from filelock import FileLock try: import nltk __magic_name__: List[Any] = True except (ImportError, ModuleNotFoundError): __magic_name__: str = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def UpperCamelCase ( _A ): """simple docstring""" re.sub("""<n>""", """""", _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
138
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class snake_case__ ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> int: super().__init__() __magic_name__ : Any = pad_token_id __magic_name__ : Any = max_length __magic_name__ : List[str] = vocab __magic_name__ : List[Any] = merges __magic_name__ : int = BytePairTokenizer(lowerCAmelCase__ , lowerCAmelCase__ , sequence_length=lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: __magic_name__ : Union[str, Any] = [""" """.join(lowerCAmelCase__ ) for m in tokenizer.bpe_ranks.keys()] __magic_name__ : Union[str, Any] = tokenizer.get_vocab() return cls(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: __magic_name__ : Optional[Any] = GPTaTokenizer.from_pretrained(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) return cls.from_tokenizer(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __magic_name__ ( cls , lowerCAmelCase__ ) -> List[Any]: return cls(**lowerCAmelCase__ ) def __magic_name__ ( self ) -> int: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> int: __magic_name__ : Dict = self.tf_tokenizer(lowerCAmelCase__ ) __magic_name__ : Dict = tf.ones_like(lowerCAmelCase__ ) if self.pad_token_id is not None: # pad the tokens up to max length __magic_name__ : List[Any] = max_length if max_length is not None else self.max_length if max_length is not None: __magic_name__ ,__magic_name__ : List[Any] = pad_model_inputs( lowerCAmelCase__ , max_seq_length=lowerCAmelCase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
138
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : int = logging.get_logger(__name__) def __UpperCAmelCase ( A : Any , A : Optional[int]=False , A : Union[str, Any]=False ) -> Any: UpperCAmelCase_ : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase_ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", '''beit.embeddings.cls_token'''), (F"{prefix}patch_embed.proj.weight", '''beit.embeddings.patch_embeddings.projection.weight'''), (F"{prefix}patch_embed.proj.bias", '''beit.embeddings.patch_embeddings.projection.bias'''), (F"{prefix}pos_embed", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __UpperCAmelCase ( A : str , A : Union[str, Any] , A : Optional[Any]=False , A : Tuple=False ) -> Dict: for i in range(config.num_hidden_layers ): UpperCAmelCase_ : Union[str, Any] = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase_ : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) UpperCAmelCase_ : str = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) UpperCAmelCase_ : Optional[int] = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) UpperCAmelCase_ : Any = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Any = q_bias UpperCAmelCase_ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : str = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase_ : Dict = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) UpperCAmelCase_ : List[str] = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) UpperCAmelCase_ : Optional[Any] = gamma_a UpperCAmelCase_ : Optional[Any] = gamma_a def __UpperCAmelCase ( A : Dict , A : int , A : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = dct.pop(A ) UpperCAmelCase_ : str = val def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ : Dict = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( A : List[str] , A : int , A : Tuple=False ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase_ : List[str] = BeitConfig(use_absolute_position_embeddings=A , use_mask_token=A ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase_ : Union[str, Any] = 1_0_2_4 UpperCAmelCase_ : List[str] = 4_0_9_6 UpperCAmelCase_ : Union[str, Any] = 2_4 UpperCAmelCase_ : List[str] = 1_6 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase_ : Optional[int] = 1_6 UpperCAmelCase_ : Optional[Any] = '''huggingface/label-files''' UpperCAmelCase_ : str = '''rvlcdip-id2label.json''' UpperCAmelCase_ : Union[str, Any] = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Optional[Any] = {int(A ): v for k, v in idalabel.items()} UpperCAmelCase_ : int = idalabel UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : List[Any] = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' )['''model'''] UpperCAmelCase_ : str = create_rename_keys(A , has_lm_head=A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , A , has_lm_head=A ) # load HuggingFace model UpperCAmelCase_ : Optional[Any] = BeitForMaskedImageModeling(A ) if has_lm_head else BeitForImageClassification(A ) model.eval() model.load_state_dict(A ) # Check outputs on an image UpperCAmelCase_ : Tuple = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=A ) UpperCAmelCase_ : str = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=A , return_tensors='''pt''' ) UpperCAmelCase_ : Tuple = encoding['''pixel_values'''] UpperCAmelCase_ : str = model(A ) UpperCAmelCase_ : List[Any] = outputs.logits # verify logits UpperCAmelCase_ : Dict = [1, 1_6] if '''rvlcdip''' in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(A ), "Shape of logits not as expected" Path(A ).mkdir(exist_ok=A ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(A ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(A ) if push_to_hub: if has_lm_head: UpperCAmelCase_ : str = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase_ : Optional[int] = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(A , A ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=A , ) model.push_to_hub( repo_path_or_name=Path(A , A ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=A , ) if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) _UpperCamelCase : List[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
304
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( A : List[str] , A : Any , A : Optional[int] , A : Optional[int] ) -> Optional[Any]: if isinstance(A , A ): UpperCAmelCase_ : Any = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase_ : int = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase_ : Tuple = tensor[:sequence_length] else: UpperCAmelCase_ : Dict = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase_ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( A : List[Any] ) -> str: UpperCAmelCase_ : Dict = ord(A ) if (cp >= 3_3 and cp <= 4_7) or (cp >= 5_8 and cp <= 6_4) or (cp >= 9_1 and cp <= 9_6) or (cp >= 1_2_3 and cp <= 1_2_6): return True UpperCAmelCase_ : Union[str, Any] = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class snake_case__ ( UpperCamelCase): a_ = 42 a_ = True a_ = None a_ = None a_ = -100 a_ = "pt" def A ( self : List[Any] , _A : Dict ) -> Tuple: import torch UpperCAmelCase_ : Dict = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase_ : Tuple = self.tokenizer.pad( _A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase_ : Any = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase_ : Optional[Any] = [ list(_A ) + [self.label_pad_token_id] * (sequence_length - len(_A )) for label in labels ] else: UpperCAmelCase_ : Any = [ [self.label_pad_token_id] * (sequence_length - len(_A )) + list(_A ) for label in labels ] UpperCAmelCase_ : Union[str, Any] = [feature['''ner_tags'''] for feature in features] UpperCAmelCase_ : Union[str, Any] = padding_tensor(_A , -1 , _A , _A ) UpperCAmelCase_ : List[str] = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase_ : int = padding_tensor(_A , (-1, -1) , _A , _A ) UpperCAmelCase_ : Union[str, Any] = {k: torch.tensor(_A , dtype=torch.intaa ) for k, v in batch.items()} return batch
304
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _snake_case = logging.get_logger(__name__) _snake_case = { """Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""", # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'marian' __lowerCamelCase = ['past_key_values'] __lowerCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self :int , _lowercase :Dict=5_81_01 , _lowercase :int=None , _lowercase :str=10_24 , _lowercase :Optional[int]=12 , _lowercase :int=40_96 , _lowercase :List[Any]=16 , _lowercase :int=12 , _lowercase :List[Any]=40_96 , _lowercase :List[str]=16 , _lowercase :int=0.0 , _lowercase :str=0.0 , _lowercase :List[Any]=True , _lowercase :str=True , _lowercase :Optional[int]="gelu" , _lowercase :Tuple=10_24 , _lowercase :Union[str, Any]=0.1 , _lowercase :Optional[Any]=0.0 , _lowercase :Dict=0.0 , _lowercase :str=0.02 , _lowercase :Optional[Any]=5_81_00 , _lowercase :Union[str, Any]=False , _lowercase :Union[str, Any]=5_81_00 , _lowercase :Union[str, Any]=0 , _lowercase :Any=0 , _lowercase :Optional[int]=True , **_lowercase :int , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = decoder_vocab_size or vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class lowerCAmelCase ( lowercase_ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase__ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowercase__ = {0: "batch"} lowercase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowercase__ = {0: "batch", 1: "decoder_sequence"} lowercase__ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase__ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowercase__ , lowercase__ = self.num_layers for i in range(_lowercase ): lowercase__ = {0: "batch", 2: "past_sequence + sequence"} lowercase__ = {0: "batch", 2: "past_sequence + sequence"} else: lowercase__ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCAmelCase ( self :int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase__ = super().outputs else: lowercase__ = super(_lowercase , self ).outputs if self.use_past: lowercase__ , lowercase__ = self.num_layers for i in range(_lowercase ): lowercase__ = {0: "batch", 2: "past_sequence + sequence"} lowercase__ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def UpperCAmelCase ( self :Optional[int] , _lowercase :PreTrainedTokenizer , _lowercase :int = -1 , _lowercase :int = -1 , _lowercase :bool = False , _lowercase :Optional[TensorType] = None , ): '''simple docstring''' lowercase__ = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs lowercase__ = seq_length if not self.use_past else 1 lowercase__ = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) lowercase__ = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowercase__ = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase__ , lowercase__ = common_inputs["input_ids"].shape lowercase__ = common_inputs["decoder_input_ids"].shape[1] lowercase__ , lowercase__ = self.num_attention_heads lowercase__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ = decoder_seq_length + 3 lowercase__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase__ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowercase , _lowercase )] , dim=1 ) lowercase__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase__ , lowercase__ = self.num_layers lowercase__ = min(_lowercase , _lowercase ) lowercase__ = max(_lowercase , _lowercase ) - min_num_layers lowercase__ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. lowercase__ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def UpperCAmelCase ( self :Tuple , _lowercase :PreTrainedTokenizer , _lowercase :int = -1 , _lowercase :int = -1 , _lowercase :bool = False , _lowercase :Optional[TensorType] = None , ): '''simple docstring''' lowercase__ = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase__ , lowercase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowercase__ = seqlen + 2 lowercase__ , lowercase__ = self.num_layers lowercase__ , lowercase__ = self.num_attention_heads lowercase__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase__ = common_inputs["attention_mask"].dtype lowercase__ = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) lowercase__ = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def UpperCAmelCase ( self :Optional[int] , _lowercase :PreTrainedTokenizer , _lowercase :int = -1 , _lowercase :int = -1 , _lowercase :bool = False , _lowercase :Optional[TensorType] = None , ): '''simple docstring''' lowercase__ = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ = tokenizer.num_special_tokens_to_add(_lowercase ) lowercase__ = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence lowercase__ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase__ = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def UpperCAmelCase ( self :Dict , _lowercase :PreTrainedTokenizer , _lowercase :int = -1 , _lowercase :int = -1 , _lowercase :bool = False , _lowercase :Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: lowercase__ = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def UpperCAmelCase ( self :Any , _lowercase :Union[str, Any] , _lowercase :Dict , _lowercase :str , _lowercase :Tuple ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase__ = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: lowercase__ = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase ) @property def UpperCAmelCase ( self :int ): '''simple docstring''' return 1e-4
352
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCAmelCase ( lowercase_ , lowercase_ ): __lowerCamelCase = 1 @register_to_config def __init__( self :Dict , _lowercase :int = 10_00 , _lowercase :Optional[Union[np.ndarray, List[float]]] = None ): '''simple docstring''' self.set_timesteps(_lowercase ) # standard deviation of the initial noise distribution lowercase__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase__ = 4 # running values lowercase__ = [] def UpperCAmelCase ( self :str , _lowercase :int , _lowercase :Union[str, torch.device] = None ): '''simple docstring''' lowercase__ = num_inference_steps lowercase__ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase__ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase__ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase__ = (1.0 - self.betas**2) ** 0.5 lowercase__ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase__ = timesteps.to(_lowercase ) lowercase__ = [] def UpperCAmelCase ( self :Optional[int] , _lowercase :torch.FloatTensor , _lowercase :int , _lowercase :torch.FloatTensor , _lowercase :bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase__ = (self.timesteps == timestep).nonzero().item() lowercase__ = timestep_index + 1 lowercase__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_lowercase ) if len(self.ets ) == 1: lowercase__ = self.ets[-1] elif len(self.ets ) == 2: lowercase__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase__ = self._get_prev_sample(_lowercase , _lowercase , _lowercase , _lowercase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowercase ) def UpperCAmelCase ( self :Any , _lowercase :torch.FloatTensor , *_lowercase :int , **_lowercase :int ): '''simple docstring''' return sample def UpperCAmelCase ( self :str , _lowercase :Tuple , _lowercase :int , _lowercase :Optional[Any] , _lowercase :List[str] ): '''simple docstring''' lowercase__ = self.alphas[timestep_index] lowercase__ = self.betas[timestep_index] lowercase__ = self.alphas[prev_timestep_index] lowercase__ = self.betas[prev_timestep_index] lowercase__ = (sample - sigma * ets) / max(_lowercase , 1e-8 ) lowercase__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self :Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
201
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _a ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase__ : Dict = torch.exp(__lowerCamelCase ) UpperCamelCase__ : List[Any] = torch.sum(__lowerCamelCase , dim=1 ) # sum of exp(x_i) UpperCamelCase__ : Optional[int] = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__lowerCamelCase ) - B / A class __magic_name__ ( nn.Module): def __init__( self : List[str] , lowerCamelCase__ : List[Any] ) -> Tuple: '''simple docstring''' super().__init__() UpperCamelCase__ : Optional[Any] = config.output_attentions UpperCamelCase__ : Optional[Any] = config.output_hidden_states UpperCamelCase__ : Dict = nn.ModuleList([BertLayer(__lowercase ) for _ in range(config.num_hidden_layers )] ) UpperCamelCase__ : str = nn.ModuleList([BertHighway(__lowercase ) for _ in range(config.num_hidden_layers )] ) UpperCamelCase__ : Optional[int] = [-1 for _ in range(config.num_hidden_layers )] def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if (type(__lowercase ) is float) or (type(__lowercase ) is int): for i in range(len(self.early_exit_entropy ) ): UpperCamelCase__ : Tuple = x else: UpperCamelCase__ : Union[str, Any] = x def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : int = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : str=None , lowerCamelCase__ : List[Any]=None , ) -> Dict: '''simple docstring''' UpperCamelCase__ : Dict = () UpperCamelCase__ : str = () UpperCamelCase__ : Any = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: UpperCamelCase__ : List[str] = all_hidden_states + (hidden_states,) UpperCamelCase__ : Optional[Any] = layer_module( __lowercase , __lowercase , head_mask[i] , __lowercase , __lowercase ) UpperCamelCase__ : List[str] = layer_outputs[0] if self.output_attentions: UpperCamelCase__ : Union[str, Any] = all_attentions + (layer_outputs[1],) UpperCamelCase__ : int = (hidden_states,) if self.output_hidden_states: UpperCamelCase__ : List[str] = current_outputs + (all_hidden_states,) if self.output_attentions: UpperCamelCase__ : Union[str, Any] = current_outputs + (all_attentions,) UpperCamelCase__ : List[Any] = self.highway[i](__lowercase ) # logits, pooled_output if not self.training: UpperCamelCase__ : str = highway_exit[0] UpperCamelCase__ : str = entropy(__lowercase ) UpperCamelCase__ : Optional[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy UpperCamelCase__ : Tuple = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: UpperCamelCase__ : Optional[Any] = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__lowercase , i + 1 ) else: UpperCamelCase__ : int = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: UpperCamelCase__ : Dict = all_hidden_states + (hidden_states,) UpperCamelCase__ : List[Any] = (hidden_states,) if self.output_hidden_states: UpperCamelCase__ : str = outputs + (all_hidden_states,) if self.output_attentions: UpperCamelCase__ : Optional[Any] = outputs + (all_attentions,) UpperCamelCase__ : str = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , lowercase__ , ) class __magic_name__ ( lowercase__): def __init__( self : Any , lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' super().__init__(__lowercase ) UpperCamelCase__ : Dict = config UpperCamelCase__ : Optional[int] = BertEmbeddings(__lowercase ) UpperCamelCase__ : Optional[Any] = DeeBertEncoder(__lowercase ) UpperCamelCase__ : int = BertPooler(__lowercase ) self.init_weights() def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' return self.embeddings.word_embeddings def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str ) -> str: '''simple docstring''' UpperCamelCase__ : List[Any] = value def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__lowercase ) @add_start_docstrings_to_model_forward(__lowercase ) def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : Optional[int]=None , ) -> List[Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: UpperCamelCase__ : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: UpperCamelCase__ : List[str] = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) UpperCamelCase__ : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCamelCase__ : Optional[int] = torch.ones(__lowercase , device=__lowercase ) if encoder_attention_mask is None: UpperCamelCase__ : Dict = torch.ones(__lowercase , device=__lowercase ) if token_type_ids is None: UpperCamelCase__ : Tuple = torch.zeros(__lowercase , dtype=torch.long , device=__lowercase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCamelCase__ : torch.Tensor = self.get_extended_attention_mask(__lowercase , __lowercase , __lowercase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: UpperCamelCase__ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: UpperCamelCase__ : Optional[Any] = encoder_attention_mask[:, None, None, :] UpperCamelCase__ : List[str] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility UpperCamelCase__ : int = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCamelCase__ : str = self.get_head_mask(__lowercase , self.config.num_hidden_layers ) UpperCamelCase__ : Tuple = self.embeddings( input_ids=__lowercase , position_ids=__lowercase , token_type_ids=__lowercase , inputs_embeds=__lowercase ) UpperCamelCase__ : Tuple = self.encoder( __lowercase , attention_mask=__lowercase , head_mask=__lowercase , encoder_hidden_states=__lowercase , encoder_attention_mask=__lowercase , ) UpperCamelCase__ : List[Any] = encoder_outputs[0] UpperCamelCase__ : Optional[int] = self.pooler(__lowercase ) UpperCamelCase__ : Optional[int] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __magic_name__ ( lowercase__): def __init__( self : str , lowerCamelCase__ : int , lowerCamelCase__ : List[str] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Any = message UpperCamelCase__ : Dict = exit_layer # start from 1! class __magic_name__ ( nn.Module): def __init__( self : Any , lowerCamelCase__ : int ) -> Union[str, Any]: '''simple docstring''' super().__init__() UpperCamelCase__ : Optional[Any] = BertPooler(__lowercase ) UpperCamelCase__ : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase__ : Optional[Any] = nn.Linear(config.hidden_size , config.num_labels ) def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = encoder_outputs[0] UpperCamelCase__ : Optional[int] = self.pooler(__lowercase ) # "return" pooler_output # BertModel UpperCamelCase__ : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification UpperCamelCase__ : List[Any] = bmodel_output[1] UpperCamelCase__ : Tuple = self.dropout(__lowercase ) UpperCamelCase__ : Dict = self.classifier(__lowercase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , lowercase__ , ) class __magic_name__ ( lowercase__): def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] ) -> int: '''simple docstring''' super().__init__(__lowercase ) UpperCamelCase__ : List[Any] = config.num_labels UpperCamelCase__ : Optional[Any] = config.num_hidden_layers UpperCamelCase__ : Optional[int] = DeeBertModel(__lowercase ) UpperCamelCase__ : List[Any] = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase__ : Union[str, Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__lowercase ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : str=-1 , lowerCamelCase__ : List[str]=False , ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = self.num_layers try: UpperCamelCase__ : Optional[int] = self.bert( __lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , position_ids=__lowercase , head_mask=__lowercase , inputs_embeds=__lowercase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits UpperCamelCase__ : Optional[int] = outputs[1] UpperCamelCase__ : Any = self.dropout(__lowercase ) UpperCamelCase__ : List[str] = self.classifier(__lowercase ) UpperCamelCase__ : Tuple = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCamelCase__ : Dict = e.message UpperCamelCase__ : List[str] = e.exit_layer UpperCamelCase__ : Optional[int] = outputs[0] if not self.training: UpperCamelCase__ : Optional[int] = entropy(__lowercase ) UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCamelCase__ : Union[str, Any] = MSELoss() UpperCamelCase__ : str = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase__ : Optional[int] = CrossEntropyLoss() UpperCamelCase__ : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCamelCase__ : Any = [] for highway_exit in outputs[-1]: UpperCamelCase__ : Optional[int] = highway_exit[0] if not self.training: highway_logits_all.append(__lowercase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCamelCase__ : Any = MSELoss() UpperCamelCase__ : List[str] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase__ : List[Any] = CrossEntropyLoss() UpperCamelCase__ : Any = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowercase ) if train_highway: UpperCamelCase__ : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCamelCase__ : Tuple = (loss,) + outputs if not self.training: UpperCamelCase__ : Optional[int] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCamelCase__ : Optional[int] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
146
