code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> tuple[int, int]: try: __lowerCamelCase = float(UpperCamelCase__ ) except ValueError: raise ValueError('''Please enter a valid number''' ) __lowerCamelCase = decimal - int(UpperCamelCase__ ) if fractional_part == 0: return int(UpperCamelCase__ ), 1 else: __lowerCamelCase = len(str(UpperCamelCase__ ).split('''.''' )[1] ) __lowerCamelCase = int(decimal * (10**number_of_frac_digits) ) __lowerCamelCase = 10**number_of_frac_digits __lowerCamelCase , __lowerCamelCase = denominator, numerator while True: __lowerCamelCase = dividend % divisor if remainder == 0: break __lowerCamelCase , __lowerCamelCase = divisor, remainder __lowerCamelCase , __lowerCamelCase = numerator / divisor, denominator / divisor return int(UpperCamelCase__ ), int(UpperCamelCase__ ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
67
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : List[Any] =IFInpaintingPipeline lowercase_ : Optional[int] =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowercase_ : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase_ : str =PipelineTesterMixin.required_optional_params - {'''latents'''} def A__ ( self): return self._get_dummy_components() def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(A__)).to(A__) lowercase = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(A__)).to(A__) lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,)
101
0
def __lowerCAmelCase ( a__ ) -> int: if n == 1 or not isinstance(a__ , a__ ): return 0 elif n == 2: return 1 else: __a = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowerCAmelCase ( a__ ) -> int: __a = 0 __a = 2 while digits < n: index += 1 __a = len(str(fibonacci(a__ ) ) ) return index def __lowerCAmelCase ( a__ = 1000 ) -> int: return fibonacci_digits_index(a__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
353
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A( a ): @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __a = bertabert.config.encoder.vocab_size __a = tokenizer.sep_token_id __a = tokenizer.cls_token_id __a = 128 __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __a = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __a = train_dataset.select(range(32 ) ) __a = val_dataset.select(range(16 ) ) __a = 4 def _map_to_encoder_decoder_inputs(_snake_case ): # Tokenizer will automatically set [BOS] <text> [EOS] __a = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_snake_case , max_length=512 ) __a = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_snake_case , max_length=128 ) __a = inputs.input_ids __a = inputs.attention_mask __a = outputs.input_ids __a = outputs.input_ids.copy() __a = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __a = outputs.attention_mask assert all(len(_snake_case ) == 512 for x in inputs.input_ids ) assert all(len(_snake_case ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_snake_case ): __a = pred.label_ids __a = pred.predictions # all unnecessary tokens are removed __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) __a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_snake_case ) )] ) / len(_snake_case ) return {"accuracy": accuracy} # map train dataset __a = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __a = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_snake_case , batch_size=_snake_case , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __a = self.get_auto_remove_tmp_dir() __a = SeqaSeqTrainingArguments( output_dir=_snake_case , per_device_train_batch_size=_snake_case , per_device_eval_batch_size=_snake_case , predict_with_generate=_snake_case , evaluation_strategy='''steps''' , do_train=_snake_case , do_eval=_snake_case , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __a = SeqaSeqTrainer( model=_snake_case , args=_snake_case , compute_metrics=_compute_metrics , train_dataset=_snake_case , eval_dataset=_snake_case , tokenizer=_snake_case , ) # start training trainer.train()
33
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = get_activation("swish" ) self.assertIsInstance(a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = get_activation("silu" ) self.assertIsInstance(a , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Any = get_activation("mish" ) self.assertIsInstance(a , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = get_activation("gelu" ) self.assertIsInstance(a , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
76
"""simple docstring""" def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[str] = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) A_ : Any = hex_num[0] == '-' if is_negative: A_ : Optional[Any] = hex_num[1:] try: A_ : Tuple = int(_UpperCAmelCase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) A_ : Union[str, Any] = '' while int_num > 0: A_ : Optional[Any] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
286
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCamelCase_ = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowerCamelCase_ = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' lowerCamelCase_ = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self : Dict ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int = CHRF.CHAR_ORDER , __UpperCAmelCase : int = CHRF.WORD_ORDER , __UpperCAmelCase : int = CHRF.BETA , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , ): '''simple docstring''' _A = len(references[0] ) if any(len(__UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) _A = [[refs[i] for refs in references] for i in range(__UpperCAmelCase )] _A = CHRF(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _A = sb_chrf.corpus_score(__UpperCAmelCase , __UpperCAmelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
174
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __lowercase ( __lowercase , __lowercase , __lowercase ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__lowercase , 2 ) - pow(__lowercase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__lowercase , 2 ) - pow(__lowercase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__lowercase , 2 ) + pow(__lowercase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
174
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): if "model" in orig_key: __UpperCamelCase =orig_key.replace('model.' , '' ) if "norm1" in orig_key: __UpperCamelCase =orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: __UpperCamelCase =orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: __UpperCamelCase =orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: __UpperCamelCase =orig_key.split('.' )[0].split('_' )[-1] __UpperCamelCase =orig_key.replace(F'transformer_{layer_num}' , F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: __UpperCamelCase =orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: __UpperCamelCase =orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: __UpperCamelCase =orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: __UpperCamelCase =orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: __UpperCamelCase =orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: __UpperCamelCase =orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: __UpperCamelCase =orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: __UpperCamelCase =orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: __UpperCamelCase =orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: __UpperCamelCase =orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: __UpperCamelCase ='yoso.' + orig_key return orig_key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): for key in orig_state_dict.copy().keys(): __UpperCamelCase =orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if ("pooler" in key) or ("sen_class" in key): continue else: __UpperCamelCase =val __UpperCamelCase =orig_state_dict['cls.predictions.decoder.bias'] __UpperCamelCase =torch.arange(SCREAMING_SNAKE_CASE__ ).expand((1, -1) ) + 2 return orig_state_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['model_state_dict'] __UpperCamelCase =YosoConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =YosoForMaskedLM(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =convert_checkpoint_helper(config.max_position_embeddings , SCREAMING_SNAKE_CASE__ ) print(model.load_state_dict(SCREAMING_SNAKE_CASE__ ) ) model.eval() model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _A = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
62
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = GPTaTokenizer UpperCAmelCase__ : Any = GPTaTokenizerFast UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : int = {"add_prefix_space": True} UpperCAmelCase__ : Any = False def _a ( self ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] __UpperCamelCase =dict(zip(A_ , range(len(A_ ) ) ) ) __UpperCamelCase =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase ={'unk_token': '<unk>'} __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def _a ( self , **A_ ) -> str: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , **A_ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , A_ ) -> Tuple: __UpperCamelCase ='lower newer' __UpperCamelCase ='lower newer' return input_text, output_text def _a ( self ) -> List[Any]: __UpperCamelCase =GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase ='lower newer' __UpperCamelCase =['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] __UpperCamelCase =tokenizer.tokenize(A_ , add_prefix_space=A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =tokens + [tokenizer.unk_token] __UpperCamelCase =[14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def _a ( self ) -> int: if not self.test_rust_tokenizer: return __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_rust_tokenizer(add_prefix_space=A_ ) __UpperCamelCase ='lower newer' # Testing tokenization __UpperCamelCase =tokenizer.tokenize(A_ , add_prefix_space=A_ ) __UpperCamelCase =rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) # Testing conversion to ids without special tokens __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ , add_prefix_space=A_ ) __UpperCamelCase =rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) # Testing conversion to ids with special tokens __UpperCamelCase =self.get_rust_tokenizer(add_prefix_space=A_ ) __UpperCamelCase =tokenizer.encode(A_ , add_prefix_space=A_ ) __UpperCamelCase =rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # Testing the unknown token __UpperCamelCase =tokens + [rust_tokenizer.unk_token] __UpperCamelCase =[14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(A_ ) , A_ ) def _a ( self , *A_ , **A_ ) -> Optional[int]: # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _a ( self , A_=15 ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) # Simple input __UpperCamelCase ='This is a simple input' __UpperCamelCase =['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase =('This is a simple input', 'This is a pair') __UpperCamelCase =[ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='max_length' ) # Simple input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='max_length' ) # Simple input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='max_length' , ) # Pair input self.assertRaises(A_ , tokenizer_r.encode , A_ , max_length=A_ , padding='max_length' ) # Pair input self.assertRaises(A_ , tokenizer_r.encode_plus , A_ , max_length=A_ , padding='max_length' ) # Pair input self.assertRaises( A_ , tokenizer_r.batch_encode_plus , A_ , max_length=A_ , padding='max_length' , ) def _a ( self ) -> int: __UpperCamelCase =GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input __UpperCamelCase ='This is a simple input' __UpperCamelCase =['This is a simple input looooooooong', 'This is a simple input'] __UpperCamelCase =('This is a simple input', 'This is a pair') __UpperCamelCase =[ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] __UpperCamelCase =tokenizer.pad_token_id __UpperCamelCase =tokenizer(A_ , padding='max_length' , max_length=30 , return_tensors='np' ) __UpperCamelCase =tokenizer(A_ , padding=A_ , truncate=A_ , return_tensors='np' ) __UpperCamelCase =tokenizer(*A_ , padding='max_length' , max_length=60 , return_tensors='np' ) __UpperCamelCase =tokenizer(A_ , padding=A_ , truncate=A_ , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase ='$$$' __UpperCamelCase =GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=A_ , add_bos_token=A_ ) __UpperCamelCase ='This is a simple input' __UpperCamelCase =['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase =tokenizer.bos_token_id __UpperCamelCase =tokenizer(A_ ) __UpperCamelCase =tokenizer(A_ ) self.assertEqual(out_s.input_ids[0] , A_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __UpperCamelCase =tokenizer.decode(out_s.input_ids ) __UpperCamelCase =tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , A_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def _a ( self ) -> Optional[int]: pass def _a ( self ) -> Any: # TODO: change to self.get_tokenizers() when the fast version is implemented __UpperCamelCase =[self.get_tokenizer(do_lower_case=A_ , add_bos_token=A_ )] for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='Encode this.' __UpperCamelCase ='This one too please.' __UpperCamelCase =tokenizer.encode(A_ , add_special_tokens=A_ ) encoded_sequence += tokenizer.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus( A_ , A_ , add_special_tokens=A_ , return_special_tokens_mask=A_ , ) __UpperCamelCase =encoded_sequence_dict['input_ids'] __UpperCamelCase =encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(A_ ) , len(A_ ) ) __UpperCamelCase =[ (x if not special_tokens_mask[i] else None) for i, x in enumerate(A_ ) ] __UpperCamelCase =[x for x in filtered_sequence if x is not None] self.assertEqual(A_ , A_ ) @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Optional[Any]: # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 __UpperCamelCase =AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=A_ ) __UpperCamelCase ='A photo of a cat' __UpperCamelCase =tokenizer.encode( A_ , ) self.assertEqual(A_ , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) __UpperCamelCase =AutoTokenizer.from_pretrained('./test_opt' ) __UpperCamelCase =tokenizer.encode( A_ , ) self.assertEqual(A_ , [2, 250, 1345, 9, 10, 4758] ) def _a ( self ) -> Dict: __UpperCamelCase =AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=A_ ) __UpperCamelCase ='A photo of a cat' __UpperCamelCase =tokenizer.encode( A_ , ) # Same as above self.assertEqual(A_ , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def _a ( self ) -> List[Any]: __UpperCamelCase =AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=A_ ) __UpperCamelCase ='bos' __UpperCamelCase =tokenizer.get_vocab()['bos'] __UpperCamelCase ='A photo of a cat' __UpperCamelCase =tokenizer.encode( A_ , ) # We changed the bos token self.assertEqual(A_ , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) __UpperCamelCase =AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) __UpperCamelCase =tokenizer.encode( A_ , ) self.assertEqual(A_ , [31957, 250, 1345, 9, 10, 4758] )
62
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=[30, 30] , __a=2 , __a=3 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a=3 , __a=None , __a=8 , __a=10 , ) -> Any: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = scope UpperCAmelCase__ = n_targets UpperCAmelCase__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCAmelCase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCAmelCase__ = num_patches + 1 + self.num_detection_tokens def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) UpperCAmelCase__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCAmelCase__ = [] for i in range(self.batch_size ): UpperCAmelCase__ = {} UpperCAmelCase__ = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__a ) UpperCAmelCase__ = torch.rand(self.n_targets , 4 , device=__a ) labels.append(__a ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCamelCase__ (self , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = YolosModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> str: """simple docstring""" UpperCAmelCase__ = YolosForObjectDetection(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(pixel_values=__a ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) UpperCAmelCase__ = model(pixel_values=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self , __a , __a , __a=False ) -> str: """simple docstring""" UpperCAmelCase__ = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCAmelCase__ = [] for i in range(self.model_tester.batch_size ): UpperCAmelCase__ = {} UpperCAmelCase__ = torch.ones( size=(self.model_tester.n_targets,) , device=__a , dtype=torch.long ) UpperCAmelCase__ = torch.ones( self.model_tester.n_targets , 4 , device=__a , dtype=torch.float ) labels.append(__a ) UpperCAmelCase__ = labels return inputs_dict def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = YolosModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" pass def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True # in YOLOS, the seq_len is different UpperCAmelCase__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = 1 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" def check_hidden_states_output(__a , __a , __a ): UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__a ) , __a ) # YOLOS has a different seq_length UpperCAmelCase__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True check_hidden_states_output(__a , __a , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__a ) @slow def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = YolosModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase_( ) -> str: UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Any: """simple docstring""" return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(__a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(inputs.pixel_values ) # verify outputs UpperCAmelCase__ = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] , device=__a , ) UpperCAmelCase__ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] , device=__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __a , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __a , atol=1E-4 ) ) # verify postprocessing UpperCAmelCase__ = image_processor.post_process_object_detection( __a , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] UpperCAmelCase__ = torch.tensor([0.99_94, 0.97_90, 0.99_64, 0.99_72, 0.98_61] ).to(__a ) UpperCAmelCase__ = [75, 75, 17, 63, 17] UpperCAmelCase__ = torch.tensor([3_35.06_09, 79.38_48, 3_75.42_16, 1_87.24_95] ).to(__a ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , __a , atol=1E-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , __a ) self.assertTrue(torch.allclose(results['boxes'][0, :] , __a ) )
335
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = checkpoints.load_tax_checkpoint(UpperCamelCase_ ) snake_case = flatten_dict(UpperCamelCase_ ) return flax_params def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = {} snake_case = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } snake_case = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key snake_case = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): snake_case = new_key.replace(UpperCamelCase_ ,UpperCamelCase_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): snake_case = new_key.replace(UpperCamelCase_ ,UpperCamelCase_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number snake_case = re.sub(r'''layers_(\d+)''' ,r'''layer.\1''' ,UpperCamelCase_ ) snake_case = new_key.replace('''encoder''' ,'''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number snake_case = re.sub(r'''layers_(\d+)''' ,r'''layer.\1''' ,UpperCamelCase_ ) snake_case = flax_dict[key] snake_case = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): snake_case = torch.from_numpy(converted_dict[key].T ) else: snake_case = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=False ,UpperCamelCase_=False ): """simple docstring""" snake_case = get_flax_param(UpperCamelCase_ ) if not use_large: snake_case = PixaStructVisionConfig() snake_case = PixaStructTextConfig() else: snake_case = PixaStructVisionConfig( hidden_size=15_36 ,d_ff=39_68 ,num_attention_heads=24 ,num_hidden_layers=18 ) snake_case = PixaStructTextConfig(hidden_size=15_36 ,d_ff=39_68 ,num_heads=24 ,num_layers=18 ) snake_case = PixaStructConfig( vision_config=encoder_config.to_dict() ,text_config=decoder_config.to_dict() ,is_vqa=UpperCamelCase_ ) snake_case = PixaStructForConditionalGeneration(UpperCamelCase_ ) snake_case = rename_and_convert_flax_params(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) snake_case = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) snake_case = PixaStructImageProcessor() snake_case = PixaStructProcessor(image_processor=UpperCamelCase_ ,tokenizer=UpperCamelCase_ ) if use_large: snake_case = 40_96 snake_case = True # mkdir if needed os.makedirs(UpperCamelCase_ ,exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) print('''Model saved in {}'''.format(UpperCamelCase_ ) ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
127
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__ ( snake_case__ ): """simple docstring""" def __init__( self , *__snake_case , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ): super().__init__(*__snake_case , **__snake_case ) snake_case = eval_examples snake_case = post_process_function snake_case = quant_trainer_args snake_case = 1_2_8 # default number of calibration samples def a_ ( self , __snake_case=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) snake_case = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case = self._remove_unused_columns(__snake_case , description='''Calibration''' ) return DataLoader( __snake_case , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__snake_case , ) def a_ ( self , __snake_case=None ): snake_case = self.train_dataset if calib_dataset is None else calib_dataset snake_case = self.get_calib_dataloader(__snake_case ) snake_case = self.model quant_trainer.configure_model(__snake_case , self.quant_trainer_args , calib=__snake_case ) model.eval() quant_trainer.enable_calibration(__snake_case ) logger.info('''***** Running calibration *****''' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(__snake_case ): # Prediction step snake_case , snake_case , snake_case = self.prediction_step(__snake_case , __snake_case , prediction_loss_only=__snake_case ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__snake_case , self.quant_trainer_args ) snake_case = model def a_ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case = "eval" ): snake_case = self.eval_dataset if eval_dataset is None else eval_dataset snake_case = self.get_eval_dataloader(__snake_case ) snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case = self.compute_metrics snake_case = None snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case = eval_loop( __snake_case , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , ) finally: snake_case = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case = self.post_process_function(__snake_case , __snake_case , output.predictions ) snake_case = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case = metrics.pop(__snake_case ) self.log(__snake_case ) else: snake_case = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , __snake_case ) return metrics def a_ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case = "test" ): snake_case = self.get_test_dataloader(__snake_case ) # Temporarily disable metric computation, we will do it in the loop here. snake_case = self.compute_metrics snake_case = None snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case = eval_loop( __snake_case , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , ) finally: snake_case = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case = self.post_process_function(__snake_case , __snake_case , output.predictions , '''predict''' ) snake_case = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case = metrics.pop(__snake_case ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__snake_case ) def a_ ( self , __snake_case="./" ): snake_case = self.eval_dataset snake_case = self.get_eval_dataloader(__snake_case ) snake_case = next(iter(__snake_case ) ) # saving device - to make it consistent snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple snake_case = tuple(v.to(__snake_case ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer snake_case = True snake_case = self.model.to(__snake_case ) model.eval() model.float() snake_case = model.module if hasattr(__snake_case , '''module''' ) else model quant_trainer.configure_model(__snake_case , self.quant_trainer_args ) snake_case = os.path.join(__snake_case , '''model.onnx''' ) logger.info(F'''exporting model to {output_model_file}''' ) snake_case = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( __snake_case , __snake_case , __snake_case , export_params=__snake_case , opset_version=1_3 , do_constant_folding=__snake_case , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=__snake_case , ) logger.info('''onnx export finished''' )
127
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=[30, 30] , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=None , lowerCAmelCase_=8 , lowerCAmelCase_=10 , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = scope _snake_case = n_targets _snake_case = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens _snake_case = (image_size[1] // patch_size) * (image_size[0] // patch_size) _snake_case = num_patches + 1 + self.num_detection_tokens def lowerCamelCase ( self ): """simple docstring""" _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) _snake_case = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) _snake_case = [] for i in range(self.batch_size ): _snake_case = {} _snake_case = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=lowerCAmelCase_ ) _snake_case = torch.rand(self.n_targets , 4 , device=lowerCAmelCase_ ) labels.append(lowerCAmelCase_ ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = YolosModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = YolosForObjectDetection(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(pixel_values=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) _snake_case = model(pixel_values=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __lowercase = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) __lowercase = False __lowercase = False __lowercase = False __lowercase = False def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": _snake_case = [] for i in range(self.model_tester.batch_size ): _snake_case = {} _snake_case = torch.ones( size=(self.model_tester.n_targets,) , device=lowerCAmelCase_ , dtype=torch.long ) _snake_case = torch.ones( self.model_tester.n_targets , 4 , device=lowerCAmelCase_ , dtype=torch.float ) labels.append(lowerCAmelCase_ ) _snake_case = labels return inputs_dict def lowerCamelCase ( self ): """simple docstring""" _snake_case = YolosModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True # in YOLOS, the seq_len is different _snake_case = self.model_tester.expected_seq_len for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _snake_case = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = 1 self.assertEqual(out_len + added_hidden_states , len(lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCamelCase ( self ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # YOLOS has a different seq_length _snake_case = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = YolosModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(lowerCAmelCase_ ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _snake_case = model(inputs.pixel_values ) # verify outputs _snake_case = torch.Size((1, 1_00, 92) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=lowerCAmelCase_ , ) _snake_case = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) ) # verify postprocessing _snake_case = image_processor.post_process_object_detection( lowerCAmelCase_ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] _snake_case = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(lowerCAmelCase_ ) _snake_case = [75, 75, 17, 63, 17] _snake_case = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(lowerCAmelCase_ ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , lowerCAmelCase_ , atol=1E-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , lowerCAmelCase_ ) self.assertTrue(torch.allclose(results['boxes'][0, :] , lowerCAmelCase_ ) )
160
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
160
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
269
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
33
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _UpperCAmelCase ( _UpperCamelCase : List[Any], _UpperCamelCase : str, _UpperCamelCase : List[str] ) -> Any: A_ = 1.5 A_ = int(factor * num_class_images ) A_ = ClipClient( url='''https://knn.laion.ai/knn-service''', indice_name='''laion_400m''', num_images=_UpperCamelCase, aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''', exist_ok=_UpperCamelCase ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: A_ = client.query(text=_UpperCamelCase ) if len(_UpperCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: A_ = int(factor * num_images ) A_ = ClipClient( url='''https://knn.laion.ai/knn-service''', indice_name='''laion_400m''', num_images=_UpperCamelCase, aesthetic_weight=0.1, ) A_ = 0 A_ = 0 A_ = tqdm(desc='''downloading real regularization images''', total=_UpperCamelCase ) with open(F'''{class_data_dir}/caption.txt''', '''w''' ) as fa, open(F'''{class_data_dir}/urls.txt''', '''w''' ) as fa, open( F'''{class_data_dir}/images.txt''', '''w''' ) as fa: while total < num_class_images: A_ = class_images[count] count += 1 try: A_ = requests.get(images['''url'''] ) if img.status_code == 2_00: A_ = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''', '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _UpperCAmelCase ( ) -> Optional[int]: A_ = argparse.ArgumentParser('''''', add_help=_UpperCamelCase ) parser.add_argument('''--class_prompt''', help='''text prompt to retrieve images''', required=_UpperCamelCase, type=_UpperCamelCase ) parser.add_argument('''--class_data_dir''', help='''path to save images''', required=_UpperCamelCase, type=_UpperCamelCase ) parser.add_argument('''--num_class_images''', help='''number of images to download''', default=2_00, type=_UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": __snake_case : str = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
18
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
1
'''simple docstring''' from __future__ import annotations _UpperCAmelCase : Optional[int] = """#""" class a__ : """simple docstring""" def __init__(self ): __lowerCAmelCase = {} def _snake_case (self , __lowercase ): __lowerCAmelCase = self._trie for char in text: if char not in trie: __lowerCAmelCase = {} __lowerCAmelCase = trie[char] __lowerCAmelCase = True def _snake_case (self , __lowercase ): __lowerCAmelCase = self._trie for char in prefix: if char in trie: __lowerCAmelCase = trie[char] else: return [] return self._elements(__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = [] for c, v in d.items(): __lowerCAmelCase = [''' '''] if c == END else [(c + s) for s in self._elements(__lowercase )] result.extend(__lowercase ) return tuple(__lowercase ) _UpperCAmelCase : Dict = Trie() _UpperCAmelCase : Union[str, Any] = ("""depart""", """detergent""", """daring""", """dog""", """deer""", """deal""") for word in words: trie.insert_word(word) def __magic_name__( lowerCamelCase): __lowerCAmelCase = trie.find_word(lowerCamelCase) return tuple(string + word for word in suffixes) def __magic_name__( ): print(autocomplete_using_trie('''de''')) if __name__ == "__main__": import doctest doctest.testmod() main()
174
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _UpperCAmelCase : List[str] = 8 def __magic_name__( lowerCamelCase, lowerCamelCase=BITS): __lowerCAmelCase = x.device __lowerCAmelCase = (x * 2_5_5).int().clamp(0, 2_5_5) __lowerCAmelCase = 2 ** torch.arange(bits - 1, -1, -1, device=lowerCamelCase) __lowerCAmelCase = rearrange(lowerCamelCase, '''d -> d 1 1''') __lowerCAmelCase = rearrange(lowerCamelCase, '''b c h w -> b c 1 h w''') __lowerCAmelCase = ((x & mask) != 0).float() __lowerCAmelCase = rearrange(lowerCamelCase, '''b c d h w -> b (c d) h w''') __lowerCAmelCase = bits * 2 - 1 return bits def __magic_name__( lowerCamelCase, lowerCamelCase=BITS): __lowerCAmelCase = x.device __lowerCAmelCase = (x > 0).int() __lowerCAmelCase = 2 ** torch.arange(bits - 1, -1, -1, device=lowerCamelCase, dtype=torch.intaa) __lowerCAmelCase = rearrange(lowerCamelCase, '''d -> d 1 1''') __lowerCAmelCase = rearrange(lowerCamelCase, '''b (c d) h w -> b c d h w''', d=8) __lowerCAmelCase = reduce(x * mask, '''b c d h w -> b c h w''', '''sum''') return (dec / 2_5_5).clamp(0.0, 1.0) def __magic_name__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = 0.0, lowerCamelCase = True, lowerCamelCase=None, lowerCamelCase = True, ): if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''') # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __lowerCAmelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __lowerCAmelCase = self.alphas_cumprod[timestep] __lowerCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __lowerCAmelCase = self.bit_scale if self.config.clip_sample: __lowerCAmelCase = torch.clamp(lowerCamelCase, -scale, lowerCamelCase) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __lowerCAmelCase = self._get_variance(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __lowerCAmelCase = model_output.device if torch.is_tensor(lowerCamelCase) else '''cpu''' __lowerCAmelCase = torch.randn(model_output.shape, dtype=model_output.dtype, generator=lowerCamelCase).to(lowerCamelCase) __lowerCAmelCase = self._get_variance(lowerCamelCase, lowerCamelCase) ** 0.5 * eta * noise __lowerCAmelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCamelCase, pred_original_sample=lowerCamelCase) def __magic_name__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase="epsilon", lowerCamelCase=None, lowerCamelCase = True, ): __lowerCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __lowerCAmelCase , __lowerCAmelCase = torch.split(lowerCamelCase, sample.shape[1], dim=1) else: __lowerCAmelCase = None # 1. compute alphas, betas __lowerCAmelCase = self.alphas_cumprod[t] __lowerCAmelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one __lowerCAmelCase = 1 - alpha_prod_t __lowerCAmelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __lowerCAmelCase = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""") # 3. Clip "predicted x_0" __lowerCAmelCase = self.bit_scale if self.config.clip_sample: __lowerCAmelCase = torch.clamp(lowerCamelCase, -scale, lowerCamelCase) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCAmelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __lowerCAmelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowerCAmelCase = 0 if t > 0: __lowerCAmelCase = torch.randn( model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=lowerCamelCase).to(model_output.device) __lowerCAmelCase = (self._get_variance(lowerCamelCase, predicted_variance=lowerCamelCase) ** 0.5) * noise __lowerCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCamelCase, pred_original_sample=lowerCamelCase) class a__ ( __A ): """simple docstring""" def __init__(self , __lowercase , __lowercase , __lowercase = 1.0 , ): super().__init__() __lowerCAmelCase = bit_scale __lowerCAmelCase = ( ddim_bit_scheduler_step if isinstance(__lowercase , __lowercase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__lowercase , scheduler=__lowercase ) @torch.no_grad() def __call__(self , __lowercase = 2_56 , __lowercase = 2_56 , __lowercase = 50 , __lowercase = None , __lowercase = 1 , __lowercase = "pil" , __lowercase = True , **__lowercase , ): __lowerCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__lowercase , ) __lowerCAmelCase = decimal_to_bits(__lowercase ) * self.bit_scale __lowerCAmelCase = latents.to(self.device ) self.scheduler.set_timesteps(__lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __lowerCAmelCase = self.unet(__lowercase , __lowercase ).sample # compute the previous noisy sample x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample __lowerCAmelCase = bits_to_decimal(__lowercase ) if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(__lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowercase )
174
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __a ( unittest.TestCase ,__UpperCamelCase ): def A ( self : Tuple ): lowerCAmelCase_ : Tuple = load_tool("""text-to-speech""" ) self.tool.setup() def A ( self : Dict ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowerCAmelCase_ : Any = self.tool("""hey""" ) lowerCAmelCase_ : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def A ( self : List[str] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = self.tool("""hey""" ) lowerCAmelCase_ : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
28
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
1
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self: Any , UpperCamelCase: Any , UpperCamelCase: List[str]=13 , UpperCamelCase: List[str]=[30, 30] , UpperCamelCase: Union[str, Any]=2 , UpperCamelCase: Any=3 , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: Any=True , UpperCamelCase: Union[str, Any]=32 , UpperCamelCase: Optional[int]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: int=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Tuple=0.1 , UpperCamelCase: Any=0.1 , UpperCamelCase: Optional[int]=10 , UpperCamelCase: int=0.02 , UpperCamelCase: List[str]=3 , UpperCamelCase: str=None , UpperCamelCase: str=8 , UpperCamelCase: Tuple=10 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = scope A__ = n_targets A__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ = num_patches + 1 + self.num_detection_tokens def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ = [] for i in range(self.batch_size ): A__ = {} A__ = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase ) A__ = torch.rand(self.n_targets , 4 , device=UpperCamelCase ) labels.append(UpperCamelCase ) A__ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCamelCase ( self: str , UpperCamelCase: Union[str, Any] , UpperCamelCase: Any , UpperCamelCase: List[Any] ): """simple docstring""" A__ = YolosModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: Dict ): """simple docstring""" A__ = YolosForObjectDetection(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(pixel_values=UpperCamelCase ) A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ = model(pixel_values=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Optional[int] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: Dict=False ): """simple docstring""" A__ = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ = [] for i in range(self.model_tester.batch_size ): A__ = {} A__ = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase , dtype=torch.long ) A__ = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase , dtype=torch.float ) labels.append(UpperCamelCase ) A__ = labels return inputs_dict def UpperCamelCase ( self: int ): """simple docstring""" A__ = YolosModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self: str ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self: Any ): """simple docstring""" pass def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCamelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase ( self: Dict ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase ( self: Any ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True # in YOLOS, the seq_len is different A__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ = len(UpperCamelCase ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase ) ) A__ = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" def check_hidden_states_output(UpperCamelCase: Optional[int] , UpperCamelCase: Any , UpperCamelCase: Any ): A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.hidden_states A__ = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # YOLOS has a different seq_length A__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase ) @slow def UpperCamelCase ( self: Optional[int] ): """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = YolosModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def _snake_case ( ): A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(UpperCamelCase ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): A__ = model(inputs.pixel_values ) # verify outputs A__ = torch.Size((1, 1_00, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=UpperCamelCase , ) A__ = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) # verify postprocessing A__ = image_processor.post_process_object_detection( UpperCamelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(UpperCamelCase ) A__ = [75, 75, 17, 63, 17] A__ = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(UpperCamelCase ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , UpperCamelCase , atol=1e-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , UpperCamelCase ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , UpperCamelCase ) )
335
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "dandelin/vilt-b32-finetuned-vqa" UpperCAmelCase = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) UpperCAmelCase = "image_qa" UpperCAmelCase = AutoProcessor UpperCAmelCase = AutoModelForVisualQuestionAnswering UpperCAmelCase = ["image", "text"] UpperCAmelCase = ["text"] def __init__( self: List[str] , *UpperCamelCase: Dict , **UpperCamelCase: List[str] ): """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: str , UpperCamelCase: "Image" , UpperCamelCase: str ): """simple docstring""" return self.pre_processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) def UpperCamelCase ( self: str , UpperCamelCase: str ): """simple docstring""" with torch.no_grad(): return self.model(**UpperCamelCase ).logits def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: int ): """simple docstring""" A__ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
335
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ : Any = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = ['MobileViTFeatureExtractor'] snake_case_ : Any = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : List[Any] = { 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowercase__ ( lowercase ): lowercase__ = """xlm-roberta-xl""" def __init__( self : Optional[int] ,lowerCamelCase__ : Optional[Any]=250880 ,lowerCamelCase__ : Tuple=2560 ,lowerCamelCase__ : Union[str, Any]=36 ,lowerCamelCase__ : List[str]=32 ,lowerCamelCase__ : Optional[Any]=10240 ,lowerCamelCase__ : Tuple="gelu" ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : Optional[int]=514 ,lowerCamelCase__ : List[str]=1 ,lowerCamelCase__ : Dict=0.0_2 ,lowerCamelCase__ : Any=1E-05 ,lowerCamelCase__ : Union[str, Any]=1 ,lowerCamelCase__ : str=0 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : Union[str, Any]="absolute" ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : List[str]=None ,**lowerCamelCase__ : Dict ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Optional[int] = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = intermediate_size _UpperCamelCase : Optional[int] = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : List[Any] = max_position_embeddings _UpperCamelCase : str = type_vocab_size _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : Optional[int] = layer_norm_eps _UpperCamelCase : Optional[int] = position_embedding_type _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class lowercase__ ( lowercase ): @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
236
0
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ): __a : List[str] = ort.SessionOptions() __a : Optional[Any] = False return options def _lowerCamelCase ( self ): __a : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = '''A red cat sitting on a park bench''' __a : int = np.random.RandomState(0 ) __a : Any = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : Union[str, Any] = output.images __a : List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a : Any = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCamelCase ( self ): __a : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a : Optional[Any] = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __a : Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[str] = '''A red cat sitting on a park bench''' __a : List[str] = np.random.RandomState(0 ) __a : List[str] = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : Tuple = output.images __a : List[str] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a : List[Any] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
160
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A = None A = logging.get_logger(__name__) A = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 A = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = TaTokenizer __lowerCAmelCase = [] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase=100 , _UpperCAmelCase=None , **_UpperCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __a : Dict = [f"""<extra_id_{i}>""" for i in range(_UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __a : Union[str, Any] = len(set(filter(lambda _UpperCAmelCase : bool('''extra_id_''' in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __a : Union[str, Any] = vocab_file __a : int = False if not self.vocab_file else True __a : List[str] = extra_ids @staticmethod def _lowerCamelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __a : Any = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _UpperCAmelCase , ) return max_model_length def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __a : List[str] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self ): return list( set(filter(lambda _UpperCAmelCase : bool(re.search(R'''<extra_id_\d+>''' , _UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self ): return [self.convert_tokens_to_ids(_UpperCAmelCase ) for token in self.get_sentinel_tokens()]
160
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase : Union[str, Any] ='''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : Any =importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCamelCase : Union[str, Any] =spec.loader.load_module() lowerCamelCase : Union[str, Any] =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase : Union[str, Any] =re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCamelCase : List[str] ={ '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def SCREAMING_SNAKE_CASE ( ): UpperCamelCase__ : Dict = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCamelCase__ : Optional[Any] = False # source code of `config_class` UpperCamelCase__ : Optional[Any] = inspect.getsource(__lowerCAmelCase ) UpperCamelCase__ : Any = _re_checkpoint.findall(__lowerCAmelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCamelCase__ : Optional[int] = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase__ : Optional[int] = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: UpperCamelCase__ : Dict = True break UpperCamelCase__ : Any = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: UpperCamelCase__ : Union[str, Any] = "\n".join(sorted(__lowerCAmelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