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : List[Any] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( lowercase__ ): """simple docstring""" a : int = 'segformer' def __init__( self : Dict , __lowercase : str=3 , __lowercase : Dict=4 , __lowercase : Any=[2, 2, 2, 2] , __lowercase : Optional[int]=[8, 4, 2, 1] , __lowercase : List[str]=[32, 64, 160, 256] , __lowercase : Union[str, Any]=[7, 3, 3, 3] , __lowercase : Optional[int]=[4, 2, 2, 2] , __lowercase : Any=[1, 2, 5, 8] , __lowercase : List[str]=[4, 4, 4, 4] , __lowercase : Any="gelu" , __lowercase : Optional[int]=0.0 , __lowercase : Dict=0.0 , __lowercase : Optional[Any]=0.1 , __lowercase : int=0.02 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[Any]=1e-6 , __lowercase : Tuple=256 , __lowercase : List[Any]=255 , **__lowercase : Union[str, Any] , ) -> List[Any]: super().__init__(**__lowercase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __lowercase , ) __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Any = num_encoder_blocks __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : Dict = sr_ratios __UpperCAmelCase : int = hidden_sizes __UpperCAmelCase : Optional[Any] = patch_sizes __UpperCAmelCase : List[Any] = strides __UpperCAmelCase : List[str] = mlp_ratios __UpperCAmelCase : Tuple = num_attention_heads __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Any = classifier_dropout_prob __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Optional[Any] = drop_path_rate __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : Dict = decoder_hidden_size __UpperCAmelCase : Tuple = kwargs.get("""reshape_last_stage""" , __lowercase ) __UpperCAmelCase : int = semantic_loss_ignore_index class a ( lowercase__ ): """simple docstring""" a : Union[str, Any] = version.parse('1.11' ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self : Optional[Any] ) -> float: return 1e-4 @property def UpperCAmelCase ( self : str ) -> int: return 12
114
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = "perceiver" def __init__(self , __a=2_56 , __a=12_80 , __a=7_68 , __a=1 , __a=26 , __a=8 , __a=8 , __a=None , __a=None , __a="kv" , __a=1 , __a=1 , __a="gelu" , __a=0.1 , __a=0.02 , __a=1e-1_2 , __a=True , __a=2_62 , __a=20_48 , __a=56 , __a=[3_68, 4_96] , __a=16 , __a=19_20 , __a=16 , __a=[1, 16, 2_24, 2_24] , **__a , ) -> str: super().__init__(**__a ) UpperCamelCase = num_latents UpperCamelCase = d_latents UpperCamelCase = d_model UpperCamelCase = num_blocks UpperCamelCase = num_self_attends_per_block UpperCamelCase = num_self_attention_heads UpperCamelCase = num_cross_attention_heads UpperCamelCase = qk_channels UpperCamelCase = v_channels UpperCamelCase = cross_attention_shape_for_attention UpperCamelCase = self_attention_widening_factor UpperCamelCase = cross_attention_widening_factor UpperCamelCase = hidden_act UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_query_residual # masked language modeling attributes UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings # image classification attributes UpperCamelCase = image_size # flow attributes UpperCamelCase = train_size # multimodal autoencoding attributes UpperCamelCase = num_frames UpperCamelCase = audio_samples_per_frame UpperCamelCase = samples_per_patch UpperCamelCase = output_shape class _lowerCamelCase ( _lowercase ): @property def snake_case_ (self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def snake_case_ (self ) -> float: return 1e-4 def snake_case_ (self , __a , __a = -1 , __a = -1 , __a = -1 , __a = False , __a = None , __a = 3 , __a = 40 , __a = 40 , ) -> Mapping[str, Any]: # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(__a , __a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase = preprocessor.num_special_tokens_to_add(__a ) UpperCamelCase = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase = [" ".join(["a"] ) * seq_length] * batch_size UpperCamelCase = dict(preprocessor(__a , return_tensors=__a ) ) UpperCamelCase = inputs.pop("input_ids" ) return inputs elif isinstance(__a , __a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase = compute_effective_axis_dimension(__a , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCamelCase = self._generate_dummy_images(__a , __a , __a , __a ) UpperCamelCase = dict(preprocessor(images=__a , return_tensors=__a ) ) UpperCamelCase = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
361
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCAmelCase__ = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowerCAmelCase__ = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' lowerCAmelCase__ = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> Tuple: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def snake_case_ (self , __a , __a , __a = CHRF.CHAR_ORDER , __a = CHRF.WORD_ORDER , __a = CHRF.BETA , __a = False , __a = False , __a = False , ) -> Tuple: UpperCamelCase = len(references[0] ) if any(len(__a ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCamelCase = [[refs[i] for refs in references] for i in range(__a )] UpperCamelCase = CHRF(__a , __a , __a , __a , __a , __a ) UpperCamelCase = sb_chrf.corpus_score(__a , __a ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
244
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase : Tuple = logging.getLogger() def a__ ( A_ ): '''simple docstring''' __magic_name__ = {} __magic_name__ = os.path.join(A_, """all_results.json""" ) if os.path.exists(A_ ): with open(A_, """r""" ) as f: __magic_name__ = json.load(A_ ) else: raise ValueError(f'''can\'t find {path}''' ) return results __lowerCAmelCase : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCAmelCase_ ( _A ): '''simple docstring''' def _lowercase ( self : Any ) -> int: """simple docstring""" import xla_spawn __magic_name__ = self.get_auto_remove_tmp_dir() __magic_name__ = F''' ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__ ): __magic_name__ = time() xla_spawn.main() __magic_name__ = time() __magic_name__ = get_results(UpperCamelCase__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" import xla_spawn __magic_name__ = """ ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py """.split() with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__ ): xla_spawn.main()
88
import re import string import numpy as np import datasets __lowerCAmelCase : Optional[int] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase : Optional[int] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase : Optional[int] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : str ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int=False , UpperCamelCase__ : Tuple=False , ) -> Dict: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in predictions] ) __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in references] ) else: __magic_name__ = np.asarray(UpperCamelCase__ ) __magic_name__ = np.asarray(UpperCamelCase__ ) if ignore_case: __magic_name__ = np.char.lower(UpperCamelCase__ ) __magic_name__ = np.char.lower(UpperCamelCase__ ) if ignore_punctuation: __magic_name__ = string.punctuation.maketrans("""""" , """""" , string.punctuation ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) if ignore_numbers: __magic_name__ = string.digits.maketrans("""""" , """""" , string.digits ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = predictions == references return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
88
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : Tuple = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys lowerCamelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = RoFormerTokenizer __lowerCAmelCase = RoFormerTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def SCREAMING_SNAKE_CASE ( self ) -> List[str]: super().setUp() def SCREAMING_SNAKE_CASE ( self , **__A ) -> Optional[int]: return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__A ) def SCREAMING_SNAKE_CASE ( self , **__A ) -> List[Any]: return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__A ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: a ='''永和服装饰品有限公司,今天天气非常好''' a ='''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =self.get_tokenizer() a , a =self.get_chinese_input_output_texts() a =tokenizer.tokenize(__A ) self.assertListEqual(__A , output_text.split() ) a =tokens + [tokenizer.unk_token] a =[2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.get_rust_tokenizer() a , a =self.get_chinese_input_output_texts() a =tokenizer.tokenize(__A ) self.assertListEqual(__A , output_text.split() ) a =tokens + [tokenizer.unk_token] a =[2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass def SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass def SCREAMING_SNAKE_CASE ( self ) -> int: pass
215
1
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> np.ndarray: '''simple docstring''' lowerCAmelCase : Dict = cva.getAffineTransform(_UpperCAmelCase, _UpperCAmelCase ) return cva.warpAffine(_UpperCAmelCase, _UpperCAmelCase, (rows, cols) ) if __name__ == "__main__": # read original image __A : List[str] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __A : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A : Optional[Any] = gray_img.shape # set different points to rotate image __A : int = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A : Any = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A : Optional[int] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A : List[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A : List[str] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : Union[str, Any] = plt.figure(1) __A : Optional[Any] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
138
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __A : Tuple = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __A : Tuple = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Dict = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ), dtype=_UpperCAmelCase )[0] @deprecated(_UpperCAmelCase, 'Please use tf.data to implement this functionality.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' print('Extracting', f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: lowerCAmelCase : List[str] = _readaa(_UpperCAmelCase ) if magic != 2_051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) lowerCAmelCase : Optional[Any] = _readaa(_UpperCAmelCase ) lowerCAmelCase : Any = _readaa(_UpperCAmelCase ) lowerCAmelCase : List[Any] = _readaa(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = bytestream.read(rows * cols * num_images ) lowerCAmelCase : Any = numpy.frombuffer(_UpperCAmelCase, dtype=numpy.uinta ) lowerCAmelCase : Optional[int] = data.reshape(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, 1 ) return data @deprecated(_UpperCAmelCase, 'Please use tf.one_hot on tensors.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Optional[Any] = labels_dense.shape[0] lowerCAmelCase : Union[str, Any] = numpy.arange(_UpperCAmelCase ) * num_classes lowerCAmelCase : List[str] = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase : List[str] = 1 return labels_one_hot @deprecated(_UpperCAmelCase, 'Please use tf.data to implement this functionality.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=10 ) -> List[str]: '''simple docstring''' print('Extracting', f.name ) with gzip.GzipFile(fileobj=_UpperCAmelCase ) as bytestream: lowerCAmelCase : List[str] = _readaa(_UpperCAmelCase ) if magic != 2_049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) lowerCAmelCase : Optional[Any] = _readaa(_UpperCAmelCase ) lowerCAmelCase : Dict = bytestream.read(_UpperCAmelCase ) lowerCAmelCase : Dict = numpy.frombuffer(_UpperCAmelCase, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_UpperCAmelCase, _UpperCAmelCase ) return labels class __A : @deprecated( UpperCAmelCase_ , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=dtypes.floataa , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[Any]=None , ): lowerCAmelCase , lowerCAmelCase : int = random_seed.get_seed(UpperCAmelCase_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase : List[str] = dtypes.as_dtype(UpperCAmelCase_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: lowerCAmelCase : Dict = 10000 lowerCAmelCase : Any = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"images.shape: {images.shape} labels.shape: {labels.shape}" lowerCAmelCase : Optional[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase : Union[str, Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase : Optional[int] = images.astype(numpy.floataa ) lowerCAmelCase : Dict = numpy.multiply(UpperCAmelCase_ , 1.0 / 2_55.0 ) lowerCAmelCase : List[str] = images lowerCAmelCase : List[str] = labels lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[int] = 0 @property def lowercase__ ( self : str ): return self._images @property def lowercase__ ( self : Dict ): return self._labels @property def lowercase__ ( self : List[Any] ): return self._num_examples @property def lowercase__ ( self : Any ): return self._epochs_completed def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=True ): if fake_data: lowerCAmelCase : Union[str, Any] = [1] * 784 lowerCAmelCase : Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCAmelCase_ )], [fake_label for _ in range(UpperCAmelCase_ )], ) lowerCAmelCase : Union[str, Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase : Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.images[perma] lowerCAmelCase : str = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase : Tuple = self._num_examples - start lowerCAmelCase : Union[str, Any] = self._images[start : self._num_examples] lowerCAmelCase : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = self.images[perm] lowerCAmelCase : Optional[Any] = self.labels[perm] # Start next epoch lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Dict = batch_size - rest_num_examples lowerCAmelCase : int = self._index_in_epoch lowerCAmelCase : Union[str, Any] = self._images[start:end] lowerCAmelCase : int = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase : Optional[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_UpperCAmelCase, 'Please write your own downloading logic.' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' if not gfile.Exists(_UpperCAmelCase ): gfile.MakeDirs(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = os.path.join(_UpperCAmelCase, _UpperCAmelCase ) if not gfile.Exists(_UpperCAmelCase ): urllib.request.urlretrieve(_UpperCAmelCase, _UpperCAmelCase ) # noqa: S310 with gfile.GFile(_UpperCAmelCase ) as f: lowerCAmelCase : List[Any] = f.size() print('Successfully downloaded', _UpperCAmelCase, _UpperCAmelCase, 'bytes.' ) return filepath @deprecated( _UpperCAmelCase, 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=dtypes.floataa, _UpperCAmelCase=True, _UpperCAmelCase=5_000, _UpperCAmelCase=None, _UpperCAmelCase=DEFAULT_SOURCE_URL, ) -> Tuple: '''simple docstring''' if fake_data: def fake(): return _DataSet( [], [], fake_data=_UpperCAmelCase, one_hot=_UpperCAmelCase, dtype=_UpperCAmelCase, seed=_UpperCAmelCase ) lowerCAmelCase : Tuple = fake() lowerCAmelCase : Optional[Any] = fake() lowerCAmelCase : List[Any] = fake() return _Datasets(train=_UpperCAmelCase, validation=_UpperCAmelCase, test=_UpperCAmelCase ) if not source_url: # empty string check lowerCAmelCase : Any = DEFAULT_SOURCE_URL lowerCAmelCase : Optional[Any] = 'train-images-idx3-ubyte.gz' lowerCAmelCase : Any = 'train-labels-idx1-ubyte.gz' lowerCAmelCase : int = 't10k-images-idx3-ubyte.gz' lowerCAmelCase : Union[str, Any] = 't10k-labels-idx1-ubyte.gz' lowerCAmelCase : str = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + train_images_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : Any = _extract_images(_UpperCAmelCase ) lowerCAmelCase : Tuple = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + train_labels_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : int = _extract_labels(_UpperCAmelCase, one_hot=_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + test_images_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : List[Any] = _extract_images(_UpperCAmelCase ) lowerCAmelCase : Any = _maybe_download( _UpperCAmelCase, _UpperCAmelCase, source_url + test_labels_file ) with gfile.Open(_UpperCAmelCase, 'rb' ) as f: lowerCAmelCase : List[str] = _extract_labels(_UpperCAmelCase, one_hot=_UpperCAmelCase ) if not 0 <= validation_size <= len(_UpperCAmelCase ): lowerCAmelCase : str = ( 'Validation size should be between 0 and ' f"{len(_UpperCAmelCase )}. Received: {validation_size}." ) raise ValueError(_UpperCAmelCase ) lowerCAmelCase : str = train_images[:validation_size] lowerCAmelCase : Dict = train_labels[:validation_size] lowerCAmelCase : List[str] = train_images[validation_size:] lowerCAmelCase : str = train_labels[validation_size:] lowerCAmelCase : str = {'dtype': dtype, 'reshape': reshape, 'seed': seed} lowerCAmelCase : int = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = _DataSet(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) return _Datasets(train=_UpperCAmelCase, validation=_UpperCAmelCase, test=_UpperCAmelCase )
138
1
"""simple docstring""" lowerCAmelCase__ = { '''km/h''': 1.0, '''m/s''': 3.6, '''mph''': 1.609344, '''knot''': 1.852, } lowerCAmelCase__ = { '''km/h''': 1.0, '''m/s''': 0.277777778, '''mph''': 0.621371192, '''knot''': 0.539956803, } def a__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: lowerCAmelCase : Dict = ( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {", ".join(SCREAMING_SNAKE_CASE )}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : List[str] =None a : List[Any] =BloomTokenizerFast a : Optional[int] =BloomTokenizerFast a : Optional[Any] =True a : Dict =False a : Optional[Any] ="tokenizer_file" a : Optional[int] ={"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : Tuple = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.get_rust_tokenizer() lowerCAmelCase : List[Any] = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowerCAmelCase : str = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] lowerCAmelCase : Optional[int] = tokenizer.batch_encode_plus(snake_case__ )["input_ids"] self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowerCAmelCase : str = "This is a simple input" lowerCAmelCase : Tuple = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase : Any = ("This is a simple input", "This is a pair") lowerCAmelCase : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(snake_case__ , max_length=snake_case__ ) tokenizer_r.encode_plus(snake_case__ , max_length=snake_case__ ) tokenizer_r.batch_encode_plus(snake_case__ , max_length=snake_case__ ) tokenizer_r.encode(snake_case__ , max_length=snake_case__ ) tokenizer_r.batch_encode_plus(snake_case__ , max_length=snake_case__ ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowerCAmelCase : Tuple = None # Hotfixing padding = None self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Simple input self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Simple input self.assertRaises( snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" , ) # Pair input self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Pair input self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Pair input self.assertRaises( snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.get_rust_tokenizer() lowerCAmelCase : int = load_dataset("xnli" , "all_languages" , split="test" , streaming=snake_case__ ) lowerCAmelCase : Tuple = next(iter(snake_case__ ) )["premise"] # pick up one data lowerCAmelCase : Optional[Any] = list(sample_data.values() ) lowerCAmelCase : int = list(map(tokenizer.encode , snake_case__ ) ) lowerCAmelCase : List[Any] = [tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) for x in output_tokens] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
133
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=0.999 , _UpperCAmelCase : Tuple="cosine" , ) -> Optional[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase : List[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) _UpperCAmelCase = [] for i in range(__UpperCAmelCase ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class __lowerCAmelCase ( __lowerCamelCase , __lowerCamelCase ): UpperCamelCase = [e.name for e in KarrasDiffusionSchedulers] UpperCamelCase = 2 @register_to_config def __init__( self : Any , A : Optional[Any] = 10_00 , A : Union[str, Any] = 0.0_0_0_8_5 , A : Union[str, Any] = 0.0_1_2 , A : Optional[int] = "linear" , A : Dict = None , A : Tuple = "epsilon" , A : List[Any] = "linspace" , A : str = 0 , ) -> Tuple: """simple docstring""" if trained_betas is not None: _UpperCAmelCase = torch.tensor(A , dtype=torch.floataa) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(A , A , A , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(A) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}") _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(A , A , A) def _lowerCamelCase ( self : str , A : int , A : str=None) -> str: """simple docstring""" if schedule_timesteps is None: _UpperCAmelCase = self.timesteps _UpperCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: _UpperCAmelCase = 1 if len(A) > 1 else 0 else: _UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(A) else timestep _UpperCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Any) -> List[str]: """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Any , A : List[str] , A : List[Any] , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = self.index_for_timestep(A) if self.state_in_first_order: _UpperCAmelCase = self.sigmas[step_index] else: _UpperCAmelCase = self.sigmas_interpol[step_index] _UpperCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : Dict , A : str , A : Union[str, Any] = None , A : Tuple = None , ) -> str: """simple docstring""" _UpperCAmelCase = num_inference_steps _UpperCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _UpperCAmelCase = np.linspace(0 , num_train_timesteps - 1 , A , dtype=A)[::-1].copy() elif self.config.timestep_spacing == "leading": _UpperCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , A) * step_ratio).round()[::-1].copy().astype(A) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _UpperCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(A , 0 , -step_ratio)).round().copy().astype(A) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.") _UpperCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) _UpperCAmelCase = torch.from_numpy(np.log(A)).to(A) _UpperCAmelCase = np.interp(A , np.arange(0 , len(A)) , A) _UpperCAmelCase = np.concatenate([sigmas, [0.0]]).astype(np.floataa) _UpperCAmelCase = torch.from_numpy(A).to(device=A) # interpolate sigmas _UpperCAmelCase = sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp() _UpperCAmelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) _UpperCAmelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(A).startswith('mps'): # mps does not support float64 _UpperCAmelCase = torch.from_numpy(A).to(A , dtype=torch.floataa) else: _UpperCAmelCase = torch.from_numpy(A).to(A) # interpolate timesteps _UpperCAmelCase = self.sigma_to_t(A).to(A , dtype=timesteps.dtype) _UpperCAmelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten() _UpperCAmelCase = torch.cat([timesteps[:1], interleaved_timesteps]) _UpperCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _UpperCAmelCase = defaultdict(A) def _lowerCamelCase ( self : Optional[int] , A : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = sigma.log() # get distribution _UpperCAmelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range _UpperCAmelCase = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) _UpperCAmelCase = low_idx + 1 _UpperCAmelCase = self.log_sigmas[low_idx] _UpperCAmelCase = self.log_sigmas[high_idx] # interpolate sigmas _UpperCAmelCase = (low - log_sigma) / (low - high) _UpperCAmelCase = w.clamp(0 , 1) # transform interpolation to time range _UpperCAmelCase = (1 - w) * low_idx + w * high_idx _UpperCAmelCase = t.view(sigma.shape) return t @property def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.sample is None def _lowerCamelCase ( self : Any , A : str , A : Union[str, Any] , A : Optional[Any] , A : List[Any] = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" _UpperCAmelCase = self.index_for_timestep(A) # advance index counter by 1 _UpperCAmelCase = timestep.cpu().item() if torch.is_tensor(A) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _UpperCAmelCase = self.sigmas[step_index] _UpperCAmelCase = self.sigmas_interpol[step_index + 1] _UpperCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _UpperCAmelCase = self.sigmas[step_index - 1] _UpperCAmelCase = self.sigmas_interpol[step_index] _UpperCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _UpperCAmelCase = 0 _UpperCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_interpol _UpperCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = sigma_hat if self.state_in_first_order else sigma_interpol _UpperCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample') else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`") if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _UpperCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _UpperCAmelCase = sigma_interpol - sigma_hat # store for 2nd order step _UpperCAmelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _UpperCAmelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _UpperCAmelCase = sigma_next - sigma_hat _UpperCAmelCase = self.sample _UpperCAmelCase = None _UpperCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=A) def _lowerCamelCase ( self : Union[str, Any] , A : int , A : Any , A : str , ) -> torch.FloatTensor: """simple docstring""" _UpperCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(A): # mps does not support float64 _UpperCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa) _UpperCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa) else: _UpperCAmelCase = self.timesteps.to(original_samples.device) _UpperCAmelCase = timesteps.to(original_samples.device) _UpperCAmelCase = [self.index_for_timestep(A , A) for t in timesteps] _UpperCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): _UpperCAmelCase = sigma.unsqueeze(-1) _UpperCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self : Tuple) -> Any: """simple docstring""" return self.config.num_train_timesteps
339
UpperCAmelCase_ = 'Input must be a string of 8 numbers plus letter' UpperCAmelCase_ = 'TRWAGMYFPDXBNJZSQVHLCKE' def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> bool: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase__ : Any = f"Expected string as input, found {type(__UpperCAmelCase ).__name__}" raise TypeError(__UpperCAmelCase ) UpperCamelCase__ : int = spanish_id.replace('''-''' , '''''' ).upper() if len(__UpperCAmelCase ) != 9: raise ValueError(__UpperCAmelCase ) try: UpperCamelCase__ : List[str] = int(spanish_id_clean[0:8] ) UpperCamelCase__ : Optional[int] = spanish_id_clean[8] except ValueError as ex: raise ValueError(__UpperCAmelCase ) from ex if letter.isdigit(): raise ValueError(__UpperCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
201
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
354
from bisect import bisect from itertools import accumulate def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Dict = sorted(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , key=lambda SCREAMING_SNAKE_CASE__ : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Optional[Any] = [i[0] for i in r], [i[1] for i in r] lowercase : Any = list(accumulate(SCREAMING_SNAKE_CASE__ ) ) lowercase : int = bisect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
285
0
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar lowercase__ : str = TypeVar('T') class __lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = data _UpperCamelCase = self _UpperCamelCase = 0 class __lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase = {} def snake_case__ ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = DisjointSetTreeNode(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.map[data] if elem_ref != elem_ref.parent: _UpperCamelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' if nodea.rank > nodea.rank: _UpperCamelCase = nodea else: _UpperCamelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def snake_case__ ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' self.link(self.find_set(SCREAMING_SNAKE_CASE_ ) , self.find_set(SCREAMING_SNAKE_CASE_ ) ) class __lowerCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self : str ) -> str: '''simple docstring''' _UpperCamelCase = {} def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' if node not in self.connections: _UpperCamelCase = {} def snake_case__ ( self : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' self.add_node(SCREAMING_SNAKE_CASE_ ) self.add_node(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase = weight _UpperCamelCase = weight def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda lowerCAmelCase__ : x[2] ) # creating the disjoint set _UpperCamelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(SCREAMING_SNAKE_CASE_ ) # MST generation _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = edges[index] index += 1 _UpperCamelCase = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) _UpperCamelCase = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) disjoint_set.union(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return graph
324
import torch from diffusers import StableDiffusionPipeline lowerCamelCase_ = '''path-to-your-trained-model''' lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') lowerCamelCase_ = '''A photo of sks dog in a bucket''' lowerCamelCase_ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
244
0
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Any = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : str = AlbertTokenizer a__ : Tuple = AlbertTokenizerFast a__ : Optional[Any] = True a__ : Union[str, Any] = True a__ : Union[str, Any] = True def a ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = AlbertTokenizer(_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : Tuple , _lowercase : str ): __UpperCAmelCase = '''this is a test''' __UpperCAmelCase = '''this is a test''' return input_text, output_text def a ( self : Tuple ): __UpperCAmelCase = '''<pad>''' __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def a ( self : str ): __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(_lowercase ) , 3_00_00 ) def a ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def a ( self : Dict ): if not self.test_rust_tokenizer: return __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase = tokenizer.tokenize(_lowercase ) __UpperCAmelCase = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = tokenizer.encode(_lowercase ) __UpperCAmelCase = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def a ( self : Dict ): __UpperCAmelCase = AlbertTokenizer(_lowercase , keep_accents=_lowercase ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [48, 25, 21, 12_89] ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def a ( self : int ): __UpperCAmelCase = AlbertTokenizer(_lowercase ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowercase ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def a ( self : List[Any] ): # fmt: off __UpperCAmelCase = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
358
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _UpperCAmelCase : def __init__( self : Optional[int] , _lowercase : Any , _lowercase : List[str]=14 , _lowercase : Dict=7 , _lowercase : Optional[int]=True , _lowercase : Optional[int]=True , _lowercase : Any=False , _lowercase : Any=True , _lowercase : List[str]=99 , _lowercase : int=32 , _lowercase : Union[str, Any]=4 , _lowercase : Dict=4 , _lowercase : List[Any]=4 , _lowercase : Dict=37 , _lowercase : Tuple="gelu" , _lowercase : Optional[int]=0.1 , _lowercase : Dict=0.1 , _lowercase : Union[str, Any]=5_12 , _lowercase : int=0.02 , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = rotary_dim __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = None __UpperCAmelCase = vocab_size - 1 __UpperCAmelCase = vocab_size - 1 __UpperCAmelCase = vocab_size - 1 def a ( self : int ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_lowercase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def a ( self : str ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a ( self : List[Any] , _lowercase : Tuple , _lowercase : Optional[Any] , _lowercase : List[str] , _lowercase : List[str] ): __UpperCAmelCase = 20 __UpperCAmelCase = model_class_name(_lowercase ) __UpperCAmelCase = model.init_cache(input_ids.shape[0] , _lowercase ) __UpperCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , ) __UpperCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model( input_ids[:, -1:] , attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , position_ids=_lowercase , ) __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def a ( self : List[Any] , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : Union[str, Any] ): __UpperCAmelCase = 20 __UpperCAmelCase = model_class_name(_lowercase ) __UpperCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCAmelCase = model.init_cache(input_ids.shape[0] , _lowercase ) __UpperCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCAmelCase = model( input_ids[:, :-1] , attention_mask=_lowercase , past_key_values=_lowercase , position_ids=_lowercase , ) __UpperCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) __UpperCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_lowercase , position_ids=_lowercase , ) __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase ) __UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () a__ : List[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def a ( self : List[Any] ): __UpperCAmelCase = FlaxGPTJModelTester(self ) def a ( self : Any ): for model_class_name in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase , _lowercase ) def a ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _lowercase , _lowercase , _lowercase , _lowercase ) @tooslow def a ( self : Tuple ): __UpperCAmelCase = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) __UpperCAmelCase = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=_lowercase , truncation=_lowercase ) __UpperCAmelCase = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) __UpperCAmelCase = False __UpperCAmelCase = model.config.eos_token_id __UpperCAmelCase = jax.jit(model.generate ) __UpperCAmelCase = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCAmelCase = tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(_lowercase , _lowercase ) @is_pt_flax_cross_test def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCAmelCase = getattr(_lowercase , _lowercase ) __UpperCAmelCase , __UpperCAmelCase = pt_inputs['''input_ids'''].shape __UpperCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = pt_model_class(_lowercase ).eval() __UpperCAmelCase = model_class(_lowercase , dtype=jnp.floataa ) __UpperCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _lowercase ) __UpperCAmelCase = fx_state with torch.no_grad(): __UpperCAmelCase = pt_model(**_lowercase ).to_tuple() __UpperCAmelCase = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_lowercase ) __UpperCAmelCase = model_class.from_pretrained(_lowercase , from_pt=_lowercase ) __UpperCAmelCase = fx_model_loaded(**_lowercase ).to_tuple() self.assertEqual( len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def a ( self : Any ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCAmelCase = getattr(_lowercase , _lowercase ) __UpperCAmelCase = pt_model_class(_lowercase ).eval() __UpperCAmelCase = model_class(_lowercase , dtype=jnp.floataa ) __UpperCAmelCase = load_flax_weights_in_pytorch_model(_lowercase , fx_model.params ) __UpperCAmelCase , __UpperCAmelCase = pt_inputs['''input_ids'''].shape __UpperCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_lowercase ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 0 __UpperCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCAmelCase = pt_model(**_lowercase ).to_tuple() __UpperCAmelCase = fx_model(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_lowercase ) __UpperCAmelCase = pt_model_class.from_pretrained(_lowercase , from_flax=_lowercase ) with torch.no_grad(): __UpperCAmelCase = pt_model_loaded(**_lowercase ).to_tuple() self.assertEqual( len(_lowercase ) , len(_lowercase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_lowercase , _lowercase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def a ( self : Tuple ): for model_class_name in self.all_model_classes: __UpperCAmelCase = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) __UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase )
86
0
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 # [batch_size x 3] UpperCAmelCase = 42 # [batch_size x 3] UpperCAmelCase = 42 # [batch_size x 3] UpperCAmelCase = 42 # [batch_size x 3] UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 def _snake_case ( self ) -> List[str]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _snake_case ( self ) -> Dict: return torch.from_numpy(np.array([self.width, self.height] ,dtype=np.floataa ) ) def _snake_case ( self ) -> List[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] ,dtype=np.floataa ) ) def _snake_case ( self ) -> torch.Tensor: _UpperCAmelCase : int = torch.arange(self.height * self.width ) _UpperCAmelCase : List[str] = torch.stack( [ pixel_indices % self.width, torch.div(a_ ,self.width ,rounding_mode="""trunc""" ), ] ,axis=1 ,) return coords @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase ,*_UpperCAmelCase : Optional[Any] = self.shape _UpperCAmelCase : List[Any] = int(np.prod(a_ ) ) _UpperCAmelCase : Optional[int] = self.get_image_coords() _UpperCAmelCase : List[Any] = torch.broadcast_to(coords.unsqueeze(0 ) ,[batch_size * inner_batch_size, *coords.shape] ) _UpperCAmelCase : Union[str, Any] = self.get_camera_rays(a_ ) _UpperCAmelCase : Tuple = rays.view(a_ ,inner_batch_size * self.height * self.width ,2 ,3 ) return rays def _snake_case ( self ,a_ ) -> torch.Tensor: _UpperCAmelCase ,*_UpperCAmelCase ,_UpperCAmelCase : Any = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _UpperCAmelCase : List[str] = coords.view(a_ ,-1 ,2 ) _UpperCAmelCase : Optional[Any] = self.resolution() _UpperCAmelCase : Union[str, Any] = self.fov() _UpperCAmelCase : Tuple = (flat.float() / (res - 1)) * 2 - 1 _UpperCAmelCase : str = fracs * torch.tan(fov / 2 ) _UpperCAmelCase : Union[str, Any] = fracs.view(a_ ,-1 ,2 ) _UpperCAmelCase : str = ( self.z.view(a_ ,1 ,3 ) + self.x.view(a_ ,1 ,3 ) * fracs[:, :, :1] + self.y.view(a_ ,1 ,3 ) * fracs[:, :, 1:] ) _UpperCAmelCase : Union[str, Any] = directions / directions.norm(dim=-1 ,keepdim=a_ ) _UpperCAmelCase : List[str] = torch.stack( [ torch.broadcast_to(self.origin.view(a_ ,1 ,3 ) ,[batch_size, directions.shape[1], 3] ), directions, ] ,dim=2 ,) return rays.view(a_ ,*a_ ,2 ,3 ) def _snake_case ( self ,a_ ,a_ ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin ,x=self.x ,y=self.y ,z=self.z ,width=a_ ,height=a_ ,x_fov=self.x_fov ,y_fov=self.y_fov ,) def snake_case_ ( lowerCAmelCase_ )-> DifferentiableProjectiveCamera: '''simple docstring''' _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[int] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): _UpperCAmelCase : Any = np.array([np.sin(lowerCAmelCase_ ), np.cos(lowerCAmelCase_ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _UpperCAmelCase : Tuple = -z * 4 _UpperCAmelCase : Optional[int] = np.array([np.cos(lowerCAmelCase_ ), -np.sin(lowerCAmelCase_ ), 0.0] ) _UpperCAmelCase : Optional[Any] = np.cross(lowerCAmelCase_ , lowerCAmelCase_ ) origins.append(lowerCAmelCase_ ) xs.append(lowerCAmelCase_ ) ys.append(lowerCAmelCase_ ) zs.append(lowerCAmelCase_ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCAmelCase_ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCAmelCase_ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCAmelCase_ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCAmelCase_ , axis=0 ) ).float() , width=lowerCAmelCase_ , height=lowerCAmelCase_ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCAmelCase_ )) , )
215
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Any = logging.get_logger(__name__) A_ : Any = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """markuplm""" def __init__( self ,a_=30_522 ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=0 ,a_=2 ,a_=256 ,a_=1_024 ,a_=216 ,a_=1_001 ,a_=32 ,a_=50 ,a_="absolute" ,a_=True ,a_=None ,**a_ ,) -> Union[str, Any]: super().__init__( pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,**a_ ,) _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : Optional[Any] = position_embedding_type _UpperCAmelCase : Any = use_cache _UpperCAmelCase : List[Any] = classifier_dropout # additional properties _UpperCAmelCase : Dict = max_depth _UpperCAmelCase : Union[str, Any] = max_xpath_tag_unit_embeddings _UpperCAmelCase : Optional[int] = max_xpath_subs_unit_embeddings _UpperCAmelCase : List[Any] = tag_pad_id _UpperCAmelCase : Tuple = subs_pad_id _UpperCAmelCase : List[str] = xpath_unit_hidden_size
215
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[int] = (UniPCMultistepScheduler,) __snake_case : Optional[Any] = (("num_inference_steps", 25),) def UpperCamelCase ( self: List[Any] , **UpperCAmelCase_: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_000, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**UpperCAmelCase_ ) return config def UpperCamelCase ( self: Optional[int] , UpperCAmelCase_: Tuple=0 , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("""num_inference_steps""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(UpperCAmelCase_ ) new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = sample, sample for t in range(UpperCAmelCase_ , time_step + scheduler.config.solver_order + 1 ): _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample _SCREAMING_SNAKE_CASE = new_scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self: Tuple , UpperCAmelCase_: Dict=0 , **UpperCAmelCase_: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("""num_inference_steps""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals (must be after setting timesteps) _SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(UpperCAmelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residual (must be after setting timesteps) _SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample _SCREAMING_SNAKE_CASE = new_scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self: List[str] , UpperCAmelCase_: List[Any]=None , **UpperCAmelCase_: Any ): '''simple docstring''' if scheduler is None: _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample return sample def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("""num_inference_steps""" , UpperCAmelCase_ ) for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase_ , """set_timesteps""" ): scheduler.set_timesteps(UpperCAmelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCAmelCase_ , """set_timesteps""" ): _SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.10] _SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] _SCREAMING_SNAKE_CASE = scheduler.timesteps[5] _SCREAMING_SNAKE_CASE = scheduler.timesteps[6] _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = UniPCMultistepScheduler(**self.get_scheduler_config() ) _SCREAMING_SNAKE_CASE = self.full_loop(scheduler=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 _SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE = self.full_loop(scheduler=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def UpperCamelCase ( self: Tuple ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , solver_order=UpperCAmelCase_ , solver_type=UpperCAmelCase_ , ) def UpperCamelCase ( self: int ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCAmelCase_ , solver_type=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = self.full_loop( solver_order=UpperCAmelCase_ , solver_type=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , ) assert not torch.isnan(UpperCAmelCase_ ).any(), "Samples have nan numbers" def UpperCamelCase ( self: Any ): '''simple docstring''' self.check_over_configs(lower_order_final=UpperCAmelCase_ ) self.check_over_configs(lower_order_final=UpperCAmelCase_ ) def UpperCamelCase ( self: List[str] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=UpperCAmelCase_ , time_step=0 ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.full_loop() _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="""v_prediction""" ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_mean.item() - 0.10_14 ) < 1E-3 def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0 ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 10 _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCAmelCase_ ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample assert sample.dtype == torch.floataa def UpperCamelCase ( self: Optional[int] , **UpperCAmelCase_: List[str] ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
365
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Dict: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _SCREAMING_SNAKE_CASE = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) _SCREAMING_SNAKE_CASE = in_proj_weight[ : encoder_config.hidden_size, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -encoder_config.hidden_size :, : ] def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if "handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(snake_case__ ,stream=snake_case__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = ViTConfig(image_size=3_84 ,qkv_bias=snake_case__ ) _SCREAMING_SNAKE_CASE = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _SCREAMING_SNAKE_CASE = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 10_24 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = """relu""" _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False # load HuggingFace model _SCREAMING_SNAKE_CASE = ViTModel(snake_case__ ,add_pooling_layer=snake_case__ ) _SCREAMING_SNAKE_CASE = TrOCRForCausalLM(snake_case__ ) _SCREAMING_SNAKE_CASE = VisionEncoderDecoderModel(encoder=snake_case__ ,decoder=snake_case__ ) model.eval() # load state_dict of original model, rename some keys _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(snake_case__ ,map_location="""cpu""" ,check_hash=snake_case__ )["""model"""] _SCREAMING_SNAKE_CASE = create_rename_keys(snake_case__ ,snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ ,snake_case__ ,snake_case__ ) read_in_q_k_v(snake_case__ ,snake_case__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: _SCREAMING_SNAKE_CASE = val else: _SCREAMING_SNAKE_CASE = val # load state dict model.load_state_dict(snake_case__ ) # Check outputs on an image _SCREAMING_SNAKE_CASE = ViTImageProcessor(size=encoder_config.image_size ) _SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained("""roberta-large""" ) _SCREAMING_SNAKE_CASE = TrOCRProcessor(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = processor(images=prepare_img(snake_case__ ) ,return_tensors="""pt""" ).pixel_values # verify logits _SCREAMING_SNAKE_CASE = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _SCREAMING_SNAKE_CASE = model(pixel_values=snake_case__ ,decoder_input_ids=snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.logits _SCREAMING_SNAKE_CASE = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: _SCREAMING_SNAKE_CASE = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] ,snake_case__ ,atol=1e-3 ), "First elements of logits not as expected" Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
125
0
from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): '''simple docstring''' lowerCamelCase__ = spearmanr(snake_case__ , snake_case__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
209
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __lowerCAmelCase ( unittest.TestCase ): def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _UpperCAmelCase = Vector() def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(snake_case__ ) , "(0,0,0,0,0,1)" ) def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3, 4] ) self.assertEqual(len(snake_case__ ) , 4 ) def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = Vector([1, 2] ) _UpperCAmelCase = Vector([1, 2, 3, 4, 5] ) _UpperCAmelCase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _UpperCAmelCase = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3] ) _UpperCAmelCase = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3] ) _UpperCAmelCase = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCamelCase ( self : str ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3] ) _UpperCAmelCase = Vector([2, -1, 4] ) # for test of dot product _UpperCAmelCase = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("0" ) , 10 ) def UpperCamelCase ( self : Any ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3] ) _UpperCAmelCase = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , snake_case__ , snake_case__ ) ) , "(3,4,7)" ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = Vector([1, 0, 0, 0, 0, 0] ) _UpperCAmelCase = x.copy() self.assertEqual(str(snake_case__ ) , str(snake_case__ ) ) def UpperCamelCase ( self : Dict ): """simple docstring""" _UpperCAmelCase = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(snake_case__ ) , "(0,1,0)" ) def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(snake_case__ ) ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCAmelCase = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(snake_case__ , snake_case__ ) ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCAmelCase = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(snake_case__ , snake_case__ ) ) def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _UpperCAmelCase = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(snake_case__ ) ) def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCamelCase ( self : str ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def UpperCamelCase ( self : str ): """simple docstring""" self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