368
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __a ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=7 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Dict=18 , SCREAMING_SNAKE_CASE : str=30 , SCREAMING_SNAKE_CASE : Union[str, Any]=4_00 , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Any=32 , SCREAMING_SNAKE_CASE : int=True , ): '''simple docstring''' UpperCamelCase__ : Optional[int] = parent UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : Optional[Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : Dict = min_resolution UpperCamelCase__ : List[str] = max_resolution UpperCamelCase__ : Union[str, Any] = do_resize UpperCamelCase__ : Optional[Any] = size_divisor UpperCamelCase__ : int = do_rescale def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : List[Any] = GLPNImageProcessor if is_vision_available() else None def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Tuple = GLPNImageProcessingTester(self ) @property def __lowercase ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size_divisor" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "resample" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_rescale" ) ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
196
0
class a__ : def __init__( self : Optional[Any],_A : str,_A : List[str],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Any = graph self._normalize_graph(_A,_A ) SCREAMING_SNAKE_CASE_ : str = len(_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None def __UpperCamelCase ( self : List[Any],_A : int,_A : Any ): """simple docstring""" if sources is int: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [sources] if sinks is int: SCREAMING_SNAKE_CASE_ : List[str] = [sinks] if len(_A ) == 0 or len(_A ) == 0: return SCREAMING_SNAKE_CASE_ : List[str] = sources[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(_A ) > 1 or len(_A ) > 1: SCREAMING_SNAKE_CASE_ : List[str] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(self.graph ) + 1 for room in self.graph: room.insert(0,0 ) self.graph.insert(0,[0] * size ) for i in sources: SCREAMING_SNAKE_CASE_ : int = max_input_flow SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: SCREAMING_SNAKE_CASE_ : str = max_input_flow SCREAMING_SNAKE_CASE_ : Dict = size - 1 def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __UpperCamelCase ( self : List[str],_A : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = algorithm(self ) class a__ : def __init__( self : Union[str, Any],_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = flow_network SCREAMING_SNAKE_CASE_ : str = flow_network.verticesCount SCREAMING_SNAKE_CASE_ : Dict = flow_network.sourceIndex SCREAMING_SNAKE_CASE_ : List[str] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that SCREAMING_SNAKE_CASE_ : Optional[int] = flow_network.graph SCREAMING_SNAKE_CASE_ : List[Any] = False def __UpperCamelCase ( self : Any ): """simple docstring""" if not self.executed: self._algorithm() SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass class a__ ( A__ ): def __init__( self : int,_A : Union[str, Any] ): """simple docstring""" super().__init__(_A ) # use this to save your result SCREAMING_SNAKE_CASE_ : Union[str, Any] = -1 def __UpperCamelCase ( self : Tuple ): """simple docstring""" if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class a__ ( A__ ): def __init__( self : List[str],_A : int ): """simple docstring""" super().__init__(_A ) SCREAMING_SNAKE_CASE_ : int = [[0] * self.verticies_count for i in range(self.verticies_count )] SCREAMING_SNAKE_CASE_ : Optional[Any] = [0] * self.verticies_count SCREAMING_SNAKE_CASE_ : Tuple = [0] * self.verticies_count def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule SCREAMING_SNAKE_CASE_ : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list SCREAMING_SNAKE_CASE_ : Optional[int] = 0 while i < len(_A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = vertices_list[i] SCREAMING_SNAKE_CASE_ : Dict = self.heights[vertex_index] self.process_vertex(_A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0,vertices_list.pop(_A ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 else: i += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = sum(self.preflow[self.source_index] ) def __UpperCamelCase ( self : Union[str, Any],_A : Optional[int] ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_A,_A ) self.relabel(_A ) def __UpperCamelCase ( self : str,_A : Union[str, Any],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = min( self.excesses[from_index],self.graph[from_index][to_index] - self.preflow[from_index][to_index],) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __UpperCamelCase ( self : Tuple,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): SCREAMING_SNAKE_CASE_ : Any = self.heights[to_index] if min_height is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = min_height + 1 if __name__ == "__main__": __lowerCamelCase : int = [0] __lowerCamelCase : str = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCamelCase : Any = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCamelCase : List[str] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCamelCase : str = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
18
from functools import lru_cache @lru_cache def _snake_case ( lowerCAmelCase : int ): """simple docstring""" if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=99 , _UpperCAmelCase=13 , _UpperCAmelCase=16 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=30 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = decoder_seq_length # For common tests snake_case_ = self.decoder_seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = d_model snake_case_ = d_model snake_case_ = decoder_layers snake_case_ = decoder_layers snake_case_ = decoder_ffn_dim snake_case_ = decoder_attention_heads snake_case_ = decoder_attention_heads snake_case_ = eos_token_id snake_case_ = bos_token_id snake_case_ = pad_token_id snake_case_ = decoder_start_token_id snake_case_ = use_cache snake_case_ = max_position_embeddings snake_case_ = None snake_case_ = decoder_seq_length snake_case_ = 2 snake_case_ = 1 def UpperCamelCase__ ( self ): snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): snake_case_ = True snake_case_ = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() snake_case_ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case_ = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) snake_case_ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = model(_UpperCAmelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __snake_case = (TrOCRForCausalLM,) if is_torch_available() else () __snake_case = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} __snake_case = True __snake_case = False def UpperCamelCase__ ( self ): snake_case_ = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase ) snake_case_ = ConfigTester(self , config_class=_UpperCAmelCase ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ ( self ): pass
359
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): return (x_in - self.means[key]) / self.stds[key] def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): return x_in * self.stds[key] + self.means[key] def UpperCamelCase__ ( self , _UpperCAmelCase ): if type(_UpperCAmelCase ) is dict: return {k: self.to_torch(_UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(_UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(_UpperCAmelCase , device=self.unet.device ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for key, val in cond.items(): snake_case_ = val.clone() return x_in def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , _UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(_UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(_UpperCAmelCase ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , predict_epsilon=_UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.to_torch(_UpperCAmelCase ) return x, y def __call__( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 ): # normalize the observations and create batch dimension snake_case_ = self.normalize(_UpperCAmelCase , '''observations''' ) snake_case_ = obs[None].repeat(_UpperCAmelCase , axis=0 ) snake_case_ = {0: self.to_torch(_UpperCAmelCase )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(_UpperCAmelCase , device=self.unet.device ) snake_case_ = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) snake_case_ = self.to_torch(_UpperCAmelCase ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=_UpperCAmelCase ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(_UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , _UpperCAmelCase ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
267
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def A ( self : Any ): """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , 'embed_dim' ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , 'num_heads' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]=1_3 , UpperCamelCase__ : Union[str, Any]=6_4 , UpperCamelCase__ : str=3 , UpperCamelCase__ : Dict=[1_6, 4_8, 9_6] , UpperCamelCase__ : Any=[1, 3, 6] , UpperCamelCase__ : List[str]=[1, 2, 1_0] , UpperCamelCase__ : str=[7, 3, 3] , UpperCamelCase__ : int=[4, 2, 2] , UpperCamelCase__ : Optional[Any]=[2, 1, 1] , UpperCamelCase__ : Union[str, Any]=[2, 2, 2] , UpperCamelCase__ : List[str]=[False, False, True] , UpperCamelCase__ : Dict=[0.0, 0.0, 0.0] , UpperCamelCase__ : int=0.0_2 , UpperCamelCase__ : Dict=1E-1_2 , UpperCamelCase__ : str=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : int=2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_sizes UpperCamelCase = patch_stride UpperCamelCase = patch_padding UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = num_labels UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = num_heads UpperCamelCase = stride_kv UpperCamelCase = depth UpperCamelCase = cls_token UpperCamelCase = attention_drop_rate UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps def A ( self : int ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A ( self : str ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : int , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" UpperCamelCase = CvtModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ ) UpperCamelCase = (self.image_size, self.image_size) UpperCamelCase , UpperCamelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCamelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCamelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = CvtForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCamelCase = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = (CvtModel, CvtForImageClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": CvtModel, """image-classification""": CvtForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def A ( self : str ): """simple docstring""" UpperCamelCase = CvtModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=3_7 ) def A ( self : Union[str, Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Any ): """simple docstring""" return @unittest.skip(reason='Cvt does not output attentions' ) def A ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def A ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def A ( self : List[str] ): """simple docstring""" pass def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(UpperCamelCase__ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ): UpperCamelCase = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = len(self.model_tester.depth ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A ( self : int ): """simple docstring""" pass @slow def A ( self : Tuple ): """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = CvtModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : List[str] ): """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : Any ): """simple docstring""" UpperCamelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCamelCase__ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**UpperCamelCase__ ) # verify the logits UpperCamelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) UpperCamelCase = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) )
28
'''simple docstring''' from PIL import Image def __lowerCamelCase ( A__ , A__ ) -> Image: """simple docstring""" def brightness(A__ ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(A__ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _lowerCamelCase : List[str] = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
28
1
def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' if not numbers: return 0 if not isinstance(lowerCamelCase_, (list, tuple) ) or not all( isinstance(lowerCamelCase_, lowerCamelCase_ ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) UpperCAmelCase__ = numbers[0] for i in range(1, len(lowerCamelCase_ ) ): # update the maximum and minimum subarray products UpperCAmelCase__ = numbers[i] if number < 0: UpperCAmelCase__ = min_till_now, max_till_now UpperCAmelCase__ = max(lowerCamelCase_, max_till_now * number ) UpperCAmelCase__ = min(lowerCamelCase_, min_till_now * number ) # update the maximum product found till now UpperCAmelCase__ = max(lowerCamelCase_, lowerCamelCase_ ) return max_prod
358
from __future__ import annotations def lowerCAmelCase_ ( __A, __A, __A, ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
143
0
from __future__ import annotations def _UpperCAmelCase (UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): _A : Dict = list(range(len(UpperCamelCase__ ) ) ) _A : Any = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _A : float = 0 _A : list[float] = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _A : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: _A : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
11
_UpperCAmelCase : Tuple = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase__ ( lowerCamelCase ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase ) ) def UpperCAmelCase__ ( ): return sum( number for number in range(1000, 1000000 ) if number == digits_fifth_powers_sum(lowerCamelCase ) ) if __name__ == "__main__": print(solution())
236
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __magic_name__ ( __a : int , __a : List[Any] , __a : str ): '''simple docstring''' UpperCamelCase__ = OmegaConf.load(__a ) UpperCamelCase__ = torch.load(__a , map_location="""cpu""" )["""model"""] UpperCamelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCamelCase__ = {} UpperCamelCase__ = """first_stage_model.""" for key in keys: if key.startswith(__a ): UpperCamelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCamelCase__ = {} UpperCamelCase__ = """model.diffusion_model.""" for key in keys: if key.startswith(__a ): UpperCamelCase__ = state_dict[key] UpperCamelCase__ = config.model.params.first_stage_config.params UpperCamelCase__ = config.model.params.unet_config.params UpperCamelCase__ = VQModel(**__a ).eval() vqvae.load_state_dict(__a ) UpperCamelCase__ = UNetLDMModel(**__a ).eval() unet.load_state_dict(__a ) UpperCamelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__a , ) UpperCamelCase__ = LDMPipeline(__a , __a , __a ) pipeline.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCamelCase_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
178
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase_ = logging.get_logger(__name__) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = R"""\w+[.]\d+""" UpperCamelCase__ = re.findall(__a , __a ) for pat in pats: UpperCamelCase__ = key.replace(__a , """_""".join(pat.split(""".""" ) ) ) return key def __magic_name__ ( __a : str , __a : Dict , __a : int ): '''simple docstring''' UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCamelCase__ = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCamelCase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase__ = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCamelCase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase__ = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase__ = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __magic_name__ ( __a : List[Any] , __a : List[Any] , __a : Optional[int]=42 ): '''simple docstring''' UpperCamelCase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCamelCase__ = flax_model.init_weights(PRNGKey(__a ) ) UpperCamelCase__ = flatten_dict(__a ) UpperCamelCase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase__ = rename_key(__a ) UpperCamelCase__ = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCamelCase__ , UpperCamelCase__ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCamelCase__ = jnp.asarray(__a ) return unflatten_dict(__a )
178
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
68
__lowerCAmelCase = range(2, 20 + 1) __lowerCAmelCase = [10**k for k in range(ks[-1] + 1)] __lowerCAmelCase = {} def snake_case_ ( snake_case , snake_case , snake_case , snake_case ) -> Optional[int]: lowercase__: str = sum(a_i[j] for j in range(snake_case , len(snake_case ) ) ) lowercase__: Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(snake_case ) , snake_case ) ) ) lowercase__ , lowercase__: str = 0, 0 lowercase__: Tuple = n - i lowercase__: Dict = memo.get(snake_case ) if sub_memo is not None: lowercase__: Optional[Any] = sub_memo.get(snake_case ) if jumps is not None and len(snake_case ) > 0: # find and make the largest jump without going over lowercase__: int = -1 for _k in range(len(snake_case ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase__: Union[str, Any] = _k break if max_jump >= 0: lowercase__ , lowercase__ , lowercase__: Any = jumps[max_jump] # since the difference between jumps is cached, add c lowercase__: str = diff + c for j in range(min(snake_case , len(snake_case ) ) ): lowercase__ , lowercase__: Dict = divmod(snake_case , 10 ) if new_c > 0: add(snake_case , snake_case , snake_case ) else: lowercase__: List[Any] = [] else: lowercase__: Optional[Any] = {c: []} lowercase__: Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase__ , lowercase__: Union[str, Any] = next_term(snake_case , k - 1 , i + dn , snake_case ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase__ , lowercase__: Dict = compute(snake_case , snake_case , i + dn , snake_case ) diff += _diff dn += terms_jumped lowercase__: Any = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase__: str = 0 while j < len(snake_case ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(snake_case , (diff, dn, k) ) return (diff, dn) def snake_case_ ( snake_case , snake_case , snake_case , snake_case ) -> str: if i >= n: return 0, i if k > len(snake_case ): a_i.extend([0 for _ in range(k - len(snake_case ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase__: List[Any] = i lowercase__ , lowercase__ , lowercase__: Any = 0, 0, 0 for j in range(len(snake_case ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase__: str = ds_c + ds_b diff += addend lowercase__: List[str] = 0 for j in range(snake_case ): lowercase__: Any = a_i[j] + addend lowercase__ , lowercase__: List[Any] = divmod(snake_case , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(snake_case , snake_case , snake_case ) return diff, i - start_i def snake_case_ ( snake_case , snake_case , snake_case ) -> int: for j in range(snake_case , len(snake_case ) ): lowercase__: str = digits[j] + addend if s >= 10: lowercase__ , lowercase__: Any = divmod(snake_case , 10 ) lowercase__: Any = addend // 10 + quotient else: lowercase__: Union[str, Any] = s lowercase__: Union[str, Any] = addend // 10 if addend == 0: break while addend > 0: lowercase__ , lowercase__: Union[str, Any] = divmod(snake_case , 10 ) digits.append(snake_case ) def snake_case_ ( snake_case = 10**15 ) -> int: lowercase__: Optional[Any] = [1] lowercase__: int = 1 lowercase__: Tuple = 0 while True: lowercase__ , lowercase__: str = next_term(snake_case , 20 , i + dn , snake_case ) dn += terms_jumped if dn == n - i: break lowercase__: Dict = 0 for j in range(len(snake_case ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
196
0
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _a : int = '__DUMMY_TRANSFORMERS_USER__' _a : List[Any] = 'Dummy User' _a : str = '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' _a : Optional[Any] = 'https://hub-ci.huggingface.co' _a : Tuple = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _a : Any = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _a : Tuple = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ) -> Union[str, Any]: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" ,_lowerCamelCase ) @pytest.fixture def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Tuple: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" ,_lowerCamelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" ,_lowerCamelCase ) @pytest.fixture def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ) -> Optional[int]: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" ,_lowerCamelCase ) @pytest.fixture def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : str ) -> Optional[int]: HfFolder.save_token(_lowerCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( ) -> Any: return HfApi(endpoint=_lowerCamelCase ) @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : HfApi ) -> Optional[int]: _lowerCAmelCase : int = HfFolder.get_token() HfFolder.save_token(_lowerCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(_lowerCamelCase ) @pytest.fixture def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Any: def _cleanup_repo(_lowerCamelCase : Tuple ): hf_api.delete_repo(_lowerCamelCase ,token=_lowerCamelCase ,repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Union[str, Any]: @contextmanager def _temporary_repo(_lowerCamelCase : Optional[int] ): try: yield repo_id finally: cleanup_repo(_lowerCamelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : HfApi ,_lowerCamelCase : str ,_lowerCamelCase : int ) -> Optional[int]: _lowerCAmelCase : Any = f"repo_txt_data-{int(time.time() * 10e3 )}" _lowerCAmelCase : str = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(_lowerCamelCase ,token=_lowerCamelCase ,repo_type="""dataset""" ,private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase ,path_or_fileobj=str(_lowerCamelCase ) ,path_in_repo="""data/text_data.txt""" ,repo_id=_lowerCamelCase ,repo_type="""dataset""" ,) yield repo_id try: hf_api.delete_repo(_lowerCamelCase ,token=_lowerCamelCase ,repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Optional[Any] ) -> int: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : HfApi ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[Any] ) -> int: _lowerCAmelCase : Tuple = f"repo_zipped_txt_data-{int(time.time() * 10e3 )}" _lowerCAmelCase : Optional[Any] = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(_lowerCamelCase ,token=_lowerCamelCase ,repo_type="""dataset""" ,private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase ,path_or_fileobj=str(_lowerCamelCase ) ,path_in_repo="""data.zip""" ,repo_id=_lowerCamelCase ,repo_type="""dataset""" ,) yield repo_id try: hf_api.delete_repo(_lowerCamelCase ,token=_lowerCamelCase ,repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Tuple ,_lowerCamelCase : Any ) -> List[str]: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : HfApi ,_lowerCamelCase : Any ,_lowerCamelCase : str ) -> Any: _lowerCAmelCase : Tuple = f"repo_zipped_img_data-{int(time.time() * 10e3 )}" _lowerCAmelCase : Optional[int] = f"{CI_HUB_USER}/{repo_name}" hf_api.create_repo(_lowerCamelCase ,token=_lowerCamelCase ,repo_type="""dataset""" ,private=_lowerCamelCase ) hf_api.upload_file( token=_lowerCamelCase ,path_or_fileobj=str(_lowerCamelCase ) ,path_in_repo="""data.zip""" ,repo_id=_lowerCamelCase ,repo_type="""dataset""" ,) yield repo_id try: hf_api.delete_repo(_lowerCamelCase ,token=_lowerCamelCase ,repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : List[Any] ,_lowerCamelCase : Dict ) -> List[str]: return hf_private_dataset_repo_zipped_img_data_
359
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=400 , a__=True , a__=None , a__=0.9 , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , ): _lowerCAmelCase : int = size if size is not None else {"""shortest_edge""": 30} _lowerCAmelCase : Dict = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = min_resolution _lowerCAmelCase : Dict = max_resolution _lowerCAmelCase : str = do_resize_and_center_crop _lowerCAmelCase : List[str] = size _lowerCAmelCase : int = crop_pct _lowerCAmelCase : int = crop_size _lowerCAmelCase : Union[str, Any] = do_normalize _lowerCAmelCase : Tuple = image_mean _lowerCAmelCase : Optional[Any] = image_std def __A ( self ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[str] = PoolFormerImageProcessor if is_vision_available() else None def __A ( self ): _lowerCAmelCase : str = PoolFormerImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(a__ , """size""" ) ) self.assertTrue(hasattr(a__ , """crop_pct""" ) ) self.assertTrue(hasattr(a__ , """do_normalize""" ) ) self.assertTrue(hasattr(a__ , """image_mean""" ) ) self.assertTrue(hasattr(a__ , """image_std""" ) ) def __A ( self ): _lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) _lowerCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __A ( self ): pass def __A ( self ): # Initialize image_processing _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : List[str] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : int = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : List[str] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
126
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCamelCase_ : '''simple docstring''' def _UpperCamelCase ( self , a ) -> str: raise NotImplementedError() def _UpperCamelCase ( self ) -> List[Any]: raise NotImplementedError() class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a = False , **a ) -> Tuple: snake_case_ = tokenizer snake_case_ = skip_prompt snake_case_ = decode_kwargs # variables used in the streaming process snake_case_ = [] snake_case_ = 0 snake_case_ = True def _UpperCamelCase ( self , a ) -> Dict: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: snake_case_ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: snake_case_ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) snake_case_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): snake_case_ = text[self.print_len :] snake_case_ = [] snake_case_ = 0 # If the last token is a CJK character, we print the characters. elif len(__SCREAMING_SNAKE_CASE ) > 0 and self._is_chinese_char(ord(text[-1] ) ): snake_case_ = text[self.print_len :] self.print_len += len(__SCREAMING_SNAKE_CASE ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: snake_case_ = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(__SCREAMING_SNAKE_CASE ) self.on_finalized_text(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self ) -> Union[str, Any]: if len(self.token_cache ) > 0: snake_case_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) snake_case_ = text[self.print_len :] snake_case_ = [] snake_case_ = 0 else: snake_case_ = '' snake_case_ = True self.on_finalized_text(__SCREAMING_SNAKE_CASE , stream_end=__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self , a , a = False ) -> str: print(__SCREAMING_SNAKE_CASE , flush=__SCREAMING_SNAKE_CASE , end='' if not stream_end else None ) def _UpperCamelCase ( self , a ) -> List[str]: if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a = False , a = None , **a ) -> List[Any]: super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case_ = Queue() snake_case_ = None snake_case_ = timeout def _UpperCamelCase ( self , a , a = False ) -> Any: self.text_queue.put(__SCREAMING_SNAKE_CASE , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Optional[Any]: return self def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
178
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: UpperCAmelCase : Optional[Any] = None try: import msvcrt except ImportError: UpperCAmelCase : List[Any] = None try: import fcntl except ImportError: UpperCAmelCase : int = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: UpperCAmelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ UpperCAmelCase : List[Any] = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] UpperCAmelCase : Tuple = '3.0.12' UpperCAmelCase : str = None def a__ ( ): """simple docstring""" global _logger __SCREAMING_SNAKE_CASE = _logger or logging.getLogger(__name__ ) return _logger class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = lock_file return None def __str__( self : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class lowerCAmelCase__ : """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = lock return None def __enter__( self : List[str] ) -> List[Any]: """simple docstring""" return self.lock def __exit__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" self.lock.release() return None class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str=-1 , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __SCREAMING_SNAKE_CASE = self.hash_filename_if_too_long(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # The path to the lock file. __SCREAMING_SNAKE_CASE = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __SCREAMING_SNAKE_CASE = None # The default timeout value. __SCREAMING_SNAKE_CASE = timeout # We use this lock primarily for the lock counter. __SCREAMING_SNAKE_CASE = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __SCREAMING_SNAKE_CASE = 0 return None @property def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" return self._lock_file @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self._timeout @timeout.setter def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = float(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" raise NotImplementedError() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" raise NotImplementedError() @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._lock_file_fd is not None def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]=0.05 ) -> Optional[Any]: """simple docstring""" if timeout is None: __SCREAMING_SNAKE_CASE = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __SCREAMING_SNAKE_CASE = id(self ) __SCREAMING_SNAKE_CASE = self._lock_file __SCREAMING_SNAKE_CASE = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(__SCREAMING_SNAKE_CASE ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __SCREAMING_SNAKE_CASE = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> Dict: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __SCREAMING_SNAKE_CASE = id(self ) __SCREAMING_SNAKE_CASE = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() __SCREAMING_SNAKE_CASE = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.acquire() return self def __exit__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" self.release() return None def __del__( self : str ) -> Union[str, Any]: """simple docstring""" self.release(force=__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.basename(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > max_length and max_length > 0: __SCREAMING_SNAKE_CASE = os.path.dirname(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = str(hash(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = filename[: max_length - len(__SCREAMING_SNAKE_CASE ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: return path class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict=-1 , __SCREAMING_SNAKE_CASE : Dict=None ) -> List[Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE , max_filename_length=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __SCREAMING_SNAKE_CASE = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) except OSError: pass else: try: msvcrt.locking(__SCREAMING_SNAKE_CASE , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = fd return None def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._lock_file_fd __SCREAMING_SNAKE_CASE = None msvcrt.locking(__SCREAMING_SNAKE_CASE , msvcrt.LK_UNLCK , 1 ) os.close(__SCREAMING_SNAKE_CASE ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=-1 , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = os.statvfs(os.path.dirname(__SCREAMING_SNAKE_CASE ) ).f_namemax super().__init__(__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE , max_filename_length=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = os.O_RDWR | os.O_CREAT | os.O_TRUNC __SCREAMING_SNAKE_CASE = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) try: fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = fd return None def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self._lock_file_fd __SCREAMING_SNAKE_CASE = None fcntl.flock(__SCREAMING_SNAKE_CASE , fcntl.LOCK_UN ) os.close(__SCREAMING_SNAKE_CASE ) return None class lowerCAmelCase__ ( a ): """simple docstring""" def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __SCREAMING_SNAKE_CASE = os.open(self._lock_file , __SCREAMING_SNAKE_CASE ) except OSError: pass else: __SCREAMING_SNAKE_CASE = fd return None def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" os.close(self._lock_file_fd ) __SCREAMING_SNAKE_CASE = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None UpperCAmelCase : Dict = None if msvcrt: UpperCAmelCase : Optional[int] = WindowsFileLock elif fcntl: UpperCAmelCase : Optional[Any] = UnixFileLock else: UpperCAmelCase : int = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
267
0
def __magic_name__( lowerCamelCase, lowerCamelCase): if not len(SCREAMING_SNAKE_CASE__) == len(SCREAMING_SNAKE_CASE__) == 3: raise ValueError('''Please enter a valid equation.''') if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('''Both a & b of two equations can\'t be zero.''') # Extract the coefficients __lowerCAmelCase = equationa __lowerCAmelCase = equationa # Calculate the determinants of the matrices __lowerCAmelCase = aa * ba - aa * ba __lowerCAmelCase = ca * ba - ca * ba __lowerCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('''Infinite solutions. (Consistent system)''') else: raise ValueError('''No solution. (Inconsistent system)''') else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: __lowerCAmelCase = determinant_x / determinant __lowerCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
366
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase__ = threading.Lock() UpperCAmelCase__ = None UpperCAmelCase__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } UpperCAmelCase__ = logging.WARNING UpperCAmelCase__ = True def UpperCAmelCase_ ( ) -> Any: """simple docstring""" _lowercase =os.getenv('''TRANSFORMERS_VERBOSITY''' , __snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def UpperCAmelCase_ ( ) -> str: """simple docstring""" return __name__.split('''.''' )[0] def UpperCAmelCase_ ( ) -> logging.Logger: """simple docstring""" return logging.getLogger(_get_library_name() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _lowercase =logging.StreamHandler() # Set sys.stderr as stream. _lowercase =sys.stderr.flush # Apply our default configuration to the library root logger. _lowercase =_get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _lowercase =False def UpperCAmelCase_ ( ) -> None: """simple docstring""" global _default_handler with _lock: if not _default_handler: return _lowercase =_get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _lowercase =None def UpperCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" return log_levels def UpperCAmelCase_ ( __snake_case = None ) -> logging.Logger: """simple docstring""" if name is None: _lowercase =_get_library_name() _configure_library_root_logger() return logging.getLogger(__snake_case ) def UpperCAmelCase_ ( ) -> int: """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def UpperCAmelCase_ ( __snake_case ) -> None: """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(__snake_case ) def UpperCAmelCase_ ( ) -> str: """simple docstring""" return set_verbosity(__snake_case ) def UpperCAmelCase_ ( ) -> List[str]: """simple docstring""" return set_verbosity(__snake_case ) def UpperCAmelCase_ ( ) -> List[str]: """simple docstring""" return set_verbosity(__snake_case ) def UpperCAmelCase_ ( ) -> List[Any]: """simple docstring""" return set_verbosity(__snake_case ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def UpperCAmelCase_ ( __snake_case ) -> None: """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__snake_case ) def UpperCAmelCase_ ( __snake_case ) -> None: """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__snake_case ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _configure_library_root_logger() _lowercase =False def UpperCAmelCase_ ( ) -> None: """simple docstring""" _configure_library_root_logger() _lowercase =True def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase =_get_library_root_logger().handlers for handler in handlers: _lowercase =logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(__snake_case ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase =_get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__snake_case ) def UpperCAmelCase_ ( self , *__snake_case , **__snake_case ) -> Union[str, Any]: """simple docstring""" _lowercase =os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , __snake_case ) if no_advisory_warnings: return self.warning(*__snake_case , **__snake_case ) UpperCAmelCase__ = warning_advice @functools.lru_cache(__snake_case ) def UpperCAmelCase_ ( self , *__snake_case , **__snake_case ) -> Union[str, Any]: """simple docstring""" self.warning(*__snake_case , **__snake_case ) UpperCAmelCase__ = warning_once class lowerCamelCase__ : def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> str: # pylint: disable=unused-argument _lowercase =args[0] if args else None def __iter__(self ) -> Any: return iter(self._iterator ) def __getattr__(self , UpperCAmelCase ) -> str: def empty_fn(*UpperCAmelCase , **UpperCAmelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__(self ) -> List[Any]: return self def __exit__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: return class lowerCamelCase__ : def __call__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: if _tqdm_active: return tqdm_lib.tqdm(*UpperCAmelCase , **UpperCAmelCase ) else: return EmptyTqdm(*UpperCAmelCase , **UpperCAmelCase ) def __A (self , *UpperCAmelCase , **UpperCAmelCase ) -> int: _lowercase =None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCAmelCase , **UpperCAmelCase ) def __A (self ) -> Tuple: if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase__ = _tqdm_cls() def UpperCAmelCase_ ( ) -> bool: """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def UpperCAmelCase_ ( ) -> Dict: """simple docstring""" global _tqdm_active _lowercase =True hf_hub_utils.enable_progress_bars() def UpperCAmelCase_ ( ) -> Optional[int]: """simple docstring""" global _tqdm_active _lowercase =False hf_hub_utils.disable_progress_bars()
5
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : int = logging.get_logger(__name__) def UpperCamelCase__ ( A__ , A__=False ) -> List[Any]: snake_case__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def UpperCamelCase__ ( A__ , A__ , A__=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = '' else: snake_case__ : List[Any] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ : List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : int = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : int = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( A__ , A__ , A__ ) -> str: snake_case__ : Optional[int] = dct.pop(A__ ) snake_case__ : int = val def UpperCamelCase__ ( ) -> Dict: snake_case__ : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Dict = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> List[str]: snake_case__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Any = 1000 snake_case__ : Union[str, Any] = 'huggingface/label-files' snake_case__ : int = 'imagenet-1k-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : int = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): snake_case__ : Optional[int] = 192 snake_case__ : str = 768 snake_case__ : Optional[Any] = 12 snake_case__ : Tuple = 3 elif deit_name[9:].startswith('small' ): snake_case__ : str = 384 snake_case__ : str = 1536 snake_case__ : Dict = 12 snake_case__ : str = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): snake_case__ : List[Any] = 1024 snake_case__ : str = 4096 snake_case__ : Tuple = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : Optional[int] = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Tuple = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model snake_case__ : int = DeiTForImageClassificationWithTeacher(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : List[Any] = DeiTImageProcessor(size=A__ , crop_size=config.image_size ) snake_case__ : Tuple = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : Tuple = encoding['pixel_values'] snake_case__ : Dict = model(A__ ) snake_case__ : Union[str, Any] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : Dict = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowercase ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase = 'altclip_text_model' def __init__( self ,a_=250_002 ,a_=1_024 ,a_=24 ,a_=16 ,a_=4_096 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=514 ,a_=1 ,a_=0.02 ,a_=0.02 ,a_=1E-0_5 ,a_=1 ,a_=0 ,a_=2 ,a_="absolute" ,a_=True ,a_=768 ,**a_ ,) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ ,bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : str = initializer_factor _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Any = position_embedding_type _UpperCAmelCase : Union[str, Any] = use_cache _UpperCAmelCase : List[str] = project_dim class lowercase ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase = 'altclip_vision_model' def __init__( self ,a_=768 ,a_=3_072 ,a_=512 ,a_=12 ,a_=12 ,a_=3 ,a_=224 ,a_=32 ,a_="quick_gelu" ,a_=1E-5 ,a_=0.0 ,a_=0.02 ,a_=1.0 ,**a_ ,) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : str = hidden_size _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Union[str, Any] = projection_dim _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : str = num_channels _UpperCAmelCase : List[str] = patch_size _UpperCAmelCase : List[str] = image_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Optional[int] = initializer_factor _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Dict = hidden_act @classmethod def _snake_case ( cls ,a_ ,**a_ ) -> str: cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : int = cls.get_config_dict(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": _UpperCAmelCase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) class lowercase ( _UpperCAmelCase ): """simple docstring""" UpperCAmelCase = 'altclip' UpperCAmelCase = True def __init__( self ,a_=None ,a_=None ,a_=768 ,a_=2.6592 ,**a_ ) -> Any: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). _UpperCAmelCase : Dict = kwargs.pop("""text_config_dict""" ,SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : Optional[Any] = kwargs.pop("""vision_config_dict""" ,SCREAMING_SNAKE_CASE_ ) super().__init__(**SCREAMING_SNAKE_CASE_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: _UpperCAmelCase : List[str] = {} # This is the complete result when using `text_config_dict`. _UpperCAmelCase : int = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: _UpperCAmelCase : List[Any] = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: _UpperCAmelCase : Any = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(SCREAMING_SNAKE_CASE_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: _UpperCAmelCase : List[str] = {} # This is the complete result when using `vision_config_dict`. _UpperCAmelCase : Dict = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _UpperCAmelCase : List[Any] = { str(SCREAMING_SNAKE_CASE_ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: _UpperCAmelCase : int = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: _UpperCAmelCase : List[Any] = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(SCREAMING_SNAKE_CASE_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: _UpperCAmelCase : int = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: _UpperCAmelCase : str = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) _UpperCAmelCase : str = AltCLIPTextConfig(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : List[Any] = AltCLIPVisionConfig(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase : List[Any] = projection_dim _UpperCAmelCase : Union[str, Any] = logit_scale_init_value _UpperCAmelCase : Union[str, Any] = 1.0 @classmethod def _snake_case ( cls ,a_ ,a_ ,**a_ ) -> Dict: return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**SCREAMING_SNAKE_CASE_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Dict = self.text_config.to_dict() _UpperCAmelCase : Union[str, Any] = self.vision_config.to_dict() _UpperCAmelCase : Any = self.__class__.model_type return output
355