133
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
364
"""simple docstring""" from __future__ import annotations from typing import Any def A ( snake_case :list ) -> int: if not postfix_notation: return 0 __UpperCamelCase = {'+', '-', '*', '/'} __UpperCamelCase = [] for token in postfix_notation: if token in operations: __UpperCamelCase , __UpperCamelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(snake_case ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
263
0
from ...configuration_utils import PretrainedConfig lowercase_ = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class __lowerCAmelCase ( lowercase_ ): _a = '''tapas''' def __init__( self , lowerCAmelCase=30_522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3_072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=1_024 , lowerCAmelCase=[3, 256, 256, 2, 256, 256, 10] , lowerCAmelCase=0.02 , lowerCAmelCase=1e-12 , lowerCAmelCase=0 , lowerCAmelCase=10.0 , lowerCAmelCase=0 , lowerCAmelCase=1.0 , lowerCAmelCase=None , lowerCAmelCase=1.0 , lowerCAmelCase=False , lowerCAmelCase=None , lowerCAmelCase=1.0 , lowerCAmelCase=1.0 , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase="ratio" , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=64 , lowerCAmelCase=32 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =hidden_act _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_sizes _lowercase =initializer_range _lowercase =layer_norm_eps # Fine-tuning task hyperparameters _lowercase =positive_label_weight _lowercase =num_aggregation_labels _lowercase =aggregation_loss_weight _lowercase =use_answer_as_supervision _lowercase =answer_loss_importance _lowercase =use_normalized_answer_loss _lowercase =huber_loss_delta _lowercase =temperature _lowercase =aggregation_temperature _lowercase =use_gumbel_for_cells _lowercase =use_gumbel_for_aggregation _lowercase =average_approximation_function _lowercase =cell_selection_preference _lowercase =answer_loss_cutoff _lowercase =max_num_rows _lowercase =max_num_columns _lowercase =average_logits_per_cell _lowercase =select_one_column _lowercase =allow_empty_column_selection _lowercase =init_cell_selection_weights_to_zero _lowercase =reset_position_index_per_cell _lowercase =disable_per_token_loss # Aggregation hyperparameters _lowercase =aggregation_labels _lowercase =no_aggregation_label_index if isinstance(self.aggregation_labels , lowerCAmelCase ): _lowercase ={int(lowerCAmelCase ): v for k, v in aggregation_labels.items()}
205
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
285
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Optional[int] ): UpperCamelCase__ = inspect.getfile(accelerate.test_utils ) UpperCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) UpperCamelCase__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def A_ ( self : Optional[int] ): UpperCamelCase__ = F""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() UpperCamelCase__ = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
35
from __future__ import annotations from typing import Any def lowerCamelCase_ ( UpperCamelCase__ : list ): '''simple docstring''' if not postfix_notation: return 0 UpperCamelCase__ = {'''+''', '''-''', '''*''', '''/'''} UpperCamelCase__ = [] for token in postfix_notation: if token in operations: UpperCamelCase__ , UpperCamelCase__ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
35
1
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __lowercase = logging.get_logger(__name__) __lowercase = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class a__( _lowerCamelCase ): '''simple docstring''' def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , *__lowerCAmelCase , **__lowerCAmelCase): """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if config is None: assert isinstance(self.model , _SCREAMING_SNAKE_CASE), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) lowerCAmelCase = self.model.config else: lowerCAmelCase = config lowerCAmelCase = data_args lowerCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , _SCREAMING_SNAKE_CASE) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" """ padding..""") if self.args.label_smoothing == 0: lowerCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowerCAmelCase = label_smoothed_nll_loss def a_ ( self , __lowerCAmelCase): """simple docstring""" if self.optimizer is None: lowerCAmelCase = ['bias', 'LayerNorm.weight'] lowerCAmelCase = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, }, ] lowerCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowerCAmelCase = Adafactor lowerCAmelCase = {'scale_parameter': False, 'relative_step': False} else: lowerCAmelCase = AdamW lowerCAmelCase = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } lowerCAmelCase = self.args.learning_rate if self.sharded_ddp: lowerCAmelCase = OSS( params=_SCREAMING_SNAKE_CASE , optim=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) else: lowerCAmelCase = optimizer_cls(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if self.lr_scheduler is None: lowerCAmelCase = self._get_lr_scheduler(_SCREAMING_SNAKE_CASE) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""") def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowerCAmelCase = schedule_func(self.optimizer) elif self.args.lr_scheduler == "constant_w_warmup": lowerCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps) else: lowerCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_SCREAMING_SNAKE_CASE) return scheduler def a_ ( self): """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset) ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE)[0] lowerCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1]) , labels.view(-1)) else: # compute usual loss via models lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE)[:2] else: # compute label smoothed loss lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE)[0] lowerCAmelCase = torch.nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1) lowerCAmelCase = self.loss_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.args.label_smoothing , ignore_index=self.config.pad_token_id) return loss, logits def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = inputs.pop("""labels""") lowerCAmelCase = self._compute_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) return loss def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , ): """simple docstring""" lowerCAmelCase = self._prepare_inputs(_SCREAMING_SNAKE_CASE) lowerCAmelCase = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowerCAmelCase = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_SCREAMING_SNAKE_CASE , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase = self._pad_tensors_to_max_len(_SCREAMING_SNAKE_CASE , gen_kwargs["""max_length"""]) lowerCAmelCase = inputs.pop("""labels""") with torch.no_grad(): # compute loss on predict data lowerCAmelCase = self._compute_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) lowerCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowerCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase = self._pad_tensors_to_max_len(_SCREAMING_SNAKE_CASE , gen_kwargs["""max_length"""]) return (loss, logits, labels) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f" padded to `max_length`={max_length}") lowerCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device) lowerCAmelCase = tensor return padded_tensor
272
"""simple docstring""" import os import pytest from attr import dataclass lowerCamelCase__ = """us-east-1""" # defaults region @dataclass class A__ : A_ : str A_ : Union[str, Any] = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' A_ : Optional[int] = { 'task_name': 'mnli', 'per_device_train_batch_size': 1_6, 'per_device_eval_batch_size': 1_6, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_0_0, 'save_steps': 5_5_0_0, } A_ : List[Any] = {**hyperparameters, 'max_steps': 1_0_0_0} @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCamelCase ( self ): return f"{self.framework}-transfromers-test" @property def __lowerCamelCase ( self ): return f"./tests/sagemaker/scripts/{self.framework}" @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : str = SageMakerTestEnvironment(framework=request.cls.framework )
86
0
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) class UpperCamelCase_ (__A ): __magic_name__ = CLIPConfig __magic_name__ = ['''CLIPEncoderLayer'''] def __init__( self : str , lowerCAmelCase_ : CLIPConfig ) -> List[str]: super().__init__(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = CLIPVisionModelWithProjection(config.vision_config ) UpperCAmelCase_ : Tuple = nn.Linear(config.vision_config.projection_dim , 1 ) UpperCAmelCase_ : int = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any]=0.5 , lowerCAmelCase_ : Any=0.5 ) -> Dict: UpperCAmelCase_ : Dict = self.vision_model(lowerCAmelCase_ )[0] UpperCAmelCase_ : Optional[Any] = self.p_head(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = nsfw_detected.flatten() UpperCAmelCase_ : List[Any] = nsfw_detected > p_threshold UpperCAmelCase_ : Dict = nsfw_detected.tolist() if any(lowerCAmelCase_ ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(lowerCAmelCase_ ): if nsfw_detected_: UpperCAmelCase_ : Union[str, Any] = np.zeros(images[idx].shape ) UpperCAmelCase_ : Union[str, Any] = self.w_head(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = watermark_detected.flatten() UpperCAmelCase_ : Optional[int] = watermark_detected > w_threshold UpperCAmelCase_ : List[Any] = watermark_detected.tolist() if any(lowerCAmelCase_ ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(lowerCAmelCase_ ): if watermark_detected_: UpperCAmelCase_ : Union[str, Any] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
253
"""simple docstring""" import re import string import numpy as np import datasets lowerCamelCase_ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' lowerCamelCase_ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' lowerCamelCase_ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Optional[Any]=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase_ : str = np.array([re.sub(lowerCAmelCase_ , "" , lowerCAmelCase_ ) for x in predictions] ) UpperCAmelCase_ : Dict = np.array([re.sub(lowerCAmelCase_ , "" , lowerCAmelCase_ ) for x in references] ) else: UpperCAmelCase_ : int = np.asarray(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.asarray(lowerCAmelCase_ ) if ignore_case: UpperCAmelCase_ : Optional[Any] = np.char.lower(lowerCAmelCase_ ) UpperCAmelCase_ : int = np.char.lower(lowerCAmelCase_ ) if ignore_punctuation: UpperCAmelCase_ : Any = string.punctuation.maketrans("" , "" , string.punctuation ) UpperCAmelCase_ : Any = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : Any = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) if ignore_numbers: UpperCAmelCase_ : Dict = string.digits.maketrans("" , "" , string.digits ) UpperCAmelCase_ : Optional[Any] = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : int = np.char.translate(lowerCAmelCase_ , table=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = predictions == references return {"exact_match": np.mean(lowerCAmelCase_ ) * 100}
253
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] ) -> int: """simple docstring""" UpperCamelCase :List[Any] = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[Any] = flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> List[str]: """simple docstring""" UpperCamelCase :Optional[int] = {} UpperCamelCase :List[Any] = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } UpperCamelCase :str = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCamelCase :Dict = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCamelCase :Any = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCamelCase :int = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCamelCase :Any = re.sub(R"""layers_(\d+)""" , R"""layer.\1""" , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = new_key.replace("""encoder""" , """encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCamelCase :str = re.sub(R"""layers_(\d+)""" , R"""layer.\1""" , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = flax_dict[key] UpperCamelCase :List[str] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCamelCase :Dict = torch.from_numpy(converted_dict[key].T ) else: UpperCamelCase :List[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : List[str]=False , __magic_name__ : Dict=False ) -> int: """simple docstring""" UpperCamelCase :Optional[Any] = get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: UpperCamelCase :List[str] = PixaStructVisionConfig() UpperCamelCase :List[str] = PixaStructTextConfig() else: UpperCamelCase :Dict = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) UpperCamelCase :Optional[int] = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) UpperCamelCase :List[Any] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) UpperCamelCase :Tuple = PixaStructImageProcessor() UpperCamelCase :Optional[int] = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: UpperCamelCase :Union[str, Any] = 4096 UpperCamelCase :Union[str, Any] = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print("""Model saved in {}""".format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') UpperCAmelCase_ : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
38
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __a (lowerCamelCase ): def __init__( self : str , __magic_name__ : CLIPSegForImageSegmentation , __magic_name__ : CLIPSegProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> str: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Optional[int] = dict(scheduler.config ) UpperCAmelCase_ : str = 1 UpperCAmelCase_ : List[str] = FrozenDict(__magic_name__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Dict = dict(scheduler.config ) UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = FrozenDict(__magic_name__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=__magic_name__ , segmentation_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> List[str]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase_ : Tuple = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__magic_name__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : Union[torch.FloatTensor, PIL.Image.Image] , __magic_name__ : str , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) UpperCAmelCase_ : int = self.segmentation_model(**__magic_name__ ) UpperCAmelCase_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase_ : List[Any] = self.numpy_to_pil(__magic_name__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase_ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , )
125
0
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def snake_case (A_ :Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class snake_case ( UpperCAmelCase ): @staticmethod def lowerCamelCase__ ( A : ArgumentParser ): '''simple docstring''' a : Any = parser.add_parser('env' ) download_parser.set_defaults(func=A ) def lowerCamelCase__ ( self : str ): '''simple docstring''' a : Union[str, Any] = huggingface_hub.__version__ a : str = 'not installed' a : Union[str, Any] = 'NA' if is_torch_available(): import torch a : Any = torch.__version__ a : Optional[int] = torch.cuda.is_available() a : int = 'not installed' if is_transformers_available(): import transformers a : Union[str, Any] = transformers.__version__ a : int = 'not installed' if is_accelerate_available(): import accelerate a : Tuple = accelerate.__version__ a : Any = 'not installed' if is_xformers_available(): import xformers a : Dict = xformers.__version__ a : Optional[Any] = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A ) ) return info @staticmethod def lowerCamelCase__ ( A : int ): '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
186
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : int = get_tests_dir('fixtures/test_sentencepiece_bpe.model') class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = BartphoTokenizer __magic_name__ = False __magic_name__ = True def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() a : Any = ['▁This', '▁is', '▁a', '▁t', 'est'] a : List[Any] = dict(zip(A , range(len(A ) ) ) ) a : int = {'unk_token': '<unk>'} a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) a : Optional[int] = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : Dict , **A : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **A ) def lowerCamelCase__ ( self : Optional[int] , A : Dict ): '''simple docstring''' a : Tuple = 'This is a là test' a : List[Any] = 'This is a<unk><unk> test' return input_text, output_text def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Tuple = BartphoTokenizer(A , self.monolingual_vocab_file , **self.special_tokens_map ) a : int = 'This is a là test' a : int = '▁This ▁is ▁a ▁l à ▁t est'.split() a : str = tokenizer.tokenize(A ) self.assertListEqual(A , A ) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Dict = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
186
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class A ( unittest.TestCase ): """simple docstring""" @require_torch def snake_case__ ( self : Any )-> Any: '''simple docstring''' A__ = pipeline( task='zero-shot-audio-classification',model='hf-internal-testing/tiny-clap-htsat-unfused' ) A__ = load_dataset('ashraq/esc50' ) A__ = dataset['''train''']['''audio'''][-1]['''array'''] A__ = audio_classifier(lowercase_,candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(lowercase_ ),[{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}],) @unittest.skip('No models are available in TF' ) def snake_case__ ( self : Tuple )-> Union[str, Any]: '''simple docstring''' pass @slow @require_torch def snake_case__ ( self : Tuple )-> str: '''simple docstring''' A__ = pipeline( task='zero-shot-audio-classification',model='laion/clap-htsat-unfused',) # This is an audio of a dog A__ = load_dataset('ashraq/esc50' ) A__ = dataset['''train''']['''audio'''][-1]['''array'''] A__ = audio_classifier(lowercase_,candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(lowercase_ ),[ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ],) A__ = audio_classifier([audio] * 5,candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(lowercase_ ),[ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5,) A__ = audio_classifier( [audio] * 5,candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'],batch_size=5 ) self.assertEqual( nested_simplify(lowercase_ ),[ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5,) @unittest.skip('No models are available in TF' ) def snake_case__ ( self : Any )-> int: '''simple docstring''' pass
7
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase : List[str] = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" _UpperCAmelCase : str = str(bin(UpperCamelCase__ ) )[2:] _UpperCAmelCase : List[str] = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
263
0
from collections.abc import Callable import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): __lowerCAmelCase = int(np.ceil((x_end - xa) / step_size ) ) __lowerCAmelCase = np.zeros((n + 1,) ) __lowerCAmelCase = ya __lowerCAmelCase = xa for k in range(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE_ , y[k] ) __lowerCAmelCase = y[k] + ( (step_size / 2) * (ode_func(SCREAMING_SNAKE_CASE_ , y[k] ) + ode_func(x + step_size , SCREAMING_SNAKE_CASE_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
102
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , _A=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTModel(config=_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDeiTForMaskedImageModeling(config=_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForMaskedImageModeling(_A ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = TFDeiTForImageClassification(_A ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFDeiTForImageClassification(_A ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _a : Optional[Any] = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _a : str = False _a : str = False _a : List[str] = False _a : Optional[int] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Dense ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFDeiTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="tf" ) # forward pass __lowerCAmelCase = model(**_A ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) __lowerCAmelCase = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
102
1
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class UpperCAmelCase_ : """simple docstring""" def __init__( self : int ): snake_case__ : Dict = {} def lowerCamelCase ( self : Union[str, Any] , snake_case_ : str ): snake_case__ : Union[str, Any] = {} def lowerCamelCase ( self : Optional[int] , snake_case_ : str , snake_case_ : str , snake_case_ : float ): if nodea not in self.connections: self.add_node(snake_case_ ) if nodea not in self.connections: self.add_node(snake_case_ ) snake_case__ : Optional[Any] = probability def lowerCamelCase ( self : List[str] ): return list(self.connections ) def lowerCamelCase ( self : List[Any] , snake_case_ : str ): snake_case__ : Union[str, Any] = 0 snake_case__ : Optional[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> dict[str, int]: snake_case__ : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = Counter(graph.get_nodes() ) snake_case__ : Optional[int] = start for _ in range(_lowerCAmelCase ): snake_case__ : Union[str, Any] = graph.transition(_lowerCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: snake_case__ : str = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case( ) -> List[str]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _snake_case ( unittest.TestCase): @slow def A__ ( self : Dict ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = TFAutoModel.from_pretrained(__lowercase, from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = AutoModel.from_pretrained(__lowercase, from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) @slow def A__ ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = TFAutoModelForPreTraining.from_pretrained(__lowercase, from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = AutoModelForPreTraining.from_pretrained(__lowercase, from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) @slow def A__ ( self : Optional[Any] ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = TFAutoModelForCausalLM.from_pretrained(__lowercase, from_pt=__lowercase ) lowercase__ , lowercase__ = TFAutoModelForCausalLM.from_pretrained( __lowercase, output_loading_info=__lowercase, from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = AutoModelForCausalLM.from_pretrained(__lowercase, from_tf=__lowercase ) lowercase__ , lowercase__ = AutoModelForCausalLM.from_pretrained( __lowercase, output_loading_info=__lowercase, from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) @slow def A__ ( self : Dict ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = TFAutoModelWithLMHead.from_pretrained(__lowercase, from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = AutoModelWithLMHead.from_pretrained(__lowercase, from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) @slow def A__ ( self : List[Any] ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = TFAutoModelForMaskedLM.from_pretrained(__lowercase, from_pt=__lowercase ) lowercase__ , lowercase__ = TFAutoModelForMaskedLM.from_pretrained( __lowercase, output_loading_info=__lowercase, from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = AutoModelForMaskedLM.from_pretrained(__lowercase, from_tf=__lowercase ) lowercase__ , lowercase__ = AutoModelForMaskedLM.from_pretrained( __lowercase, output_loading_info=__lowercase, from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) @slow def A__ ( self : Dict ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase, from_pt=__lowercase ) lowercase__ , lowercase__ = TFAutoModelForSeqaSeqLM.from_pretrained( __lowercase, output_loading_info=__lowercase, from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(__lowercase, from_tf=__lowercase ) lowercase__ , lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( __lowercase, output_loading_info=__lowercase, from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) @slow def A__ ( self : Union[str, Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = TFAutoModelForSequenceClassification.from_pretrained(__lowercase, from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = AutoModelForSequenceClassification.from_pretrained(__lowercase, from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) @slow def A__ ( self : int ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: lowercase__ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = TFAutoModelForQuestionAnswering.from_pretrained(__lowercase, from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) lowercase__ = AutoModelForQuestionAnswering.from_pretrained(__lowercase, from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) def A__ ( self : str ): lowercase__ = TFAutoModelWithLMHead.from_pretrained(__lowercase, from_pt=__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) self.assertEqual(model.num_parameters(), 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ), 1_4410 ) lowercase__ = AutoModelWithLMHead.from_pretrained(__lowercase, from_tf=__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) self.assertEqual(model.num_parameters(), 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ), 1_4410 ) def A__ ( self : Tuple ): lowercase__ = TFAutoModelWithLMHead.from_pretrained(__lowercase, from_pt=__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) self.assertEqual(model.num_parameters(), 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ), 1_4410 ) lowercase__ = AutoModelWithLMHead.from_pretrained(__lowercase, from_tf=__lowercase ) self.assertIsInstance(__lowercase, __lowercase ) self.assertEqual(model.num_parameters(), 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ), 1_4410 )
224
from pathlib import Path import fire def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for path in src_dir.iterdir(): lowercase__ = [x.rstrip() for x in list(path.open().readlines() )][:n] lowercase__ = dest_dir.joinpath(path.name ) print(SCREAMING_SNAKE_CASE_ ) dest_path.open("w" ).write("\n".join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": fire.Fire(minify)
224
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase : str = get_tests_dir('fixtures') class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = mock.Mock() SCREAMING_SNAKE_CASE_ : str = 500 SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : Any = HTTPError SCREAMING_SNAKE_CASE_ : List[Any] = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE_ : List[str] = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: SCREAMING_SNAKE_CASE_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class _A ( unittest.TestCase): @classmethod def UpperCAmelCase ( cls ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def UpperCAmelCase ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = WavaVecaFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='test-feature-extractor' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : Dict = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = WavaVecaFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : Any = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ : int = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE_ : str = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) SCREAMING_SNAKE_CASE_ : str = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
253
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase : List[str] = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } lowerCAmelCase : Tuple = { '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(state_dict.keys() ) for name in state_dict_keys: SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(a ) # emb -> embedding if name.startswith('emb.' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention SCREAMING_SNAKE_CASE_ : Optional[Any] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , a ) # ffn -> feed_forward SCREAMING_SNAKE_CASE_ : Any = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , a ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): SCREAMING_SNAKE_CASE_ : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): SCREAMING_SNAKE_CASE_ : List[str] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": SCREAMING_SNAKE_CASE_ : Any = 'rwkv.' + name SCREAMING_SNAKE_CASE_ : Dict = weight return state_dict def A_ ( a , a , a , a=None , a=None , a=False , a=None ): """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 5_0_2_7_7 SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = len(a ) tokenizer.save_pretrained(a ) # 2. Build the config SCREAMING_SNAKE_CASE_ : List[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: SCREAMING_SNAKE_CASE_ : str = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) SCREAMING_SNAKE_CASE_ : str = RwkvConfig( vocab_size=a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(a ) # 3. Download model file then convert state_dict SCREAMING_SNAKE_CASE_ : List[Any] = hf_hub_download(a , a ) SCREAMING_SNAKE_CASE_ : int = torch.load(a , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = convert_state_dict(a ) # 4. Split in shards and save SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = shard_checkpoint(a ) for shard_file, shard in shards.items(): torch.save(a , os.path.join(a , a ) ) if index is not None: SCREAMING_SNAKE_CASE_ : Any = os.path.join(a , a ) # Save the index as well with open(a , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : int = json.dumps(a , indent=2 , sort_keys=a ) + '\n' f.write(a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) SCREAMING_SNAKE_CASE_ : List[Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: SCREAMING_SNAKE_CASE_ : List[str] = torch.load(os.path.join(a , a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(a , a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(a ) model.push_to_hub(a , max_shard_size='2GB' ) tokenizer.push_to_hub(a ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
253
1
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCAmelCase__ ( _UpperCamelCase : int = 3 ) -> qiskit.result.counts.Counts: """simple docstring""" if isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(_UpperCamelCase ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 1_0: raise ValueError('number of qubits too large to simulate(>10).' ) snake_case = QuantumRegister(_UpperCamelCase , 'qr' ) snake_case = ClassicalRegister(_UpperCamelCase , 'cr' ) snake_case = QuantumCircuit(_UpperCamelCase , _UpperCamelCase ) snake_case = number_of_qubits for i in range(_UpperCamelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_UpperCamelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _UpperCamelCase , _UpperCamelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_UpperCamelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_UpperCamelCase , _UpperCamelCase ) # simulate with 10000 shots snake_case = Aer.get_backend('qasm_simulator' ) snake_case = execute(_UpperCamelCase , _UpperCamelCase , shots=1_0_0_0_0 ) return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
149
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def snake_case ( self ): """simple docstring""" snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): """simple docstring""" snake_case = BioGptForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # create attention mask snake_case = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase ) snake_case = self.seq_length // 2 snake_case = 0 # first forward pass snake_case ,snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case = ids_tensor((1,) , lowerCAmelCase ).item() + 1 snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case = random_other_next_tokens # append to next input_ids and attn_mask snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowerCAmelCase )] , dim=1 , ) # get two different outputs snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] snake_case = model(lowerCAmelCase , past_key_values=lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -1, random_slice_idx].detach() snake_case = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ).to(lowerCAmelCase ).eval() snake_case = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase ) # first forward pass snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) snake_case ,snake_case = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[ 'last_hidden_state' ] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" snake_case = BioGptForCausalLM(lowerCAmelCase ) model.to(lowerCAmelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case ( self , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(lowerCAmelCase ) snake_case = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = BioGptForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) = config_and_inputs snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : List[Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : str = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : str = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[str] = False def snake_case ( self ): """simple docstring""" snake_case = BioGptModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case = type self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCAmelCase , gradient_checkpointing=lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCAmelCase ) @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(lowerCAmelCase ) snake_case = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) snake_case = 'left' # Define PAD Token = EOS Token = 50256 snake_case = tokenizer.eos_token snake_case = model.config.eos_token_id # use different length sentences to test batching snake_case = [ 'Hello, my dog is a little', 'Today, I', ] snake_case = tokenizer(lowerCAmelCase , return_tensors='pt' , padding=lowerCAmelCase ) snake_case = inputs['input_ids'].to(lowerCAmelCase ) snake_case = model.generate( input_ids=lowerCAmelCase , attention_mask=inputs['attention_mask'].to(lowerCAmelCase ) , ) snake_case = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(lowerCAmelCase ) snake_case = model.generate(input_ids=lowerCAmelCase ) snake_case = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() snake_case = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(lowerCAmelCase ) snake_case = model.generate(input_ids=lowerCAmelCase , max_length=model.config.max_length - num_paddings ) snake_case = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase ) snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase ) snake_case = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case ( self ): """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = BioGptModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = 3 snake_case = input_dict['input_ids'] snake_case = input_ids.ne(1 ).to(lowerCAmelCase ) snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case = BioGptForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = 3 snake_case = 'multi_label_classification' snake_case = input_dict['input_ids'] snake_case = input_ids.ne(1 ).to(lowerCAmelCase ) snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case = BioGptForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) snake_case = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) snake_case = model(lowerCAmelCase )[0] snake_case = 4_23_84 snake_case = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase ) snake_case = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(lowerCAmelCase ) torch.manual_seed(0 ) snake_case = tokenizer('COVID-19 is' , return_tensors='pt' ).to(lowerCAmelCase ) snake_case = model.generate( **lowerCAmelCase , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=lowerCAmelCase , ) snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase ) snake_case = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
149
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(SCREAMING_SNAKE_CASE , n - 1 , SCREAMING_SNAKE_CASE ) * a) % mod else: A_ : Optional[Any] = binary_exponentiation(SCREAMING_SNAKE_CASE , n / 2 , SCREAMING_SNAKE_CASE ) return (b * b) % mod # a prime number UpperCamelCase = 701 UpperCamelCase = 10_0000_0000 UpperCamelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
186
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "t5" snake_case = ["past_key_values"] snake_case = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _SCREAMING_SNAKE_CASE=3_2128 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , **_SCREAMING_SNAKE_CASE , )->List[Any]: '''simple docstring''' A_ : List[Any] = vocab_size A_ : int = d_model A_ : Optional[Any] = d_kv A_ : str = d_ff A_ : int = num_layers A_ : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A_ : Optional[Any] = num_heads A_ : Union[str, Any] = relative_attention_num_buckets A_ : Dict = relative_attention_max_distance A_ : List[str] = dropout_rate A_ : Dict = layer_norm_epsilon A_ : str = initializer_factor A_ : Dict = feed_forward_proj A_ : int = use_cache A_ : Optional[int] = self.feed_forward_proj.split('''-''' ) A_ : Optional[Any] = act_info[-1] A_ : Optional[Any] = act_info[0] == '''gated''' if len(_SCREAMING_SNAKE_CASE ) > 1 and act_info[0] != "gated" or len(_SCREAMING_SNAKE_CASE ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A_ : Tuple = '''gelu_new''' super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" @property def _snake_case ( self )->Mapping[str, Mapping[int, str]]: '''simple docstring''' A_ : Union[str, Any] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: A_ : List[str] = '''past_encoder_sequence + sequence''' A_ : Optional[int] = {0: '''batch'''} A_ : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A_ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} A_ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' ) return common_inputs @property def _snake_case ( self )->int: '''simple docstring''' return 13
186
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Tuple = '''bert-generation''' def __init__( self , _lowercase=50_358 , _lowercase=1_024 , _lowercase=24 , _lowercase=16 , _lowercase=4_096 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase=2 , _lowercase=1 , _lowercase="absolute" , _lowercase=True , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache
229
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
1
"""simple docstring""" import functools def lowercase ( _snake_case : list[int] , _snake_case : list[int] ) ->int: """simple docstring""" if not isinstance(_snake_case , _snake_case ) or not all(isinstance(_snake_case , _snake_case ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(_snake_case ) != 3 or not all(isinstance(_snake_case , _snake_case ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(_snake_case ) == 0: return 0 if min(_snake_case ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(_snake_case ) >= 366: raise ValueError('''All days elements should be less than 366''' ) __snake_case : str = set(_snake_case ) @functools.cache def dynamic_programming(_snake_case : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
102
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins SCREAMING_SNAKE_CASE : List[Any] = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def lowercase ( _snake_case : Optional[int] , _snake_case : Optional[int] ) ->Tuple: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def lowercase ( _snake_case : List[str] ) ->Optional[int]: """simple docstring""" config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=_snake_case ) def lowercase ( _snake_case : Optional[Any] , _snake_case : Dict ) ->Any: """simple docstring""" __snake_case : List[Any] = tmp_path_factory.getbasetemp() / '''cache''' __snake_case : int = test_hf_cache_home / '''datasets''' __snake_case : Tuple = test_hf_cache_home / '''metrics''' __snake_case : List[str] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(_snake_case ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(_snake_case ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(_snake_case ) ) __snake_case : Optional[int] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(_snake_case ) ) __snake_case : Tuple = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_snake_case ) ) @pytest.fixture(autouse=_snake_case , scope='''session''' ) def lowercase ( ) ->Any: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_snake_case ) def lowercase ( _snake_case : Tuple ) ->Union[str, Any]: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , _snake_case ) @pytest.fixture def lowercase ( _snake_case : Any ) ->Optional[Any]: """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , _snake_case )
102
1
"""simple docstring""" class snake_case : def __init__( self : List[str] , UpperCamelCase__ : str = "" , UpperCamelCase__ : bool = False)-> None: '''simple docstring''' __lowerCAmelCase: dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word __lowerCAmelCase: List[str] = is_leaf __lowerCAmelCase: Any = prefix def lowercase_ ( self : Optional[int] , UpperCamelCase__ : str)-> tuple[str, str, str]: '''simple docstring''' __lowerCAmelCase: str = 0 for q, w in zip(self.prefix , UpperCamelCase__): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase_ ( self : Any , UpperCamelCase__ : list[str])-> None: '''simple docstring''' for word in words: self.insert(UpperCamelCase__) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : str)-> None: '''simple docstring''' if self.prefix == word: __lowerCAmelCase: Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __lowerCAmelCase: Union[str, Any] = RadixNode(prefix=UpperCamelCase__ , is_leaf=UpperCamelCase__) else: __lowerCAmelCase: Optional[int] = self.nodes[word[0]] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Dict = incoming_node.match( UpperCamelCase__) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCamelCase__) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __lowerCAmelCase: str = remaining_prefix __lowerCAmelCase: str = self.nodes[matching_string[0]] __lowerCAmelCase: Union[str, Any] = RadixNode(UpperCamelCase__ , UpperCamelCase__) __lowerCAmelCase: Any = aux_node if remaining_word == "": __lowerCAmelCase: Dict = True else: self.nodes[matching_string[0]].insert(UpperCamelCase__) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : str)-> bool: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.nodes.get(word[0] , UpperCamelCase__) if not incoming_node: return False else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[int] = incoming_node.match( UpperCamelCase__) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : str)-> bool: '''simple docstring''' __lowerCAmelCase: Dict = self.nodes.get(word[0] , UpperCamelCase__) if not incoming_node: return False else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Tuple = incoming_node.match( UpperCamelCase__) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCamelCase__) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: __lowerCAmelCase: Optional[int] = list(self.nodes.values())[0] __lowerCAmelCase: Any = merging_node.is_leaf self.prefix += merging_node.prefix __lowerCAmelCase: Any = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: __lowerCAmelCase: str = False # If there is 1 edge, we merge it with its child else: __lowerCAmelCase: int = list(incoming_node.nodes.values())[0] __lowerCAmelCase: List[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __lowerCAmelCase: str = merging_node.nodes return True def lowercase_ ( self : Tuple , UpperCamelCase__ : int = 0)-> None: '''simple docstring''' if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "") for value in self.nodes.values(): value.print_tree(height + 1) def a__ ( ) -> bool: __lowerCAmelCase: Optional[Any] = "banana bananas bandana band apple all beast".split() __lowerCAmelCase: Tuple = RadixNode() root.insert_many(__SCREAMING_SNAKE_CASE ) assert all(root.find(__SCREAMING_SNAKE_CASE ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def a__ ( ) -> None: assert test_trie() def a__ ( ) -> None: __lowerCAmelCase: str = RadixNode() __lowerCAmelCase: Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(__SCREAMING_SNAKE_CASE ) print("Words:" , __SCREAMING_SNAKE_CASE ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
108
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> np.ndarray: __lowerCAmelCase: List[Any] = cva.getAffineTransform(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cva.warpAffine(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (rows, cols) ) if __name__ == "__main__": # read original image __A = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __A = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A = gray_img.shape # set different points to rotate image __A = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A = plt.figure(1) __A = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
108
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Optional[int] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """rwkv""" _SCREAMING_SNAKE_CASE = {"""max_position_embeddings""": """context_length"""} def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_0_2_7_7 , SCREAMING_SNAKE_CASE_ : List[Any]=1_0_2_4 , SCREAMING_SNAKE_CASE_ : Any=4_0_9_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[str]=1E-5 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=6 , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : Tuple=True , **SCREAMING_SNAKE_CASE_ : List[str] , ): lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : List[Any] = context_length lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : str = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCAmelCase_ : Optional[Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCAmelCase_ : List[str] = layer_norm_epsilon lowerCAmelCase_ : Union[str, Any] = rescale_every lowerCAmelCase_ : List[str] = use_cache lowerCAmelCase_ : Optional[Any] = bos_token_id lowerCAmelCase_ : Tuple = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
224
"""simple docstring""" from __future__ import annotations def UpperCamelCase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int ) -> bool: """simple docstring""" if len(lowerCAmelCase__ ) == 0: return False lowerCAmelCase_ : Union[str, Any] = len(lowerCAmelCase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowerCAmelCase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ : str = input("""Enter numbers separated by comma:\n""").strip() lowercase__ : Optional[int] = [int(item.strip()) for item in user_input.split(""",""")] lowercase__ : Optional[Any] = int(input("""Enter the number to be found in the list:\n""").strip()) lowercase__ : int = """""" if binary_search(sequence, target) else """not """ print(f'{target} was {not_str}found in {sequence}')
224
1