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase = MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _UpperCamelCase ( self ) -> Tuple: snake_case_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output snake_case_ = text_generator('This is a test' , do_sample=a ) self.assertEqual( a , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) snake_case_ = text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( a , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) snake_case_ = text_generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a ) self.assertEqual( a , [ {'generated_token_ids': ANY(a )}, {'generated_token_ids': ANY(a )}, ] , ) snake_case_ = text_generator.model.config.eos_token_id snake_case_ = '<pad>' snake_case_ = text_generator( ['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {'generated_token_ids': ANY(a )}, {'generated_token_ids': ANY(a )}, ], [ {'generated_token_ids': ANY(a )}, {'generated_token_ids': ANY(a )}, ], ] , ) @require_tf def _UpperCamelCase ( self ) -> str: snake_case_ = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output snake_case_ = text_generator('This is a test' , do_sample=a ) self.assertEqual( a , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) snake_case_ = text_generator(['This is a test', 'This is a second test'] , do_sample=a ) self.assertEqual( a , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def _UpperCamelCase ( self , a , a , a ) -> Any: snake_case_ = TextGenerationPipeline(model=a , tokenizer=a ) return text_generator, ["This is a test", "Another test"] def _UpperCamelCase ( self ) -> Dict: snake_case_ = 'Hello I believe in' snake_case_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) snake_case_ = text_generator(a ) self.assertEqual( a , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) snake_case_ = text_generator(a , stop_sequence=' fe' ) self.assertEqual(a , [{'generated_text': 'Hello I believe in fe'}] ) def _UpperCamelCase ( self , a , a ) -> Optional[int]: snake_case_ = text_generator.model snake_case_ = text_generator.tokenizer snake_case_ = text_generator('This is a test' ) self.assertEqual(a , [{'generated_text': ANY(a )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) snake_case_ = text_generator('This is a test' , return_full_text=a ) self.assertEqual(a , [{'generated_text': ANY(a )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) snake_case_ = pipeline(task='text-generation' , model=a , tokenizer=a , return_full_text=a ) snake_case_ = text_generator('This is a test' ) self.assertEqual(a , [{'generated_text': ANY(a )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) snake_case_ = text_generator('This is a test' , return_full_text=a ) self.assertEqual(a , [{'generated_text': ANY(a )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) snake_case_ = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a ) self.assertEqual( a , [ [{'generated_text': ANY(a )}, {'generated_text': ANY(a )}], [{'generated_text': ANY(a )}, {'generated_text': ANY(a )}], ] , ) if text_generator.tokenizer.pad_token is not None: snake_case_ = text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a ) self.assertEqual( a , [ [{'generated_text': ANY(a )}, {'generated_text': ANY(a )}], [{'generated_text': ANY(a )}, {'generated_text': ANY(a )}], ] , ) with self.assertRaises(a ): snake_case_ = text_generator('test' , return_full_text=a , return_text=a ) with self.assertRaises(a ): snake_case_ = text_generator('test' , return_full_text=a , return_tensors=a ) with self.assertRaises(a ): snake_case_ = text_generator('test' , return_text=a , return_tensors=a ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): snake_case_ = text_generator('' ) self.assertEqual(a , [{'generated_text': ANY(a )}] ) else: with self.assertRaises((ValueError, AssertionError) ): snake_case_ = text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. snake_case_ = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 5_00 , max_new_tokens=20 ) snake_case_ = text_generator('This is a test' * 5_00 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(a ): text_generator( 'This is a test' * 5_00 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _UpperCamelCase ( self ) -> Union[str, Any]: import torch # Classic `model_kwargs` snake_case_ = pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ = pipe('This is a test' ) self.assertEqual( a , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) snake_case_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ = pipe('This is a test' ) self.assertEqual( a , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 snake_case_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) snake_case_ = pipe('This is a test' ) self.assertEqual( a , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def _UpperCamelCase ( self ) -> str: import torch snake_case_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def _UpperCamelCase ( self ) -> Union[str, Any]: import torch snake_case_ = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=a , top_p=0.5 ) def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = 'Hello world' snake_case_ = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": snake_case_ = logging.get_logger('transformers.generation.tf_utils' ) else: snake_case_ = logging.get_logger('transformers.generation.utils' ) snake_case_ = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(a ) as cl: snake_case_ = text_generator(a , max_length=10 , max_new_tokens=1 ) self.assertIn(a , cl.out ) # The user only sets one -> no warning with CaptureLogger(a ) as cl: snake_case_ = text_generator(a , max_new_tokens=1 ) self.assertNotIn(a , cl.out ) with CaptureLogger(a ) as cl: snake_case_ = text_generator(a , max_length=10 ) self.assertNotIn(a , cl.out )
178
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''BlipImageProcessor''' lowerCAmelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , a , a ) -> Tuple: snake_case_ = False super().__init__(a , a ) snake_case_ = self.image_processor def __call__( self , a = None , a = None , a = True , a = False , a = None , a = None , a = 0 , a = None , a = None , a = False , a = False , a = False , a = False , a = False , a = True , a = None , **a , ) -> BatchEncoding: if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: snake_case_ = self.tokenizer snake_case_ = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) return text_encoding # add pixel_values snake_case_ = self.image_processor(a , return_tensors=a ) if text is not None: snake_case_ = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) else: snake_case_ = None if text_encoding is not None: encoding_image_processor.update(a ) return encoding_image_processor def _UpperCamelCase ( self , *a , **a ) -> int: return self.tokenizer.batch_decode(*a , **a ) def _UpperCamelCase ( self , *a , **a ) -> Any: return self.tokenizer.decode(*a , **a ) @property def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.tokenizer.model_input_names snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
178
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib SCREAMING_SNAKE_CASE_: List[str] =get_logger() SCREAMING_SNAKE_CASE_: Optional[dict] =None class __A ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__(self : List[Any] , __a : Optional[int]=None , __a : Any=None , **__a : Dict ): super().__init__(features=__a ) import jax from jaxlib.xla_client import Device if isinstance(__a , __a ): raise ValueError( f"""Expected {device} to be a `str` not {type(__a )}, as `jaxlib.xla_extension.Device` """ "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) UpperCAmelCase_ = device if isinstance(__a , __a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) UpperCAmelCase_ = str(jax.devices()[0] ) UpperCAmelCase_ = jnp_array_kwargs @staticmethod def _lowercase (): import jax return {str(__a ): device for device in jax.devices()} def _lowercase (self : str , __a : Tuple ): import jax import jax.numpy as jnp if isinstance(__a , __a ) and column: if all( isinstance(__a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__a , axis=0 ) return column def _lowercase (self : Any , __a : Optional[int] ): import jax import jax.numpy as jnp if isinstance(__a , (str, bytes, type(__a )) ): return value elif isinstance(__a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase_ = {} if isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase_ = {"dtype": jnp.intaa} else: UpperCAmelCase_ = {"dtype": jnp.intaa} elif isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase_ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__a , PIL.Image.Image ): UpperCAmelCase_ = np.asarray(__a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__a , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase (self : int , __a : Any ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__a , "__array__" ) and not isinstance(__a , jax.Array ): UpperCAmelCase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) elif isinstance(__a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) return self._tensorize(__a ) def _lowercase (self : Union[str, Any] , __a : dict ): return map_nested(self._recursive_tensorize , __a , map_list=__a ) def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_row(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_row(__a ) return self.recursive_tensorize(__a ) def _lowercase (self : Tuple , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_column(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_column(__a , pa_table.column_names[0] ) UpperCAmelCase_ = self.recursive_tensorize(__a ) UpperCAmelCase_ = self._consolidate(__a ) return column def _lowercase (self : str , __a : pa.Table ): UpperCAmelCase_ = self.numpy_arrow_extractor().extract_batch(__a ) UpperCAmelCase_ = self.python_features_decoder.decode_batch(__a ) UpperCAmelCase_ = self.recursive_tensorize(__a ) for column_name in batch: UpperCAmelCase_ = self._consolidate(batch[column_name] ) return batch
106
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = limit + 1 UpperCAmelCase_ = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): UpperCAmelCase_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
106
1
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _A : List[Any] ={ '''E''': 12.70, '''T''': 9.06, '''A''': 8.17, '''O''': 7.51, '''I''': 6.97, '''N''': 6.75, '''S''': 6.33, '''H''': 6.09, '''R''': 5.99, '''D''': 4.25, '''L''': 4.03, '''C''': 2.78, '''U''': 2.76, '''M''': 2.41, '''W''': 2.36, '''F''': 2.23, '''G''': 2.02, '''Y''': 1.97, '''P''': 1.93, '''B''': 1.29, '''V''': 0.98, '''K''': 0.77, '''J''': 0.15, '''X''': 0.15, '''Q''': 0.10, '''Z''': 0.07, } _A : Optional[int] ='''ETAOINSHRDLCUMWFGYPBVKJXQZ''' _A : Dict ='''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> dict[str, int]: lowerCamelCase__ : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: return x[0] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: lowerCamelCase__ : Optional[int] = get_letter_count(snake_case_ ) lowerCamelCase__ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(snake_case_ ) lowerCamelCase__ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=snake_case_ ) lowerCamelCase__ : int = ''.join(freq_to_letter[freq] ) lowerCamelCase__ : Union[str, Any] = list(freq_to_letter_str.items() ) freq_pairs.sort(key=snake_case_ , reverse=snake_case_ ) lowerCamelCase__ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(snake_case_ ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: lowerCamelCase__ : List[Any] = get_frequency_order(snake_case_ ) lowerCamelCase__ : Dict = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
41
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCAmelCase = """true""" def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : int=8_2 , snake_case_ : Optional[Any]=1_6 ) ->Dict: set_seed(4_2 ) lowerCamelCase__ : List[Any] =RegressionModel() lowerCamelCase__ : List[Any] =deepcopy(snake_case_ ) lowerCamelCase__ : List[str] =RegressionDataset(length=snake_case_ ) lowerCamelCase__ : Any =DataLoader(snake_case_ , batch_size=snake_case_ ) model.to(accelerator.device ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =accelerator.prepare(snake_case_ , snake_case_ ) return model, ddp_model, dataloader def lowerCAmelCase_ ( snake_case_ : Accelerator , snake_case_ : str=False ) ->List[str]: lowerCamelCase__ : int =AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) lowerCamelCase__ : List[Any] =load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(snake_case_ : Optional[Any] ): lowerCamelCase__ : Optional[int] =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case_ , max_length=snake_case_ ) return outputs with accelerator.main_process_first(): lowerCamelCase__ : Tuple =dataset.map( snake_case_ , batched=snake_case_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) lowerCamelCase__ : List[Any] =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case_ : Union[str, Any] ): if use_longest: return tokenizer.pad(snake_case_ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(snake_case_ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(snake_case_ , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=1_6 ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple ) ->Any: lowerCamelCase__ : Optional[int] =Accelerator(dispatch_batches=snake_case_ , split_batches=snake_case_ ) lowerCamelCase__ : List[Any] =get_dataloader(snake_case_ , not dispatch_batches ) lowerCamelCase__ : Union[str, Any] =AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=snake_case_ ) lowerCamelCase__ , lowerCamelCase__ : Dict =accelerator.prepare(snake_case_ , snake_case_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : List[str] ) ->Dict: lowerCamelCase__ : Optional[Any] =[] for batch in dataloader: lowerCamelCase__ , lowerCamelCase__ : int =batch.values() with torch.no_grad(): lowerCamelCase__ : Optional[Any] =model(snake_case_ ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =[], [] for logit, targ in logits_and_targets: logits.append(snake_case_ ) targs.append(snake_case_ ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =torch.cat(snake_case_ ), torch.cat(snake_case_ ) return logits, targs def lowerCAmelCase_ ( snake_case_ : Accelerator , snake_case_ : Optional[int]=8_2 , snake_case_ : Any=False , snake_case_ : List[Any]=False , snake_case_ : Optional[int]=1_6 ) ->List[str]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =get_basic_setup(snake_case_ , snake_case_ , snake_case_ ) lowerCamelCase__ , lowerCamelCase__ : Any =generate_predictions(snake_case_ , snake_case_ , snake_case_ ) assert ( len(snake_case_ ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case_ )}""" def lowerCAmelCase_ ( snake_case_ : bool = False , snake_case_ : bool = False ) ->str: lowerCamelCase__ : Dict =evaluate.load('glue' , 'mrpc' ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =get_mrpc_setup(snake_case_ , snake_case_ ) # First do baseline lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =setup['no'] model.to(snake_case_ ) model.eval() for batch in dataloader: batch.to(snake_case_ ) with torch.inference_mode(): lowerCamelCase__ : Any =model(**snake_case_ ) lowerCamelCase__ : List[str] =outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case_ , references=batch['labels'] ) lowerCamelCase__ : Optional[Any] =metric.compute() # Then do distributed lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] =setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCamelCase__ : List[Any] =model(**snake_case_ ) lowerCamelCase__ : str =outputs.logits.argmax(dim=-1 ) lowerCamelCase__ : int =batch['labels'] lowerCamelCase__ , lowerCamelCase__ : List[Any] =accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case_ , references=snake_case_ ) lowerCamelCase__ : List[str] =metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCAmelCase_ ( ) ->str: lowerCamelCase__ : List[str] =Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(snake_case_ , snake_case_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCamelCase__ : Dict =Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(snake_case_ , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) lowerCamelCase__ : List[Any] =Accelerator() test_torch_metrics(snake_case_ , 5_1_2 ) accelerator.state._reset_state() def lowerCAmelCase_ ( snake_case_ : List[Any] ) ->Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
126
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Dict =logging.get_logger(__name__) # TODO Update this A__ : Tuple ={ '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase ( snake_case_ ): _lowercase: List[str] = '''esm''' def __init__( self : List[Any] , __snake_case : Dict=None , __snake_case : Tuple=None , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=7_68 , __snake_case : Dict=12 , __snake_case : List[str]=12 , __snake_case : Any=30_72 , __snake_case : Any=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Any=10_26 , __snake_case : str=0.02 , __snake_case : Dict=1E-1_2 , __snake_case : Union[str, Any]="absolute" , __snake_case : Optional[int]=True , __snake_case : Dict=None , __snake_case : Dict=False , __snake_case : Union[str, Any]=False , __snake_case : Dict=None , __snake_case : Any=None , **__snake_case : List[str] , ) -> str: super().__init__(pad_token_id=__snake_case , mask_token_id=__snake_case , **__snake_case ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = emb_layer_norm_before _lowerCAmelCase = token_dropout _lowerCAmelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) _lowerCAmelCase = EsmFoldConfig() elif isinstance(__snake_case , __snake_case ): _lowerCAmelCase = EsmFoldConfig(**__snake_case ) _lowerCAmelCase = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) _lowerCAmelCase = get_default_vocab_list() else: _lowerCAmelCase = vocab_list else: _lowerCAmelCase = None _lowerCAmelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , __snake_case ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def lowercase__ ( self : Tuple ) -> List[str]: _lowerCAmelCase = super().to_dict() if isinstance(self.esmfold_config , __snake_case ): _lowerCAmelCase = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase : _lowercase: str = None _lowercase: bool = True _lowercase: bool = False _lowercase: bool = False _lowercase: bool = False _lowercase: float = 0 _lowercase: bool = True _lowercase: bool = False _lowercase: int = 128 _lowercase: "TrunkConfig" = None def lowercase__ ( self : Union[str, Any] ) -> List[Any]: if self.trunk is None: _lowerCAmelCase = TrunkConfig() elif isinstance(self.trunk , __snake_case ): _lowerCAmelCase = TrunkConfig(**self.trunk ) def lowercase__ ( self : str ) -> Union[str, Any]: _lowerCAmelCase = asdict(self ) _lowerCAmelCase = self.trunk.to_dict() return output @dataclass class UpperCAmelCase : _lowercase: int = 48 _lowercase: int = 1024 _lowercase: int = 128 _lowercase: int = 32 _lowercase: int = 32 _lowercase: int = 32 _lowercase: float = 0 _lowercase: float = 0 _lowercase: bool = False _lowercase: int = 4 _lowercase: Optional[int] = 128 _lowercase: "StructureModuleConfig" = None def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: if self.structure_module is None: _lowerCAmelCase = StructureModuleConfig() elif isinstance(self.structure_module , __snake_case ): _lowerCAmelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowerCAmelCase = self.sequence_state_dim // self.sequence_head_width _lowerCAmelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def lowercase__ ( self : Optional[int] ) -> List[str]: _lowerCAmelCase = asdict(self ) _lowerCAmelCase = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase : _lowercase: int = 384 _lowercase: int = 128 _lowercase: int = 16 _lowercase: int = 128 _lowercase: int = 12 _lowercase: int = 4 _lowercase: int = 8 _lowercase: float = 0.1 _lowercase: int = 8 _lowercase: int = 1 _lowercase: int = 2 _lowercase: int = 7 _lowercase: int = 10 _lowercase: float = 1E-8 _lowercase: float = 1E5 def lowercase__ ( self : List[str] ) -> Optional[int]: return asdict(self ) def UpperCamelCase__ ( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
220
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available A__ : int ={'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict =['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys A__ : List[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
220
1
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowercase__ ( unittest.TestCase ): def __init__( self : List[str] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str]=13 ,lowerCamelCase__ : Dict=7 ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Dict=99 ,lowerCamelCase__ : int=32 ,lowerCamelCase__ : Tuple=5 ,lowerCamelCase__ : Dict=4 ,lowerCamelCase__ : Any=37 ,lowerCamelCase__ : str="gelu" ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : Optional[Any]=0.1 ,lowerCamelCase__ : Optional[Any]=512 ,lowerCamelCase__ : Any=16 ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : int=4 ,): '''simple docstring''' _UpperCamelCase : List[Any] = parent _UpperCamelCase : Dict = batch_size _UpperCamelCase : Union[str, Any] = seq_length _UpperCamelCase : Optional[Any] = is_training _UpperCamelCase : Optional[int] = use_attention_mask _UpperCamelCase : Any = use_token_type_ids _UpperCamelCase : str = use_labels _UpperCamelCase : Any = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Dict = num_hidden_layers _UpperCamelCase : Dict = num_attention_heads _UpperCamelCase : str = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Any = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : List[str] = max_position_embeddings _UpperCamelCase : Optional[int] = type_vocab_size _UpperCamelCase : str = type_sequence_label_size _UpperCamelCase : Dict = initializer_range _UpperCamelCase : List[Any] = num_choices def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCamelCase : Union[str, Any] = None if self.use_attention_mask: _UpperCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : Any = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=lowerCamelCase__ ,) return config, input_ids, attention_mask def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = config_and_inputs _UpperCamelCase : Optional[int] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase : Dict = model_class_name.from_pretrained('distilbert-base-uncased' ) _UpperCamelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) _UpperCamelCase : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase : Dict = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ )[0] _UpperCamelCase : Any = (1, 11, 768) self.assertEqual(output.shape ,lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,lowerCamelCase__ ,atol=1E-4 ) )
83
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = '''ylacombe/bark-small''' __SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = '''en_speaker_1''' __SCREAMING_SNAKE_CASE : Any = '''This is a test string''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings_path.json''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings''' def __magic_name__( self :List[str] , **lowerCAmelCase__ :Union[str, Any] ) -> Any: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__( self :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __SCREAMING_SNAKE_CASE : str = 35 __SCREAMING_SNAKE_CASE : str = 2 __SCREAMING_SNAKE_CASE : List[Any] = 8 __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''semantic_prompt''': np.ones(lowerCAmelCase__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
9
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __a = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' with open(UpperCAmelCase__ , '''rb''' ) as f: UpperCAmelCase_ : Union[str, Any] = Image.open(UpperCAmelCase__ ) return im.convert('''RGB''' ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default=_snake_case , metadata={ '''help''': '''Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).''' } , ) lowerCAmelCase = field( default=_snake_case , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase = field(default=_snake_case , metadata={'''help''': '''A folder containing the training data.'''} ) lowerCAmelCase = field(default=_snake_case , metadata={'''help''': '''A folder containing the validation data.'''} ) lowerCAmelCase = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowerCAmelCase = field( default=_snake_case , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase = field( default=_snake_case , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def a__ ( self ) -> List[str]: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __a: """simple docstring""" lowerCAmelCase = field( default='''google/vit-base-patch16-224-in21k''' , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} , ) lowerCAmelCase = field( default=_snake_case , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(_snake_case )} , ) lowerCAmelCase = field( default=_snake_case , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase = field( default=_snake_case , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) lowerCAmelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase = field(default=_snake_case , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCAmelCase = field( default=_snake_case , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCAmelCase = field( default=_snake_case , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.stack([example['''pixel_values'''] for example in examples] ) UpperCAmelCase_ : Any = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ : str = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase_ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: UpperCAmelCase_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: UpperCAmelCase_ : Any = {} if data_args.train_dir is not None: UpperCAmelCase_ : List[Any] = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: UpperCAmelCase_ : Optional[Any] = os.path.join(data_args.validation_dir , '''**''' ) UpperCAmelCase_ : Tuple = load_dataset( '''imagefolder''' , data_files=UpperCAmelCase__ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase_ : List[str] = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: UpperCAmelCase_ : Optional[Any] = dataset['''train'''].train_test_split(data_args.train_val_split ) UpperCAmelCase_ : Optional[Any] = split['''train'''] UpperCAmelCase_ : Dict = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase_ : Union[str, Any] = dataset['''train'''].features['''labels'''].names UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = {}, {} for i, label in enumerate(UpperCAmelCase__ ): UpperCAmelCase_ : Dict = str(UpperCAmelCase__ ) UpperCAmelCase_ : Union[str, Any] = label # Load the accuracy metric from the datasets package UpperCAmelCase_ : Optional[Any] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowercase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(UpperCAmelCase__ ) , labelaid=UpperCAmelCase__ , idalabel=UpperCAmelCase__ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ : Optional[int] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) UpperCAmelCase_ : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: UpperCAmelCase_ : Union[str, Any] = image_processor.size['''shortest_edge'''] else: UpperCAmelCase_ : Any = (image_processor.size['''height'''], image_processor.size['''width''']) UpperCAmelCase_ : Tuple = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) UpperCAmelCase_ : List[str] = Compose( [ RandomResizedCrop(UpperCAmelCase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) UpperCAmelCase_ : List[str] = Compose( [ Resize(UpperCAmelCase__ ), CenterCrop(UpperCAmelCase__ ), ToTensor(), normalize, ] ) def train_transforms(_lowercase ): UpperCAmelCase_ : List[str] = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_lowercase ): UpperCAmelCase_ : int = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: UpperCAmelCase_ : Optional[int] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: UpperCAmelCase_ : int = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(UpperCAmelCase__ ) # Initalize our trainer UpperCAmelCase_ : List[str] = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: UpperCAmelCase_ : Optional[Any] = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Tuple = last_checkpoint UpperCAmelCase_ : List[str] = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase_ : Optional[int] = trainer.evaluate() trainer.log_metrics('''eval''' , UpperCAmelCase__ ) trainer.save_metrics('''eval''' , UpperCAmelCase__ ) # Write model card and (optionally) push to hub UpperCAmelCase_ : Any = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) if __name__ == "__main__": main()
363
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a = logging.get_logger(__name__) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if isinstance(_lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowercase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowercase ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class __a( _a ): """simple docstring""" lowerCAmelCase = ['''pixel_values'''] def __init__( self ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = 1 / 255 ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ) UpperCAmelCase_ : str = do_resize UpperCAmelCase_ : Union[str, Any] = size UpperCAmelCase_ : int = do_center_crop UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Optional[int] = resample UpperCAmelCase_ : List[Any] = do_rescale UpperCAmelCase_ : Tuple = rescale_factor UpperCAmelCase_ : Optional[Any] = do_normalize UpperCAmelCase_ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" in size: UpperCAmelCase_ : Dict = get_resize_output_image_size(_SCREAMING_SNAKE_CASE ,size['''shortest_edge'''] ,default_to_square=_SCREAMING_SNAKE_CASE ) elif "height" in size and "width" in size: UpperCAmelCase_ : Tuple = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : str = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE ,size=(size['''height'''], size['''width''']) ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> Dict: return rescale(_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : Any = to_numpy_array(_SCREAMING_SNAKE_CASE ) if do_resize: UpperCAmelCase_ : Union[str, Any] = self.resize(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ) if do_center_crop: UpperCAmelCase_ : Optional[int] = self.center_crop(_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ) if do_rescale: UpperCAmelCase_ : str = self.rescale(image=_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ) if do_normalize: UpperCAmelCase_ : List[Any] = self.normalize(image=_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = to_channel_dimension_format(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return image def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**_SCREAMING_SNAKE_CASE ,) -> PIL.Image.Image: UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : int = resample if resample is not None else self.resample UpperCAmelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : List[str] = size if size is not None else self.size UpperCAmelCase_ : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase_ : List[Any] = make_batched(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = [ [ self._preprocess_image( image=_SCREAMING_SNAKE_CASE ,do_resize=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ,do_center_crop=_SCREAMING_SNAKE_CASE ,crop_size=_SCREAMING_SNAKE_CASE ,do_rescale=_SCREAMING_SNAKE_CASE ,rescale_factor=_SCREAMING_SNAKE_CASE ,do_normalize=_SCREAMING_SNAKE_CASE ,image_mean=_SCREAMING_SNAKE_CASE ,image_std=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,) for img in video ] for video in videos ] UpperCAmelCase_ : Any = {'''pixel_values''': videos} return BatchFeature(data=_SCREAMING_SNAKE_CASE ,tensor_type=_SCREAMING_SNAKE_CASE )
235
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = inspect.getfile(accelerate.test_utils ) __a : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __a : Union[str, Any] = test_metrics @require_cpu def __UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def __UpperCAmelCase ( self ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def __UpperCAmelCase ( self ): '''simple docstring''' print(f"""Found {torch.cuda.device_count()} devices.""" ) __a : List[Any] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
27
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> int: __UpperCamelCase = 1 __UpperCamelCase = 3 __UpperCamelCase = (3_2, 3_2) __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def __lowerCamelCase ( self ) -> Dict: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def __lowerCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __lowerCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowercase ) @property def __lowerCamelCase ( self ) -> Tuple: def extract(*lowercase , **lowercase ): class UpperCAmelCase__ : def __init__( self ) -> Tuple: __UpperCamelCase = torch.ones([0] ) def __lowerCamelCase ( self , lowercase ) -> List[str]: self.pixel_values.to(lowercase ) return self return Out() return extract def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase ) assert isinstance(lowercase , lowercase ) assert isinstance(pipe.scheduler , lowercase ) assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase ) __UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __UpperCamelCase = unet.half() __UpperCamelCase = vae.half() __UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __UpperCamelCase = 4_0_0_3_6_6_0_3_4_6 __UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" __UpperCamelCase = 2_7_3_4_9_7_1_7_5_5 __UpperCamelCase = 7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __UpperCamelCase = 1_0_4_4_3_5_5_2_3_4 __UpperCamelCase = 1_2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _snake_case ( a__ ): snake_case__ = "bert-generation" def __init__( self : Optional[int] , UpperCAmelCase : Dict=50358 , UpperCAmelCase : int=1024 , UpperCAmelCase : Optional[int]=24 , UpperCAmelCase : str=16 , UpperCAmelCase : str=4096 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Union[str, Any]=512 , UpperCAmelCase : Optional[Any]=0.0_2 , UpperCAmelCase : int=1E-12 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : int=2 , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : Union[str, Any]="absolute" , UpperCAmelCase : Tuple=True , **UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : int = hidden_act __lowerCamelCase : List[str] = intermediate_size __lowerCamelCase : Tuple = hidden_dropout_prob __lowerCamelCase : List[str] = attention_probs_dropout_prob __lowerCamelCase : Optional[Any] = max_position_embeddings __lowerCamelCase : List[Any] = initializer_range __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : Optional[Any] = use_cache
356
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowercase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Dict=False ) -> Any: '''simple docstring''' __lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCamelCase : str = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowercase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: int , _lowerCamelCase: List[str]=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __lowerCamelCase : Any = "" else: __lowerCamelCase : Optional[int] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase : Optional[int] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) __lowerCamelCase : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] __lowerCamelCase : str = in_proj_bias[: config.hidden_size] __lowerCamelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase : str = in_proj_bias[-config.hidden_size :] def lowercase_ ( _lowerCamelCase: int ) -> List[Any]: '''simple docstring''' __lowerCamelCase : Tuple = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Tuple ) -> List[str]: '''simple docstring''' __lowerCamelCase : List[Any] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: List[str] , _lowerCamelCase: Optional[int] ) -> Any: '''simple docstring''' __lowerCamelCase : str = dct.pop(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = val def lowercase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Tuple ) -> List[Any]: '''simple docstring''' __lowerCamelCase : int = ViTMSNConfig() __lowerCamelCase : Dict = 1000 __lowerCamelCase : str = "datasets/huggingface/label-files" __lowerCamelCase : Optional[int] = "imagenet-1k-id2label.json" __lowerCamelCase : List[str] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase ) , "r" ) ) __lowerCamelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __lowerCamelCase : int = idalabel __lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __lowerCamelCase : int = 384 __lowerCamelCase : Optional[int] = 1536 __lowerCamelCase : str = 6 elif "l16" in checkpoint_url: __lowerCamelCase : Optional[Any] = 1024 __lowerCamelCase : str = 4096 __lowerCamelCase : Any = 24 __lowerCamelCase : Optional[int] = 16 __lowerCamelCase : Union[str, Any] = 0.1 elif "b4" in checkpoint_url: __lowerCamelCase : Optional[Any] = 4 elif "l7" in checkpoint_url: __lowerCamelCase : str = 7 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 4096 __lowerCamelCase : Union[str, Any] = 24 __lowerCamelCase : Optional[int] = 16 __lowerCamelCase : List[Any] = 0.1 __lowerCamelCase : str = ViTMSNModel(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["target_encoder"] __lowerCamelCase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(_lowerCamelCase ) __lowerCamelCase : Tuple = create_rename_keys(_lowerCamelCase , base_model=_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , base_model=_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() __lowerCamelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCamelCase : Tuple = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) __lowerCamelCase : List[str] = ViTImageProcessor( size=config.image_size , image_mean=_lowerCamelCase , image_std=_lowerCamelCase ) __lowerCamelCase : Tuple = image_processor(images=_lowerCamelCase , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) __lowerCamelCase : Optional[int] = model(**_lowerCamelCase ) __lowerCamelCase : List[str] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __lowerCamelCase : Any = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: __lowerCamelCase : Optional[Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: __lowerCamelCase : List[str] = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: __lowerCamelCase : str = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: __lowerCamelCase : Optional[int] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _lowerCamelCase , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
64
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "t5" lowercase__ = ["past_key_values"] lowercase__ = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Dict ,lowercase_ : List[Any]=3_2_1_2_8 ,lowercase_ : List[str]=5_1_2 ,lowercase_ : List[str]=6_4 ,lowercase_ : str=2_0_4_8 ,lowercase_ : Any=6 ,lowercase_ : Any=None ,lowercase_ : Any=8 ,lowercase_ : List[Any]=3_2 ,lowercase_ : Dict=1_2_8 ,lowercase_ : List[Any]=0.1 ,lowercase_ : Any=1E-6 ,lowercase_ : Any=1.0 ,lowercase_ : List[Any]="relu" ,lowercase_ : List[str]=True ,lowercase_ : List[Any]=True ,lowercase_ : Union[str, Any]=0 ,lowercase_ : Tuple=1 ,**lowercase_ : Optional[int] ,): lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : Union[str, Any] = d_model lowerCAmelCase__ : int = d_kv lowerCAmelCase__ : str = d_ff lowerCAmelCase__ : Optional[Any] = num_layers lowerCAmelCase__ : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase__ : Dict = num_heads lowerCAmelCase__ : Optional[Any] = relative_attention_num_buckets lowerCAmelCase__ : Optional[Any] = relative_attention_max_distance lowerCAmelCase__ : Any = dropout_rate lowerCAmelCase__ : Optional[Any] = layer_norm_epsilon lowerCAmelCase__ : Dict = initializer_factor lowerCAmelCase__ : str = feed_forward_proj lowerCAmelCase__ : List[Any] = use_cache lowerCAmelCase__ : Optional[Any] = self.feed_forward_proj.split('''-''' ) lowerCAmelCase__ : Tuple = act_info[-1] lowerCAmelCase__ : List[Any] = act_info[0] == '''gated''' if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCAmelCase__ : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=lowercase_ ,eos_token_id=lowercase_ ,is_encoder_decoder=lowercase_ ,**lowercase_ ,) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" @property def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : List[Any] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: lowerCAmelCase__ : Tuple = '''past_encoder_sequence + sequence''' lowerCAmelCase__ : List[Any] = {0: '''batch'''} lowerCAmelCase__ : List[str] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCAmelCase__ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} lowerCAmelCase__ : Dict = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase_ ,direction='''inputs''' ) return common_inputs @property def __lowerCAmelCase ( self : Any ): return 1_3
106
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowercase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Optional[Any] ,lowercase_ : int ,lowercase_ : str ): lowerCAmelCase__ : Optional[int] = hf_hub_download( repo_id='''nateraw/video-demo''' ,filename='''archery.mp4''' ,repo_type='''dataset''' ) lowerCAmelCase__ : Tuple = VideoClassificationPipeline(model=lowercase_ ,image_processor=lowercase_ ,top_k=2 ) lowerCAmelCase__ : Optional[int] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def __lowerCAmelCase ( self : str ,lowercase_ : int ,lowercase_ : Dict ): for example in examples: lowerCAmelCase__ : Dict = video_classifier(lowercase_ ) self.assertEqual( lowercase_ ,[ {'''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ )}, {'''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ )}, ] ,) @require_torch def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : Optional[int] = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' lowerCAmelCase__ : List[str] = VideoMAEFeatureExtractor( size={'''shortest_edge''': 1_0} ,crop_size={'''height''': 1_0, '''width''': 1_0} ) lowerCAmelCase__ : Optional[Any] = pipeline( '''video-classification''' ,model=lowercase_ ,feature_extractor=lowercase_ ,frame_sampling_rate=4 ) lowerCAmelCase__ : Optional[int] = hf_hub_download(repo_id='''nateraw/video-demo''' ,filename='''archery.mp4''' ,repo_type='''dataset''' ) lowerCAmelCase__ : Optional[int] = video_classifier(lowercase_ ,top_k=2 ) self.assertEqual( nested_simplify(lowercase_ ,decimals=4 ) ,[{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] ,) lowerCAmelCase__ : Dict = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(lowercase_ ,decimals=4 ) ,[ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] ,) @require_tf def __lowerCAmelCase ( self : int ): pass
106
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __snake_case = TypeVar('''T''') class __lowerCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: _a = None _a = len(a_ ) _a = [any_type for _ in range(self.N )] + arr _a = fnc self.build() def _UpperCAmelCase ( self ) -> Optional[int]: for p in range(self.N - 1 , 0 , -1 ): _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: p += self.N _a = v while p > 1: _a = p // 2 _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: # noqa: E741 _a = l + self.N, r + self.N _a = None while l <= r: if l % 2 == 1: _a = self.st[l] if res is None else self.fn(a_ , self.st[l] ) if r % 2 == 0: _a = self.st[r] if res is None else self.fn(a_ , self.st[r] ) _a = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __snake_case = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __snake_case = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __snake_case = SegmentTree(test_array, min) __snake_case = SegmentTree(test_array, max) __snake_case = SegmentTree(test_array, lambda a, b: a + b) def A_ ( ): """simple docstring""" for i in range(len(_snake_case ) ): for j in range(_snake_case, len(_snake_case ) ): _a = reduce(_snake_case, test_array[i : j + 1] ) _a = reduce(_snake_case, test_array[i : j + 1] ) _a = reduce(lambda _lowerCAmelCase, _lowerCAmelCase : a + b, test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_snake_case, _snake_case ) assert max_range == max_segment_tree.query(_snake_case, _snake_case ) assert sum_range == sum_segment_tree.query(_snake_case, _snake_case ) test_all_segments() for index, value in test_updates.items(): __snake_case = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
352
"""simple docstring""" def A_ ( _lowerCAmelCase : int ): """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
153
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): lowercase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) lowercase = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(_lowerCamelCase ) , torch_builtin(_lowerCamelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(_lowerCamelCase ) , gelu_new(_lowerCamelCase ) ) ) def UpperCamelCase_ ( self ): lowercase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) lowercase = get_activation('gelu' ) lowercase = get_activation('gelu_10' ) lowercase = torch_builtin(_lowerCamelCase ) lowercase = geluaa(_lowerCamelCase ) lowercase = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(_lowerCamelCase ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCamelCase_ ( self ): get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(_lowerCamelCase ): get_activation('bogus' ) with self.assertRaises(_lowerCamelCase ): get_activation(_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = get_activation('gelu' ) lowercase = 1 lowercase = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_lowerCamelCase ): lowercase = acta.a
220
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase : Dict = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
1
from __future__ import annotations _lowercase: Any = tuple[int, int, int] _lowercase: List[str] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _lowercase: int = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- _lowercase: Tuple = "EGZWVONAHDCLFQMSIPJBYUKXTR" _lowercase: List[str] = "FOBHMDKEXQNRAULPGSJVTYICZW" _lowercase: Tuple = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- _lowercase: Optional[Any] = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- _lowercase: Dict = "RMDJXFUWGISLHVTCQNKYPBEZOA" _lowercase: Tuple = "SGLCPQWZHKXAREONTFBVIYJUDM" _lowercase: Dict = "HVSICLTYKQUBXDWAJZOMFGPREN" _lowercase: Tuple = "RZWQHFMVDBKICJLNTUXAGYPSOE" _lowercase: List[str] = "LFKIJODBEGAMQPXVUHYSTCZRWN" _lowercase: Any = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def a( A : RotorPositionT , A : RotorSelectionT , A : str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """simple docstring""" if (unique_rotsel := len(set(A ) )) < 3: a = f'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(A ) # Checks if rotor positions are valid a , a , a = rotpos if not 0 < rotorposa <= len(A ): a = f'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(A ) if not 0 < rotorposa <= len(A ): a = f'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(A ) if not 0 < rotorposa <= len(A ): a = f'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(A ) # Validates string and returns dict a = _plugboard(A ) return rotpos, rotsel, pbdict def a( A : str ) -> dict[str, str]: """simple docstring""" if not isinstance(A , A ): a = f'''Plugboard setting isn\'t type string ({type(A )})''' raise TypeError(A ) elif len(A ) % 2 != 0: a = f'''Odd number of symbols ({len(A )})''' raise Exception(A ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique a = set() for i in pbstring: if i not in abc: a = f'''\'{i}\' not in list of symbols''' raise Exception(A ) elif i in tmppbl: a = f'''Duplicate symbol ({i})''' raise Exception(A ) else: tmppbl.add(A ) del tmppbl # Created the dictionary a = {} for j in range(0 , len(A ) - 1 , 2 ): a = pbstring[j + 1] a = pbstring[j] return pb def a( A : str , A : RotorPositionT , A : RotorSelectionT = (rotora, rotora, rotora) , A : str = "" , ) -> str: """simple docstring""" a = text.upper() a , a , a = _validator( A , A , plugb.upper() ) a , a , a = rotor_position a , a , a = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 a = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: a = plugboard[symbol] # rotor ra -------------------------- a = abc.index(A ) + rotorposa a = rotora[index % len(A )] # rotor rb -------------------------- a = abc.index(A ) + rotorposa a = rotora[index % len(A )] # rotor rc -------------------------- a = abc.index(A ) + rotorposa a = rotora[index % len(A )] # reflector -------------------------- # this is the reason you don't need another machine to decipher a = reflector[symbol] # 2nd rotors a = abc[rotora.index(A ) - rotorposa] a = abc[rotora.index(A ) - rotorposa] a = abc[rotora.index(A ) - rotorposa] # 2nd plugboard if symbol in plugboard: a = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(A ): a = 0 rotorposa += 1 if rotorposa >= len(A ): a = 0 rotorposa += 1 if rotorposa >= len(A ): a = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(A ) return "".join(A ) if __name__ == "__main__": _lowercase: Optional[int] = "This is my Python script that emulates the Enigma machine from WWII." _lowercase: Dict = (1, 1, 1) _lowercase: Dict = "pictures" _lowercase: Tuple = (rotora, rotora, rotora) _lowercase: Optional[int] = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