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = False, False, False @dataclass class __lowerCAmelCase : lowercase = None lowercase = True lowercase = True lowercase = None # Automatically constructed lowercase = "dict" lowercase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowercase = field(default="Audio" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE ) def __call__( self ): '''simple docstring''' return self.pa_type def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __UpperCamelCase = BytesIO() sf.write(__UpperCAmelCase , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __UpperCamelCase = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: __UpperCamelCase = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 3_2767 __UpperCamelCase = BytesIO(bytes() ) sf.write(__UpperCAmelCase , __UpperCAmelCase , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) __UpperCamelCase , __UpperCamelCase = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err __UpperCamelCase = xsplitext(__UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: __UpperCamelCase = token_per_repo_id or {} __UpperCamelCase = path.split('::' )[-1] try: __UpperCamelCase = string_to_dict(__UpperCAmelCase , config.HUB_DATASETS_URL )['repo_id'] __UpperCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): __UpperCamelCase = None with xopen(__UpperCAmelCase , 'rb' , use_auth_token=__UpperCAmelCase ) as f: __UpperCamelCase , __UpperCamelCase = sf.read(__UpperCAmelCase ) else: __UpperCamelCase , __UpperCamelCase = sf.read(__UpperCAmelCase ) __UpperCamelCase = array.T if self.mono: __UpperCamelCase = librosa.to_mono(__UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: __UpperCamelCase = librosa.resample(__UpperCAmelCase , orig_sr=__UpperCAmelCase , target_sr=self.sampling_rate ) __UpperCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase ( self ): '''simple docstring''' from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if pa.types.is_string(storage.type ): __UpperCamelCase = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __UpperCamelCase = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): __UpperCamelCase = pa.array([Audio().encode_example(__UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: __UpperCamelCase = storage.field('bytes' ) else: __UpperCamelCase = pa.array([None] * len(__UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: __UpperCamelCase = storage.field('path' ) else: __UpperCamelCase = pa.array([None] * len(__UpperCAmelCase ) , type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__UpperCAmelCase ): with xopen(__UpperCAmelCase , 'rb' ) as f: __UpperCamelCase = f.read() return bytes_ __UpperCamelCase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __UpperCamelCase = pa.array( [os.path.basename(__UpperCAmelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(__UpperCAmelCase , self.pa_type )
263
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["input_values", "attention_mask"] def __init__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 1_6000 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = False , __UpperCAmelCase = 80 , __UpperCAmelCase = 16 , __UpperCAmelCase = 64 , __UpperCAmelCase = "hann_window" , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 80 , __UpperCAmelCase = 7600 , __UpperCAmelCase = 1E-10 , __UpperCAmelCase = 2 , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = do_normalize __UpperCamelCase = return_attention_mask __UpperCamelCase = num_mel_bins __UpperCamelCase = hop_length __UpperCamelCase = win_length __UpperCamelCase = win_function __UpperCamelCase = frame_signal_scale __UpperCamelCase = fmin __UpperCamelCase = fmax __UpperCamelCase = mel_floor __UpperCamelCase = reduction_factor __UpperCamelCase = win_length * sampling_rate // 1000 __UpperCamelCase = hop_length * sampling_rate // 1000 __UpperCamelCase = optimal_fft_length(self.sample_size ) __UpperCamelCase = (self.n_fft // 2) + 1 __UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCAmelCase ) __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , __UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , __UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 ): '''simple docstring''' if attention_mask is not None: __UpperCamelCase = np.array(__UpperCAmelCase , np.intaa ) __UpperCamelCase = [] for vector, length in zip(__UpperCAmelCase , attention_mask.sum(-1 ) ): __UpperCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __UpperCamelCase = padding_value normed_input_values.append(__UpperCAmelCase ) else: __UpperCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def UpperCAmelCase ( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = spectrogram( __UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: __UpperCamelCase = self._process_audio( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = None if audio_target is not None: __UpperCamelCase = self._process_audio( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) if inputs is None: return inputs_target else: __UpperCamelCase = inputs_target['input_values'] __UpperCamelCase = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: __UpperCamelCase = decoder_attention_mask return inputs def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = isinstance(__UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) __UpperCamelCase = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): __UpperCamelCase = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [speech] # needed to make pad() work on spectrogram inputs __UpperCamelCase = self.feature_size # convert into correct format for padding if is_target: __UpperCamelCase = [self._extract_mel_features(__UpperCAmelCase ) for waveform in speech] __UpperCamelCase = BatchFeature({'input_values': features} ) __UpperCamelCase = self.num_mel_bins else: __UpperCamelCase = BatchFeature({'input_values': speech} ) __UpperCamelCase = self.pad( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = feature_size_hack # convert input values to correct format __UpperCamelCase = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): __UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): __UpperCamelCase = [array.astype(np.floataa ) for array in input_values] elif isinstance(__UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): __UpperCamelCase = input_values.astype(np.floataa ) # convert attention_mask to correct format __UpperCamelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: __UpperCamelCase = [np.asarray(__UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __UpperCamelCase = ( attention_mask if self._get_padding_strategies(__UpperCAmelCase , max_length=__UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __UpperCamelCase = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=__UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: __UpperCamelCase = padded_inputs.convert_to_tensors(__UpperCAmelCase ) return padded_inputs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() # Don't serialize these as they are derived from the other properties. __UpperCamelCase = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
263
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__: List[Any] = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Optional[Any] = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Any = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys A__: Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
149
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__: str = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: List[str] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A__: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
149
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a__( lowerCamelCase__ ): lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """ViTImageProcessor""" lowercase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[Any] , __snake_case : List[Any]=None , __snake_case : Dict=None , **__snake_case : Optional[Any] ): a : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __snake_case , ) a : List[str] = kwargs.pop('feature_extractor' ) a : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__snake_case , __snake_case ) def __call__( self : int , __snake_case : Dict=None , __snake_case : Optional[Any]=None , __snake_case : List[str]=None , __snake_case : int=None , **__snake_case : str ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: a : Any = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if visual_prompt is not None: a : int = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: a : int = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if visual_prompt is not None and images is not None: a : Optional[Any] = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: a : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: a : Any = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def lowercase_ ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ): return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowercase_ ( self : Any , *__snake_case : Any , **__snake_case : Optional[int] ): return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowercase_ ( self : Tuple ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __snake_case , ) return self.image_processor_class @property def lowercase_ ( self : Any ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __snake_case , ) return self.image_processor
96
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase: List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[int] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Dict = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
96
1
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCAmelCase = str(bin(snake_case_ ) )[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(snake_case_ ) )[2:] # remove the leading "0b" __lowerCAmelCase = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
229
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor _A : Optional[int] = logging.get_logger(__name__) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None: warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
229
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float ) -> tuple: lowerCamelCase_ : Optional[Any] =namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
209
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer A__ : Dict = logging.get_logger(__name__) A__ : Dict = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } A__ : List[Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } A__ : Optional[int] = { 'facebook/blenderbot_small-90M': 512, } class lowercase__ ( snake_case__ ): _UpperCAmelCase :Optional[int] = VOCAB_FILES_NAMES _UpperCAmelCase :Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Tuple = BlenderbotSmallTokenizer def __init__( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : str=None , snake_case__ : Any="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : str=False , snake_case__ : int=True , **snake_case__ : Tuple , ): super().__init__( ByteLevelBPETokenizer( vocab=snake_case__ , merges=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , ) , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , **snake_case__ , ) lowerCamelCase_ : Optional[int] =add_prefix_space def UpperCAmelCase__ ( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : List[str]=None ): lowerCamelCase_ : Optional[Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCamelCase_ : int =[self.sep_token_id] lowerCamelCase_ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
209
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str ="llama" a : List[str] =["past_key_values"] def __init__( self , snake_case__=32_000 , snake_case__=4_096 , snake_case__=11_008 , snake_case__=32 , snake_case__=32 , snake_case__=None , snake_case__="silu" , snake_case__=2_048 , snake_case__=0.02 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=1 , snake_case__=False , snake_case__=None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : str = hidden_size lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Dict = num_key_value_heads lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Any = rms_norm_eps lowerCAmelCase : List[Any] = pretraining_tp lowerCAmelCase : int = use_cache lowerCAmelCase : List[str] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ , ) def lowercase__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) lowerCAmelCase : Optional[Any] = self.rope_scaling.get("type" , snake_case__ ) lowerCAmelCase : int = self.rope_scaling.get("factor" , snake_case__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case__ , snake_case__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
108
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py SCREAMING_SNAKE_CASE : Tuple = "src/transformers" SCREAMING_SNAKE_CASE : int = "docs/source/en/tasks" def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: with open(lowerCamelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowercase : List[Any] = f.readlines() # Find the start prompt. _lowercase : int = 0 while not lines[start_index].startswith(lowerCamelCase_ ): start_index += 1 start_index += 1 _lowercase : Dict = start_index while not lines[end_index].startswith(lowerCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : Tuple = direct_transformers_import(TRANSFORMERS_PATH) SCREAMING_SNAKE_CASE : List[Any] = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). SCREAMING_SNAKE_CASE : Any = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def UpperCamelCase_( lowerCamelCase_ ) -> str: _lowercase : str = TASK_GUIDE_TO_MODELS[task_guide] _lowercase : List[str] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowerCamelCase_ , set() ) _lowercase : Any = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=False ) -> Any: _lowercase : Union[str, Any] = _find_text_in_file( filename=os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) _lowercase : List[Any] = get_model_list_for_task(lowerCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
358
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: _lowercase : Any = TOKENIZER_CLASSES else: _lowercase : Tuple = {tokenizer_name: getattr(lowerCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: _lowercase : Union[str, Any] = TOKENIZER_CLASSES[tokenizer_name] _lowercase : Any = True if checkpoint_name is None: _lowercase : int = list(tokenizer_class.max_model_input_sizes.keys() ) else: _lowercase : List[Any] = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer _lowercase : Union[str, Any] = tokenizer_class.from_pretrained(lowerCamelCase_ , force_download=lowerCamelCase_ ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: _lowercase , _lowercase : str = checkpoint.split('/' ) _lowercase : Any = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) elif add_prefix: _lowercase : Union[str, Any] = checkpoint _lowercase : List[str] = dump_path else: _lowercase : str = None _lowercase : Any = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _lowercase : Tuple = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _lowercase : List[Any] = file_path.split(lowerCamelCase_ )[-1][0] if next_char == "/": _lowercase : Any = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[Any] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) _lowercase : Optional[Any] = tokenizer.save_pretrained( lowerCamelCase_ , legacy_format=lowerCamelCase_ , filename_prefix=lowerCamelCase_ ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCamelCase_ ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
84
0
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ (): _UpperCAmelCase : Union[str, Any] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } _UpperCAmelCase : Dict = Dataset.from_dict(UpperCamelCase__ ) return dataset class _UpperCAmelCase ( a ): '''simple docstring''' def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : int = get_dataset() _UpperCAmelCase : int = make_duplicate_clusters(A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : int = get_dataset() _UpperCAmelCase , _UpperCAmelCase : Tuple = deduplicate_dataset(A ) self.assertEqual(len(A ) , 2 ) print(A ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , A )
263
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) _UpperCAmelCase : List[str] = -1 _UpperCAmelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) _UpperCAmelCase : List[str] = model.generate(A , max_new_tokens=1_0 , do_sample=A ) _UpperCAmelCase : List[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCAmelCase : str = TextStreamer(A ) model.generate(A , max_new_tokens=1_0 , do_sample=A , streamer=A ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCAmelCase : List[str] = cs.out[:-1] self.assertEqual(A , A ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) _UpperCAmelCase : List[Any] = -1 _UpperCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) _UpperCAmelCase : List[Any] = model.generate(A , max_new_tokens=1_0 , do_sample=A ) _UpperCAmelCase : str = tokenizer.decode(greedy_ids[0] ) _UpperCAmelCase : Union[str, Any] = TextIteratorStreamer(A ) _UpperCAmelCase : Any = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _UpperCAmelCase : Any = Thread(target=model.generate , kwargs=A ) thread.start() _UpperCAmelCase : Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(A , A ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : str = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) _UpperCAmelCase : Any = -1 _UpperCAmelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) _UpperCAmelCase : Dict = model.generate(A , max_new_tokens=1_0 , do_sample=A ) _UpperCAmelCase : Dict = greedy_ids[:, input_ids.shape[1] :] _UpperCAmelCase : List[str] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCAmelCase : Any = TextStreamer(A , skip_prompt=A ) model.generate(A , max_new_tokens=1_0 , do_sample=A , streamer=A ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCAmelCase : Union[str, Any] = cs.out[:-1] self.assertEqual(A , A ) def __lowerCAmelCase ( self ) -> Optional[int]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCAmelCase : int = AutoTokenizer.from_pretrained('''distilgpt2''' ) _UpperCAmelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(A ) _UpperCAmelCase : Tuple = -1 _UpperCAmelCase : int = torch.ones((1, 5) , device=A ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCAmelCase : Optional[Any] = TextStreamer(A , skip_special_tokens=A ) model.generate(A , max_new_tokens=1 , do_sample=A , streamer=A ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCAmelCase : Tuple = cs.out[:-1] # Remove the final "\n" _UpperCAmelCase : int = tokenizer(A , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _UpperCAmelCase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(A ) _UpperCAmelCase : Dict = -1 _UpperCAmelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(A ) _UpperCAmelCase : List[Any] = TextIteratorStreamer(A , timeout=0.001 ) _UpperCAmelCase : Union[str, Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 1_0, '''do_sample''': False, '''streamer''': streamer} _UpperCAmelCase : Optional[Any] = Thread(target=model.generate , kwargs=A ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(A ): _UpperCAmelCase : Optional[Any] = '''''' for new_text in streamer: streamer_text += new_text
263
1
from __future__ import annotations __lowerCamelCase = '''#''' class A__ : def __init__( self ) -> None: '''simple docstring''' A_ = {} def snake_case_ ( self , UpperCamelCase__ ) -> None: '''simple docstring''' A_ = self._trie for char in text: if char not in trie: A_ = {} A_ = trie[char] A_ = True def snake_case_ ( self , UpperCamelCase__ ) -> tuple | list: '''simple docstring''' A_ = self._trie for char in prefix: if char in trie: A_ = trie[char] else: return [] return self._elements(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> tuple: '''simple docstring''' A_ = [] for c, v in d.items(): A_ = [""" """] if c == END else [(c + s) for s in self._elements(UpperCamelCase__ )] result.extend(UpperCamelCase__ ) return tuple(UpperCamelCase__ ) __lowerCamelCase = Trie() __lowerCamelCase = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> tuple: A_ = trie.find_word(UpperCAmelCase__ ) return tuple(string + word for word in suffixes ) def UpperCAmelCase__ ( ) -> None: print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
351
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A__ : def __init__( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = str(id_ ) A_ = None A_ = None A_ = [] A_ = {} # {vertex:distance} def __lt__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.key < other.key def __repr__( self ) -> Dict: '''simple docstring''' return self.id def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' self.neighbors.append(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = weight def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], UpperCAmelCase__ ) graph[b - 1].add_edge(graph[a - 1], UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list: A_ = [] for u in graph: A_ = math.inf A_ = None A_ = 0 A_ = graph[:] while q: A_ = min(UpperCAmelCase__ ) q.remove(UpperCAmelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A_ = u A_ = u.edges[v.id] for i in range(1, len(UpperCAmelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Iterator[tuple]: for u in graph: A_ = math.inf A_ = None A_ = 0 A_ = list(UpperCAmelCase__ ) hq.heapify(UpperCAmelCase__ ) while h: A_ = hq.heappop(UpperCAmelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A_ = u A_ = u.edges[v.id] hq.heapify(UpperCAmelCase__ ) for i in range(1, len(UpperCAmelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
101
0
"""simple docstring""" import random def _snake_case ( lowercase__ , lowercase__ , lowercase__ = False ): _lowerCamelCase : dict = {i: [] for i in range(lowercase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowercase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowercase__ ): for j in range(i + 1 , lowercase__ ): if random.random() < probability: graph[i].append(lowercase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowercase__ ) return graph def _snake_case ( lowercase__ ): return { i: [j for j in range(lowercase__ ) if i != j] for i in range(lowercase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
96
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
96
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class snake_case__ (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :int = MvpTokenizer __lowerCAmelCase :List[Any] = MvpTokenizerFast __lowerCAmelCase :Optional[int] = True __lowerCAmelCase :Tuple = filter_roberta_detectors def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" super().setUp() a__ : Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] a__ : Tuple = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) a__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] a__ : Optional[Any] = {"""unk_token""": """<unk>"""} a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" return "lower newer", "lower newer" @cached_property def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a__ : List[Any] = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ : List[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors="""pt""" ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) a__ : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) # Test that special tokens are reset @require_torch def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ : str = tokenizer(__snake_case , padding=__snake_case , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , __snake_case ) self.assertIn("""attention_mask""" , __snake_case ) self.assertNotIn("""labels""" , __snake_case ) self.assertNotIn("""decoder_attention_mask""" , __snake_case ) @require_torch def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ : Union[str, Any] = tokenizer(text_target=__snake_case , max_length=3_2 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) @require_torch def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ : Any = tokenizer( ["""I am a small frog""" * 1_0_2_4, """I am a small frog"""] , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 1_0_2_4) ) @require_torch def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : List[Any] = ["""A long paragraph for summarization."""] a__ : List[str] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a__ : Union[str, Any] = tokenizer(__snake_case , text_target=__snake_case , return_tensors="""pt""" ) a__ : Optional[Any] = inputs["""input_ids"""] a__ : Tuple = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" pass def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) a__ : Dict = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) a__ : Union[str, Any] = """A, <mask> AllenNLP sentence.""" a__ : Optional[Any] = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) a__ : int = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) a__ : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) a__ : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
371
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> int: """simple docstring""" a__ : Tuple = params a__ : str = np.array(__lowercase ) a__ : List[Any] = np.array([len(__lowercase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __lowercase ) -> Any: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Dict: """simple docstring""" return len(self.lengths ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : int = self.params.max_model_input_size a__ : int = self.lengths > max_len logger.info(F'''Splitting {sum(__lowercase )} too long sequences.''' ) def divide_chunks(__lowercase , __lowercase ): return [l[i : i + n] for i in range(0 , len(__lowercase ) , __lowercase )] a__ : Any = [] a__ : Optional[int] = [] if self.params.mlm: a__ , a__ : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: a__ , a__ : Dict = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: a__ : int = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: a__ : str = np.insert(__lowercase , 0 , __lowercase ) if sub_s[-1] != sep_id: a__ : List[str] = np.insert(__lowercase , len(__lowercase ) , __lowercase ) assert len(__lowercase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__lowercase ) new_tok_ids.extend(__lowercase ) new_lengths.extend([len(__lowercase ) for l in sub_seqs] ) a__ : Optional[int] = np.array(__lowercase ) a__ : Any = np.array(__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Union[str, Any] = len(self ) a__ : List[str] = self.lengths > 1_1 a__ : Dict = self.token_ids[indices] a__ : List[str] = self.lengths[indices] a__ : int = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: a__ : Union[str, Any] = self.params.special_tok_ids["""unk_token"""] a__ : List[Any] = len(self ) a__ : Optional[int] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) a__ : Optional[Any] = (unk_occs / self.lengths) < 0.5 a__ : Tuple = self.token_ids[indices] a__ : Union[str, Any] = self.lengths[indices] a__ : Tuple = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[int]: """simple docstring""" a__ : Optional[int] = [t[0] for t in batch] a__ : Any = [t[1] for t in batch] assert len(__lowercase ) == len(__lowercase ) # Max for paddings a__ : List[Any] = max(__lowercase ) # Pad token ids if self.params.mlm: a__ : int = self.params.special_tok_ids["""pad_token"""] else: a__ : List[str] = self.params.special_tok_ids["""unk_token"""] a__ : int = [list(t.astype(__lowercase ) ) + [pad_idx] * (max_seq_len_ - len(__lowercase )) for t in token_ids] assert len(tk_ ) == len(__lowercase ) assert all(len(__lowercase ) == max_seq_len_ for t in tk_ ) a__ : List[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) a__ : Optional[int] = torch.tensor(__lowercase ) # (bs) return tk_t, lg_t
266
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """camembert""" def __init__( self , __lowerCAmelCase=3_0_5_2_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = use_cache lowerCamelCase__ = classifier_dropout class __A ( lowerCAmelCase ): '''simple docstring''' @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
209
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """camembert""" def __init__( self , __lowerCAmelCase=3_0_5_2_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase="absolute" , __lowerCAmelCase=True , __lowerCAmelCase=None , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = use_cache lowerCamelCase__ = classifier_dropout class __A ( lowerCAmelCase ): '''simple docstring''' @property def __lowerCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
209
1
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available __lowerCAmelCase = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 @dataclass class _lowerCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "train" lowerCAmelCase_ = "dev" lowerCAmelCase_ = "test" class _lowerCAmelCase : '''simple docstring''' @staticmethod def lowercase (UpperCAmelCase , UpperCAmelCase ) -> List[InputExample]: raise NotImplementedError @staticmethod def lowercase (UpperCAmelCase ) -> List[str]: raise NotImplementedError @staticmethod def lowercase (UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase="[CLS]" , UpperCAmelCase=1 , UpperCAmelCase="[SEP]" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=-100 , UpperCAmelCase=0 , UpperCAmelCase=True , ) -> List[InputFeatures]: _snake_case = {label: i for i, label in enumerate(UpperCAmelCase )} _snake_case = [] for ex_index, example in enumerate(UpperCAmelCase ): if ex_index % 10000 == 0: logger.info("""Writing example %d of %d""" , UpperCAmelCase , len(UpperCAmelCase ) ) _snake_case = [] _snake_case = [] for word, label in zip(example.words , example.labels ): _snake_case = tokenizer.tokenize(UpperCAmelCase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(UpperCAmelCase ) > 0: tokens.extend(UpperCAmelCase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(UpperCAmelCase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _snake_case = tokenizer.num_special_tokens_to_add() if len(UpperCAmelCase ) > max_seq_length - special_tokens_count: _snake_case = tokens[: (max_seq_length - special_tokens_count)] _snake_case = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _snake_case = [sequence_a_segment_id] * len(UpperCAmelCase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _snake_case = [cls_token] + tokens _snake_case = [pad_token_label_id] + label_ids _snake_case = [cls_token_segment_id] + segment_ids _snake_case = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _snake_case = [1 if mask_padding_with_zero else 0] * len(UpperCAmelCase ) # Zero-pad up to the sequence length. _snake_case = max_seq_length - len(UpperCAmelCase ) if pad_on_left: _snake_case = ([pad_token] * padding_length) + input_ids _snake_case = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _snake_case = ([pad_token_segment_id] * padding_length) + segment_ids _snake_case = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(UpperCAmelCase ) == max_seq_length assert len(UpperCAmelCase ) == max_seq_length assert len(UpperCAmelCase ) == max_seq_length assert len(UpperCAmelCase ) == max_seq_length if ex_index < 5: logger.info("""*** Example ***""" ) logger.info("""guid: %s""" , example.guid ) logger.info("""tokens: %s""" , """ """.join([str(UpperCAmelCase ) for x in tokens] ) ) logger.info("""input_ids: %s""" , """ """.join([str(UpperCAmelCase ) for x in input_ids] ) ) logger.info("""input_mask: %s""" , """ """.join([str(UpperCAmelCase ) for x in input_mask] ) ) logger.info("""segment_ids: %s""" , """ """.join([str(UpperCAmelCase ) for x in segment_ids] ) ) logger.info("""label_ids: %s""" , """ """.join([str(UpperCAmelCase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _snake_case = None features.append( InputFeatures( input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , label_ids=UpperCAmelCase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = nn.CrossEntropyLoss().ignore_index def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=False , UpperCAmelCase = Split.train , ) -> Optional[Any]: # Load data features from cache or dataset file _snake_case = os.path.join( UpperCAmelCase , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(UpperCAmelCase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _snake_case = cached_features_file + """.lock""" with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) _snake_case = torch.load(UpperCAmelCase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) _snake_case = token_classification_task.read_examples_from_file(UpperCAmelCase , UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers _snake_case = token_classification_task.convert_examples_to_features( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , UpperCAmelCase ) def __len__(self ) -> Optional[Any]: return len(self.features ) def __getitem__(self , UpperCAmelCase ) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class _lowerCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = -1_00 def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=False , UpperCAmelCase = Split.train , ) -> Dict: _snake_case = token_classification_task.read_examples_from_file(UpperCAmelCase , UpperCAmelCase ) # TODO clean up all this to leverage built-in features of tokenizers _snake_case = token_classification_task.convert_examples_to_features( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _snake_case = tf.data.Dataset.from_generator( UpperCAmelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , ( {"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _snake_case = tf.data.Dataset.from_generator( UpperCAmelCase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , ( { """input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] ), """token_type_ids""": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase (self ) -> Dict: _snake_case = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__(self ) -> List[str]: return len(self.features ) def __getitem__(self , UpperCAmelCase ) -> InputFeatures: return self.features[i]
270
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase (self ) -> Dict: _snake_case, _snake_case = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case, _snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case = controlnet_params _snake_case = """bird""" _snake_case = jax.device_count() _snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) _snake_case = pipe.prepare_image_inputs([canny_image] * num_samples ) _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(UpperCAmelCase , jax.device_count() ) _snake_case = replicate(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case = images[0, 253:256, 253:256, -1] _snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowercase (self ) -> Optional[int]: _snake_case, _snake_case = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case, _snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=UpperCAmelCase , from_pt=UpperCAmelCase , dtype=jnp.bfloataa ) _snake_case = controlnet_params _snake_case = """Chef in the kitchen""" _snake_case = jax.device_count() _snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) _snake_case = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) _snake_case = pipe.prepare_image_inputs([pose_image] * num_samples ) _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(UpperCAmelCase , jax.device_count() ) _snake_case = replicate(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = shard(UpperCAmelCase ) _snake_case = pipe( prompt_ids=UpperCAmelCase , image=UpperCAmelCase , params=UpperCAmelCase , prng_seed=UpperCAmelCase , num_inference_steps=50 , jit=UpperCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) _snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case = images[0, 253:256, 253:256, -1] _snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
270
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = get_failure_array(lowercase__ ) # 2) Step through text searching for pattern UpperCAmelCase : Any = 0, 0 # index into text, pattern while i < len(lowercase__ ): if pattern[j] == text[i]: if j == (len(lowercase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase : Union[str, Any] = failure[j - 1] continue i += 1 return False def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = [0] UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Any = 1 while j < len(lowercase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(lowercase__ ) return failure if __name__ == "__main__": # Test 1) lowercase__ = "abc1abc12" lowercase__ = "alskfjaldsabc1abc1abc12k23adsfabcabc" lowercase__ = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowercase__ = "ABABX" lowercase__ = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) lowercase__ = "AAAB" lowercase__ = "ABAAAAAB" assert kmp(pattern, text) # Test 4) lowercase__ = "abcdabcy" lowercase__ = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) lowercase__ = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
151
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = 'src/transformers' __UpperCAmelCase = 'docs/source/en/tasks' def _snake_case ( lowercase__ : str , lowercase__ : List[str] , lowercase__ : Any ) -> str: '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase_ :List[Any] = f.readlines() # Find the start prompt. lowerCAmelCase_ :Tuple = 0 while not lines[start_index].startswith(lowercase__ ): start_index += 1 start_index += 1 lowerCAmelCase_ :Dict = start_index while not lines[end_index].startswith(lowercase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def _snake_case ( lowercase__ : List[str] ) -> str: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase_ :List[Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowercase__ , set() ) lowerCAmelCase_ :Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def _snake_case ( lowercase__ : int , lowercase__ : str=False ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = _find_text_in_file( filename=os.path.join(lowercase__ , lowercase__ ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) lowerCAmelCase_ :int = get_model_list_for_task(lowercase__ ) if current_list != new_list: if overwrite: with open(os.path.join(lowercase__ , lowercase__ ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" """ to fix this.""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
84
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def _A ( UpperCamelCase_ : str) -> YolosConfig: '''simple docstring''' __lowercase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __lowercase = 192 __lowercase = 768 __lowercase = 12 __lowercase = 3 __lowercase = [800, 1333] __lowercase = False elif yolos_name == "yolos_s_dWr": __lowercase = 330 __lowercase = 14 __lowercase = 6 __lowercase = 1320 elif "yolos_s" in yolos_name: __lowercase = 384 __lowercase = 1536 __lowercase = 12 __lowercase = 6 elif "yolos_b" in yolos_name: __lowercase = [800, 1344] __lowercase = 91 __lowercase = "huggingface/label-files" __lowercase = "coco-detection-id2label.json" __lowercase = json.load(open(hf_hub_download(UpperCamelCase_, UpperCamelCase_, repo_type="dataset"), "r")) __lowercase = {int(UpperCamelCase_): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def _A ( UpperCamelCase_ : dict, UpperCamelCase_ : YolosConfig, UpperCamelCase_ : bool = False) -> str: '''simple docstring''' for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""") __lowercase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: config.hidden_size, :] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[-config.hidden_size :, :] __lowercase = in_proj_bias[-config.hidden_size :] def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' if "backbone" in name: __lowercase = name.replace("backbone", "vit") if "cls_token" in name: __lowercase = name.replace("cls_token", "embeddings.cls_token") if "det_token" in name: __lowercase = name.replace("det_token", "embeddings.detection_tokens") if "mid_pos_embed" in name: __lowercase = name.replace("mid_pos_embed", "encoder.mid_position_embeddings") if "pos_embed" in name: __lowercase = name.replace("pos_embed", "embeddings.position_embeddings") if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") if "blocks" in name: __lowercase = name.replace("blocks", "encoder.layer") if "attn.proj" in name: __lowercase = name.replace("attn.proj", "attention.output.dense") if "attn" in name: __lowercase = name.replace("attn", "attention.self") if "norm1" in name: __lowercase = name.replace("norm1", "layernorm_before") if "norm2" in name: __lowercase = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2", "output.dense") if "class_embed" in name: __lowercase = name.replace("class_embed", "class_labels_classifier") if "bbox_embed" in name: __lowercase = name.replace("bbox_embed", "bbox_predictor") if "vit.norm" in name: __lowercase = name.replace("vit.norm", "vit.layernorm") return name def _A ( UpperCamelCase_ : dict, UpperCamelCase_ : YolosForObjectDetection) -> dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(UpperCamelCase_) if "qkv" in key: __lowercase = key.split(".") __lowercase = int(key_split[2]) __lowercase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[ dim : dim * 2, : ] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[dim : dim * 2] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def _A ( ) -> torch.Tensor: '''simple docstring''' __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_).raw) return im @torch.no_grad() def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : bool = False) -> List[str]: '''simple docstring''' __lowercase = get_yolos_config(UpperCamelCase_) # load original state_dict __lowercase = torch.load(UpperCamelCase_, map_location="cpu")["model"] # load 🤗 model __lowercase = YolosForObjectDetection(UpperCamelCase_) model.eval() __lowercase = convert_state_dict(UpperCamelCase_, UpperCamelCase_) model.load_state_dict(UpperCamelCase_) # Check outputs on an image, prepared by YolosImageProcessor __lowercase = 800 if yolos_name != "yolos_ti" else 512 __lowercase = YolosImageProcessor(format="coco_detection", size=UpperCamelCase_) __lowercase = image_processor(images=prepare_img(), return_tensors="pt") __lowercase = model(**UpperCamelCase_) __lowercase ,__lowercase = outputs.logits, outputs.pred_boxes __lowercase ,__lowercase = None, None if yolos_name == "yolos_ti": __lowercase = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]]) __lowercase = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]]) elif yolos_name == "yolos_s_200_pre": __lowercase = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]]) __lowercase = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]]) elif yolos_name == "yolos_s_300_pre": __lowercase = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]]) __lowercase = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]]) elif yolos_name == "yolos_s_dWr": __lowercase = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]]) __lowercase = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]]) elif yolos_name == "yolos_base": __lowercase = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]]) __lowercase = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]]) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""") assert torch.allclose(logits[0, :3, :3], UpperCamelCase_, atol=1E-4) assert torch.allclose(pred_boxes[0, :3, :3], UpperCamelCase_, atol=1E-4) Path(UpperCamelCase_).mkdir(exist_ok=UpperCamelCase_) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""") model.save_pretrained(UpperCamelCase_) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(UpperCamelCase_) if push_to_hub: __lowercase = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub...") __lowercase = model_mapping[yolos_name] image_processor.push_to_hub(UpperCamelCase_, organization="hustvl") model.push_to_hub(UpperCamelCase_, organization="hustvl") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
361
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _a = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def _A ( ) -> Tuple: '''simple docstring''' __lowercase = _ask_options( "In which compute environment are you running?", ["This machine", "AWS (Amazon SageMaker)"], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase = get_sagemaker_input() else: __lowercase = get_cluster_input() return config def _A ( UpperCamelCase_ : Union[str, Any]=None) -> Union[str, Any]: '''simple docstring''' if subparsers is not None: __lowercase = subparsers.add_parser("config", description=UpperCamelCase_) else: __lowercase = argparse.ArgumentParser("Accelerate config command", description=UpperCamelCase_) parser.add_argument( "--config_file", default=UpperCamelCase_, help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ), ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase_) return parser def _A ( UpperCamelCase_ : Dict) -> str: '''simple docstring''' __lowercase = get_user_input() if args.config_file is not None: __lowercase = args.config_file else: if not os.path.isdir(UpperCamelCase_): os.makedirs(UpperCamelCase_) __lowercase = default_yaml_config_file if config_file.endswith(".json"): config.to_json_file(UpperCamelCase_) else: config.to_yaml_file(UpperCamelCase_) print(F"""accelerate configuration saved at {config_file}""") def _A ( ) -> Optional[Any]: '''simple docstring''' __lowercase = config_command_parser() __lowercase = parser.parse_args() config_command(UpperCamelCase_) if __name__ == "__main__": main()
144
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __magic_name__ = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __magic_name__ = direct_transformers_import(PATH_TO_TRANSFORMERS) __magic_name__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING __magic_name__ = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"config.{attribute}" in modeling_source or f"getattr(config, \"{attribute}\"" in modeling_source or f"getattr(self.config, \"{attribute}\"" in modeling_source ): __SCREAMING_SNAKE_CASE = True # Deal with multi-line cases elif ( re.search( rf"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , lowerCAmelCase__ , ) is not None ): __SCREAMING_SNAKE_CASE = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __SCREAMING_SNAKE_CASE = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __SCREAMING_SNAKE_CASE = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] __SCREAMING_SNAKE_CASE = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed __SCREAMING_SNAKE_CASE = True if not attribute_used: __SCREAMING_SNAKE_CASE = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __SCREAMING_SNAKE_CASE = True elif attribute in ["tie_word_embeddings"] and default_value is False: __SCREAMING_SNAKE_CASE = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __SCREAMING_SNAKE_CASE = True elif attribute.endswith("""_token_id""" ): __SCREAMING_SNAKE_CASE = True # configuration class specific cases if not case_allowed: __SCREAMING_SNAKE_CASE = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __SCREAMING_SNAKE_CASE = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = dict(inspect.signature(config_class.__init__ ).parameters ) __SCREAMING_SNAKE_CASE = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] __SCREAMING_SNAKE_CASE = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __SCREAMING_SNAKE_CASE = {} if len(config_class.attribute_map ) > 0: __SCREAMING_SNAKE_CASE = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __SCREAMING_SNAKE_CASE = inspect.getsourcefile(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __SCREAMING_SNAKE_CASE = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith("""modeling_""" )] # Get the source code strings __SCREAMING_SNAKE_CASE = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) __SCREAMING_SNAKE_CASE = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` __SCREAMING_SNAKE_CASE = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __SCREAMING_SNAKE_CASE = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda UpperCamelCase_ : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __SCREAMING_SNAKE_CASE = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __SCREAMING_SNAKE_CASE = unused_attributes if len(lowerCAmelCase__ ) > 0: __SCREAMING_SNAKE_CASE = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f"{name}: {attributes}\n" raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
100
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Optional[Any] =IFPipeline lowercase_ : List[str] =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} lowercase_ : List[str] =TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ : int =PipelineTesterMixin.required_optional_params - {'''latents'''} def A__ ( self): return self._get_dummy_components() def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): # if lowercase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' ,variant='''fp16''' ,torch_dtype=torch.floataa) lowercase = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' ,variant='''fp16''' ,torch_dtype=torch.floataa ,text_encoder=A__ ,tokenizer=A__) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') lowercase , lowercase = pipe_a.encode_prompt('''anime turtle''' ,device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase = None lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(A__ ,A__ ,A__ ,A__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase = IFImgaImgPipeline(**pipe_a.components) lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(A__ ,A__ ,A__ ,A__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase = IFInpaintingPipeline(**pipe_a.components) lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(A__ ,A__ ,A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,original_image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(1)).to(A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,mask_image=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(1)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,mask_image=A__ ,original_image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def UpperCamelCase ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
101
0