352
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = ["image_processor", "tokenizer"] __A = "ViTImageProcessor" __A = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase_ , ) a = kwargs.pop("feature_extractor" ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: a = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if visual_prompt is not None: a = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if images is not None: a = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if visual_prompt is not None and images is not None: a = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: a = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def UpperCamelCase_ (self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase_ , ) return self.image_processor_class @property def UpperCamelCase_ (self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase_ , ) return self.image_processor
71
0
UpperCAmelCase : Optional[int] = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
95
import logging from transformers import PretrainedConfig a__ = logging.getLogger(__name__) a__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Any = "bertabs" def __init__( self , _a=3_0_5_2_2 , _a=5_1_2 , _a=6 , _a=5_1_2 , _a=8 , _a=5_1_2 , _a=0.2 , _a=6 , _a=7_6_8 , _a=8 , _a=2_0_4_8 , _a=0.2 , **_a , ) -> Any: super().__init__(**_a ) _a : int = vocab_size _a : List[str] = max_pos _a : Tuple = enc_layers _a : Optional[Any] = enc_hidden_size _a : int = enc_heads _a : Optional[Any] = enc_ff_size _a : List[str] = enc_dropout _a : Tuple = dec_layers _a : Optional[Any] = dec_hidden_size _a : Optional[Any] = dec_heads _a : Optional[Any] = dec_ff_size _a : List[Any] = dec_dropout
235
0
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): super().tearDown() gc.collect() def __UpperCAmelCase ( self ): __a = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) __a = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCamelCase__ , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) __a = controlnet_params __a = '''bird''' __a = jax.device_count() __a = pipe.prepare_text_inputs([prompts] * num_samples ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) __a = pipe.prepare_image_inputs([canny_image] * num_samples ) __a = jax.random.PRNGKey(0 ) __a = jax.random.split(lowerCamelCase__ , jax.device_count() ) __a = replicate(lowerCamelCase__ ) __a = shard(lowerCamelCase__ ) __a = shard(lowerCamelCase__ ) __a = pipe( prompt_ids=lowerCamelCase__ , image=lowerCamelCase__ , params=lowerCamelCase__ , prng_seed=lowerCamelCase__ , num_inference_steps=50 , jit=lowerCamelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __a = images[0, 253:256, 253:256, -1] __a = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __a = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): __a = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) __a = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowerCamelCase__ , from_pt=lowerCamelCase__ , dtype=jnp.bfloataa ) __a = controlnet_params __a = '''Chef in the kitchen''' __a = jax.device_count() __a = pipe.prepare_text_inputs([prompts] * num_samples ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) __a = pipe.prepare_image_inputs([pose_image] * num_samples ) __a = jax.random.PRNGKey(0 ) __a = jax.random.split(lowerCamelCase__ , jax.device_count() ) __a = replicate(lowerCamelCase__ ) __a = shard(lowerCamelCase__ ) __a = shard(lowerCamelCase__ ) __a = pipe( prompt_ids=lowerCamelCase__ , image=lowerCamelCase__ , params=lowerCamelCase__ , prng_seed=lowerCamelCase__ , num_inference_steps=50 , jit=lowerCamelCase__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __a = images[0, 253:256, 253:256, -1] __a = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __a = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
0
import baseaa def UpperCamelCase ( __lowerCamelCase : str ): return baseaa.baaencode(string.encode("utf-8" ) ) def UpperCamelCase ( __lowerCamelCase : bytes ): return baseaa.baadecode(snake_case__ ).decode("utf-8" ) if __name__ == "__main__": __lowerCamelCase = """Hello World!""" __lowerCamelCase = baseaa_encode(test) print(encoded) __lowerCamelCase = baseaa_decode(encoded) print(decoded)
59
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "tokenizer"] lowercase__ = "AutoImageProcessor" lowercase__ = "AutoTokenizer" def __init__( self: List[str], a_: List[str]=None, a_: Tuple=None, **a_: Tuple ): '''simple docstring''' _snake_case : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""", a_, ) _snake_case : str = kwargs.pop("""feature_extractor""" ) _snake_case : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a_, a_ ) _snake_case : Dict = self.image_processor _snake_case : Any = False def __call__( self: Any, *a_: Any, **a_: Tuple ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*a_, **a_ ) _snake_case : Dict = kwargs.pop("""images""", a_ ) _snake_case : Optional[Any] = kwargs.pop("""text""", a_ ) if len(a_ ) > 0: _snake_case : Optional[int] = args[0] _snake_case : Tuple = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _snake_case : Tuple = self.image_processor(a_, *a_, **a_ ) if text is not None: _snake_case : Tuple = self.tokenizer(a_, **a_ ) if text is None: return inputs elif images is None: return encodings else: _snake_case : List[str] = encodings["""input_ids"""] return inputs def UpperCamelCase_ ( self: Optional[int], *a_: Tuple, **a_: List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*a_, **a_ ) def UpperCamelCase_ ( self: int, *a_: List[str], **a_: int ): '''simple docstring''' return self.tokenizer.decode(*a_, **a_ ) @contextmanager def UpperCamelCase_ ( self: Dict ): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) _snake_case : Any = True _snake_case : Optional[int] = self.tokenizer yield _snake_case : int = self.image_processor _snake_case : Optional[int] = False def UpperCamelCase_ ( self: Dict, a_: Optional[Any], a_: str=False, a_: Optional[Any]=None ): '''simple docstring''' if added_vocab is None: _snake_case : Dict = self.tokenizer.get_added_vocab() _snake_case : str = {} while tokens: _snake_case : Union[str, Any] = re.search(r"""<s_(.*?)>""", a_, re.IGNORECASE ) if start_token is None: break _snake_case : List[Any] = start_token.group(1 ) _snake_case : str = re.search(rf"</s_{key}>", a_, re.IGNORECASE ) _snake_case : Dict = start_token.group() if end_token is None: _snake_case : List[Any] = tokens.replace(a_, """""" ) else: _snake_case : List[str] = end_token.group() _snake_case : str = re.escape(a_ ) _snake_case : str = re.escape(a_ ) _snake_case : Union[str, Any] = re.search(f"{start_token_escaped}(.*?){end_token_escaped}", a_, re.IGNORECASE ) if content is not None: _snake_case : int = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _snake_case : List[Any] = self.tokenajson(a_, is_inner_value=a_, added_vocab=a_ ) if value: if len(a_ ) == 1: _snake_case : List[str] = value[0] _snake_case : List[str] = value else: # leaf nodes _snake_case : Tuple = [] for leaf in content.split(r"""<sep/>""" ): _snake_case : Tuple = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _snake_case : int = leaf[1:-2] # for categorical special tokens output[key].append(a_ ) if len(output[key] ) == 1: _snake_case : int = output[key][0] _snake_case : Any = tokens[tokens.find(a_ ) + len(a_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=a_, added_vocab=a_ ) if len(a_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""", a_, ) return self.image_processor_class @property def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""", a_, ) return self.image_processor
64
0
def __lowercase ( _UpperCamelCase = 2000000 ) ->int: """simple docstring""" lowercase : Any = [0 for i in range(n + 1 )] lowercase : Any = 1 lowercase : Optional[Any] = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, _UpperCamelCase ): lowercase : Optional[int] = 1 lowercase : Dict = 0 for i in range(_UpperCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
173
from __future__ import annotations from math import ceil, floor, sqrt def __lowercase ( _UpperCamelCase = 2000000 ) ->int: """simple docstring""" lowercase : list[int] = [0] lowercase : int for idx in range(1, ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target lowercase : int = 0 # an estimate of b, using the quadratic formula lowercase : float # the largest integer less than b_estimate lowercase : int # the largest integer less than b_estimate lowercase : int # the triangle number corresponding to b_floor lowercase : int # the triangle number corresponding to b_ceil lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:], 1 ): lowercase : List[str] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowercase : str = floor(_UpperCamelCase ) lowercase : int = ceil(_UpperCamelCase ) lowercase : str = triangle_numbers[b_floor] lowercase : str = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowercase : Optional[int] = triangle_b_first_guess * triangle_a lowercase : Tuple = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowercase : Dict = triangle_b_second_guess * triangle_a lowercase : Any = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
173
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : str = StableDiffusionLatentUpscalePipeline lowercase_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } lowercase_ : Dict = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} lowercase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase_ : Dict = frozenset([] ) lowercase_ : Dict = True @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = 1 _lowercase : List[str] = 4 _lowercase : Optional[Any] = (16, 16) _lowercase : List[Any] = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCamelCase) return image def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[Any] = UNetaDConditionModel( act_fn='gelu', attention_head_dim=8, norm_num_groups=lowerCamelCase, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=1_60, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ), in_channels=8, mid_block_type=lowerCamelCase, only_cross_attention=lowerCamelCase, out_channels=5, resnet_time_scale_shift='scale_shift', time_embedding_type='fourier', timestep_post_act='gelu', up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D'), ) _lowercase : Dict = AutoencoderKL( block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) _lowercase : Optional[Any] = EulerDiscreteScheduler(prediction_type='sample') _lowercase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, hidden_act='quick_gelu', projection_dim=5_12, ) _lowercase : Optional[Any] = CLIPTextModel(lowerCamelCase) _lowercase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _lowercase : Optional[int] = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' _lowercase : int = self.get_dummy_components() _lowercase : Optional[Any] = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 2_56, 2_56, 3)) _lowercase : Union[str, Any] = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5]) _lowercase : List[Any] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3) def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3) def UpperCamelCase ( self) -> Any: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3) def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _lowercase : List[Any] = self.get_dummy_components() _lowercase : Dict = self.pipeline_class(**lowerCamelCase) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_dummy_inputs(lowerCamelCase) _lowercase : List[Any] = 2 _lowercase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowercase : int = getattr(lowerCamelCase, scheduler_enum.name) _lowercase : Dict = scheduler_cls.from_config(pipe.scheduler.config) _lowercase : str = pipe(**lowerCamelCase)[0] outputs.append(lowerCamelCase) assert check_same_shape(lowerCamelCase) @require_torch_gpu @slow class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = torch.manual_seed(33) _lowercase : Optional[Any] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', torch_dtype=torch.floataa) pipe.to('cuda') _lowercase : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa) upscaler.to('cuda') _lowercase : List[str] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _lowercase : Any = pipe(lowerCamelCase, generator=lowerCamelCase, output_type='latent').images _lowercase : List[Any] = upscaler( prompt=lowerCamelCase, image=lowerCamelCase, num_inference_steps=20, guidance_scale=0, generator=lowerCamelCase, output_type='np', ).images[0] _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy') assert np.abs((expected_image - image).mean()) < 5E-2 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = torch.manual_seed(33) _lowercase : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa) upscaler.to('cuda') _lowercase : Any = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _lowercase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png') _lowercase : int = upscaler( prompt=lowerCamelCase, image=lowerCamelCase, num_inference_steps=20, guidance_scale=0, generator=lowerCamelCase, output_type='np', ).images[0] _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy') assert np.abs((expected_image - image).max()) < 5E-2
21
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True UpperCamelCase = 4 UpperCamelCase = (1 << p) - 1 for _ in range(p - 2 ): UpperCamelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
153
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
def snake_case ( snake_case__ :str) -> int: _A = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""") _A = hex_num[0] == """-""" if is_negative: _A = hex_num[1:] try: _A = int(snake_case__ , 16) except ValueError: raise ValueError("""Invalid value was passed to the function""") _A = """""" while int_num > 0: _A = str(int_num % 2) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str) if __name__ == "__main__": import doctest doctest.testmod()
81
0
"""simple docstring""" def __lowerCamelCase ( a_ : str = 1_00_00_00 ) -> int: __SCREAMING_SNAKE_CASE :List[Any] = limit + 1 __SCREAMING_SNAKE_CASE :Any = [0] * limit for first_term in range(1 , a_ ): for n in range(a_ , a_ , a_ ): __SCREAMING_SNAKE_CASE :str = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __SCREAMING_SNAKE_CASE :Dict = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'{solution() = }')
191
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() A_ :List[str] = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] A_ :Optional[Any] = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def A ( a_ ,a_ ) -> str: __UpperCamelCase : Any ={ 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __UpperCamelCase : Tuple =int(re.match(r'.*layer_(\d*).*' ,a_ )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def A ( a_ ) -> Any: if dtype == torch.bool: return 1 / 8 __UpperCamelCase : Dict =re.search(r'[^\d](\d+)$' ,str(a_ ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) __UpperCamelCase : Tuple =int(bit_search.groups()[0] ) return bit_size // 8 def A ( a_ ,a_ ,a_ ,a_ ,a_ ) -> Dict: # Construct model if bloom_config_file == "": __UpperCamelCase : List[Any] =BloomConfig() else: __UpperCamelCase : List[str] =BloomConfig.from_json_file(a_ ) if shard_model: __UpperCamelCase : int =os.listdir(a_ ) __UpperCamelCase : Union[str, Any] =sorted(filter(lambda a_ : s.startswith('layer' ) and "model_00" in s ,a_ ) ) __UpperCamelCase : Optional[Any] ={'weight_map': {}, 'metadata': {}} __UpperCamelCase : Dict =0 __UpperCamelCase : int =None __UpperCamelCase : Any =BloomConfig() for j, file in enumerate(a_ ): print('Processing file: {}'.format(a_ ) ) __UpperCamelCase : Optional[int] =None for i in range(a_ ): # load all TP files __UpperCamelCase : Dict =file.replace('model_00' ,F'model_0{i}' ) __UpperCamelCase : Optional[Any] =torch.load(os.path.join(a_ ,a_ ) ,map_location='cpu' ) # Rename keys in the transformers names __UpperCamelCase : int =list(temp.keys() ) for key in keys: __UpperCamelCase : Dict =temp.pop(a_ ) if tensors is None: __UpperCamelCase : Any =temp else: for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __UpperCamelCase : List[Any] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __UpperCamelCase : Any =torch.cat([tensors[key], temp[key]] ,dim=a_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __UpperCamelCase : Optional[Any] =tensors[key] / pretraining_tp torch.save( a_ ,os.path.join( a_ ,'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) ,str(len(a_ ) ).zfill(5 ) ) ,) ,) for key in tensors.keys(): __UpperCamelCase : Union[str, Any] =tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __UpperCamelCase : int ='pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) ,str(len(a_ ) ).zfill(5 ) ) __UpperCamelCase : Union[str, Any] =BloomConfig() __UpperCamelCase : Tuple =pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCamelCase : Optional[int] =total_size with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(a_ ,WEIGHTS_NAME + '.index.json' ) ,'w' ,encoding='utf-8' ) as f: __UpperCamelCase : List[Any] =json.dumps(a_ ,indent=2 ,sort_keys=a_ ) + '\n' f.write(a_ ) else: __UpperCamelCase : List[Any] =BloomModel(a_ ) __UpperCamelCase : Optional[Any] =os.listdir(a_ ) __UpperCamelCase : Dict =sorted(filter(lambda a_ : s.startswith('layer' ) and "model_00" in s ,a_ ) ) __UpperCamelCase : Any =None for i, file in enumerate(a_ ): __UpperCamelCase : Union[str, Any] =None for i in range(a_ ): # load all TP files __UpperCamelCase : Optional[Any] =file.replace('model_00' ,F'model_0{i}' ) __UpperCamelCase : str =torch.load(os.path.join(a_ ,a_ ) ,map_location='cpu' ) # Rename keys in the transformers names __UpperCamelCase : List[str] =list(temp.keys() ) for key in keys: __UpperCamelCase : Union[str, Any] =temp.pop(a_ ) if tensors is None: __UpperCamelCase : Optional[Any] =temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __UpperCamelCase : Optional[int] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __UpperCamelCase : int =torch.cat([tensors[key], temp[key]] ,dim=a_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __UpperCamelCase : Dict =tensors[key] / pretraining_tp __UpperCamelCase : str =model.load_state_dict(a_ ,strict=a_ ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: __UpperCamelCase : str =set(other_keys.missing_keys ) else: __UpperCamelCase : int =missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(a_ ,exist_ok=a_ ) __UpperCamelCase : Optional[int] =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase : Dict =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: __UpperCamelCase : List[str] =model.to(config.torch_dtype ) torch.save(model.state_dict() ,a_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) A_ :str = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
71
0
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _A = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _A = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _A = re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") _A = re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _A = re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _A = [ ("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""), ("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""), ("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""), ("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""), ("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""), ("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""), ("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""), ("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""), ("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""), ( """zero-shot-object-detection""", """MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForZeroShotObjectDetection""", ), ("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""), ("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""), ("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""), ("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""), ( """table-question-answering""", """MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForTableQuestionAnswering""", ), ("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""), ("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""), ( """next-sentence-prediction""", """MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""", """AutoModelForNextSentencePrediction""", ), ( """audio-frame-classification""", """MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioFrameClassification""", ), ("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""), ( """document-question-answering""", """MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForDocumentQuestionAnswering""", ), ( """visual-question-answering""", """MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForVisualQuestionAnswering""", ), ("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""), ( """zero-shot-image-classification""", """MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForZeroShotImageClassification""", ), ("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""), ("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""), ("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""), ] def a__ ( lowerCAmelCase ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowerCAmelCase ) return [m.group(0 ) for m in matches] def a__ ( ) -> List[Any]: UpperCAmelCase__ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase__ : Tuple = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase__ : List[Any] = collections.defaultdict(lowerCAmelCase ) UpperCAmelCase__ : int = collections.defaultdict(lowerCAmelCase ) UpperCAmelCase__ : Any = collections.defaultdict(lowerCAmelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowerCAmelCase ): UpperCAmelCase__ : str = None if _re_tf_models.match(lowerCAmelCase ) is not None: UpperCAmelCase__ : int = tf_models UpperCAmelCase__ : Any = _re_tf_models.match(lowerCAmelCase ).groups()[0] elif _re_flax_models.match(lowerCAmelCase ) is not None: UpperCAmelCase__ : Union[str, Any] = flax_models UpperCAmelCase__ : Union[str, Any] = _re_flax_models.match(lowerCAmelCase ).groups()[0] elif _re_pt_models.match(lowerCAmelCase ) is not None: UpperCAmelCase__ : Tuple = pt_models UpperCAmelCase__ : Optional[Any] = _re_pt_models.match(lowerCAmelCase ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase__ : Union[str, Any] = True break # Try again after removing the last word in the name UpperCAmelCase__ : str = """""".join(camel_case_split(lowerCAmelCase )[:-1] ) UpperCAmelCase__ : Optional[int] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase__ : Union[str, Any] = list(lowerCAmelCase ) all_models.sort() UpperCAmelCase__ : List[str] = {"""model_type""": all_models} UpperCAmelCase__ : int = [pt_models[t] for t in all_models] UpperCAmelCase__ : Tuple = [tf_models[t] for t in all_models] UpperCAmelCase__ : Tuple = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase__ : Optional[Any] = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase__ : List[Any] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase__ : Optional[int] = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase__ : Any = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase__ : Optional[Any] = """AutoTokenizer""" UpperCAmelCase__ : str = [processors[t] for t in all_models] return pd.DataFrame(lowerCAmelCase ) def a__ ( lowerCAmelCase ) -> List[str]: UpperCAmelCase__ : Dict = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase__ : List[Any] = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] UpperCAmelCase__ : Optional[Any] = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): # The type of pipeline may not exist in this framework if not hasattr(lowerCAmelCase , lowerCAmelCase ): continue # First extract all model_names UpperCAmelCase__ : str = [] for name in getattr(lowerCAmelCase , lowerCAmelCase ).values(): if isinstance(lowerCAmelCase , lowerCAmelCase ): model_names.append(lowerCAmelCase ) else: model_names.extend(list(lowerCAmelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: UpperCAmelCase__ : Union[str, Any] = get_frameworks_table() UpperCAmelCase__ : str = Dataset.from_pandas(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=lowerCAmelCase ) UpperCAmelCase__ : List[Any] = Dataset.from_json(lowerCAmelCase ) UpperCAmelCase__ : Dict = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(lowerCAmelCase ) ) } UpperCAmelCase__ : List[Any] = update_pipeline_and_auto_class_table(lowerCAmelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase__ : str = sorted(table.keys() ) UpperCAmelCase__ : str = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) UpperCAmelCase__ : Any = Dataset.from_pandas(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowerCAmelCase , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(lowerCAmelCase , """pipeline_tags.json""" ) ) if commit_sha is not None: UpperCAmelCase__ : Optional[Any] = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: UpperCAmelCase__ : str = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=lowerCAmelCase , repo_type="""dataset""" , token=lowerCAmelCase , commit_message=lowerCAmelCase , ) def a__ ( ) -> str: UpperCAmelCase__ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase__ : Any = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase__ : List[Any] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase__ : Union[str, Any] = pipeline_tasks[key]["""pt"""] if isinstance(lowerCAmelCase , (list, tuple) ): UpperCAmelCase__ : Optional[Any] = model[0] UpperCAmelCase__ : Optional[Any] = model.__name__ if model not in in_table.values(): missing.append(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: UpperCAmelCase__ : str = """, """.join(lowerCAmelCase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") _A = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
166
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 6_37_81_37 def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCAmelCase__ : List[str] = atan((1 - flattening) * tan(radians(lowerCAmelCase ) ) ) UpperCAmelCase__ : str = atan((1 - flattening) * tan(radians(lowerCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCAmelCase__ : Any = haversine_distance(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCAmelCase__ : int = (b_lata + b_lata) / 2 UpperCAmelCase__ : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCAmelCase__ : Optional[Any] = (sin(lowerCAmelCase ) ** 2) * (cos(lowerCAmelCase ) ** 2) UpperCAmelCase__ : Optional[Any] = cos(sigma / 2 ) ** 2 UpperCAmelCase__ : Optional[int] = (sigma - sin(lowerCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCAmelCase__ : Optional[int] = (cos(lowerCAmelCase ) ** 2) * (sin(lowerCAmelCase ) ** 2) UpperCAmelCase__ : str = sin(sigma / 2 ) ** 2 UpperCAmelCase__ : Union[str, Any] = (sigma + sin(lowerCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
166
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case_ : str = logging.getLogger() def A (__A : Path , __A : list ) -> Tuple: """simple docstring""" UpperCAmelCase_ = '''\n'''.join(__A ) Path(__A ).open('''w''' ).writelines(__A ) snake_case_ : Union[str, Any] = "patrickvonplaten/t5-tiny-random" snake_case_ : int = "sshleifer/bart-tiny-random" snake_case_ : List[str] = "sshleifer/tiny-mbart" snake_case_ : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __snake_case ( a ): def lowerCamelCase ( self : List[str] , _snake_case : int): """simple docstring""" UpperCAmelCase_ = Path(self.get_auto_remove_tmp_dir()) / '''utest_input.source''' UpperCAmelCase_ = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCAmelCase_ = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(_snake_case , _snake_case) UpperCAmelCase_ = str(Path(self.get_auto_remove_tmp_dir()) / '''scores.json''') UpperCAmelCase_ = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCAmelCase_ = F""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(_snake_case , '''argv''' , _snake_case): run_generate() assert Path(_snake_case).exists() # os.remove(Path(output_file_name)) def lowerCamelCase ( self : Tuple): """simple docstring""" self.run_eval_tester(_snake_case) @parameterized.expand([BART_TINY, MBART_TINY]) @slow def lowerCamelCase ( self : List[Any] , _snake_case : Tuple): """simple docstring""" self.run_eval_tester(_snake_case) @parameterized.expand([T5_TINY, MBART_TINY]) @slow def lowerCamelCase ( self : str , _snake_case : List[Any]): """simple docstring""" UpperCAmelCase_ = Path(self.get_auto_remove_tmp_dir()) / '''utest_input.source''' UpperCAmelCase_ = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() UpperCAmelCase_ = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } UpperCAmelCase_ = Path(self.get_auto_remove_tmp_dir()) UpperCAmelCase_ = str(tmp_dir / '''scores.json''') UpperCAmelCase_ = str(tmp_dir / '''val.target''') _dump_articles(_snake_case , text['''en''']) _dump_articles(_snake_case , text['''de''']) UpperCAmelCase_ = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' UpperCAmelCase_ = F""" run_eval_search.py {model} {str(_snake_case)} {str(_snake_case)} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0''']) with patch.object(_snake_case , '''argv''' , _snake_case): with CaptureStdout() as cs: run_search() UpperCAmelCase_ = [''' num_beams | length_penalty''', model, '''Best score args'''] UpperCAmelCase_ = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''') else: expected_strings.extend(_snake_case) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_snake_case).exists() os.remove(Path(_snake_case))
51
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} lowerCAmelCase__ = {} lowerCAmelCase__ = {} def _UpperCAmelCase (UpperCamelCase__ : type , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None , ): _A : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) _A : Dict = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) _A : Dict = format_type def _UpperCAmelCase (UpperCamelCase__ : Exception , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[List[str]] = None ): _A : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _A : Union[str, Any] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCAmelCase__ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCAmelCase__ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCAmelCase__ = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _UpperCAmelCase (UpperCamelCase__ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _UpperCAmelCase (UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : List[Any] ): _A : List[str] = get_format_type_from_alias(UpperCamelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCamelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
11
0
"""simple docstring""" def A_ ( snake_case_ : List[str] ,snake_case_ : Union[str, Any] ): '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
352
"""simple docstring""" from typing import Any class lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = data UpperCamelCase : Optional[Any] = None def __repr__( self ): return f'Node({self.data})' class lowerCamelCase : def __init__( self ): UpperCamelCase : Dict = None def __iter__( self ): UpperCamelCase : int = self.head while node: yield node.data UpperCamelCase : Union[str, Any] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE_ ): if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) UpperCamelCase : List[Any] = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = current.next UpperCamelCase : Optional[Any] = data def a_ ( self , SCREAMING_SNAKE_CASE_ ): self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ ): self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) UpperCamelCase : Optional[Any] = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: UpperCamelCase : Dict = new_node elif index == 0: UpperCamelCase : Any = self.head # link new_node to head UpperCamelCase : Any = new_node else: UpperCamelCase : Dict = self.head for _ in range(index - 1 ): UpperCamelCase : str = temp.next UpperCamelCase : Any = temp.next UpperCamelCase : Optional[Any] = new_node def a_ ( self ): # print every node data print(self ) def a_ ( self ): return self.delete_nth(0 ) def a_ ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def a_ ( self , SCREAMING_SNAKE_CASE_ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) UpperCamelCase : Union[str, Any] = self.head # default first node if index == 0: UpperCamelCase : Optional[Any] = self.head.next else: UpperCamelCase : Dict = self.head for _ in range(index - 1 ): UpperCamelCase : int = temp.next UpperCamelCase : Optional[Any] = temp.next UpperCamelCase : Dict = temp.next.next return delete_node.data def a_ ( self ): return self.head is None def a_ ( self ): UpperCamelCase : Optional[Any] = None UpperCamelCase : Union[str, Any] = self.head while current: # Store the current node's next node. UpperCamelCase : Optional[int] = current.next # Make the current node's next point backwards UpperCamelCase : Optional[Any] = prev # Make the previous node be the current node UpperCamelCase : int = current # Make the current node the next node (to progress iteration) UpperCamelCase : Optional[int] = next_node # Return prev in order to put the head at the end UpperCamelCase : Optional[int] = prev def A_ ( ): '''simple docstring''' UpperCamelCase : int = LinkedList() assert linked_list.is_empty() is True assert str(snake_case_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(snake_case_ ) == i linked_list.insert_nth(snake_case_ ,i + 1 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 ,1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(snake_case_ ) == 9 assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): UpperCamelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(-8 ,1 ) ) def A_ ( ): '''simple docstring''' UpperCamelCase : int = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), """dlrow olleH""", 7, 5_5_5_5, 0, -192.55555, """Hello, world!""", 77.9, Node(1_0 ), None, None, 12.20, ] UpperCamelCase : List[Any] = LinkedList() for i in test_input: linked_list.insert_tail(snake_case_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCamelCase : Dict = linked_list.delete_head() assert result == -9 assert ( str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCamelCase : int = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCamelCase : Optional[Any] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(snake_case_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case_ ) assert ( str(snake_case_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ): '''simple docstring''' from doctest import testmod testmod() UpperCamelCase : List[Any] = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(snake_case_ ) print("""\nReading/changing Node data using indexing:""" ) print(f'Element at Position 1: {linked_list[1]}' ) UpperCamelCase : List[Any] = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(snake_case_ ) print(f'length of linked_list is : {len(snake_case_ )}' ) if __name__ == "__main__": main()
27
0
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging _UpperCAmelCase = logging.get_logger(__name__) class a ( UpperCAmelCase__ ): UpperCamelCase : Tuple = 'linear' UpperCamelCase : Union[str, Any] = 'cosine' UpperCamelCase : List[str] = 'cosine_with_restarts' UpperCamelCase : str = 'polynomial' UpperCamelCase : int = 'constant' UpperCamelCase : int = 'constant_with_warmup' UpperCamelCase : int = 'piecewise_constant' def __magic_name__ ( lowercase , lowercase = -1 ): return LambdaLR(lowercase , lambda lowercase : 1 , last_epoch=lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase = -1 ): def lr_lambda(lowercase ): if current_step < num_warmup_steps: return float(lowercase ) / float(max(1.0 , lowercase ) ) return 1.0 return LambdaLR(lowercase , lowercase , last_epoch=lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase = -1 ): SCREAMING_SNAKE_CASE_: Union[str, Any] ={} SCREAMING_SNAKE_CASE_: Optional[Any] =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =rule_str.split(""":""" ) SCREAMING_SNAKE_CASE_: Dict =int(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =float(lowercase ) SCREAMING_SNAKE_CASE_: str =value SCREAMING_SNAKE_CASE_: Dict =float(rule_list[-1] ) def create_rules_function(lowercase , lowercase ): def rule_func(lowercase ) -> float: SCREAMING_SNAKE_CASE_: str =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowercase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func SCREAMING_SNAKE_CASE_: Optional[Any] =create_rules_function(lowercase , lowercase ) return LambdaLR(lowercase , lowercase , last_epoch=lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=-1 ): def lr_lambda(lowercase ): if current_step < num_warmup_steps: return float(lowercase ) / float(max(1 , lowercase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowercase , lowercase , lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase = 0.5 , lowercase = -1 ): def lr_lambda(lowercase ): if current_step < num_warmup_steps: return float(lowercase ) / float(max(1 , lowercase ) ) SCREAMING_SNAKE_CASE_: int =float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowercase ) * 2.0 * progress )) ) return LambdaLR(lowercase , lowercase , lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase = 1 , lowercase = -1 ): def lr_lambda(lowercase ): if current_step < num_warmup_steps: return float(lowercase ) / float(max(1 , lowercase ) ) SCREAMING_SNAKE_CASE_: Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowercase ) * progress) % 1.0) )) ) return LambdaLR(lowercase , lowercase , lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=1e-7 , lowercase=1.0 , lowercase=-1 ): SCREAMING_SNAKE_CASE_: List[Any] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(lowercase ): if current_step < num_warmup_steps: return float(lowercase ) / float(max(1 , lowercase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: SCREAMING_SNAKE_CASE_: int =lr_init - lr_end SCREAMING_SNAKE_CASE_: Dict =num_training_steps - num_warmup_steps SCREAMING_SNAKE_CASE_: int =1 - (current_step - num_warmup_steps) / decay_steps SCREAMING_SNAKE_CASE_: Any =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowercase , lowercase , lowercase ) _UpperCAmelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( lowercase , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = 1 , lowercase = 1.0 , lowercase = -1 , ): SCREAMING_SNAKE_CASE_: Optional[int] =SchedulerType(lowercase ) SCREAMING_SNAKE_CASE_: Dict =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowercase , last_epoch=lowercase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowercase , step_rules=lowercase , last_epoch=lowercase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowercase , num_warmup_steps=lowercase , last_epoch=lowercase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowercase , num_warmup_steps=lowercase , num_training_steps=lowercase , num_cycles=lowercase , last_epoch=lowercase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowercase , num_warmup_steps=lowercase , num_training_steps=lowercase , power=lowercase , last_epoch=lowercase , ) return schedule_func( lowercase , num_warmup_steps=lowercase , num_training_steps=lowercase , last_epoch=lowercase )
173
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =int(lowercase ) # Initialize Result SCREAMING_SNAKE_CASE_: str =[] # Traverse through all denomination for denomination in reversed(lowercase ): # Find denominations while int(lowercase ) >= int(lowercase ): total_value -= int(lowercase ) answer.append(lowercase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _UpperCAmelCase = [] _UpperCAmelCase = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): _UpperCAmelCase = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) _UpperCAmelCase = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter _UpperCAmelCase = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] _UpperCAmelCase = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f"""Following is minimal change for {value}: """) _UpperCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
173
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _lowercase ( __UpperCAmelCase ): lowercase_ = 'sew-d' def __init__( self , UpperCAmelCase_=32 , UpperCAmelCase_=768 , UpperCAmelCase_=12 , UpperCAmelCase_=12 , UpperCAmelCase_=3072 , UpperCAmelCase_=2 , UpperCAmelCase_=512 , UpperCAmelCase_=256 , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=("p2c", "c2p") , UpperCAmelCase_="layer_norm" , UpperCAmelCase_="gelu_python" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-7 , UpperCAmelCase_=1E-5 , UpperCAmelCase_="group" , UpperCAmelCase_="gelu" , UpperCAmelCase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase_=False , UpperCAmelCase_=128 , UpperCAmelCase_=16 , UpperCAmelCase_=True , UpperCAmelCase_=0.05 , UpperCAmelCase_=10 , UpperCAmelCase_=2 , UpperCAmelCase_=0.0 , UpperCAmelCase_=10 , UpperCAmelCase_=0 , UpperCAmelCase_="mean" , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=256 , UpperCAmelCase_=0 , UpperCAmelCase_=1 , UpperCAmelCase_=2 , **UpperCAmelCase_ , ) -> Optional[Any]: super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) lowerCamelCase : Any = hidden_size lowerCamelCase : Any = feat_extract_norm lowerCamelCase : List[str] = feat_extract_activation lowerCamelCase : str = list(UpperCAmelCase_ ) lowerCamelCase : Any = list(UpperCAmelCase_ ) lowerCamelCase : str = list(UpperCAmelCase_ ) lowerCamelCase : List[Any] = conv_bias lowerCamelCase : Optional[int] = num_conv_pos_embeddings lowerCamelCase : str = num_conv_pos_embedding_groups lowerCamelCase : Optional[int] = len(self.conv_dim ) lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : str = squeeze_factor lowerCamelCase : Any = max_position_embeddings lowerCamelCase : List[Any] = position_buckets lowerCamelCase : Union[str, Any] = share_att_key lowerCamelCase : Optional[int] = relative_attention lowerCamelCase : Tuple = norm_rel_ebd lowerCamelCase : Union[str, Any] = list(UpperCAmelCase_ ) lowerCamelCase : List[Any] = hidden_act lowerCamelCase : Optional[Any] = num_attention_heads lowerCamelCase : Tuple = hidden_dropout lowerCamelCase : List[Any] = attention_dropout lowerCamelCase : Optional[Any] = activation_dropout lowerCamelCase : List[str] = feat_proj_dropout lowerCamelCase : List[str] = final_dropout lowerCamelCase : str = layer_norm_eps lowerCamelCase : int = feature_layer_norm_eps lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase : Any = apply_spec_augment lowerCamelCase : Optional[int] = mask_time_prob lowerCamelCase : Optional[Any] = mask_time_length lowerCamelCase : str = mask_time_min_masks lowerCamelCase : List[Any] = mask_feature_prob lowerCamelCase : int = mask_feature_length lowerCamelCase : List[Any] = mask_feature_min_masks # ctc loss lowerCamelCase : Optional[Any] = ctc_loss_reduction lowerCamelCase : Union[str, Any] = ctc_zero_infinity # sequence classification lowerCamelCase : Optional[Any] = use_weighted_layer_sum lowerCamelCase : Dict = classifier_proj_size @property def _UpperCamelCase ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
205
"""simple docstring""" from __future__ import annotations _A = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase ( a_, a_, a_, a_, a_, ): '''simple docstring''' lowerCamelCase : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a_ ) ) ] # the reference grid lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(a_ ) ) ] # the action grid lowerCamelCase : List[str] = init[0] lowerCamelCase : Optional[Any] = init[1] lowerCamelCase : List[Any] = 0 lowerCamelCase : List[str] = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase : Union[str, Any] = [[f, g, x, y]] lowerCamelCase : Union[str, Any] = False # flag that is set when search is complete lowerCamelCase : str = False # flag set if we can't find expand while not found and not resign: if len(a_ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase : int = cell.pop() lowerCamelCase : str = next_cell[2] lowerCamelCase : Union[str, Any] = next_cell[3] lowerCamelCase : List[str] = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase : Any = True else: for i in range(len(a_ ) ): # to try out different valid actions lowerCamelCase : Tuple = x + DIRECTIONS[i][0] lowerCamelCase : Union[str, Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(a_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase : str = g + cost lowerCamelCase : Tuple = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : Any = i lowerCamelCase : Any = [] lowerCamelCase : Optional[int] = goal[0] lowerCamelCase : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase : Dict = x - DIRECTIONS[action[x][y]][0] lowerCamelCase : Dict = y - DIRECTIONS[action[x][y]][1] lowerCamelCase : Optional[Any] = xa lowerCamelCase : Union[str, Any] = ya invpath.append([x, y] ) lowerCamelCase : Optional[int] = [] for i in range(len(a_ ) ): path.append(invpath[len(a_ ) - 1 - i] ) return path, action if __name__ == "__main__": _A = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _A = [0, 0] # all coordinates are given in format [y,x] _A = [len(grid) - 1, len(grid[0]) - 1] _A = 1 # the cost map which pushes the path closer to the goal _A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _A = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _A = 9_9 _A , _A = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
205
1
"""simple docstring""" def __lowerCamelCase ( a_ : Dict = 10_00 ) -> List[str]: __SCREAMING_SNAKE_CASE :Dict = 2**power __SCREAMING_SNAKE_CASE :Union[str, Any] = 0 while n: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[str] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
191
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase_ : List[str] = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
0
def UpperCamelCase_( lowerCamelCase_ ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) _lowercase : Any = sorted(string.lower() ) return len(lowerCamelCase_ ) == len(set(lowerCamelCase_ ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = input("Enter a string ").strip() SCREAMING_SNAKE_CASE : Any = is_isogram(input_str) print(F"{input_str} is {'an' if isogram else 'not an'} isogram.")
84
from __future__ import annotations def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Union[str, Any] = len(lowerCamelCase_ ) // 2 # choose the middle 3 elements _lowercase : Any = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
84
1
'''simple docstring''' import argparse import os import re lowerCamelCase = """src/diffusers""" # Pattern that looks at the indentation in a line. lowerCamelCase = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCamelCase = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCamelCase = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCamelCase = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCamelCase = re.compile(R"""\[([^\]]+)\]""") def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =_re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def _A ( _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase=None , _lowerCAmelCase=None ): """simple docstring""" __lowercase =0 __lowercase =code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 __lowercase =['\n'.join(lines[:index] )] else: __lowercase =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase =[lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: __lowercase =[lines[index + 1]] index += 1 else: __lowercase =[] else: blocks.append('\n'.join(_lowerCAmelCase ) ) __lowercase =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append('\n'.join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _A ( _lowerCAmelCase ): """simple docstring""" def _inner(_lowerCAmelCase ): return key(_lowerCAmelCase ).lower().replace('_' , '' ) return _inner def _A ( _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" def noop(_lowerCAmelCase ): return x if key is None: __lowercase =noop # Constants are all uppercase, they go first. __lowercase =[obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase =[obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. __lowercase =[obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] __lowercase =ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def _A ( _lowerCAmelCase ): """simple docstring""" def _replace(_lowerCAmelCase ): __lowercase =match.groups()[0] if "," not in imports: return f"""[{imports}]""" __lowercase =[part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase =keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(_lowerCAmelCase )] ) + "]" __lowercase =import_statement.split('\n' ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase =2 if lines[1].strip() == '[' else 1 __lowercase =[(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase =sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) __lowercase =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase =_re_bracket_content.sub(_replace , lines[1] ) else: __lowercase =[part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase =keys[:-1] __lowercase =get_indent(lines[1] ) + ', '.join([f"""\"{k}\"""" for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line __lowercase =_re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def _A ( _lowerCAmelCase , _lowerCAmelCase=True ): """simple docstring""" with open(_lowerCAmelCase , 'r' ) as f: __lowercase =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase =split_code_in_indented_blocks( _lowerCAmelCase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase =main_blocks[block_idx] __lowercase =block.split('\n' ) # Get to the start of the imports. __lowercase =0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase =len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. __lowercase ='\n'.join(block_lines[line_idx:-1] ) __lowercase =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase =split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase =_re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase =[(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase =[(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] __lowercase =[x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase =0 __lowercase =[] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowercase =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. __lowercase ='\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(_lowerCAmelCase , 'w' ) as f: f.write('\n'.join(_lowerCAmelCase ) ) def _A ( _lowerCAmelCase=True ): """simple docstring""" __lowercase =[] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: __lowercase =sort_imports(os.path.join(_lowerCAmelCase , '__init__.py' ) , check_only=_lowerCAmelCase ) if result: __lowercase =[os.path.join(_lowerCAmelCase , '__init__.py' )] if len(_lowerCAmelCase ) > 0: raise ValueError(f"""Would overwrite {len(_lowerCAmelCase )} files, run `make style`.""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCamelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
166
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCamelCase = float("""nan""") class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase =sys.stdout __lowercase =open(_lowerCAmelCase , 'a') def __getattr__( self : Any , _lowerCAmelCase : Union[str, Any]): '''simple docstring''' return getattr(self.stdout , _lowerCAmelCase) def __lowerCamelCase ( self : str , _lowerCAmelCase : int): '''simple docstring''' self.stdout.write(_lowerCAmelCase) # strip tqdm codes self.file.write(re.sub(R'^.*\r' , '' , _lowerCAmelCase , 0 , re.M)) def _A ( _lowerCAmelCase=80 , _lowerCAmelCase=False ): """simple docstring""" __lowercase =[] # deal with critical env vars __lowercase =['CUDA_VISIBLE_DEVICES'] for key in env_keys: __lowercase =os.environ.get(_lowerCAmelCase , _lowerCAmelCase ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) __lowercase =sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(_lowerCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __lowercase =[] __lowercase ='' while len(_lowerCAmelCase ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_lowerCAmelCase ) __lowercase ='' return "\\\n".join(_lowerCAmelCase ) def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own __lowercase =re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir __lowercase =re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) __lowercase =subprocess.run(_lowerCAmelCase , capture_output=_lowerCAmelCase , text=_lowerCAmelCase ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams __lowercase =variation.replace(' ' , '-' ) with open(Path(_lowerCAmelCase ) / f"""log.{prefix}.stdout.txt""" , 'w' ) as f: f.write(result.stdout ) with open(Path(_lowerCAmelCase ) / f"""log.{prefix}.stderr.txt""" , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , 'r' , encoding='utf-8' ) as f: __lowercase =json.load(_lowerCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" __lowercase =[] __lowercase =[] __lowercase =f"""{id}: {variation:<{longest_variation_len}}""" __lowercase =f"""{preamble}: """ __lowercase =set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_lowerCAmelCase ) , desc=_lowerCAmelCase , leave=_lowerCAmelCase ): __lowercase =process_run_single( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase =single_run_metrics[target_metric_key] if not math.isnan(_lowerCAmelCase ): metrics.append(_lowerCAmelCase ) results.append(_lowerCAmelCase ) outcome += "✓" else: outcome += "✘" __lowercase =f"""\33[2K\r{outcome}""" if len(_lowerCAmelCase ) > 0: __lowercase ={k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __lowercase =round(mean_metrics[target_metric_key] , 2 ) __lowercase =f"""{outcome} {mean_target}""" if len(_lowerCAmelCase ) > 1: results_str += f""" {tuple(round(_lowerCAmelCase , 2 ) for x in results )}""" print(_lowerCAmelCase ) __lowercase =variation return mean_metrics else: print(_lowerCAmelCase ) return {variation_key: variation, target_metric_key: nan} def _A ( ): """simple docstring""" __lowercase =torch.cuda.get_device_properties(torch.device('cuda' ) ) return f""" Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =pd.DataFrame(_lowerCAmelCase ) __lowercase ='variation' __lowercase ='diff_%' __lowercase =nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __lowercase =df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_lowerCAmelCase ): # as a fallback, use the minimal value as the sentinel __lowercase =df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_lowerCAmelCase ): __lowercase =df.apply( lambda _lowerCAmelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns __lowercase =[variation_key, target_metric_key, diff_key, *report_metric_keys] __lowercase =df.reindex(_lowerCAmelCase , axis='columns' ) # reorder cols # capitalize __lowercase =df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible __lowercase =df.rename(lambda _lowerCAmelCase : c.replace('_' , '<br>' ) , axis='columns' ) __lowercase =df.rename(lambda _lowerCAmelCase : c.replace('_' , '\n' ) , axis='columns' ) __lowercase =['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_lowerCAmelCase , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_lowerCAmelCase , floatfmt='.2f' )] print('\n\n'.join(_lowerCAmelCase ) ) def _A ( ): """simple docstring""" __lowercase =argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Base cmd' , ) parser.add_argument( '--variations' , default=_lowerCAmelCase , type=_lowerCAmelCase , nargs='+' , required=_lowerCAmelCase , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=_lowerCAmelCase , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=_lowerCAmelCase , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=_lowerCAmelCase , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=_lowerCAmelCase , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) __lowercase =parser.parse_args() __lowercase =args.output_dir Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) __lowercase =get_base_command(_lowerCAmelCase , _lowerCAmelCase ) # split each dimension into its --foo variations __lowercase =[list(map(str.strip , re.split(r'\|' , _lowerCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __lowercase =list(map(str.strip , map(' '.join , itertools.product(*_lowerCAmelCase ) ) ) ) __lowercase =max(len(_lowerCAmelCase ) for x in variations ) # split wanted keys __lowercase =args.report_metric_keys.split() # capture prints into a log file for convenience __lowercase =f"""benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) __lowercase =Tee(_lowerCAmelCase ) print(f"""\n*** Running {len(_lowerCAmelCase )} benchmarks:""" ) print(f"""Base command: {' '.join(_lowerCAmelCase )}""" ) __lowercase ='variation' __lowercase =[] for id, variation in enumerate(tqdm(_lowerCAmelCase , desc='Total completion: ' , leave=_lowerCAmelCase ) ): __lowercase =base_cmd + variation.split() results.append( process_run( id + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.target_metric_key , _lowerCAmelCase , args.repeat_times , _lowerCAmelCase , args.verbose , ) ) process_results(_lowerCAmelCase , args.target_metric_key , _lowerCAmelCase , args.base_variation , _lowerCAmelCase ) if __name__ == "__main__": main()
166
1
import numpy as np import datasets __A =''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' __A ='''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' __A =''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Union[str, Any]: # convert to numpy arrays lowerCamelCase_ = np.array(lowercase ) lowerCamelCase_ = np.array(lowercase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction lowerCamelCase_ = X - np.mean(lowercase ) lowerCamelCase_ = np.cov(reference_distribution.T ) try: lowerCamelCase_ = np.linalg.inv(lowercase ) except np.linalg.LinAlgError: lowerCamelCase_ = np.linalg.pinv(lowercase ) lowerCamelCase_ = np.dot(lowercase , lowercase ) lowerCamelCase_ = np.dot(lowercase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
47
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') __A =logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Train language if it is different from the evaluation language.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase_ = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = train_dataset.features["label"].names if training_args.do_eval: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = eval_dataset.features["label"].names if training_args.do_predict: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = predict_dataset.features["label"].names # Labels lowerCamelCase_ = len(lowerCamelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , idalabel={str(lowerCamelCase__ ): label for i, label in enumerate(lowerCamelCase__ )} , labelaid={label: i for i, label in enumerate(lowerCamelCase__ )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False def preprocess_function(lowerCamelCase__ ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=lowerCamelCase__ , max_length=data_args.max_seq_length , truncation=lowerCamelCase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) lowerCamelCase_ = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCamelCase_ = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCamelCase__ ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) lowerCamelCase_ = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCamelCase_ = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_predict_samples ) lowerCamelCase_ = predict_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCamelCase_ = predict_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function lowerCamelCase_ = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions , lowerCamelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) return metric.compute(predictions=lowerCamelCase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCamelCase__ ) trainer.save_metrics("train" , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCamelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = trainer.predict(lowerCamelCase__ , metric_key_prefix="predict" ) lowerCamelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("predict" , lowerCamelCase__ ) trainer.save_metrics("predict" , lowerCamelCase__ ) lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCamelCase__ ): lowerCamelCase_ = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
47
1
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , **lowercase , ) -> int: super().__init__( lowercase , split=lowercase , features=lowercase , cache_dir=lowercase , keep_in_memory=lowercase , streaming=lowercase , num_proc=lowercase , **lowercase , ) lowerCAmelCase = path_or_paths if isinstance(lowercase , lowercase ) else {self.split: path_or_paths} lowerCAmelCase = Text( cache_dir=lowercase , data_files=lowercase , features=lowercase , **lowercase , ) def _snake_case ( self ) -> Tuple: # Build iterable dataset if self.streaming: lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None self.builder.download_and_prepare( download_config=lowercase , download_mode=lowercase , verification_mode=lowercase , base_path=lowercase , num_proc=self.num_proc , ) lowerCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=lowercase , in_memory=self.keep_in_memory ) return dataset
46
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = inspect.getfile(accelerate.test_utils ) __a : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __a : Union[str, Any] = test_metrics @require_cpu def __UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def __UpperCAmelCase ( self ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def __UpperCAmelCase ( self ): '''simple docstring''' print(f"""Found {torch.cuda.device_count()} devices.""" ) __a : List[Any] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
27
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" snake_case_ = 1 @register_to_config def __init__( self , lowerCamelCase__=2_000 , lowerCamelCase__=0.1 , lowerCamelCase__=20 , lowerCamelCase__=1e-3 ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Any: '''simple docstring''' __lowerCamelCase = torch.linspace(1 , self.config.sampling_eps , lowerCamelCase__ , device=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[Any]: '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowerCamelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowerCamelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowerCamelCase = std.flatten() while len(std.shape ) < len(score.shape ): __lowerCamelCase = std.unsqueeze(-1 ) __lowerCamelCase = -score / std # compute __lowerCamelCase = -1.0 / len(self.timesteps ) __lowerCamelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowerCamelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowerCamelCase = beta_t.unsqueeze(-1 ) __lowerCamelCase = -0.5 * beta_t * x __lowerCamelCase = torch.sqrt(lowerCamelCase__ ) __lowerCamelCase = drift - diffusion**2 * score __lowerCamelCase = x + drift * dt # add noise __lowerCamelCase = randn_tensor(x.shape , layout=x.layout , generator=lowerCamelCase__ , device=x.device , dtype=x.dtype ) __lowerCamelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Optional[Any]: '''simple docstring''' return self.config.num_train_timesteps
348
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float] , UpperCamelCase__ : list[float] ) -> float: """simple docstring""" __lowerCamelCase = sorted(numsa + numsa ) __lowerCamelCase , __lowerCamelCase = divmod(len(UpperCamelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __A = [float(x) for x in input("Enter the elements of first array: ").split()] __A = [float(x) for x in input("Enter the elements of second array: ").split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
348
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowercase_ = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def a ( A__ : Dict , A__ : Any=None , A__ : List[Any]=None , A__ : Optional[Any]=None ) -> Dict: """simple docstring""" _lowercase =True while ask_again: _lowercase =input(A__ ) try: if default is not None and len(A__ ) == 0: return default return convert_value(A__ ) if convert_value is not None else result except Exception: if error_message is not None: print(A__ ) def a ( A__ : Any , A__ : str=[] , A__ : Any=None , A__ : Dict=0 ) -> List[str]: """simple docstring""" _lowercase =BulletMenu(A__ , A__ ) _lowercase =menu.run(default_choice=A__ ) return convert_value(A__ ) if convert_value is not None else result def a ( A__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" _lowercase =int(A__ ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def a ( A__ : List[Any] ) -> Any: """simple docstring""" _lowercase =int(A__ ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def a ( A__ : Tuple ) -> Optional[int]: """simple docstring""" _lowercase =int(A__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def a ( A__ : Optional[Any] ) -> Any: """simple docstring""" _lowercase =int(A__ ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def a ( A__ : Tuple ) -> str: """simple docstring""" _lowercase =int(A__ ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def a ( A__ : List[Any] ) -> Optional[Any]: """simple docstring""" return {"yes": True, "no": False}[value.lower()] class __lowerCAmelCase ( argparse.RawDescriptionHelpFormatter ): def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowercase =super()._format_usage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _lowercase =usage.replace('<command> [<args>] ' , '' ) return usage
205
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def a ( A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: _lowercase =ksize + 1 _lowercase =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(A__ ): for x in range(A__ ): # distance from center _lowercase =x - ksize // 2 _lowercase =y - ksize // 2 # degree to radiant _lowercase =theta / 180 * np.pi _lowercase =np.cos(_theta ) _lowercase =np.sin(_theta ) # get kernel x _lowercase =cos_theta * px + sin_theta * py # get kernel y _lowercase =-sin_theta * px + cos_theta * py # fill kernel _lowercase =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowercase_ = imread('../image_data/lena.jpg') # turn image in gray scale value lowercase_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowercase_ = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: lowercase_ = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowercase_ = out / out.max() * 2_5_5 lowercase_ = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
205
1
'''simple docstring''' from collections import deque class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = process_name # process name UpperCAmelCase_ : Tuple = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase_ : Any = arrival_time UpperCAmelCase_ : List[str] = burst_time # remaining burst time UpperCAmelCase_ : Any = 0 # total time of the process wait in ready queue UpperCAmelCase_ : Dict = 0 # time from arrival time to completion time class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase_ : str = time_slices # unfinished process is in this ready_queue UpperCAmelCase_ : Dict = queue # current time UpperCAmelCase_ : int = current_time # finished process is in this sequence queue UpperCAmelCase_ : deque[Process] = deque() def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] for i in range(len(_lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] for i in range(len(_lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [] for i in range(len(_lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' return [q.burst_time for q in queue] def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : deque[Process] = deque() # sequence deque of finished process while len(_lowerCamelCase ) != 0: UpperCAmelCase_ : Tuple = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase_ : Optional[int] = 0 # set the process's turnaround time because it is finished UpperCAmelCase_ : Optional[int] = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase_ : Dict = self.current_time # add the process to queue that has finished queue finished.append(_lowerCamelCase ) self.finish_queue.extend(_lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowerCamelCase ) ): UpperCAmelCase_ : Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase_ : List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase_ : Optional[Any] = 0 # set the finish time UpperCAmelCase_ : int = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase_ : List[str] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowerCamelCase ) self.finish_queue.extend(_lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _UpperCamelCase ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): UpperCAmelCase_ : Optional[int] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest snake_case__ : Optional[int] = Process('''P1''', 0, 53) snake_case__ : Any = Process('''P2''', 0, 17) snake_case__ : Optional[Any] = Process('''P3''', 0, 68) snake_case__ : int = Process('''P4''', 0, 24) snake_case__ : Dict = 3 snake_case__ : List[Any] = [17, 25] snake_case__ : int = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) snake_case__ : str = Process('''P1''', 0, 53) snake_case__ : str = Process('''P2''', 0, 17) snake_case__ : str = Process('''P3''', 0, 68) snake_case__ : Tuple = Process('''P4''', 0, 24) snake_case__ : Optional[Any] = 3 snake_case__ : List[Any] = [17, 25] snake_case__ : Optional[int] = deque([Pa, Pa, Pa, Pa]) snake_case__ : Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) snake_case__ : int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
369
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : int = ['a', 'b', 'c'] # Defaults to last layer if both are None UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_aligned_output_features_output_indices(snake_case_ , snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , ['c'] ) self.assertEqual(snake_case_ , [2] ) # Out indices set to match out features UpperCAmelCase_ , UpperCAmelCase_ : int = get_aligned_output_features_output_indices(['a', 'c'] , snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [0, 2] ) # Out features set to match out indices UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_aligned_output_features_output_indices(snake_case_ , [0, 2] , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [0, 2] ) # Out features selected from negative indices UpperCAmelCase_ , UpperCAmelCase_ : int = get_aligned_output_features_output_indices(snake_case_ , [-3, -1] , snake_case_ ) self.assertEqual(snake_case_ , ['a', 'c'] ) self.assertEqual(snake_case_ , [-3, -1] ) def _UpperCamelCase ( self ): '''simple docstring''' with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , snake_case_ ) # Out features must be a list with self.assertRaises(snake_case_ ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(snake_case_ ): verify_out_features_out_indices(snake_case_ , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(snake_case_ ): verify_out_features_out_indices(snake_case_ , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(snake_case_ ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : List[str] = BackboneMixin() UpperCAmelCase_ : Any = ['a', 'b', 'c'] UpperCAmelCase_ : str = ['a', 'c'] UpperCAmelCase_ : str = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly UpperCAmelCase_ : str = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) UpperCAmelCase_ : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
274
0
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( enum.Enum ): UpperCAmelCase_ :List[Any] = 0 UpperCAmelCase_ :int = 1 @add_end_docstrings(A__ ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Union[str, Any] = "generated" def __init__( self , *__A , **__A ) -> int: super().__init__(*__A , **__A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __lowerCAmelCase ( self , __A=None , __A=None , __A=None , __A=None , __A=None , __A=None , **__A , ) -> str: lowerCAmelCase_ :List[str] = {} if truncation is not None: lowerCAmelCase_ :List[Any] = truncation lowerCAmelCase_ :Optional[int] = generate_kwargs lowerCAmelCase_ :Optional[int] = {} if return_tensors is not None and return_type is None: lowerCAmelCase_ :Optional[int] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowerCAmelCase_ :Any = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase_ :str = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase_ :int = self.tokenizer.encode(__A , add_special_tokens=__A ) if len(__A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowerCAmelCase_ :Optional[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCAmelCase ( self , __A , __A , __A ) -> Optional[Any]: return True def __lowerCAmelCase ( self , *__A , __A ) -> List[Any]: lowerCAmelCase_ :List[str] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , __A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) lowerCAmelCase_ :Dict = ([prefix + arg for arg in args[0]],) lowerCAmelCase_ :Optional[int] = True elif isinstance(args[0] , __A ): lowerCAmelCase_ :Any = (prefix + args[0],) lowerCAmelCase_ :Optional[Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowerCAmelCase_ :List[str] = self.tokenizer(*__A , padding=__A , truncation=__A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *__A , **__A ) -> Optional[int]: lowerCAmelCase_ :Any = super().__call__(*__A , **__A ) if ( isinstance(args[0] , __A ) and all(isinstance(__A , __A ) for el in args[0] ) and all(len(__A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __lowerCAmelCase ( self , __A , __A=TruncationStrategy.DO_NOT_TRUNCATE , **__A ) -> Tuple: lowerCAmelCase_ :Union[str, Any] = self._parse_and_tokenize(__A , truncation=__A , **__A ) return inputs def __lowerCAmelCase ( self , __A , **__A ) -> str: if self.framework == "pt": lowerCAmelCase_ , lowerCAmelCase_ :List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = tf.shape(model_inputs["""input_ids"""] ).numpy() lowerCAmelCase_ :Optional[Any] = generate_kwargs.get("""min_length""" , self.model.config.min_length ) lowerCAmelCase_ :Union[str, Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(__A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) lowerCAmelCase_ :Optional[Any] = self.model.generate(**__A , **__A ) lowerCAmelCase_ :Optional[Any] = output_ids.shape[0] if self.framework == "pt": lowerCAmelCase_ :str = output_ids.reshape(__A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowerCAmelCase_ :Tuple = tf.reshape(__A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __lowerCAmelCase ( self , __A , __A=ReturnType.TEXT , __A=False ) -> List[str]: lowerCAmelCase_ :int = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowerCAmelCase_ :Optional[Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowerCAmelCase_ :str = { f"""{self.return_name}_text""": self.tokenizer.decode( __A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A , ) } records.append(__A ) return records @add_end_docstrings(A__ ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Any = "summary" def __call__( self , *__A , **__A ) -> Tuple: return super().__call__(*__A , **__A ) def __lowerCAmelCase ( self , __A , __A , __A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(A__ ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :List[str] = "translation" def __lowerCAmelCase ( self , __A , __A , __A ) -> Dict: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def __lowerCAmelCase ( self , *__A , __A=TruncationStrategy.DO_NOT_TRUNCATE , __A=None , __A=None ) -> Union[str, Any]: if getattr(self.tokenizer , """_build_translation_inputs""" , __A ): return self.tokenizer._build_translation_inputs( *__A , return_tensors=self.framework , truncation=__A , src_lang=__A , tgt_lang=__A ) else: return super()._parse_and_tokenize(*__A , truncation=__A ) def __lowerCAmelCase ( self , __A=None , __A=None , **__A ) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = super()._sanitize_parameters(**__A ) if src_lang is not None: lowerCAmelCase_ :List[str] = src_lang if tgt_lang is not None: lowerCAmelCase_ :Tuple = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowerCAmelCase_ :Dict = kwargs.get("""task""" , self.task ) lowerCAmelCase_ :Any = task.split("""_""" ) if task and len(__A ) == 4: # translation, XX, to YY lowerCAmelCase_ :Optional[int] = items[1] lowerCAmelCase_ :Optional[Any] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *__A , **__A ) -> str: return super().__call__(*__A , **__A )
84
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) lowerCAmelCase_ :int = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :List[Any] = jax.device_count() lowerCAmelCase_ :Optional[Any] = num_samples * [prompt] lowerCAmelCase_ :int = sd_pipe.prepare_inputs(__A ) lowerCAmelCase_ :Optional[Any] = replicate(__A ) lowerCAmelCase_ :Union[str, Any] = shard(__A ) lowerCAmelCase_ :Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase_ :Tuple = jax.random.split(__A , jax.device_count() ) lowerCAmelCase_ :Union[str, Any] = sd_pipe(__A , __A , __A , num_inference_steps=25 , jit=__A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCAmelCase_ :Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ :List[str] = images[0, 253:256, 253:256, -1] lowerCAmelCase_ :Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ :Optional[int] = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Union[str, Any] = """stabilityai/stable-diffusion-2""" lowerCAmelCase_ , lowerCAmelCase_ :Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(__A , subfolder="""scheduler""" ) lowerCAmelCase_ , lowerCAmelCase_ :List[str] = FlaxStableDiffusionPipeline.from_pretrained( __A , scheduler=__A , revision="""bf16""" , dtype=jnp.bfloataa , ) lowerCAmelCase_ :Optional[int] = scheduler_params lowerCAmelCase_ :List[Any] = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :Tuple = jax.device_count() lowerCAmelCase_ :str = num_samples * [prompt] lowerCAmelCase_ :Union[str, Any] = sd_pipe.prepare_inputs(__A ) lowerCAmelCase_ :Tuple = replicate(__A ) lowerCAmelCase_ :Optional[int] = shard(__A ) lowerCAmelCase_ :List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase_ :List[Any] = jax.random.split(__A , jax.device_count() ) lowerCAmelCase_ :Optional[Any] = sd_pipe(__A , __A , __A , num_inference_steps=25 , jit=__A )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) lowerCAmelCase_ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ :List[str] = images[0, 253:256, 253:256, -1] lowerCAmelCase_ :Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ :Dict = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
84
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a ( unittest.TestCase ): def __lowerCamelCase ( self :Dict ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights snake_case__ : List[str] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' ,safety_checker=__lowercase ,cache_dir=__lowercase ) snake_case__ : Union[str, Any] = [t[-1] for t in os.walk(os.path.join(__lowercase ,os.listdir(__lowercase )[0] ,'''snapshots''' ) )] snake_case__ : Optional[Any] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class a ( unittest.TestCase ): def __lowerCamelCase ( self :str ): snake_case__ , snake_case__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' ,safety_checker=__lowercase ) snake_case__ : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : Optional[Any] = jax.random.PRNGKey(0 ) snake_case__ : Union[str, Any] = 4 snake_case__ : Union[str, Any] = jax.device_count() snake_case__ : Tuple = num_samples * [prompt] snake_case__ : Optional[int] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng snake_case__ : Optional[int] = replicate(__lowercase ) snake_case__ : Optional[int] = jax.random.split(__lowercase ,__lowercase ) snake_case__ : Union[str, Any] = shard(__lowercase ) snake_case__ : List[str] = pipeline(__lowercase ,__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3 assert np.abs(np.abs(__lowercase ,dtype=np.floataa ).sum() - 4_9947.875 ) < 5e-1 snake_case__ : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__lowercase ) == num_samples def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ , snake_case__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''flax''' ,safety_checker=__lowercase ) snake_case__ : Optional[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : int = jax.random.PRNGKey(0 ) snake_case__ : Tuple = 5_0 snake_case__ : Union[str, Any] = jax.device_count() snake_case__ : List[str] = num_samples * [prompt] snake_case__ : Union[str, Any] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng snake_case__ : Union[str, Any] = replicate(__lowercase ) snake_case__ : Optional[int] = jax.random.split(__lowercase ,__lowercase ) snake_case__ : List[str] = shard(__lowercase ) snake_case__ : List[str] = pipeline(__lowercase ,__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3 assert np.abs((np.abs(__lowercase ,dtype=np.floataa ).sum() - 238_3808.2) ) < 5e-1 def __lowerCamelCase ( self :Tuple ): snake_case__ , snake_case__ : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=__lowercase ) snake_case__ : Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : Any = jax.random.PRNGKey(0 ) snake_case__ : Optional[Any] = 5_0 snake_case__ : Dict = jax.device_count() snake_case__ : Dict = num_samples * [prompt] snake_case__ : Union[str, Any] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng snake_case__ : str = replicate(__lowercase ) snake_case__ : Any = jax.random.split(__lowercase ,__lowercase ) snake_case__ : str = shard(__lowercase ) snake_case__ : Union[str, Any] = pipeline(__lowercase ,__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(__lowercase ,dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def __lowerCamelCase ( self :Optional[int] ): snake_case__ , snake_case__ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ) snake_case__ : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : Dict = jax.random.PRNGKey(0 ) snake_case__ : Dict = 5_0 snake_case__ : Tuple = jax.device_count() snake_case__ : Dict = num_samples * [prompt] snake_case__ : Any = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng snake_case__ : List[str] = replicate(__lowercase ) snake_case__ : List[str] = jax.random.split(__lowercase ,__lowercase ) snake_case__ : str = shard(__lowercase ) snake_case__ : List[Any] = pipeline(__lowercase ,__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(__lowercase ,dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def __lowerCamelCase ( self :List[str] ): snake_case__ : Optional[Any] = FlaxDDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,set_alpha_to_one=__lowercase ,steps_offset=1 ,) snake_case__ , snake_case__ : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,scheduler=__lowercase ,safety_checker=__lowercase ,) snake_case__ : Dict = scheduler.create_state() snake_case__ : Any = scheduler_state snake_case__ : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : int = jax.random.PRNGKey(0 ) snake_case__ : int = 5_0 snake_case__ : int = jax.device_count() snake_case__ : Tuple = num_samples * [prompt] snake_case__ : Optional[int] = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng snake_case__ : Union[str, Any] = replicate(__lowercase ) snake_case__ : Tuple = jax.random.split(__lowercase ,__lowercase ) snake_case__ : Optional[Any] = shard(__lowercase ) snake_case__ : List[str] = pipeline(__lowercase ,__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3 assert np.abs((np.abs(__lowercase ,dtype=np.floataa ).sum() - 234_7693.5) ) < 5e-1 def __lowerCamelCase ( self :List[Any] ): snake_case__ : int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) snake_case__ : Tuple = jax.device_count() snake_case__ : Dict = num_samples * [prompt] snake_case__ : List[str] = jax.random.split(jax.random.PRNGKey(0 ) ,__lowercase ) snake_case__ , snake_case__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=__lowercase ,) snake_case__ : Union[str, Any] = replicate(__lowercase ) snake_case__ : int = pipeline.prepare_inputs(__lowercase ) snake_case__ : Optional[int] = shard(__lowercase ) snake_case__ : int = pipeline(__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) snake_case__ : Any = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention snake_case__ , snake_case__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' ,revision='''bf16''' ,dtype=jnp.bfloataa ,safety_checker=__lowercase ,use_memory_efficient_attention=__lowercase ,) snake_case__ : str = replicate(__lowercase ) snake_case__ : List[Any] = pipeline.prepare_inputs(__lowercase ) snake_case__ : Tuple = shard(__lowercase ) snake_case__ : List[Any] = pipeline(__lowercase ,__lowercase ,__lowercase ,jit=__lowercase ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) snake_case__ : str = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
44
def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 snake_case__ : List[str] = 1 snake_case__ : int = 1 while repunit: snake_case__ : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _lowerCAmelCase ( __lowerCAmelCase = 1000000 ) -> int: """simple docstring""" snake_case__ : str = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
44
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class A__ ( A__ ): A__ = 42 A__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(">=", "0.0.12") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class A__ ( A__ ): A__ = 42 A__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
47