'''simple docstring''' lowerCamelCase__ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : Optional[Any] = set() # keep track of all the paths to be checked _UpperCAmelCase : int = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _UpperCAmelCase : Union[str, Any] = queue.pop(0 ) # get the last node from the path _UpperCAmelCase : Tuple = path[-1] if node not in explored: _UpperCAmelCase : List[str] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _UpperCAmelCase : Optional[Any] = list(__lowerCAmelCase ) new_path.append(__lowerCAmelCase ) queue.append(__lowerCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__lowerCAmelCase ) # in case there's no path between the 2 nodes return [] def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _UpperCAmelCase : Union[str, Any] = [start] _UpperCAmelCase : Dict = set(__lowerCAmelCase ) # Keep tab on distances from `start` node. _UpperCAmelCase : Optional[int] = {start: 0, target: -1} while queue: _UpperCAmelCase : Any = queue.pop(0 ) if node == target: _UpperCAmelCase : int = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__lowerCAmelCase ) queue.append(__lowerCAmelCase ) _UpperCAmelCase : Dict = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
322
'''simple docstring''' def __lowerCAmelCase (__lowerCAmelCase = 4_000_000 ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase , _UpperCAmelCase : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Any = b, a + b return sum(__lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
322
1
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : List[Any] = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(a_ ) != 0: __snake_case : List[Any] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(a_ ) != cols: raise error for value in row: if not isinstance(a_ , (int, float) ): raise error __snake_case : List[Any] = rows else: __snake_case : int = [] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return len(self.rows ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return len(self.rows[0] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return (self.num_rows, self.num_columns) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.order[0] == self.order[1] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return bool(self.determinant() ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Optional[int] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(a_ ).determinant() def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(a_ , a_ ) return -1 * self.get_minor(a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return Matrix( [ [self.get_minor(a_ , a_ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__(self ): '''simple docstring''' return str(self.rows ) def __str__(self ): '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(a_ ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : List[str] = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(a_ , a_ ): raise type_error for value in row: if not isinstance(a_ , (int, float) ): raise type_error if len(a_ ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(a_ ) else: __snake_case : List[Any] = self.rows[0:position] + [row] + self.rows[position:] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Union[str, Any] = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(a_ , a_ ): raise type_error for value in column: if not isinstance(a_ , (int, float) ): raise type_error if len(a_ ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: __snake_case : str = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __snake_case : Union[str, Any] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__(self , a_ ): '''simple docstring''' if not isinstance(a_ , a_ ): return NotImplemented return self.rows == other.rows def __ne__(self , a_ ): '''simple docstring''' return not self == other def __neg__(self ): '''simple docstring''' return self * -1 def __add__(self , a_ ): '''simple docstring''' if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__(self , a_ ): '''simple docstring''' if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__(self , a_ ): '''simple docstring''' if isinstance(a_ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(a_ , a_ ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(a_ , a_ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__(self , a_ ): '''simple docstring''' if not isinstance(a_ , a_ ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) __snake_case : Dict = self for _ in range(other - 1 ): result *= self return result @classmethod def SCREAMING_SNAKE_CASE (cls , a_ , a_ ): '''simple docstring''' return sum(row[i] * column[i] for i in range(len(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
102
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowercase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowercase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowercase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='''https://github.com/krishnap25/mauve''', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/krishnap25/mauve'''], reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ], ) def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : str, _lowerCamelCase : Optional[Any], _lowerCamelCase : Any=None, _lowerCamelCase : Tuple=None, _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : str="auto", _lowerCamelCase : Union[str, Any]=-1, _lowerCamelCase : List[str]=0.9, _lowerCamelCase : int=5, _lowerCamelCase : Tuple=5_00, _lowerCamelCase : Union[str, Any]="gpt2-large", _lowerCamelCase : int=-1, _lowerCamelCase : Union[str, Any]=10_24, _lowerCamelCase : Union[str, Any]=25, _lowerCamelCase : str=5, _lowerCamelCase : Any=True, _lowerCamelCase : Union[str, Any]=25, ): '''simple docstring''' __A = compute_mauve( p_text=_lowerCamelCase, q_text=_lowerCamelCase, p_features=_lowerCamelCase, q_features=_lowerCamelCase, p_tokens=_lowerCamelCase, q_tokens=_lowerCamelCase, num_buckets=_lowerCamelCase, pca_max_data=_lowerCamelCase, kmeans_explained_var=_lowerCamelCase, kmeans_num_redo=_lowerCamelCase, kmeans_max_iter=_lowerCamelCase, featurize_model_name=_lowerCamelCase, device_id=_lowerCamelCase, max_text_length=_lowerCamelCase, divergence_curve_discretization_size=_lowerCamelCase, mauve_scaling_factor=_lowerCamelCase, verbose=_lowerCamelCase, seed=_lowerCamelCase, ) return out
266
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _A ( unittest.TestCase ): lowercase__: str = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase__: str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowercase__ ( self : str , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any ) -> List[Any]: """simple docstring""" __snake_case : int = TextaTextGenerationPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) return generator, ["Something to write", "Something else"] def lowercase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Dict: """simple docstring""" __snake_case : Any = generator("""Something there""" ) self.assertEqual(__magic_name__ , [{"""generated_text""": ANY(__magic_name__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) __snake_case : Optional[int] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], ] , ) __snake_case : List[Any] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], ] , ) with self.assertRaises(__magic_name__ ): generator(4 ) @require_torch def lowercase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __snake_case : Dict = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility __snake_case : int = generator("""Something there""" , do_sample=__magic_name__ ) self.assertEqual(__magic_name__ , [{"""generated_text""": """"""}] ) __snake_case : str = 3 __snake_case : int = generator( """Something there""" , num_return_sequences=__magic_name__ , num_beams=__magic_name__ , ) __snake_case : Any = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(__magic_name__ , __magic_name__ ) __snake_case : List[str] = generator("""This is a test""" , do_sample=__magic_name__ , num_return_sequences=2 , return_tensors=__magic_name__ ) self.assertEqual( __magic_name__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) __snake_case : Any = generator.model.config.eos_token_id __snake_case : Any = """<pad>""" __snake_case : Optional[int] = generator( ["""This is a test""", """This is a second test"""] , do_sample=__magic_name__ , num_return_sequences=2 , batch_size=2 , return_tensors=__magic_name__ , ) self.assertEqual( __magic_name__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowercase__ ( self : int ) -> int: """simple docstring""" __snake_case : int = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility __snake_case : List[Any] = generator("""Something there""" , do_sample=__magic_name__ ) self.assertEqual(__magic_name__ , [{"""generated_text""": """"""}] )
13
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
13
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ : List[str] = "RegNetConfig" # Base docstring SCREAMING_SNAKE_CASE__ : Tuple = "facebook/regnet-y-040" SCREAMING_SNAKE_CASE__ : List[Any] = [1, 1_088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ : Optional[Any] = "facebook/regnet-y-040" SCREAMING_SNAKE_CASE__ : int = "tabby, tabby cat" SCREAMING_SNAKE_CASE__ : Tuple = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( nn.Module ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : Optional[str] = "relu" , ) -> Tuple: super().__init__() __lowerCamelCase = nn.Convad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=kernel_size // 2 , groups=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> Any: __lowerCamelCase = self.convolution(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.normalization(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class lowerCAmelCase__ ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : RegNetConfig ) -> str: super().__init__() __lowerCamelCase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __lowerCamelCase = config.num_channels def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]: __lowerCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) __lowerCamelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) return hidden_state class lowerCAmelCase__ ( nn.Module ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 ) -> Dict: super().__init__() __lowerCamelCase = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , stride=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCamelCase = self.convolution(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.normalization(SCREAMING_SNAKE_CASE__ ) return hidden_state class lowerCAmelCase__ ( nn.Module ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: super().__init__() __lowerCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) __lowerCamelCase = nn.Sequential( nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 ) , nn.Sigmoid() , ) def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: # b c h w -> b c 1 1 __lowerCamelCase = self.pooler(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.attention(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_state * attention return hidden_state class lowerCAmelCase__ ( nn.Module ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : RegNetConfig , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 ) -> Dict: super().__init__() __lowerCamelCase = in_channels != out_channels or stride != 1 __lowerCamelCase = max(1 , out_channels // config.groups_width ) __lowerCamelCase = ( RegNetShortCut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) if should_apply_shortcut else nn.Identity() ) __lowerCamelCase = nn.Sequential( RegNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , groups=SCREAMING_SNAKE_CASE__ , activation=config.hidden_act ) , RegNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE__ ) , ) __lowerCamelCase = ACTaFN[config.hidden_act] def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: __lowerCamelCase = hidden_state __lowerCamelCase = self.layer(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual __lowerCamelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class lowerCAmelCase__ ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : RegNetConfig , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 ) -> List[str]: super().__init__() __lowerCamelCase = in_channels != out_channels or stride != 1 __lowerCamelCase = max(1 , out_channels // config.groups_width ) __lowerCamelCase = ( RegNetShortCut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) if should_apply_shortcut else nn.Identity() ) __lowerCamelCase = nn.Sequential( RegNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , groups=SCREAMING_SNAKE_CASE__ , activation=config.hidden_act ) , RegNetSELayer(SCREAMING_SNAKE_CASE__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE__ ) , ) __lowerCamelCase = ACTaFN[config.hidden_act] def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: __lowerCamelCase = hidden_state __lowerCamelCase = self.layer(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual __lowerCamelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class lowerCAmelCase__ ( nn.Module ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : RegNetConfig , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , ) -> int: super().__init__() __lowerCamelCase = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer __lowerCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , ) , *[layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(depth - 1 )] , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: __lowerCamelCase = self.layers(SCREAMING_SNAKE_CASE__ ) return hidden_state class lowerCAmelCase__ ( nn.Module ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : RegNetConfig ) -> int: super().__init__() __lowerCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( SCREAMING_SNAKE_CASE__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowerCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE__ , config.depths[1:] ): self.stages.append(RegNetStage(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , depth=SCREAMING_SNAKE_CASE__ ) ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True ) -> BaseModelOutputWithNoAttention: __lowerCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCamelCase = hidden_states + (hidden_state,) __lowerCamelCase = stage_module(SCREAMING_SNAKE_CASE__ ) if output_hidden_states: __lowerCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ ) class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = RegNetConfig a__ : int = """regnet""" a__ : Optional[Any] = """pixel_values""" a__ : List[Any] = True def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: if isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = value SCREAMING_SNAKE_CASE__ : str = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" SCREAMING_SNAKE_CASE__ : Optional[int] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , __lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowerCAmelCase__ ( __lowercase ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: super().__init__(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = config __lowerCamelCase = RegNetEmbeddings(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = RegNetEncoder(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = encoder_outputs[0] __lowerCamelCase = self.pooler(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , pooler_output=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , __lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowerCAmelCase__ ( __lowercase ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: super().__init__(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = config.num_labels __lowerCamelCase = RegNetModel(SCREAMING_SNAKE_CASE__ ) # classification head __lowerCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = self.regnet(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase = self.classifier(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCamelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCamelCase = '''single_label_classification''' else: __lowerCamelCase = '''multi_label_classification''' if self.config.problem_type == "regression": __lowerCamelCase = MSELoss() if self.num_labels == 1: __lowerCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCamelCase = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": __lowerCamelCase = CrossEntropyLoss() __lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCamelCase = BCEWithLogitsLoss() __lowerCamelCase = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: __lowerCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states )
270
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F'{bindir}/../../examples/pytorch/translation'): from run_translation import main # noqa set_seed(42) SCREAMING_SNAKE_CASE__ : Any = "sshleifer/student_marian_en_ro_6_1" SCREAMING_SNAKE_CASE__ : Tuple = "sshleifer/tiny-mbart" @require_torch class lowerCAmelCase__ ( __lowercase ): def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , ) -> Optional[int]: __lowerCamelCase = self.run_trainer( eval_steps=1 , max_len=12 , model_name=SCREAMING_SNAKE_CASE__ , num_train_epochs=1 , distributed=SCREAMING_SNAKE_CASE__ , extra_args_str=SCREAMING_SNAKE_CASE__ , predict_with_generate=SCREAMING_SNAKE_CASE__ , do_train=SCREAMING_SNAKE_CASE__ , do_eval=SCREAMING_SNAKE_CASE__ , do_predict=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE__ , '''trainer_state.json''' ) ).log_history if not do_eval: return __lowerCamelCase = [log for log in logs if '''eval_loss''' in log.keys()] __lowerCamelCase = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats __lowerCamelCase = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , SCREAMING_SNAKE_CASE__ ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __A ( self : Optional[int] ) -> int: self.run_seqaseq_quick() @require_torch_multi_gpu def __A ( self : int ) -> List[str]: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ) @require_torch_multi_gpu def __A ( self : Optional[Any] ) -> Tuple: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __A ( self : Dict ) -> Tuple: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __A ( self : Optional[int] ) -> List[str]: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __A ( self : Tuple ) -> Any: self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=SCREAMING_SNAKE_CASE__ ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __A ( self : Dict ) -> Tuple: self.run_seqaseq_quick( distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=SCREAMING_SNAKE_CASE__ ) @require_apex @require_torch_gpu def __A ( self : Union[str, Any] ) -> List[str]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=SCREAMING_SNAKE_CASE__ , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout __lowerCamelCase = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } __lowerCamelCase = experiments[experiment_id] __lowerCamelCase = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} __lowerCamelCase = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**SCREAMING_SNAKE_CASE__ , extra_args_str=data['''extra_args_str'''] ) __lowerCamelCase = len(re.findall(SCREAMING_SNAKE_CASE__ , cl.err ) ) self.assertEqual(SCREAMING_SNAKE_CASE__ , data['''n_matches'''] ) @slow def __A ( self : Any ) -> Optional[Any]: __lowerCamelCase = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=SCREAMING_SNAKE_CASE__ , learning_rate=3e-4 , num_train_epochs=10 , distributed=SCREAMING_SNAKE_CASE__ , ) # Check metrics __lowerCamelCase = TrainerState.load_from_json(os.path.join(SCREAMING_SNAKE_CASE__ , '''trainer_state.json''' ) ).log_history __lowerCamelCase = [log for log in logs if '''eval_loss''' in log.keys()] __lowerCamelCase = eval_metrics[0] __lowerCamelCase = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , SCREAMING_SNAKE_CASE__ ) # test if do_predict saves generations and metrics __lowerCamelCase = os.listdir(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {os.path.basename(SCREAMING_SNAKE_CASE__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __A ( self : Optional[int] ) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(SCREAMING_SNAKE_CASE__ : str ) -> Tuple[int, float]: __lowerCamelCase = '''--skip_memory_metrics 0''' __lowerCamelCase = self.run_trainer( max_len=1_28 , model_name=SCREAMING_SNAKE_CASE__ , learning_rate=3e-4 , num_train_epochs=1 , optim=SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , extra_args_str=SCREAMING_SNAKE_CASE__ , do_eval=SCREAMING_SNAKE_CASE__ , do_predict=SCREAMING_SNAKE_CASE__ , n_gpus_to_use=1 , ) # Check metrics __lowerCamelCase = TrainerState.load_from_json(Path(SCREAMING_SNAKE_CASE__ , '''trainer_state.json''' ) ).log_history __lowerCamelCase = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) __lowerCamelCase = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) __lowerCamelCase = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) __lowerCamelCase = gpu_alloc_mem_orig - gpu_alloc_mem_bnb __lowerCamelCase = gpu_peak_mem_orig + gpu_alloc_mem_orig __lowerCamelCase = gpu_peak_mem_bnb + gpu_alloc_mem_bnb __lowerCamelCase = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings __lowerCamelCase = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 3e-3 , SCREAMING_SNAKE_CASE__ : str = "adafactor" , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = None , ) -> List[Any]: __lowerCamelCase = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(SCREAMING_SNAKE_CASE__ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(SCREAMING_SNAKE_CASE__ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() __lowerCamelCase = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(SCREAMING_SNAKE_CASE__ )} '''.split() __lowerCamelCase = ''' --do_predict '''.split() __lowerCamelCase = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: __lowerCamelCase = get_gpu_count() __lowerCamelCase = get_torch_dist_unique_port() __lowerCamelCase = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() __lowerCamelCase = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=self.get_env() ) else: __lowerCamelCase = ['''run_translation.py'''] + args with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ): main() return output_dir
270
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCAmelCase__ ( _UpperCamelCase ): SCREAMING_SNAKE_CASE_ ='xlnet' SCREAMING_SNAKE_CASE_ =['mems'] SCREAMING_SNAKE_CASE_ ={ 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , snake_case__ : List[Any]=3_2_0_0_0 , snake_case__ : int=1_0_2_4 , snake_case__ : Optional[Any]=2_4 , snake_case__ : str=1_6 , snake_case__ : int=4_0_9_6 , snake_case__ : int="gelu" , snake_case__ : Any=True , snake_case__ : Dict="bi" , snake_case__ : List[str]=0.02 , snake_case__ : str=1e-12 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=5_1_2 , snake_case__ : List[str]=None , snake_case__ : List[Any]=True , snake_case__ : Optional[int]=False , snake_case__ : Tuple=False , snake_case__ : List[Any]=-1 , snake_case__ : Optional[Any]=False , snake_case__ : List[str]="last" , snake_case__ : Dict=True , snake_case__ : Tuple="tanh" , snake_case__ : str=0.1 , snake_case__ : List[Any]=5 , snake_case__ : str=5 , snake_case__ : Dict=5 , snake_case__ : Optional[int]=1 , snake_case__ : List[Any]=2 , **snake_case__ : Optional[Any] , ): '''simple docstring''' UpperCAmelCase__ : Dict = vocab_size UpperCAmelCase__ : Union[str, Any] = d_model UpperCAmelCase__ : Optional[int] = n_layer UpperCAmelCase__ : Union[str, Any] = n_head if d_model % n_head != 0: raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) UpperCAmelCase__ : List[Any] = d_model // n_head UpperCAmelCase__ : Dict = ff_activation UpperCAmelCase__ : int = d_inner UpperCAmelCase__ : int = untie_r UpperCAmelCase__ : Dict = attn_type UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Tuple = layer_norm_eps UpperCAmelCase__ : Union[str, Any] = dropout UpperCAmelCase__ : int = mem_len UpperCAmelCase__ : str = reuse_len UpperCAmelCase__ : List[Any] = bi_data UpperCAmelCase__ : Dict = clamp_len UpperCAmelCase__ : int = same_length UpperCAmelCase__ : int = summary_type UpperCAmelCase__ : Any = summary_use_proj UpperCAmelCase__ : Dict = summary_activation UpperCAmelCase__ : Tuple = summary_last_dropout UpperCAmelCase__ : Any = start_n_top UpperCAmelCase__ : Optional[Any] = end_n_top UpperCAmelCase__ : List[str] = bos_token_id UpperCAmelCase__ : Dict = pad_token_id UpperCAmelCase__ : List[Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , _UpperCAmelCase , ) UpperCAmelCase__ : List[Any] = kwargs['use_cache'] UpperCAmelCase__ : Optional[Any] = use_mems_eval UpperCAmelCase__ : List[Any] = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def __a ( self : Optional[Any] ): '''simple docstring''' logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __a ( self : List[str] , snake_case__ : List[str] ): '''simple docstring''' # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
369
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
0