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class A__ : A__ = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) A__ = field( default=A__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A__ = field( default=A__ , metadata={'help': 'The column name of the images in the files.'} ) A__ = field(default=A__ , metadata={'help': 'A folder containing the training data.'} ) A__ = field(default=A__ , metadata={'help': 'A folder containing the validation data.'} ) A__ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) A__ = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A__ = field( default=A__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def A ( self : Union[str, Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if self.train_dir is not None: _SCREAMING_SNAKE_CASE =self.train_dir if self.validation_dir is not None: _SCREAMING_SNAKE_CASE =self.validation_dir _SCREAMING_SNAKE_CASE =data_files if data_files else None @dataclass class A__ : A__ = field( default=A__ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) A__ = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) A__ = field( default=A__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) A__ = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) A__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A__ = field(default=A__ , metadata={'help': 'Name or path of preprocessor config.'} ) A__ = field( default=A__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A__ = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) A__ = field( default=A__ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class A__ ( A__ ): A__ = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def _lowerCAmelCase ( _UpperCamelCase : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _lowerCAmelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _SCREAMING_SNAKE_CASE =training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _SCREAMING_SNAKE_CASE =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _SCREAMING_SNAKE_CASE =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _SCREAMING_SNAKE_CASE =load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _SCREAMING_SNAKE_CASE =None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _UpperCamelCase ) and data_args.train_val_split > 0.0: _SCREAMING_SNAKE_CASE =ds['train'].train_test_split(data_args.train_val_split ) _SCREAMING_SNAKE_CASE =split['train'] _SCREAMING_SNAKE_CASE =split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE ={ 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _SCREAMING_SNAKE_CASE =ViTMAEConfig.from_pretrained(model_args.config_name , **_UpperCamelCase ) elif model_args.model_name_or_path: _SCREAMING_SNAKE_CASE =ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _SCREAMING_SNAKE_CASE =ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_UpperCamelCase ) elif model_args.model_name_or_path: _SCREAMING_SNAKE_CASE =ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_UpperCamelCase ) else: _SCREAMING_SNAKE_CASE =ViTImageProcessor() # create model if model_args.model_name_or_path: _SCREAMING_SNAKE_CASE =ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _SCREAMING_SNAKE_CASE =ViTMAEForPreTraining(_UpperCamelCase ) if training_args.do_train: _SCREAMING_SNAKE_CASE =ds['train'].column_names else: _SCREAMING_SNAKE_CASE =ds['validation'].column_names if data_args.image_column_name is not None: _SCREAMING_SNAKE_CASE =data_args.image_column_name elif "image" in column_names: _SCREAMING_SNAKE_CASE ='image' elif "img" in column_names: _SCREAMING_SNAKE_CASE ='img' else: _SCREAMING_SNAKE_CASE =column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _SCREAMING_SNAKE_CASE =image_processor.size['shortest_edge'] else: _SCREAMING_SNAKE_CASE =(image_processor.size['height'], image_processor.size['width']) _SCREAMING_SNAKE_CASE =Compose( [ Lambda(lambda _UpperCamelCase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_UpperCamelCase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_UpperCamelCase : Dict ): _SCREAMING_SNAKE_CASE =[transforms(_UpperCamelCase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _SCREAMING_SNAKE_CASE =ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _SCREAMING_SNAKE_CASE =( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_UpperCamelCase ) # Compute absolute learning rate _SCREAMING_SNAKE_CASE =( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _SCREAMING_SNAKE_CASE =training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _SCREAMING_SNAKE_CASE =Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: _SCREAMING_SNAKE_CASE =None if training_args.resume_from_checkpoint is not None: _SCREAMING_SNAKE_CASE =training_args.resume_from_checkpoint elif last_checkpoint is not None: _SCREAMING_SNAKE_CASE =last_checkpoint _SCREAMING_SNAKE_CASE =trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _SCREAMING_SNAKE_CASE =trainer.evaluate() trainer.log_metrics('eval' , _UpperCamelCase ) trainer.save_metrics('eval' , _UpperCamelCase ) # Write model card and (optionally) push to hub _SCREAMING_SNAKE_CASE ={ 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
47
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''beit''' def __init__( self : Optional[int] , __UpperCAmelCase : Optional[Any]=8192 , __UpperCAmelCase : Tuple=768 , __UpperCAmelCase : Optional[Any]=12 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : int=3072 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Dict=1E-12 , __UpperCAmelCase : int=224 , __UpperCAmelCase : Dict=16 , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Tuple=[3, 5, 7, 11] , __UpperCAmelCase : Union[str, Any]=[1, 2, 3, 6] , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[Any]=0.4 , __UpperCAmelCase : Any=256 , __UpperCAmelCase : Union[str, Any]=1 , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Tuple=255 , **__UpperCAmelCase : Dict , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = use_mask_token _A = use_absolute_position_embeddings _A = use_relative_position_bias _A = use_shared_relative_position_bias _A = layer_scale_init_value _A = drop_path_rate _A = use_mean_pooling # decode head attributes (semantic segmentation) _A = out_indices _A = pool_scales # auxiliary head attributes (semantic segmentation) _A = use_auxiliary_head _A = auxiliary_loss_weight _A = auxiliary_channels _A = auxiliary_num_convs _A = auxiliary_concat_input _A = semantic_loss_ignore_index class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return 1E-4
350
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
174
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = 1 @register_to_config def __init__( self , snake_case__=2000 , snake_case__=0.1 , snake_case__=20 , snake_case__=1e-3 ) -> int: '''simple docstring''' UpperCAmelCase : Any =None UpperCAmelCase : Optional[Any] =None UpperCAmelCase : Optional[int] =None def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , snake_case__ , device=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ) -> Any: '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score UpperCAmelCase : Optional[Any] =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) UpperCAmelCase : List[Any] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) UpperCAmelCase : Dict =std.flatten() while len(std.shape ) < len(score.shape ): UpperCAmelCase : Optional[Any] =std.unsqueeze(-1 ) UpperCAmelCase : Tuple =-score / std # compute UpperCAmelCase : Optional[Any] =-1.0 / len(self.timesteps ) UpperCAmelCase : Optional[Any] =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) UpperCAmelCase : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): UpperCAmelCase : List[Any] =beta_t.unsqueeze(-1 ) UpperCAmelCase : int =-0.5 * beta_t * x UpperCAmelCase : Optional[Any] =torch.sqrt(snake_case__ ) UpperCAmelCase : Optional[int] =drift - diffusion**2 * score UpperCAmelCase : Dict =x + drift * dt # add noise UpperCAmelCase : Dict =randn_tensor(x.shape , layout=x.layout , generator=snake_case__ , device=x.device , dtype=x.dtype ) UpperCAmelCase : Union[str, Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> Dict: '''simple docstring''' return self.config.num_train_timesteps
348
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:] if shift_amount >= len(__lowerCAmelCase ): return "0b0" UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Optional[Any] =( '''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number ) if shift_amount >= len(__lowerCAmelCase ): return "0b" + binary_number[0] * len(__lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _lowerCAmelCase ( snake_case_ ): def __init__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' snake_case : str = path_or_paths snake_case : List[Any] = split if split or isinstance(UpperCamelCase__ , UpperCamelCase__ ) else "train" snake_case : List[str] = features snake_case : int = cache_dir snake_case : Union[str, Any] = keep_in_memory snake_case : Dict = streaming snake_case : Union[str, Any] = num_proc snake_case : Tuple = kwargs @abstractmethod def lowerCamelCase ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: '''simple docstring''' pass class _lowerCAmelCase ( snake_case_ ): def __init__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' snake_case : Dict = features snake_case : Tuple = cache_dir snake_case : Tuple = keep_in_memory snake_case : Dict = streaming snake_case : Tuple = num_proc snake_case : int = kwargs @abstractmethod def lowerCamelCase ( self ) -> Union[Dataset, IterableDataset]: '''simple docstring''' pass
112
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __snake_case = data_utils.TransfoXLTokenizer __snake_case = data_utils.TransfoXLCorpus __snake_case = data_utils __snake_case = data_utils def __lowerCAmelCase ( lowercase : Optional[int] , lowercase : int , lowercase : List[Any] , lowercase : Union[str, Any] ) -> List[Any]: """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowercase , "rb" ) as fp: snake_case : int = pickle.load(lowercase , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) snake_case : int = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) snake_case : str = corpus.vocab.__dict__ torch.save(lowercase , lowercase ) snake_case : str = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , lowercase ) snake_case : Dict = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(lowercase , lowercase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model snake_case : Union[str, Any] = os.path.abspath(lowercase ) snake_case : str = os.path.abspath(lowercase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": snake_case : int = TransfoXLConfig() else: snake_case : Optional[int] = TransfoXLConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) snake_case : str = TransfoXLLMHeadModel(lowercase ) snake_case : str = load_tf_weights_in_transfo_xl(lowercase , lowercase , lowercase ) # Save pytorch-model snake_case : Union[str, Any] = os.path.join(lowercase , lowercase ) snake_case : Optional[Any] = os.path.join(lowercase , lowercase ) print(F'Save PyTorch model to {os.path.abspath(lowercase )}' ) torch.save(model.state_dict() , lowercase ) print(F'Save configuration file to {os.path.abspath(lowercase )}' ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) __snake_case = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
112
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : str = '''▁''' A : Any = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } A : List[Any] = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } A : Tuple = { '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off A : Optional[int] = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = ['''input_ids''', '''attention_mask'''] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : List[Any]="<s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[int]="</s>" , __lowerCAmelCase : Optional[Any]="<pad>" , __lowerCAmelCase : Any="<unk>" , __lowerCAmelCase : Any="m2m100" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , __lowerCAmelCase : Dict=8 , **__lowerCAmelCase : Tuple , ) -> None: """simple docstring""" A__ = {} if sp_model_kwargs is None else sp_model_kwargs A__ = language_codes A__ = FAIRSEQ_LANGUAGE_CODES[language_codes] A__ = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} A__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , language_codes=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = vocab_file A__ = load_json(__lowerCAmelCase ) A__ = {v: k for k, v in self.encoder.items()} A__ = spm_file A__ = load_spm(__lowerCAmelCase , self.sp_model_kwargs ) A__ = len(self.encoder ) A__ = { self.get_lang_token(__lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase ) } A__ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase )} A__ = {v: k for k, v in self.lang_token_to_id.items()} A__ = src_lang if src_lang is not None else """en""" A__ = tgt_lang A__ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) A__ = num_madeup_words @property def a_ ( self : Optional[int] ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def a_ ( self : Optional[Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def a_ ( self : List[Any] , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a_ ( self : Optional[int] , __lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def a_ ( self : Optional[Any] , __lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowerCAmelCase , self.encoder[self.unk_token] ) def a_ ( self : Optional[int] , __lowerCAmelCase : int ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowerCAmelCase , self.unk_token ) def a_ ( self : Optional[int] , __lowerCAmelCase : Dict ) -> str: """simple docstring""" A__ = [] A__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token A__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def a_ ( self : List[str] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) A__ = [1] * len(self.prefix_tokens ) A__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def a_ ( self : Tuple , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self : int ) -> Dict: """simple docstring""" A__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : str , __lowerCAmelCase : Dict ) -> None: """simple docstring""" A__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ = {} A__ = load_spm(self.spm_file , self.sp_model_kwargs ) def a_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" A__ = Path(__lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) A__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) A__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCAmelCase , """wb""" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (str(__lowerCAmelCase ), str(__lowerCAmelCase )) def a_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : str = "en" , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : str = "ro" , **__lowerCAmelCase : List[Any] , ) -> BatchEncoding: """simple docstring""" A__ = src_lang A__ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[str] , __lowerCAmelCase : Optional[str] , **__lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A__ = src_lang A__ = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase ) A__ = self.get_lang_id(__lowerCAmelCase ) A__ = tgt_lang_id return inputs def a_ ( self : Dict ) -> int: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def a_ ( self : str , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) A__ = self.lang_token_to_id[lang_token] A__ = [self.cur_lang_id] A__ = [self.eos_token_id] def a_ ( self : Tuple , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) A__ = self.lang_token_to_id[lang_token] A__ = [self.cur_lang_id] A__ = [self.eos_token_id] def a_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def a_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> int: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( __a :str , __a :Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" A__ = sentencepiece.SentencePieceProcessor(**__a ) spm.Load(str(__a ) ) return spm def __lowerCamelCase ( __a :str ) -> Union[Dict, List]: """simple docstring""" with open(__a , """r""" ) as f: return json.load(__a ) def __lowerCamelCase ( __a :List[Any] , __a :str ) -> None: """simple docstring""" with open(__a , """w""" ) as f: json.dump(__a , __a , indent=2 )
274
0
from sklearn.metrics import recall_score import datasets __UpperCAmelCase : Dict = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __UpperCAmelCase : Any = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __UpperCAmelCase : Optional[int] = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase__ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def UpperCAmelCase__ ( self : Any , A : Optional[int] , A : Optional[Any] , A : Optional[int]=None , A : Optional[int]=1 , A : str="binary" , A : Tuple=None , A : Dict="warn" , ): __snake_case: List[str] = recall_score( A , A , labels=A , pos_label=A , average=A , sample_weight=A , zero_division=A , ) return {"recall": float(A ) if score.size == 1 else score}
293
from __future__ import annotations import numpy as np def A__ ( SCREAMING_SNAKE_CASE__) -> List[str]: return np.maximum(0 , SCREAMING_SNAKE_CASE__) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
293
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _a : str = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _a : str = 128_022 _a : Optional[Any] = 128_028 @require_sentencepiece class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = MaMaaaTokenizer _UpperCamelCase : int = False _UpperCamelCase : int = False _UpperCamelCase : int = True def __A ( self ): super().setUp() _lowerCAmelCase : Optional[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] _lowerCAmelCase : Dict = dict(zip(a__ , range(len(a__ ) ) ) ) _lowerCAmelCase : List[Any] = Path(self.tmpdirname ) save_json(a__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) _lowerCAmelCase : Any = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , **a__ ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __A ( self , a__ ): return ( "This is a test", "This is a test", ) def __A ( self ): _lowerCAmelCase : str = """</s>""" _lowerCAmelCase : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __A ( self ): _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(a__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def __A ( self ): pass def __A ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [2, 3, 4, 5, 6] , ) _lowerCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) _lowerCAmelCase : int = tokenizer.convert_tokens_to_string(a__ ) self.assertEqual(a__ , """This is a test""" ) @slow def __A ( self ): # fmt: off _lowerCAmelCase : Optional[int] = {"""input_ids""": [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): _UpperCamelCase : Union[str, Any] = "facebook/m2m100_418M" _UpperCamelCase : Optional[Any] = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] _UpperCamelCase : Optional[int] = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off _UpperCamelCase : List[str] = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def __A ( cls ): _lowerCAmelCase : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) _lowerCAmelCase : Tuple = 1 return cls def __A ( self ): self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 128063 ) def __A ( self ): _lowerCAmelCase : Tuple = self.tokenizer.get_vocab() self.assertEqual(len(a__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , a__ ) def __A ( self ): _lowerCAmelCase : List[str] = """en""" _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a__ ) def __A ( self ): self.assertIn(a__ , self.tokenizer.all_special_ids ) # fmt: off _lowerCAmelCase : Union[str, Any] = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on _lowerCAmelCase : str = self.tokenizer.decode(a__ , skip_special_tokens=a__ ) _lowerCAmelCase : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ ) self.assertNotIn(self.tokenizer.eos_token , a__ ) def __A ( self ): _lowerCAmelCase : Dict = tempfile.mkdtemp() _lowerCAmelCase : Tuple = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(a__ ) _lowerCAmelCase : Tuple = MaMaaaTokenizer.from_pretrained(a__ ) self.assertDictEqual(new_tok.lang_token_to_id , a__ ) @require_torch def __A ( self ): _lowerCAmelCase : str = """en""" _lowerCAmelCase : int = """fr""" _lowerCAmelCase : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a__ , return_tensors="""pt""" ) _lowerCAmelCase : int = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _lowerCAmelCase : Any = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __A ( self ): _lowerCAmelCase : Union[str, Any] = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _lowerCAmelCase : List[Any] = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __A ( self ): _lowerCAmelCase : Union[str, Any] = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _lowerCAmelCase : Union[str, Any] = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __A ( self ): _lowerCAmelCase : Tuple = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(a__ ) , { # en_XX, A, test, EOS """input_ids""": [[128022, 58, 4183, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 128006, } , )
44
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : int ) -> List[str]: _lowerCAmelCase : Tuple = k_size // 2 _lowerCAmelCase , _lowerCAmelCase : List[str] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _lowerCAmelCase : Union[str, Any] = 1 / (2 * pi * sigma) * exp(-(square(_lowerCamelCase ) + square(_lowerCamelCase )) / (2 * square(_lowerCamelCase )) ) return g def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : int ,_lowerCamelCase : int ) -> Dict: _lowerCAmelCase , _lowerCAmelCase : str = image.shape[0], image.shape[1] # dst image height and width _lowerCAmelCase : Optional[int] = height - k_size + 1 _lowerCAmelCase : Dict = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _lowerCAmelCase : Tuple = zeros((dst_height * dst_width, k_size * k_size) ) _lowerCAmelCase : int = 0 for i, j in product(range(_lowerCamelCase ) ,range(_lowerCamelCase ) ): _lowerCAmelCase : Any = ravel(image[i : i + k_size, j : j + k_size] ) _lowerCAmelCase : Union[str, Any] = window row += 1 # turn the kernel into shape(k*k, 1) _lowerCAmelCase : List[Any] = gen_gaussian_kernel(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : str = ravel(_lowerCamelCase ) # reshape and get the dst image _lowerCAmelCase : int = dot(_lowerCamelCase ,_lowerCamelCase ).reshape(_lowerCamelCase ,_lowerCamelCase ).astype(_lowerCamelCase ) return dst if __name__ == "__main__": # read original image _a : Optional[Any] = imread(r'../image_data/lena.jpg') # turn image in gray scale value _a : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _a : Union[str, Any] = gaussian_filter(gray, 3, sigma=1) _a : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
44
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCamelCase : str = trt.Logger(trt.Logger.WARNING) __UpperCamelCase : Dict = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCamelCase : str = logging.getLogger(__name__) __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __UpperCamelCase : Dict = parser.parse_args() if args.tokenizer_name: __UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __UpperCamelCase : Tuple = args.per_device_eval_batch_size __UpperCamelCase : int = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCamelCase : Optional[Any] = True __UpperCamelCase : str = 'temp_engine/bert-fp32.engine' if args.fpaa: __UpperCamelCase : Any = 'temp_engine/bert-fp16.engine' if args.inta: __UpperCamelCase : Dict = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __UpperCamelCase : List[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCamelCase : List[Any] = [network.get_input(i) for i in range(network.num_inputs)] __UpperCamelCase : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCamelCase : Any = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCamelCase : Union[str, Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCamelCase : str = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: SCREAMING_SNAKE_CASE : Tuple = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) SCREAMING_SNAKE_CASE : int = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) SCREAMING_SNAKE_CASE : Tuple = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _lowercase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _lowercase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _lowercase ) # start time SCREAMING_SNAKE_CASE : str = time.time() # Run inference context.execute_async( bindings=[int(_lowercase ) for d_inp in d_inputs] + [int(_lowercase ), int(_lowercase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_lowercase , _lowercase , _lowercase ) cuda.memcpy_dtoh_async(_lowercase , _lowercase , _lowercase ) # Synchronize the stream and take time stream.synchronize() # end time SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = end_time - start_time SCREAMING_SNAKE_CASE : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCamelCase : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCamelCase : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCamelCase : List[str] = raw_datasets['validation'].column_names __UpperCamelCase : int = 'question' if 'question' in column_names else column_names[0] __UpperCamelCase : int = 'context' if 'context' in column_names else column_names[1] __UpperCamelCase : Optional[Any] = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCamelCase : Optional[Any] = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __UpperCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def A ( _lowercase ) -> Dict: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace SCREAMING_SNAKE_CASE : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. SCREAMING_SNAKE_CASE : Any = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=_lowercase , stride=args.doc_stride , return_overflowing_tokens=_lowercase , return_offsets_mapping=_lowercase , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. SCREAMING_SNAKE_CASE : Optional[int] = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. SCREAMING_SNAKE_CASE : List[str] = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). SCREAMING_SNAKE_CASE : List[Any] = tokenized_examples.sequence_ids(_lowercase ) SCREAMING_SNAKE_CASE : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. SCREAMING_SNAKE_CASE : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. SCREAMING_SNAKE_CASE : Union[str, Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples __UpperCamelCase : Any = raw_datasets['validation'] # Validation Feature Creation __UpperCamelCase : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __UpperCamelCase : str = default_data_collator __UpperCamelCase : List[Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __UpperCamelCase : Dict = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def A ( _lowercase , _lowercase , _lowercase , _lowercase="eval" ) -> str: # Post-processing: we match the start logits and end logits to answers in the original context. SCREAMING_SNAKE_CASE : Dict = postprocess_qa_predictions( examples=_lowercase , features=_lowercase , predictions=_lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_lowercase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: SCREAMING_SNAKE_CASE : Optional[int] = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: SCREAMING_SNAKE_CASE : Union[str, Any] = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] SCREAMING_SNAKE_CASE : Tuple = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_lowercase , label_ids=_lowercase ) __UpperCamelCase : Dict = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def A ( _lowercase ) -> str: return trt.volume(engine.get_binding_shape(_lowercase ) ) * engine.get_binding_dtype(_lowercase ).itemsize # Allocate device memory for inputs and outputs. __UpperCamelCase : Tuple = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCamelCase : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCamelCase : Tuple = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCamelCase : int = cuda.mem_alloc(h_outputa.nbytes) __UpperCamelCase : Union[str, Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCamelCase : List[str] = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __UpperCamelCase : Dict = 0.0 __UpperCamelCase : str = 0 __UpperCamelCase : Optional[Any] = timeit.default_timer() __UpperCamelCase : str = None for step, batch in enumerate(eval_dataloader): __UpperCamelCase : Any = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCamelCase : Tuple = outputs __UpperCamelCase : Optional[Any] = torch.tensor(start_logits) __UpperCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCamelCase : Optional[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __UpperCamelCase : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __UpperCamelCase : List[str] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCamelCase : Optional[Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __UpperCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) __UpperCamelCase : List[str] = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1000)) logger.info('Total Number of Inference = %d', niter) __UpperCamelCase : Any = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCamelCase : int = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
356
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = KandinskyInpaintPipeline UpperCamelCase_ = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] UpperCamelCase_ = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] UpperCamelCase_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase_ = False @property def __A ( self : Tuple ): '''simple docstring''' return 32 @property def __A ( self : List[str] ): '''simple docstring''' return 32 @property def __A ( self : List[Any] ): '''simple docstring''' return self.time_input_dim @property def __A ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __A ( self : List[Any] ): '''simple docstring''' return 100 @property def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __A ( self : int ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE : Any = MultilingualCLIP(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = text_encoder.eval() return text_encoder @property def __A ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE : str = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def __A ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __A ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE : Dict = self.dummy_tokenizer SCREAMING_SNAKE_CASE : List[str] = self.dummy_unet SCREAMING_SNAKE_CASE : int = self.dummy_movq SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Any = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __A ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any]=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase__ ) # create init_image SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask SCREAMING_SNAKE_CASE : Tuple = np.ones((64, 64) , dtype=np.floataa ) SCREAMING_SNAKE_CASE : List[Any] = 0 if str(UpperCamelCase__ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : str = self.pipeline_class(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Any = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __A ( self : str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase): def __A ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE : int = np.ones((768, 768) , dtype=np.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = '''a hat''' SCREAMING_SNAKE_CASE : Dict = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
258
0
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Dict ) -> str: """simple docstring""" UpperCamelCase :List[str] = [1] for i in range(2 , __magic_name__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCamelCase :Tuple = [] UpperCamelCase :Any = list(range(__magic_name__ ) ) # Find permutation while factorials: UpperCamelCase :List[Any] = factorials.pop() UpperCamelCase , UpperCamelCase :Optional[int] = divmod(__magic_name__ , __magic_name__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
38
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): assert x is not None assert y is not None __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # declaring the array for storing the dp values __lowerCAmelCase = [[0] * (n + 1) for _ in range(m + 1)] # noqa: E741 for i in range(1, m + 1): for j in range(1, n + 1): __lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 __lowerCAmelCase = max(l[i - 1][j], l[i][j - 1], l[i - 1][j - 1] + match) __lowerCAmelCase = '''''' __lowerCAmelCase , __lowerCAmelCase = m, n while i > 0 and j > 0: __lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCAmelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _UpperCAmelCase : List[Any] = """AGGTAB""" _UpperCAmelCase : int = """GXTXAYB""" _UpperCAmelCase : Any = 4 _UpperCAmelCase : List[Any] = """GTAB""" _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
174
0
from PIL import Image def _lowerCAmelCase ( A__: Image , A__: float ): '''simple docstring''' def brightness(A__: int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(A__ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __magic_name__ = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
152
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
152
1
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=1_3 , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=9_9 , lowerCAmelCase__ : Dict=6_4 , lowerCAmelCase__ : Union[str, Any]=3_2 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : str=5_1_2 , lowerCAmelCase__ : str=1_6 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Union[str, Any]=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Tuple = batch_size __SCREAMING_SNAKE_CASE : Any = seq_length __SCREAMING_SNAKE_CASE : List[Any] = is_training __SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask __SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids __SCREAMING_SNAKE_CASE : Optional[Any] = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : str = embedding_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Optional[Any] = num_labels __SCREAMING_SNAKE_CASE : Any = num_choices __SCREAMING_SNAKE_CASE : List[Any] = scope def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : int = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Tuple = None __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self : Dict ): """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = MobileBertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = MobileBertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = MobileBertForNextSentencePrediction(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = MobileBertForPreTraining(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , next_sentence_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = MobileBertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = MobileBertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.num_labels __SCREAMING_SNAKE_CASE : Any = MobileBertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.num_choices __SCREAMING_SNAKE_CASE : Tuple = MobileBertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : Union[str, Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : int = config_and_inputs __SCREAMING_SNAKE_CASE : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A : Tuple = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _A : List[str] = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) _A : int = True def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = MobileBertModelTester(self ) __SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def UpperCamelCase__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase__ ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) UpperCamelCase__ : Tuple = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = torch.tensor( [ [ [-2.4_73_65_26E07, 8.2_69_16_56E04, 1.6_52_18_38E05], [-5.7_54_17_04E-01, 3.9_05_60_22E00, 4.4_01_15_07E00], [2.6_04_73_59E00, 1.5_67_76_52E00, -1.7_32_41_88E-01], ] ] , device=lowerCAmelCase__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __SCREAMING_SNAKE_CASE : Optional[Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
112
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCamelCase__ : List[Any] = { '''E''': 1_2.7_0, '''T''': 9.0_6, '''A''': 8.1_7, '''O''': 7.5_1, '''I''': 6.9_7, '''N''': 6.7_5, '''S''': 6.3_3, '''H''': 6.0_9, '''R''': 5.9_9, '''D''': 4.2_5, '''L''': 4.0_3, '''C''': 2.7_8, '''U''': 2.7_6, '''M''': 2.4_1, '''W''': 2.3_6, '''F''': 2.2_3, '''G''': 2.0_2, '''Y''': 1.9_7, '''P''': 1.9_3, '''B''': 1.2_9, '''V''': 0.9_8, '''K''': 0.7_7, '''J''': 0.1_5, '''X''': 0.1_5, '''Q''': 0.1_0, '''Z''': 0.0_7, } UpperCamelCase__ : Optional[Any] = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' UpperCamelCase__ : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : int = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCAmelCase_ ( _lowerCamelCase: tuple ): return x[0] def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Dict = get_letter_count(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = """""".join(freq_to_letter[freq] ) __SCREAMING_SNAKE_CASE : str = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_lowerCamelCase , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : List[Any] = get_frequency_order(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
112
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
360
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
319
0
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __A = logging.getLogger(__name__) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" if os.path.exists(_SCREAMING_SNAKE_CASE ): if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ): os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ): os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) else: os.makedirs(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->Optional[int]: """simple docstring""" lowerCAmelCase__ :Dict = 2 if unlogit: lowerCAmelCase__ :List[str] = torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = p * torch.log(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = 0 return -plogp.sum(dim=-1 ) def __A (_SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" logger.info('lv, h >\t' + '\t'.join(F"{x + 1}" for x in range(len(_SCREAMING_SNAKE_CASE ) ) ) ) for row in range(len(_SCREAMING_SNAKE_CASE ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + '\t'.join(F"{x:d}" for x in tensor[row].cpu().data ) ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ :Dict = model.config.num_hidden_layers, model.config.num_attention_heads lowerCAmelCase__ :Any = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) lowerCAmelCase__ :Tuple = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) if head_mask is None: lowerCAmelCase__ :Optional[int] = torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) head_mask.requires_grad_(requires_grad=_SCREAMING_SNAKE_CASE ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowerCAmelCase__ :List[str] = None lowerCAmelCase__ :Any = 0.0 lowerCAmelCase__ :Any = 0.0 for step, inputs in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): lowerCAmelCase__ :str = tuple(t.to(args.device ) for t in inputs ) ((lowerCAmelCase__) , ) :Dict = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowerCAmelCase__ :str = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :str = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[Any] = entropy(attn.detach() , _SCREAMING_SNAKE_CASE ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_SCREAMING_SNAKE_CASE ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowerCAmelCase__ :Union[str, Any] = 2 lowerCAmelCase__ :Tuple = torch.pow(torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: lowerCAmelCase__ :str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) logger.info('Head ranked by importance scores' ) lowerCAmelCase__ :List[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowerCAmelCase__ :List[Any] = torch.arange( head_importance.numel() , device=args.device ) lowerCAmelCase__ :int = head_ranks.view_as(_SCREAMING_SNAKE_CASE ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) return attn_entropy, head_importance, total_loss def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , _SCREAMING_SNAKE_CASE , original_score * args.masking_threshold ) lowerCAmelCase__ :Optional[int] = torch.ones_like(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowerCAmelCase__ :List[str] = original_score while current_score >= original_score * args.masking_threshold: lowerCAmelCase__ :List[str] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowerCAmelCase__ :str = float('Inf' ) lowerCAmelCase__ :List[str] = head_importance.view(-1 ).sort()[1] if len(_SCREAMING_SNAKE_CASE ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads lowerCAmelCase__ :int = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) lowerCAmelCase__ :Dict = new_head_mask.view(-1 ) lowerCAmelCase__ :Any = 0.0 lowerCAmelCase__ :Tuple = new_head_mask.view_as(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = new_head_mask.clone().detach() print_ad_tensor(_SCREAMING_SNAKE_CASE ) # Compute metric and head importance again lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Optional[Any] = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , _SCREAMING_SNAKE_CASE , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = datetime.now() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = 1 / loss lowerCAmelCase__ :Tuple = datetime.now() - before_time lowerCAmelCase__ :List[str] = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ :List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_SCREAMING_SNAKE_CASE ) ) } for k, v in heads_to_prune.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Union[str, Any] = [ v, ] assert sum(len(_SCREAMING_SNAKE_CASE ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = sum(p.numel() for p in model.parameters() ) lowerCAmelCase__ :int = datetime.now() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Dict = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , actually_pruned=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase__ :int = 1 / loss lowerCAmelCase__ :Tuple = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(_SCREAMING_SNAKE_CASE , args.output_dir ) def __A () ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=_SCREAMING_SNAKE_CASE , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=_SCREAMING_SNAKE_CASE , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=_SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=_SCREAMING_SNAKE_CASE , help='Batch size.' ) parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=42 ) parser.add_argument('--local_rank' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ :Any = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowerCAmelCase__ :List[Any] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) lowerCAmelCase__ :Optional[int] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowerCAmelCase__ :Dict = torch.device('cuda' , args.local_rank ) lowerCAmelCase__ :Tuple = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowerCAmelCase__ :int = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowerCAmelCase__ :Optional[Any] = nn.parallel.DistributedDataParallel( _SCREAMING_SNAKE_CASE , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_SCREAMING_SNAKE_CASE ) elif args.n_gpu > 1: lowerCAmelCase__ :Union[str, Any] = nn.DataParallel(_SCREAMING_SNAKE_CASE ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Prepare dataset lowerCAmelCase__ :Optional[int] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowerCAmelCase__ :Union[str, Any] = (torch.from_numpy(_SCREAMING_SNAKE_CASE ),) lowerCAmelCase__ :Optional[int] = TensorDataset(*_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = RandomSampler(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowerCAmelCase__ :Optional[Any] = mask_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) prune_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
293
"""simple docstring""" from __future__ import annotations __A = 1.6_021e-19 # units = C def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) ->tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
293
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase_ ( __lowercase ): UpperCamelCase_ : BigBirdConfig UpperCamelCase_ : jnp.dtype = jnp.floataa UpperCamelCase_ : bool = True def UpperCamelCase_ ( self : List[str] ) -> Tuple: super().setup() _snake_case = nn.Dense(5 , dtype=self.dtype ) def __call__( self : List[Any] , *A__ : str , **A__ : List[Any] ) -> Union[str, Any]: _snake_case = super().__call__(*A__ , **A__ ) _snake_case = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase_ ( __lowercase ): UpperCamelCase_ : Tuple = FlaxBigBirdForNaturalQuestionsModule def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" def cross_entropy(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): _snake_case = logits.shape[-1] _snake_case = (labels[..., None] == jnp.arange(_UpperCamelCase )[None]).astype('''f4''' ) _snake_case = jax.nn.log_softmax(_UpperCamelCase , axis=-1 ) _snake_case = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _snake_case = reduction(_UpperCamelCase ) return loss _snake_case = partial(_UpperCamelCase , reduction=jnp.mean ) _snake_case = cross_entropy(_UpperCamelCase , _UpperCamelCase ) _snake_case = cross_entropy(_UpperCamelCase , _UpperCamelCase ) _snake_case = cross_entropy(_UpperCamelCase , _UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase_ : UpperCamelCase_ : str = "google/bigbird-roberta-base" UpperCamelCase_ : int = 3_0_0_0 UpperCamelCase_ : int = 1_0_5_0_0 UpperCamelCase_ : int = 1_2_8 UpperCamelCase_ : int = 3 UpperCamelCase_ : int = 1 UpperCamelCase_ : int = 5 # tx_args UpperCamelCase_ : float = 3E-5 UpperCamelCase_ : float = 0.0 UpperCamelCase_ : int = 2_0_0_0_0 UpperCamelCase_ : float = 0.0_095 UpperCamelCase_ : str = "bigbird-roberta-natural-questions" UpperCamelCase_ : str = "training-expt" UpperCamelCase_ : str = "data/nq-training.jsonl" UpperCamelCase_ : str = "data/nq-validation.jsonl" def UpperCamelCase_ ( self : List[Any] ) -> Tuple: os.makedirs(self.base_dir , exist_ok=A__ ) _snake_case = os.path.join(self.base_dir , self.save_dir ) _snake_case = self.batch_size_per_device * jax.device_count() @dataclass class lowercase_ : UpperCamelCase_ : int UpperCamelCase_ : int = 4_0_9_6 # no dynamic padding on TPUs def __call__( self : Dict , A__ : Optional[Any] ) -> Optional[Any]: _snake_case = self.collate_fn(A__ ) _snake_case = jax.tree_util.tree_map(A__ , A__ ) return batch def UpperCamelCase_ ( self : Dict , A__ : str ) -> List[str]: _snake_case, _snake_case = self.fetch_inputs(features['''input_ids'''] ) _snake_case = { '''input_ids''': jnp.array(A__ , dtype=jnp.intaa ), '''attention_mask''': jnp.array(A__ , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def UpperCamelCase_ ( self : str , A__ : list ) -> Tuple: _snake_case = [self._fetch_inputs(A__ ) for ids in input_ids] return zip(*A__ ) def UpperCamelCase_ ( self : Optional[Any] , A__ : list ) -> Dict: _snake_case = [1 for _ in range(len(A__ ) )] while len(A__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[Any]: """simple docstring""" if seed is not None: _snake_case = dataset.shuffle(seed=_UpperCamelCase ) for i in range(len(_UpperCamelCase ) // batch_size ): _snake_case = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_UpperCamelCase ) @partial(jax.pmap , axis_name='''batch''' ) def snake_case_(_UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) -> Any: """simple docstring""" def loss_fn(_UpperCamelCase ): _snake_case = model_inputs.pop('''start_labels''' ) _snake_case = model_inputs.pop('''end_labels''' ) _snake_case = model_inputs.pop('''pooled_labels''' ) _snake_case = state.apply_fn(**_UpperCamelCase , params=_UpperCamelCase , dropout_rng=_UpperCamelCase , train=_UpperCamelCase ) _snake_case, _snake_case, _snake_case = outputs return state.loss_fn( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) _snake_case, _snake_case = jax.random.split(_UpperCamelCase ) _snake_case = jax.value_and_grad(_UpperCamelCase ) _snake_case, _snake_case = grad_fn(state.params ) _snake_case = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) _snake_case = jax.lax.pmean(_UpperCamelCase , '''batch''' ) _snake_case = state.apply_gradients(grads=_UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def snake_case_(_UpperCamelCase , **_UpperCamelCase ) -> Any: """simple docstring""" _snake_case = model_inputs.pop('''start_labels''' ) _snake_case = model_inputs.pop('''end_labels''' ) _snake_case = model_inputs.pop('''pooled_labels''' ) _snake_case = state.apply_fn(**_UpperCamelCase , params=state.params , train=_UpperCamelCase ) _snake_case, _snake_case, _snake_case = outputs _snake_case = state.loss_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _snake_case = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class lowercase_ ( train_state.TrainState ): UpperCamelCase_ : Callable = struct.field(pytree_node=__lowercase ) @dataclass class lowercase_ : UpperCamelCase_ : Args UpperCamelCase_ : Callable UpperCamelCase_ : Callable UpperCamelCase_ : Callable UpperCamelCase_ : Callable UpperCamelCase_ : wandb UpperCamelCase_ : Callable = None def UpperCamelCase_ ( self : Optional[Any] , A__ : Union[str, Any] , A__ : Optional[Any] , A__ : Any , A__ : Optional[int]=None ) -> List[str]: _snake_case = model.params _snake_case = TrainState.create( apply_fn=model.__call__ , params=A__ , tx=A__ , loss_fn=A__ , ) if ckpt_dir is not None: _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = restore_checkpoint(A__ , A__ ) _snake_case = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } _snake_case, _snake_case = build_tx(**A__ ) _snake_case = train_state.TrainState( step=A__ , apply_fn=model.__call__ , params=A__ , tx=A__ , opt_state=A__ , ) _snake_case = args _snake_case = data_collator _snake_case = lr _snake_case = params _snake_case = jax_utils.replicate(A__ ) return state def UpperCamelCase_ ( self : Union[str, Any] , A__ : List[str] , A__ : str , A__ : int ) -> Tuple: _snake_case = self.args _snake_case = len(A__ ) // args.batch_size _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(A__ , jax.device_count() ) for epoch in range(args.max_epochs ): _snake_case = jnp.array(0 , dtype=jnp.floataa ) _snake_case = get_batched_dataset(A__ , args.batch_size , seed=A__ ) _snake_case = 0 for batch in tqdm(A__ , total=A__ , desc=f"""Running EPOCH-{epoch}""" ): _snake_case = self.data_collator(A__ ) _snake_case, _snake_case, _snake_case = self.train_step_fn(A__ , A__ , **A__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: _snake_case = jax_utils.unreplicate(state.step ) _snake_case = running_loss.item() / i _snake_case = self.scheduler_fn(state_step - 1 ) _snake_case = self.evaluate(A__ , A__ ) _snake_case = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(A__ ) ) self.logger.log(A__ , commit=A__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"""-e{epoch}-s{i}""" , state=A__ ) def UpperCamelCase_ ( self : int , A__ : List[str] , A__ : List[Any] ) -> Tuple: _snake_case = get_batched_dataset(A__ , self.args.batch_size ) _snake_case = len(A__ ) // self.args.batch_size _snake_case = jnp.array(0 , dtype=jnp.floataa ) _snake_case = 0 for batch in tqdm(A__ , total=A__ , desc='''Evaluating ... ''' ): _snake_case = self.data_collator(A__ ) _snake_case = self.val_step_fn(A__ , **A__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def UpperCamelCase_ ( self : int , A__ : Dict , A__ : Tuple ) -> List[Any]: _snake_case = jax_utils.unreplicate(A__ ) print(f"""SAVING CHECKPOINT IN {save_dir}""" , end=''' ... ''' ) self.model_save_fn(A__ , params=state.params ) with open(os.path.join(A__ , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(A__ , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(A__ , '''data_collator.joblib''' ) ) with open(os.path.join(A__ , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , A__ ) print('''DONE''' ) def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=''' ... ''' ) with open(os.path.join(_UpperCamelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: _snake_case = from_bytes(state.params , f.read() ) with open(os.path.join(_UpperCamelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: _snake_case = from_bytes(state.opt_state , f.read() ) _snake_case = joblib.load(os.path.join(_UpperCamelCase , '''args.joblib''' ) ) _snake_case = joblib.load(os.path.join(_UpperCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(_UpperCamelCase , '''training_state.json''' ) , '''r''' ) as f: _snake_case = json.load(_UpperCamelCase ) _snake_case = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" _snake_case = num_train_steps - warmup_steps _snake_case = optax.linear_schedule(init_value=_UpperCamelCase , end_value=_UpperCamelCase , transition_steps=_UpperCamelCase ) _snake_case = optax.linear_schedule(init_value=_UpperCamelCase , end_value=1E-7 , transition_steps=_UpperCamelCase ) _snake_case = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" def weight_decay_mask(_UpperCamelCase ): _snake_case = traverse_util.flatten_dict(_UpperCamelCase ) _snake_case = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(_UpperCamelCase ) _snake_case = scheduler_fn(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _snake_case = optax.adamw(learning_rate=_UpperCamelCase , weight_decay=_UpperCamelCase , mask=_UpperCamelCase ) return tx, lr
360
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
278
0
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() A: Tuple = logging.get_logger(__name__) def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): UpperCAmelCase : int = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) UpperCAmelCase : Optional[int] = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : str = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCAmelCase : Dict = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCAmelCase : Optional[int] = in_proj_weight[ -encoder_config.hidden_size :, : ] def _snake_case ( UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : int ): UpperCAmelCase : Optional[int] = dct.pop(UpperCamelCase ) UpperCAmelCase : str = val def _snake_case ( UpperCamelCase : Any ): if "handwritten" in checkpoint_url: UpperCAmelCase : int = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase : Tuple = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" UpperCAmelCase : int = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert("""RGB""" ) return im @torch.no_grad() def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : int ): UpperCAmelCase : Dict = ViTConfig(image_size=384 , qkv_bias=UpperCamelCase ) UpperCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCAmelCase : List[Any] = 768 elif "large" in checkpoint_url: # use ViT-large encoder UpperCAmelCase : Tuple = 1024 UpperCAmelCase : Any = 4096 UpperCAmelCase : List[str] = 24 UpperCAmelCase : str = 16 UpperCAmelCase : Optional[Any] = 1024 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase : Optional[Any] = False UpperCAmelCase : int = """relu""" UpperCAmelCase : Dict = 1024 UpperCAmelCase : List[str] = True UpperCAmelCase : List[str] = False UpperCAmelCase : Any = False # load HuggingFace model UpperCAmelCase : Any = ViTModel(UpperCamelCase , add_pooling_layer=UpperCamelCase ) UpperCAmelCase : Any = TrOCRForCausalLM(UpperCamelCase ) UpperCAmelCase : Dict = VisionEncoderDecoderModel(encoder=UpperCamelCase , decoder=UpperCamelCase ) model.eval() # load state_dict of original model, rename some keys UpperCAmelCase : str = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" , check_hash=UpperCamelCase )["""model"""] UpperCAmelCase : str = create_rename_keys(UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCAmelCase : Any = state_dict.pop(UpperCamelCase ) if key.startswith("""decoder""" ) and "output_projection" not in key: UpperCAmelCase : Union[str, Any] = val else: UpperCAmelCase : List[str] = val # load state dict model.load_state_dict(UpperCamelCase ) # Check outputs on an image UpperCAmelCase : Optional[Any] = ViTImageProcessor(size=encoder_config.image_size ) UpperCAmelCase : List[str] = RobertaTokenizer.from_pretrained("""roberta-large""" ) UpperCAmelCase : Union[str, Any] = TrOCRProcessor(UpperCamelCase , UpperCamelCase ) UpperCAmelCase : Tuple = processor(images=prepare_img(UpperCamelCase ) , return_tensors="""pt""" ).pixel_values # verify logits UpperCAmelCase : Dict = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) UpperCAmelCase : Dict = model(pixel_values=UpperCamelCase , decoder_input_ids=UpperCamelCase ) UpperCAmelCase : List[Any] = outputs.logits UpperCAmelCase : Optional[int] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: UpperCAmelCase : Optional[Any] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: UpperCAmelCase : Optional[int] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: UpperCAmelCase : Tuple = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: UpperCAmelCase : Tuple = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , UpperCamelCase , atol=1e-3 ), "First elements of logits not as expected" Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A: List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
109
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class __UpperCAmelCase : '''simple docstring''' def __init__(self : Union[str, Any] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Union[str, Any] ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) A = model A = kwargs.get("""model_save_dir""" , _lowerCAmelCase ) A = kwargs.get("""latest_model_name""" , _lowerCAmelCase ) def __call__(self : Tuple , **_lowerCAmelCase : Optional[Any] ): A = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def A (_lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) A = """CPUExecutionProvider""" return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def A (self : List[str] , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : List[str] ): A = file_name if file_name is not None else ONNX_WEIGHTS_NAME A = self.model_save_dir.joinpath(self.latest_model_name ) A = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): A = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def A (self : Tuple , _lowerCAmelCase : Union[str, os.PathLike] , **_lowerCAmelCase : str , ): if os.path.isfile(_lowerCAmelCase ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def A (cls : str , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : Optional[Union[bool, str, None]] = None , _lowerCAmelCase : Optional[Union[str, None]] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional["ort.SessionOptions"] = None , **_lowerCAmelCase : Optional[int] , ): A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): A = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) A = Path(_lowerCAmelCase ) # load model from hub else: # download model A = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) A = Path(_lowerCAmelCase ).parent A = Path(_lowerCAmelCase ).name A = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def A (cls : str , _lowerCAmelCase : Union[str, Path] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : str , ): A = None if len(str(_lowerCAmelCase ).split("""@""" ) ) == 2: A , A = model_id.split("""@""" ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
258
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __magic_name__ : def __init__( self : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any]=14 , lowerCamelCase__ : int=7 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : Any=False , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Tuple=99 , lowerCamelCase__ : Union[str, Any]=32 , lowerCamelCase__ : Any=4 , lowerCamelCase__ : Optional[int]=4 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Tuple=37 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : Dict=0.1 , lowerCamelCase__ : Optional[Any]=0.1 , lowerCamelCase__ : Optional[int]=512 , lowerCamelCase__ : Union[str, Any]=0.02 , ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Dict = parent UpperCamelCase__ : Any = batch_size UpperCamelCase__ : int = seq_length UpperCamelCase__ : List[Any] = is_training UpperCamelCase__ : Tuple = use_input_mask UpperCamelCase__ : Optional[Any] = use_token_type_ids UpperCamelCase__ : Union[str, Any] = use_labels UpperCamelCase__ : List[str] = vocab_size UpperCamelCase__ : str = hidden_size UpperCamelCase__ : Dict = rotary_dim UpperCamelCase__ : List[str] = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : List[str] = intermediate_size UpperCamelCase__ : List[Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : str = max_position_embeddings UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : List[str] = None UpperCamelCase__ : Dict = vocab_size - 1 UpperCamelCase__ : Optional[int] = vocab_size - 1 UpperCamelCase__ : Union[str, Any] = vocab_size - 1 def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Union[str, Any] = None if self.use_input_mask: UpperCamelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : int = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCamelCase__ : str = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = config_and_inputs UpperCamelCase__ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : int ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[int] = 20 UpperCamelCase__ : Optional[int] = model_class_name(lowerCamelCase__ ) UpperCamelCase__ : Any = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) UpperCamelCase__ : str = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCamelCase__ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase__ : Optional[int] = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) UpperCamelCase__ : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCamelCase__ : Dict = model( input_ids[:, -1:] , attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase__ , ) UpperCamelCase__ : List[str] = model(lowerCamelCase__ ) UpperCamelCase__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : Optional[Any] = 20 UpperCamelCase__ : Any = model_class_name(lowerCamelCase__ ) UpperCamelCase__ : int = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCamelCase__ : List[str] = model.init_cache(input_ids.shape[0] , lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCamelCase__ : str = model( input_ids[:, :-1] , attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) UpperCamelCase__ : Optional[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCamelCase__ : Any = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase__ , position_ids=lowerCamelCase__ , ) UpperCamelCase__ : int = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) @require_flax class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): A: Optional[int] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A: List[str] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : int = FlaxGPTJModelTester(self ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : str ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @tooslow def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) UpperCamelCase__ : Optional[Any] = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) UpperCamelCase__ : str = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCamelCase__ : int = False UpperCamelCase__ : List[Any] = model.config.eos_token_id UpperCamelCase__ : Union[str, Any] = jax.jit(model.generate ) UpperCamelCase__ : List[str] = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCamelCase__ : str = tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) UpperCamelCase__ : List[Any] = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase__ : Tuple = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase__ : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ : int = getattr(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ : str = pt_inputs['''input_ids'''].shape UpperCamelCase__ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): UpperCamelCase__ : str = 0 UpperCamelCase__ : str = 1 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : List[str] = pt_model_class(lowerCamelCase__ ).eval() UpperCamelCase__ : Optional[Any] = model_class(lowerCamelCase__ , dtype=jnp.floataa ) UpperCamelCase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = fx_state with torch.no_grad(): UpperCamelCase__ : List[str] = pt_model(**lowerCamelCase__ ).to_tuple() UpperCamelCase__ : Tuple = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : str = model_class.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) UpperCamelCase__ : List[str] = fx_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCamelCase__ : Any = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Any = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase__ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ : List[Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = pt_model_class(lowerCamelCase__ ).eval() UpperCamelCase__ : int = model_class(lowerCamelCase__ , dtype=jnp.floataa ) UpperCamelCase__ : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase__ , fx_model.params ) UpperCamelCase__ , UpperCamelCase__ : Any = pt_inputs['''input_ids'''].shape UpperCamelCase__ : Dict = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Dict = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCamelCase__ : Union[str, Any] = pt_model(**lowerCamelCase__ ).to_tuple() UpperCamelCase__ : Tuple = fx_model(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ : Tuple = pt_model_class.from_pretrained(lowerCamelCase__ , from_flax=lowerCamelCase__ ) with torch.no_grad(): UpperCamelCase__ : Union[str, Any] = pt_model_loaded(**lowerCamelCase__ ).to_tuple() self.assertEqual( len(lowerCamelCase__ ) , len(lowerCamelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCamelCase__ : Tuple = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCamelCase__ : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
51
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __UpperCamelCase : int = logging.get_logger(__name__) class __magic_name__ ( __lowerCAmelCase): A: str = ["pixel_values"] def __init__( self : str , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[int, float] = 1 / 255 , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = True , **lowerCamelCase__ : Any , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = size if size is not None else {'''shortest_edge''': 224} UpperCamelCase__ : List[str] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} UpperCamelCase__ : Dict = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) UpperCamelCase__ : Optional[Any] = do_resize UpperCamelCase__ : List[Any] = size UpperCamelCase__ : Optional[int] = resample UpperCamelCase__ : Optional[int] = do_rescale UpperCamelCase__ : Dict = rescale_factor UpperCamelCase__ : Optional[Any] = do_center_crop UpperCamelCase__ : int = crop_size UpperCamelCase__ : List[str] = do_flip_channel_order def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : PILImageResampling = PIL.Image.BILINEAR , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[str] , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ : Optional[int] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCamelCase__ : int = get_resize_output_image_size(lowerCamelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[Any] , ) -> np.ndarray: '''simple docstring''' UpperCamelCase__ : Optional[int] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(lowerCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[int, float] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Tuple , ) -> List[Any]: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: '''simple docstring''' return flip_channel_order(lowerCamelCase__ , data_format=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase__ : List[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCamelCase__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : List[Any] = resample if resample is not None else self.resample UpperCamelCase__ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ : List[str] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase__ : List[str] = size if size is not None else self.size UpperCamelCase__ : int = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) UpperCamelCase__ : Tuple = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ : int = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) UpperCamelCase__ : int = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ : Union[str, Any] = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: UpperCamelCase__ : Tuple = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: UpperCamelCase__ : Optional[Any] = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: UpperCamelCase__ : List[Any] = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase__ : List[Any] = [self.flip_channel_order(image=lowerCamelCase__ ) for image in images] UpperCamelCase__ : Union[str, Any] = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] UpperCamelCase__ : int = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Tuple] = None ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCamelCase__ ): UpperCamelCase__ : Tuple = target_sizes.numpy() UpperCamelCase__ : Any = [] for idx in range(len(lowerCamelCase__ ) ): UpperCamelCase__ : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase__ ) else: UpperCamelCase__ : Dict = logits.argmax(dim=1 ) UpperCamelCase__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
51
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): snake_case_ = IFInpaintingPipeline snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case_ = PipelineTesterMixin.required_optional_params - {"""latents"""} def __magic_name__ ( self : Tuple ) -> Optional[int]: return self._get_dummy_components() def __magic_name__ ( self : Optional[Any] , __lowercase : str , __lowercase : int=0 ) -> Tuple: if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : int =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) SCREAMING_SNAKE_CASE__ : Any ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __magic_name__ ( self : Any ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __magic_name__ ( self : List[str] ) -> List[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def __magic_name__ ( self : List[Any] ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __magic_name__ ( self : Union[str, Any] ) -> List[str]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __magic_name__ ( self : Tuple ) -> Dict: self._test_save_load_local() def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
152
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = CanineTokenizer snake_case_ = False def __magic_name__ ( self : Any ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE__ : int =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self : Optional[int] ) -> List[str]: return CanineTokenizer.from_pretrained('''google/canine-s''' ) def __magic_name__ ( self : Optional[int] , **__lowercase : int ) -> CanineTokenizer: SCREAMING_SNAKE_CASE__ : int =self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =10_24 return tokenizer @require_torch def __magic_name__ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] =[5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' ) self.assertIsInstance(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def __magic_name__ ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : str =['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , __lowercase ) self.assertIn('''attention_mask''' , __lowercase ) self.assertIn('''token_type_ids''' , __lowercase ) @require_torch def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : List[str] =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : Dict =[ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] SCREAMING_SNAKE_CASE__ : int =tokenizer( text_target=__lowercase , max_length=32 , padding='''max_length''' , truncation=__lowercase , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __magic_name__ ( self : List[str] ) -> Any: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE__ : str =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE__ : int =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__ : List[str] =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Dict =''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.__class__.from_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) shutil.rmtree(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__ : Union[str, Any] =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Union[str, Any] =''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: SCREAMING_SNAKE_CASE__ : str =chr(0xE007 ) additional_special_tokens.append(__lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.__class__.from_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertIn(__lowercase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.__class__.from_pretrained(__lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowercase ) def __magic_name__ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_clean_sequence(__lowercase ) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : Optional[int] =0xE005 SCREAMING_SNAKE_CASE__ : Any =chr(__lowercase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertEqual(len(__lowercase ) , 1 ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertEqual(__lowercase , input_encoded + special_token_id ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : Tuple =chr(0xE005 ) SCREAMING_SNAKE_CASE__ : List[Any] =chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowercase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.tokenize(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.tokenize(__lowercase ) self.assertEqual(len(__lowercase ) , 1 ) self.assertEqual(len(__lowercase ) , 1 ) self.assertEqual(token_a[0] , __lowercase ) self.assertEqual(token_a[0] , __lowercase ) @require_tokenizers def __magic_name__ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : str =0xE006 SCREAMING_SNAKE_CASE__ : int =chr(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =AddedToken(__lowercase , lstrip=__lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowercase ) tokenizer.from_pretrained(__lowercase ) def __magic_name__ ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ : int =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__ : List[Any] =json.load(__lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__ : Dict =json.load(__lowercase ) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : Optional[Any] =0xE006 SCREAMING_SNAKE_CASE__ : Dict =chr(__lowercase ) SCREAMING_SNAKE_CASE__ : str =[new_token_a] SCREAMING_SNAKE_CASE__ : Optional[Any] =[new_token_a] with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer_class.from_pretrained(__lowercase , extra_ids=0 ) self.assertIn(__lowercase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) SCREAMING_SNAKE_CASE__ : str =0xE007 SCREAMING_SNAKE_CASE__ : Optional[int] =chr(__lowercase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE__ : Tuple =[AddedToken(__lowercase , lstrip=__lowercase )] SCREAMING_SNAKE_CASE__ : Any =tokenizer_class.from_pretrained( __lowercase , additional_special_tokens=__lowercase , extra_ids=0 ) self.assertIn(__lowercase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : List[str] ='''hello world''' if self.space_between_special_tokens: SCREAMING_SNAKE_CASE__ : str ='''[CLS] hello world [SEP]''' else: SCREAMING_SNAKE_CASE__ : int =input SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(__lowercase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowercase , [output, output.lower()] ) def __magic_name__ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : str =[ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE__ : Tuple ='''a''' SCREAMING_SNAKE_CASE__ : Tuple =ord(__lowercase ) for attr in attributes_list: setattr(__lowercase , attr + '''_id''' , __lowercase ) self.assertEqual(getattr(__lowercase , __lowercase ) , __lowercase ) self.assertEqual(getattr(__lowercase , attr + '''_id''' ) , __lowercase ) setattr(__lowercase , attr + '''_id''' , __lowercase ) self.assertEqual(getattr(__lowercase , __lowercase ) , __lowercase ) self.assertEqual(getattr(__lowercase , attr + '''_id''' ) , __lowercase ) setattr(__lowercase , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens_ids''' ) , [] ) SCREAMING_SNAKE_CASE__ : str =0xE006 SCREAMING_SNAKE_CASE__ : List[str] =chr(__lowercase ) setattr(__lowercase , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def __magic_name__ ( self : str ) -> Dict: pass def __magic_name__ ( self : List[Any] ) -> List[Any]: pass def __magic_name__ ( self : Any ) -> int: pass def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]: pass def __magic_name__ ( self : List[Any] ) -> Optional[int]: pass def __magic_name__ ( self : Tuple ) -> Optional[Any]: pass def __magic_name__ ( self : Dict ) -> Dict: pass def __magic_name__ ( self : List[str] ) -> Dict: pass
152
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : List[str] = logging.get_logger(__name__) lowerCAmelCase : int = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Dict = '''altclip_text_model''' def __init__( self : Any , lowerCAmelCase__ : List[Any]=25_0002 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=24 , lowerCAmelCase__ : List[str]=16 , lowerCAmelCase__ : Tuple=4096 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Union[str, Any]=514 , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : int=1E-05 , lowerCAmelCase__ : List[Any]=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Optional[int]="absolute" , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : List[str]=768 , **lowerCAmelCase__ : Any , ): super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = vocab_size SCREAMING_SNAKE_CASE_: List[str] = hidden_size SCREAMING_SNAKE_CASE_: Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_: List[str] = num_attention_heads SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: int = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE_: Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_: str = initializer_range SCREAMING_SNAKE_CASE_: Optional[int] = initializer_factor SCREAMING_SNAKE_CASE_: Dict = layer_norm_eps SCREAMING_SNAKE_CASE_: Tuple = position_embedding_type SCREAMING_SNAKE_CASE_: Union[str, Any] = use_cache SCREAMING_SNAKE_CASE_: Tuple = project_dim class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = '''altclip_vision_model''' def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int]=768 , lowerCAmelCase__ : str=3072 , lowerCAmelCase__ : Optional[Any]=512 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : Any=12 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : List[str]=224 , lowerCAmelCase__ : Optional[int]=32 , lowerCAmelCase__ : Union[str, Any]="quick_gelu" , lowerCAmelCase__ : Optional[Any]=1E-5 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Dict=1.0 , **lowerCAmelCase__ : Tuple , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = hidden_size SCREAMING_SNAKE_CASE_: Tuple = intermediate_size SCREAMING_SNAKE_CASE_: Union[str, Any] = projection_dim SCREAMING_SNAKE_CASE_: int = num_hidden_layers SCREAMING_SNAKE_CASE_: Tuple = num_attention_heads SCREAMING_SNAKE_CASE_: Any = num_channels SCREAMING_SNAKE_CASE_: int = patch_size SCREAMING_SNAKE_CASE_: List[Any] = image_size SCREAMING_SNAKE_CASE_: Any = initializer_range SCREAMING_SNAKE_CASE_: List[str] = initializer_factor SCREAMING_SNAKE_CASE_: Tuple = attention_dropout SCREAMING_SNAKE_CASE_: int = layer_norm_eps SCREAMING_SNAKE_CASE_: List[str] = hidden_act @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Optional[Any]): cls._set_token_in_kwargs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type") == "altclip": SCREAMING_SNAKE_CASE_: Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors.") return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = '''altclip''' _UpperCAmelCase : Dict = True def __init__( self : Optional[Any] , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=2.6592 , **lowerCAmelCase__ : str): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). SCREAMING_SNAKE_CASE_: str = kwargs.pop("text_config_dict" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = kwargs.pop("vision_config_dict" , lowerCAmelCase__) super().__init__(**lowerCAmelCase__) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: SCREAMING_SNAKE_CASE_: Any = {} # This is the complete result when using `text_config_dict`. SCREAMING_SNAKE_CASE_: int = AltCLIPTextConfig(**lowerCAmelCase__).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: SCREAMING_SNAKE_CASE_: Dict = ( F"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " F"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: SCREAMING_SNAKE_CASE_: Any = ( F"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " F"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(lowerCAmelCase__) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: SCREAMING_SNAKE_CASE_: Tuple = {} # This is the complete result when using `vision_config_dict`. SCREAMING_SNAKE_CASE_: Optional[int] = AltCLIPVisionConfig(**lowerCAmelCase__).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: SCREAMING_SNAKE_CASE_: int = { str(lowerCAmelCase__): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: SCREAMING_SNAKE_CASE_: List[str] = ( F"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " F"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: SCREAMING_SNAKE_CASE_: List[Any] = ( F"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " F"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(lowerCAmelCase__) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: SCREAMING_SNAKE_CASE_: List[Any] = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.") if vision_config is None: SCREAMING_SNAKE_CASE_: Union[str, Any] = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.") SCREAMING_SNAKE_CASE_: Optional[Any] = AltCLIPTextConfig(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = AltCLIPVisionConfig(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = projection_dim SCREAMING_SNAKE_CASE_: Union[str, Any] = logit_scale_init_value SCREAMING_SNAKE_CASE_: Optional[int] = 1.0 @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple , lowerCAmelCase__ : AltCLIPTextConfig , lowerCAmelCase__ : AltCLIPVisionConfig , **lowerCAmelCase__ : Dict): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = copy.deepcopy(self.__dict__) SCREAMING_SNAKE_CASE_: Any = self.text_config.to_dict() SCREAMING_SNAKE_CASE_: int = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_: Dict = self.__class__.model_type return output
127
import doctest from collections import deque import numpy as np class __lowercase : """simple docstring""" def __init__( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = [2, 1, 2, -1] SCREAMING_SNAKE_CASE_: Optional[Any] = [1, 2, 3, 4] def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Any = len(self.first_signal) SCREAMING_SNAKE_CASE_: Dict = len(self.second_signal) SCREAMING_SNAKE_CASE_: Union[str, Any] = max(lowerCAmelCase__ , lowerCAmelCase__) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE_: List[Any] = [[0] * max_length for i in range(lowerCAmelCase__)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = deque(self.second_signal) rotated_signal.rotate(lowerCAmelCase__) for j, item in enumerate(lowerCAmelCase__): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE_: Optional[Any] = np.matmul(np.transpose(lowerCAmelCase__) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
127
1
from manim import * class A_ ( UpperCAmelCase_ ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = Rectangle(height=0.5 , width=0.5 ) __UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __UpperCAmelCase = Rectangle(height=0.25 , width=0.25 ) __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = VGroup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = Text('''CPU''' , font_size=24 ) __UpperCAmelCase = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [mem.copy() for i in range(4 )] __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = Text('''GPU''' , font_size=24 ) __UpperCAmelCase = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) gpu.move_to([-1, -1, 0] ) self.add(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = Text('''Model''' , font_size=24 ) __UpperCAmelCase = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) model.move_to([3, -1.0, 0] ) self.add(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [] __UpperCAmelCase = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase = fill.copy().set_fill(SCREAMING_SNAKE_CASE_ , opacity=0.8 ) target.move_to(SCREAMING_SNAKE_CASE_ ) model_arr.append(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(SCREAMING_SNAKE_CASE_ ) self.add(*SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = VGroup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = Text('''Disk''' , font_size=24 ) __UpperCAmelCase = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) disk.move_to([-4, -1.25, 0] ) self.add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCAmelCase = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(SCREAMING_SNAKE_CASE_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = Square(0.3 ) input.set_fill(SCREAMING_SNAKE_CASE_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , SCREAMING_SNAKE_CASE_ , buff=0.5 ) self.play(Write(SCREAMING_SNAKE_CASE_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=SCREAMING_SNAKE_CASE_ , buff=0.02 ) self.play(MoveToTarget(SCREAMING_SNAKE_CASE_ ) ) self.play(FadeOut(SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = Arrow(start=SCREAMING_SNAKE_CASE_ , end=SCREAMING_SNAKE_CASE_ , color=SCREAMING_SNAKE_CASE_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , SCREAMING_SNAKE_CASE_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __UpperCAmelCase = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE_ , run_time=3 ) ) __UpperCAmelCase = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(SCREAMING_SNAKE_CASE_ ) , Circumscribe(model_arr[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(model_cpu_arr[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __UpperCAmelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , SCREAMING_SNAKE_CASE_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __UpperCAmelCase = AnimationGroup( FadeOut(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , MoveToTarget(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , FadeIn(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(SCREAMING_SNAKE_CASE_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __UpperCAmelCase = 0.7 self.play( Circumscribe(model_arr[i] , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(cpu_left_col_base[i] , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(model_arr[i + 1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(cpu_left_col_base[-1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __UpperCAmelCase = a_c __UpperCAmelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(SCREAMING_SNAKE_CASE_ ) , FadeOut(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , ) __UpperCAmelCase = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE_ , run_time=3 ) , MoveToTarget(SCREAMING_SNAKE_CASE_ ) ) self.wait()
333
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list: A: Dict = length or len(__lowercase ) A: Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A , A: Tuple = list_data[i + 1], list_data[i] A: Union[str, Any] = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
import os import sys import unittest lowercase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase : int = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") lowercase : Optional[int] = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = get_test_to_tester_mapping(snake_case ) lowercase : int = get_test_to_tester_mapping(snake_case ) lowercase : List[str] = {"""BertModelTest""": """BertModelTester"""} lowercase : Dict = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = get_model_to_test_mapping(snake_case ) lowercase : str = get_model_to_test_mapping(snake_case ) lowercase : Any = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } lowercase : Tuple = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = get_model_to_tester_mapping(snake_case ) lowercase : List[Any] = get_model_to_tester_mapping(snake_case ) lowercase : List[Any] = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } lowercase : str = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case ) self.assertEqual(get_test_info.to_json(snake_case ) ,snake_case )
285
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Optional[int]= None _a : Optional[Any]= BloomTokenizerFast _a : Tuple= BloomTokenizerFast _a : str= True _a : Optional[int]= False _a : List[Any]= "tokenizer_file" _a : List[Any]= {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Optional[Any] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.get_rust_tokenizer() lowercase : List[str] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] lowercase : Optional[int] = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase : Any = tokenizer.batch_encode_plus(snake_case )["""input_ids"""] self.assertListEqual(snake_case ,snake_case ) lowercase : Optional[int] = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase : Dict = self.rust_tokenizer_class.from_pretrained(snake_case ,**snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase : Dict = """This is a simple input""" lowercase : Tuple = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase : Dict = ("""This is a simple input""", """This is a pair""") lowercase : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase : Optional[int] = None # Hotfixing padding = None self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.get_rust_tokenizer() lowercase : List[str] = load_dataset("""xnli""" ,"""all_languages""" ,split="""test""" ,streaming=snake_case ) lowercase : Optional[Any] = next(iter(snake_case ) )["""premise"""] # pick up one data lowercase : str = list(sample_data.values() ) lowercase : Optional[int] = list(map(tokenizer.encode ,snake_case ) ) lowercase : Dict = [tokenizer.decode(snake_case ,clean_up_tokenization_spaces=snake_case ) for x in output_tokens] self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) ,1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) ,1 )
285
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.exp(_A ) lowercase = torch.sum(_A , dim=1 ) # sum of exp(x_i) lowercase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(_A ) - B / A class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = config.output_attentions lowercase = config.output_hidden_states lowercase = nn.ModuleList([BertLayer(UpperCamelCase__) for _ in range(config.num_hidden_layers)]) lowercase = nn.ModuleList([BertHighway(UpperCamelCase__) for _ in range(config.num_hidden_layers)]) lowercase = [-1 for _ in range(config.num_hidden_layers)] def A__ ( self ,A__): if (type(UpperCamelCase__) is float) or (type(UpperCamelCase__) is int): for i in range(len(self.early_exit_entropy)): lowercase = x else: lowercase = x def A__ ( self ,A__): lowercase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name]) def A__ ( self ,A__ ,A__=None ,A__=None ,A__=None ,A__=None ,): lowercase = () lowercase = () lowercase = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: lowercase = all_hidden_states + (hidden_states,) lowercase = layer_module( UpperCamelCase__ ,UpperCamelCase__ ,head_mask[i] ,UpperCamelCase__ ,UpperCamelCase__) lowercase = layer_outputs[0] if self.output_attentions: lowercase = all_attentions + (layer_outputs[1],) lowercase = (hidden_states,) if self.output_hidden_states: lowercase = current_outputs + (all_hidden_states,) if self.output_attentions: lowercase = current_outputs + (all_attentions,) lowercase = self.highway[i](UpperCamelCase__) # logits, pooled_output if not self.training: lowercase = highway_exit[0] lowercase = entropy(UpperCamelCase__) lowercase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowercase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowercase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase__ ,i + 1) else: lowercase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowercase = all_hidden_states + (hidden_states,) lowercase = (hidden_states,) if self.output_hidden_states: lowercase = outputs + (all_hidden_states,) if self.output_attentions: lowercase = outputs + (all_attentions,) lowercase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , __UpperCAmelCase , ) class lowercase ( __UpperCAmelCase ): def __init__( self ,A__): super().__init__(UpperCamelCase__) lowercase = config lowercase = BertEmbeddings(UpperCamelCase__) lowercase = DeeBertEncoder(UpperCamelCase__) lowercase = BertPooler(UpperCamelCase__) self.init_weights() def A__ ( self): self.encoder.init_highway_pooler(self.pooler) def A__ ( self): return self.embeddings.word_embeddings def A__ ( self ,A__): lowercase = value def A__ ( self ,A__): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase__) @add_start_docstrings_to_model_forward(UpperCamelCase__) def A__ ( self ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''') elif input_ids is not None: lowercase = input_ids.size() elif inputs_embeds is not None: lowercase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''') lowercase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase = torch.ones(UpperCamelCase__ ,device=UpperCamelCase__) if encoder_attention_mask is None: lowercase = torch.ones(UpperCamelCase__ ,device=UpperCamelCase__) if token_type_ids is None: lowercase = torch.zeros(UpperCamelCase__ ,dtype=torch.long ,device=UpperCamelCase__) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase = self.get_extended_attention_mask(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowercase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowercase = encoder_attention_mask[:, None, None, :] lowercase = encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility lowercase = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase = self.get_head_mask(UpperCamelCase__ ,self.config.num_hidden_layers) lowercase = self.embeddings( input_ids=UpperCamelCase__ ,position_ids=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,inputs_embeds=UpperCamelCase__) lowercase = self.encoder( UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,head_mask=UpperCamelCase__ ,encoder_hidden_states=UpperCamelCase__ ,encoder_attention_mask=UpperCamelCase__ ,) lowercase = encoder_outputs[0] lowercase = self.pooler(UpperCamelCase__) lowercase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowercase ( __UpperCAmelCase ): def __init__( self ,A__ ,A__): lowercase = message lowercase = exit_layer # start from 1! class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = BertPooler(UpperCamelCase__) lowercase = nn.Dropout(config.hidden_dropout_prob) lowercase = nn.Linear(config.hidden_size ,config.num_labels) def A__ ( self ,A__): lowercase = encoder_outputs[0] lowercase = self.pooler(UpperCamelCase__) # "return" pooler_output # BertModel lowercase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowercase = bmodel_output[1] lowercase = self.dropout(UpperCamelCase__) lowercase = self.classifier(UpperCamelCase__) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ''' , __UpperCAmelCase , ) class lowercase ( __UpperCAmelCase ): def __init__( self ,A__): super().__init__(UpperCamelCase__) lowercase = config.num_labels lowercase = config.num_hidden_layers lowercase = DeeBertModel(UpperCamelCase__) lowercase = nn.Dropout(config.hidden_dropout_prob) lowercase = nn.Linear(config.hidden_size ,self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase__) def A__ ( self ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=-1 ,A__=False ,): lowercase = self.num_layers try: lowercase = self.bert( UpperCamelCase__ ,attention_mask=UpperCamelCase__ ,token_type_ids=UpperCamelCase__ ,position_ids=UpperCamelCase__ ,head_mask=UpperCamelCase__ ,inputs_embeds=UpperCamelCase__ ,) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowercase = outputs[1] lowercase = self.dropout(UpperCamelCase__) lowercase = self.classifier(UpperCamelCase__) lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowercase = e.message lowercase = e.exit_layer lowercase = outputs[0] if not self.training: lowercase = entropy(UpperCamelCase__) lowercase = [] lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowercase = MSELoss() lowercase = loss_fct(logits.view(-1) ,labels.view(-1)) else: lowercase = CrossEntropyLoss() lowercase = loss_fct(logits.view(-1 ,self.num_labels) ,labels.view(-1)) # work with highway exits lowercase = [] for highway_exit in outputs[-1]: lowercase = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase__) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression lowercase = MSELoss() lowercase = loss_fct(highway_logits.view(-1) ,labels.view(-1)) else: lowercase = CrossEntropyLoss() lowercase = loss_fct(highway_logits.view(-1 ,self.num_labels) ,labels.view(-1)) highway_losses.append(UpperCamelCase__) if train_highway: lowercase = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: lowercase = (loss,) + outputs if not self.training: lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
101
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('''DownBlock2D''', '''AttnDownBlock2D'''), up_block_types=('''AttnUpBlock2D''', '''UpBlock2D'''), ) return model def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=2, generator=UpperCamelCase__, output_type='''numpy''', return_dict=UpperCamelCase__ )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''google/ncsnpp-celebahq-256''' lowerCAmelCase_ = UNetaDModel.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ = KarrasVeScheduler() lowerCAmelCase_ = KarrasVePipeline(unet=UpperCamelCase__, scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(num_inference_steps=20, generator=UpperCamelCase__, output_type='''numpy''' ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
278
0
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch A: Optional[int] = True except ImportError: A: str = False try: from torch.hub import _get_torch_home A: Any = _get_torch_home() except ImportError: A: str = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) A: Tuple = os.path.join(torch_cache_home, "transformers") A: int = "https://cdn.huggingface.co" A: List[Any] = "https://s3.amazonaws.com/models.huggingface.co/bert" A: Optional[int] = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) A: List[str] = os.path.join(PATH, "config.yaml") A: List[str] = os.path.join(PATH, "attributes.txt") A: Dict = os.path.join(PATH, "objects.txt") A: Dict = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) A: Optional[int] = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) A: int = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) A: Optional[int] = "pytorch_model.bin" A: Any = "config.yaml" def _snake_case ( UpperCamelCase : Optional[Any]=OBJECTS , UpperCamelCase : List[str]=ATTRIBUTES ): UpperCAmelCase : Union[str, Any] = [] with open(UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) UpperCAmelCase : List[Any] = [] with open(UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def _snake_case ( UpperCamelCase : Dict ): UpperCAmelCase : Dict = OrderedDict() with open(UpperCamelCase , """rb""" ) as f: UpperCAmelCase : List[str] = pkl.load(UpperCamelCase )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): UpperCAmelCase : Union[str, Any] = ckp.pop(UpperCamelCase ) if isinstance(UpperCamelCase , np.ndarray ): UpperCAmelCase : Optional[Any] = torch.tensor(UpperCamelCase ) else: assert isinstance(UpperCamelCase , torch.tensor ), type(UpperCamelCase ) UpperCAmelCase : Union[str, Any] = v return r class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : Dict = {} def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "root" , _SCREAMING_SNAKE_CASE=0 ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = name UpperCAmelCase : Dict = level UpperCAmelCase : Dict = {} for k, v in dictionary.items(): if v is None: raise ValueError() UpperCAmelCase : str = copy.deepcopy(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = copy.deepcopy(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[int] = Config(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE , level=level + 1 ) UpperCAmelCase : Union[str, Any] = v setattr(self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = d def __repr__( self ) -> int: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int = val UpperCAmelCase : List[str] = val UpperCAmelCase : int = key.split(""".""" ) UpperCAmelCase : List[str] = len(_SCREAMING_SNAKE_CASE ) - 1 UpperCAmelCase : str = self._pointer if len(_SCREAMING_SNAKE_CASE ) > 1: for i, l in enumerate(_SCREAMING_SNAKE_CASE ): if hasattr(self , _SCREAMING_SNAKE_CASE ) and isinstance(getattr(self , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): setattr(getattr(self , _SCREAMING_SNAKE_CASE ) , """.""".join(levels[i:] ) , _SCREAMING_SNAKE_CASE ) if l == last_level: UpperCAmelCase : Optional[int] = val else: UpperCAmelCase : Union[str, Any] = pointer[l] def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' return self._pointer def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' with open(F"{file_name}" , """w""" ) as stream: dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' with open(F"{file_name}" , """w""" ) as stream: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @staticmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as stream: UpperCAmelCase : int = load(_SCREAMING_SNAKE_CASE , Loader=_SCREAMING_SNAKE_CASE ) return data def __str__( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict = """ """ if self._name != "root": UpperCAmelCase : Optional[int] = F"{t * (self._level-1)}{self._name}:\n" else: UpperCAmelCase : str = """""" UpperCAmelCase : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): r += F"{t * (self._level)}{v}\n" self._level += 1 else: r += F"{t * (self._level)}{k}: {v} ({type(_SCREAMING_SNAKE_CASE ).__name__})\n" UpperCAmelCase : str = level return r[:-1] @classmethod def SCREAMING_SNAKE_CASE ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return cls(_SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' UpperCAmelCase : Optional[int] = kwargs.pop("""cache_dir""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = kwargs.pop("""force_download""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = kwargs.pop("""resume_download""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = kwargs.pop("""proxies""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = kwargs.pop("""local_files_only""" , _SCREAMING_SNAKE_CASE ) if os.path.isdir(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif os.path.isfile(_SCREAMING_SNAKE_CASE ) or is_remote_url(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Union[str, Any] = pretrained_model_name_or_path else: UpperCAmelCase : Dict = hf_bucket_url(_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , use_cdn=_SCREAMING_SNAKE_CASE ) try: # Load from URL or cache if already cached UpperCAmelCase : Dict = cached_path( _SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , ) # Load config dict if resolved_config_file is None: raise EnvironmentError UpperCAmelCase : List[str] = Config.load_yaml(_SCREAMING_SNAKE_CASE ) except EnvironmentError: UpperCAmelCase : List[str] = """Can't load config for""" raise EnvironmentError(_SCREAMING_SNAKE_CASE ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(_SCREAMING_SNAKE_CASE ), kwargs def _snake_case ( UpperCamelCase : Union[str, Any] ): UpperCAmelCase : List[str] = torch.load("""dump.pt""" , map_location=in_tensor.device ) UpperCAmelCase : int = in_tensor.numpy() UpperCAmelCase : List[str] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(UpperCamelCase , UpperCamelCase , rtol=0.01 , atol=0.1 ), ( F"{sum([1 for x in np.isclose(UpperCamelCase , UpperCamelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def _snake_case ( UpperCamelCase : List[Any] ): UpperCAmelCase : List[Any] = urlparse(UpperCamelCase ) return parsed.scheme in ("http", "https") def _snake_case ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : Any=True ): UpperCAmelCase : Any = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX UpperCAmelCase : Optional[Any] = """/""" not in model_id if legacy_format: return F"{endpoint}/{model_id}-{filename}" else: return F"{endpoint}/{model_id}/{filename}" def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[str]=None , UpperCamelCase : int=0 , UpperCamelCase : List[str]=None , ): UpperCAmelCase : Dict = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(UpperCamelCase , UpperCamelCase ): ua += "; " + "; ".join("""{}/{}""".format(UpperCamelCase , UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(UpperCamelCase , UpperCamelCase ): ua += "; " + user_agent UpperCAmelCase : str = {"""user-agent""": ua} if resume_size > 0: UpperCAmelCase : Optional[Any] = """bytes=%d-""" % (resume_size,) UpperCAmelCase : List[str] = requests.get(UpperCamelCase , stream=UpperCamelCase , proxies=UpperCamelCase , headers=UpperCamelCase ) if response.status_code == 416: # Range not satisfiable return UpperCAmelCase : Tuple = response.headers.get("""Content-Length""" ) UpperCAmelCase : int = resume_size + int(UpperCamelCase ) if content_length is not None else None UpperCAmelCase : str = tqdm( unit="""B""" , unit_scale=UpperCamelCase , total=UpperCamelCase , initial=UpperCamelCase , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(UpperCamelCase ) ) temp_file.write(UpperCamelCase ) progress.close() def _snake_case ( UpperCamelCase : str , UpperCamelCase : Dict=None , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Dict=10 , UpperCamelCase : int=False , UpperCamelCase : Optional[Any]=None , UpperCamelCase : str=False , ): if cache_dir is None: UpperCAmelCase : Any = TRANSFORMERS_CACHE if isinstance(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : Any = str(UpperCamelCase ) os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) UpperCAmelCase : Union[str, Any] = None if not local_files_only: try: UpperCAmelCase : str = requests.head(UpperCamelCase , allow_redirects=UpperCamelCase , proxies=UpperCamelCase , timeout=UpperCamelCase ) if response.status_code == 200: UpperCAmelCase : List[str] = response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass UpperCAmelCase : Dict = url_to_filename(UpperCamelCase , UpperCamelCase ) # get cache path to put the file UpperCAmelCase : List[Any] = os.path.join(UpperCamelCase , UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(UpperCamelCase ): return cache_path else: UpperCAmelCase : Any = [ file for file in fnmatch.filter(os.listdir(UpperCamelCase ) , filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(UpperCamelCase ) > 0: return os.path.join(UpperCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. UpperCAmelCase : List[Any] = cache_path + """.lock""" with FileLock(UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: UpperCAmelCase : str = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(UpperCamelCase , """a+b""" ) as f: yield f UpperCAmelCase : str = _resumable_file_manager if os.path.exists(UpperCamelCase ): UpperCAmelCase : Tuple = os.stat(UpperCamelCase ).st_size else: UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : Union[str, Any] = partial(tempfile.NamedTemporaryFile , dir=UpperCamelCase , delete=UpperCamelCase ) UpperCAmelCase : int = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , UpperCamelCase , temp_file.name , ) http_get( UpperCamelCase , UpperCamelCase , proxies=UpperCamelCase , resume_size=UpperCamelCase , user_agent=UpperCamelCase , ) os.replace(temp_file.name , UpperCamelCase ) UpperCAmelCase : List[str] = {"""url""": url, """etag""": etag} UpperCAmelCase : Tuple = cache_path + """.json""" with open(UpperCamelCase , """w""" ) as meta_file: json.dump(UpperCamelCase , UpperCamelCase ) return cache_path def _snake_case ( UpperCamelCase : int , UpperCamelCase : Any=None ): UpperCAmelCase : Tuple = url.encode("""utf-8""" ) UpperCAmelCase : int = shaaaa(UpperCamelCase ) UpperCAmelCase : List[str] = url_hash.hexdigest() if etag: UpperCAmelCase : Dict = etag.encode("""utf-8""" ) UpperCAmelCase : Tuple = shaaaa(UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : str=False , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=None , UpperCamelCase : Dict=False , UpperCamelCase : Optional[int]=False , UpperCamelCase : str=False , ): if cache_dir is None: UpperCAmelCase : Dict = TRANSFORMERS_CACHE if isinstance(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : List[Any] = str(UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : Optional[int] = str(UpperCamelCase ) if is_remote_url(UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) UpperCAmelCase : Union[str, Any] = get_from_cache( UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , proxies=UpperCamelCase , resume_download=UpperCamelCase , user_agent=UpperCamelCase , local_files_only=UpperCamelCase , ) elif os.path.exists(UpperCamelCase ): # File, and it exists. UpperCAmelCase : Tuple = url_or_filename elif urlparse(UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(UpperCamelCase ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(UpperCamelCase ) and not tarfile.is_tarfile(UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" UpperCAmelCase : List[str] = os.path.split(UpperCamelCase ) UpperCAmelCase : Tuple = output_file.replace(""".""" , """-""" ) + """-extracted""" UpperCAmelCase : Dict = os.path.join(UpperCamelCase , UpperCamelCase ) if os.path.isdir(UpperCamelCase ) and os.listdir(UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions UpperCAmelCase : List[Any] = output_path + """.lock""" with FileLock(UpperCamelCase ): shutil.rmtree(UpperCamelCase , ignore_errors=UpperCamelCase ) os.makedirs(UpperCamelCase ) if is_zipfile(UpperCamelCase ): with ZipFile(UpperCamelCase , """r""" ) as zip_file: zip_file.extractall(UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(UpperCamelCase ): UpperCAmelCase : Union[str, Any] = tarfile.open(UpperCamelCase ) tar_file.extractall(UpperCamelCase ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(UpperCamelCase ) ) return output_path_extracted return output_path def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Union[str, Any]="," ): assert isinstance(UpperCamelCase , UpperCamelCase ) if os.path.isfile(UpperCamelCase ): with open(UpperCamelCase ) as f: UpperCAmelCase : Union[str, Any] = eval(f.read() ) else: UpperCAmelCase : Any = requests.get(UpperCamelCase ) try: UpperCAmelCase : Any = requests.json() except Exception: UpperCAmelCase : List[Any] = req.content.decode() assert data is not None, "could not connect" try: UpperCAmelCase : Optional[Any] = eval(UpperCamelCase ) except Exception: UpperCAmelCase : Optional[Any] = data.split("""\n""" ) req.close() return data def _snake_case ( UpperCamelCase : List[Any] ): UpperCAmelCase : Dict = requests.get(UpperCamelCase ) UpperCAmelCase : List[str] = np.array(Image.open(BytesIO(response.content ) ) ) return img def _snake_case ( UpperCamelCase : Dict ): UpperCAmelCase : Union[str, Any] = url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(UpperCamelCase ) with open(UpperCamelCase , """rb""" ) as stream: UpperCAmelCase : Dict = pkl.load(UpperCamelCase ) UpperCAmelCase : List[Any] = weights.pop("""model""" ) UpperCAmelCase : Any = {} for k, v in model.items(): UpperCAmelCase : int = torch.from_numpy(UpperCamelCase ) if "running_var" in k: UpperCAmelCase : Tuple = torch.tensor([0] ) UpperCAmelCase : Any = k.replace("""running_var""" , """num_batches_tracked""" ) UpperCAmelCase : Any = zero return new def _snake_case ( ): print(F"{os.path.abspath(os.path.join(UpperCamelCase , os.pardir ) )}/demo.ipynb" ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any]="RGB" ): assert isinstance(UpperCamelCase , UpperCamelCase ) if os.path.isfile(UpperCamelCase ): UpperCAmelCase : Tuple = cva.imread(UpperCamelCase ) else: UpperCAmelCase : Any = get_image_from_url(UpperCamelCase ) assert img is not None, F"could not connect to: {im}" UpperCAmelCase : Dict = cva.cvtColor(UpperCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": UpperCAmelCase : Optional[int] = img[:, :, ::-1] return img def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[int]=1 ): return (images[i : i + batch] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ))
353
"""simple docstring""" def _snake_case ( UpperCamelCase : dict ): UpperCAmelCase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCAmelCase : set[int] = set() return any( node not in visited and depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for node in graph ) def _snake_case ( UpperCamelCase : dict , UpperCamelCase : int , UpperCamelCase : set , UpperCamelCase : set ): visited.add(UpperCamelCase ) rec_stk.add(UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
76
0
import os import sys snake_case_ : str = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) snake_case_ : Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def A (*__A : Union[str, Any] , **__A : Union[str, Any] ) -> List[Any]: """simple docstring""" return AutoConfig.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def A (*__A : Any , **__A : str ) -> Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModel.__doc__ ) def A (*__A : Dict , **__A : List[str] ) -> Optional[Any]: """simple docstring""" return AutoModel.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def A (*__A : Optional[int] , **__A : Tuple ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def A (*__A : Optional[int] , **__A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def A (*__A : int , **__A : int ) -> List[Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def A (*__A : List[Any] , **__A : Any ) -> Optional[Any]: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__A , **__A )
51
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( a ): UpperCAmelCase__ : Dict = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ : Dict = '''FlavaImageProcessor''' UpperCAmelCase__ : Dict = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Union[str, Any] , _snake_case : List[str]=None , _snake_case : str=None , **_snake_case : int): """simple docstring""" UpperCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) UpperCAmelCase_ = kwargs.pop('''feature_extractor''') UpperCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(_snake_case , _snake_case) UpperCAmelCase_ = self.image_processor def __call__( self : List[Any] , _snake_case : Optional[ImageInput] = None , _snake_case : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = False , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Any , ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''') if text is not None: UpperCAmelCase_ = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) if images is not None: UpperCAmelCase_ = self.image_processor( _snake_case , return_image_mask=_snake_case , return_codebook_pixels=_snake_case , return_tensors=_snake_case , **_snake_case , ) if text is not None and images is not None: encoding.update(_snake_case) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case) , tensor_type=_snake_case) def lowerCamelCase ( self : Any , *_snake_case : Optional[Any] , **_snake_case : int): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case) def lowerCamelCase ( self : Optional[int] , *_snake_case : int , **_snake_case : Dict): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case) @property def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = self.tokenizer.model_input_names UpperCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def lowerCamelCase ( self : str): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class @property def lowerCamelCase ( self : Any): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _snake_case , ) return self.image_processor
51
1
"""simple docstring""" import os import string import sys a_ = 1 << 8 a_ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } a_ = KEYMAP["""up"""] a_ = KEYMAP["""left"""] if sys.platform == "win32": a_ = [] a_ = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): a_ = ord(str(i)) def __lowercase ( ) ->List[Any]: '''simple docstring''' if os.name == "nt": import msvcrt __A : Optional[int] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(snake_case_ ) == 0: # Read the keystroke __A : Dict = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __A : Optional[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __A : List[Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(snake_case_ ) if ord(snake_case_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __A : List[Any] = chr(KEYMAP['''esc'''] ) except KeyError: __A : Any = cha[1] else: __A : Union[str, Any] = ch.decode(snake_case_ ) else: __A : Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __A : List[Any] = sys.stdin.fileno() __A : str = termios.tcgetattr(snake_case_ ) try: tty.setraw(snake_case_ ) __A : List[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(snake_case_ ,termios.TCSADRAIN ,snake_case_ ) return ch def __lowercase ( ) ->List[Any]: '''simple docstring''' __A : List[Any] = get_raw_chars() if ord(snake_case_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(snake_case_ ) == KEYMAP["esc"]: __A : List[Any] = get_raw_chars() if ord(snake_case_ ) == KEYMAP["mod_int"]: __A : str = get_raw_chars() if ord(snake_case_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(snake_case_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(snake_case_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
291
"""simple docstring""" import numpy as np import qiskit def __lowercase ( snake_case_ : int = 8 ,snake_case_ : int | None = None ) ->str: '''simple docstring''' __A : str = np.random.default_rng(seed=snake_case_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __A : str = 6 * key_len # Measurement basis for Alice's qubits. __A : Any = rng.integers(2 ,size=snake_case_ ) # The set of states Alice will prepare. __A : Any = rng.integers(2 ,size=snake_case_ ) # Measurement basis for Bob's qubits. __A : str = rng.integers(2 ,size=snake_case_ ) # Quantum Circuit to simulate BB84 __A : Dict = qiskit.QuantumCircuit(snake_case_ ,name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(snake_case_ ): if alice_state[index] == 1: bbaa_circ.x(snake_case_ ) if alice_basis[index] == 1: bbaa_circ.h(snake_case_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(snake_case_ ): if bob_basis[index] == 1: bbaa_circ.h(snake_case_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __A : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __A : List[str] = qiskit.execute(snake_case_ ,snake_case_ ,shots=1 ,seed_simulator=snake_case_ ) # Returns the result of measurement. __A : Union[str, Any] = job.result().get_counts(snake_case_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __A : int = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( snake_case_ ,snake_case_ ,snake_case_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __A : Union[str, Any] = gen_key[:key_len] if len(snake_case_ ) >= key_len else gen_key.ljust(snake_case_ ,'''0''' ) return key if __name__ == "__main__": print(f'''The generated key is : {bbaa(8, seed=0)}''') from doctest import testmod testmod()
291
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : str = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
127
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _SCREAMING_SNAKE_CASE : Optional[Any] = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _SCREAMING_SNAKE_CASE : List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _SCREAMING_SNAKE_CASE : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = len([g for position, g in enumerate(UpperCamelCase_ ) if g == main_target[position]] ) return (item, float(UpperCamelCase_ )) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = random.randint(0 ,len(UpperCamelCase_ ) - 1 ) snake_case = parent_a[:random_slice] + parent_a[random_slice:] snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = list(UpperCamelCase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: snake_case = random.choice(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,): """simple docstring""" snake_case = [] # Generate more children proportionally to the fitness score. snake_case = int(parent_a[1] * 1_00 ) + 1 snake_case = 10 if child_n >= 10 else child_n for _ in range(UpperCamelCase_ ): snake_case = population_score[random.randint(0 ,UpperCamelCase_ )][0] snake_case , snake_case = crossover(parent_a[0] ,UpperCamelCase_ ) # Append new string to the population list. pop.append(mutate(UpperCamelCase_ ,UpperCamelCase_ ) ) pop.append(mutate(UpperCamelCase_ ,UpperCamelCase_ ) ) return pop def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: snake_case = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(UpperCamelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(UpperCamelCase_ ) # Generate random starting population. snake_case = [] for _ in range(UpperCamelCase_ ): population.append(''''''.join([random.choice(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case , snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(UpperCamelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case = [evaluate(UpperCamelCase_ ,UpperCamelCase_ ) for item in population] # Check if there is a matching evolution. snake_case = sorted(UpperCamelCase_ ,key=lambda UpperCamelCase_ : x[1] ,reverse=UpperCamelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(UpperCamelCase_ ) # Normalize population score to be between 0 and 1. snake_case = [ (item, score / len(UpperCamelCase_ )) for item, score in population_score ] # This is selection for i in range(UpperCamelCase_ ): population.extend(select(population_score[int(UpperCamelCase_ )] ,UpperCamelCase_ ,UpperCamelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(UpperCamelCase_ ) > N_POPULATION: break if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _SCREAMING_SNAKE_CASE : str = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
127
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowercase_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) UpperCamelCase_ = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(__UpperCamelCase ) from datasets import load_dataset UpperCamelCase_ = load_dataset("""nielsr/rvlcdip-demo""" ) UpperCamelCase_ = dataset["""train"""][0]["""image"""].convert("""RGB""" ) UpperCamelCase_ = image_processor(__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**__UpperCamelCase ) UpperCamelCase_ = outputs.logits UpperCamelCase_ = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , __UpperCamelCase ) UpperCamelCase_ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=__UpperCamelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
261
from __future__ import annotations def lowerCamelCase__ ( a__ : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(a__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(a__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
261
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase ( lowercase_ ): def __init__( self , snake_case , snake_case , snake_case , snake_case , ): super().__init__() snake_case_ = value_function snake_case_ = unet snake_case_ = scheduler snake_case_ = env snake_case_ = env.get_dataset() snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].mean() except: # noqa: E722 pass snake_case_ = {} for key in self.data.keys(): try: snake_case_ = self.data[key].std() except: # noqa: E722 pass snake_case_ = env.observation_space.shape[0] snake_case_ = env.action_space.shape[0] def a ( self , snake_case , snake_case ): return (x_in - self.means[key]) / self.stds[key] def a ( self , snake_case , snake_case ): return x_in * self.stds[key] + self.means[key] def a ( self , snake_case ): if type(snake_case ) is dict: return {k: self.to_torch(snake_case ) for k, v in x_in.items()} elif torch.is_tensor(snake_case ): return x_in.to(self.unet.device ) return torch.tensor(snake_case , device=self.unet.device ) def a ( self , snake_case , snake_case , snake_case ): for key, val in cond.items(): snake_case_ = val.clone() return x_in def a ( self , snake_case , snake_case , snake_case , snake_case ): snake_case_ = x.shape[0] snake_case_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model snake_case_ = torch.full((batch_size,) , snake_case , device=self.unet.device , dtype=torch.long ) for _ in range(snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models snake_case_ = self.value_function(x.permute(0 , 2 , 1 ) , snake_case ).sample snake_case_ = torch.autograd.grad([y.sum()] , [x] )[0] snake_case_ = self.scheduler._get_variance(snake_case ) snake_case_ = torch.exp(0.5 * posterior_variance ) snake_case_ = model_std * grad snake_case_ = 0 snake_case_ = x.detach() snake_case_ = x + scale * grad snake_case_ = self.reset_xa(snake_case , snake_case , self.action_dim ) snake_case_ = self.unet(x.permute(0 , 2 , 1 ) , snake_case ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg snake_case_ = self.scheduler.step(snake_case , snake_case , snake_case , predict_epsilon=snake_case )['prev_sample'] # apply conditions to the trajectory (set the initial state) snake_case_ = self.reset_xa(snake_case , snake_case , self.action_dim ) snake_case_ = self.to_torch(snake_case ) return x, y def __call__( self , snake_case , snake_case=64 , snake_case=32 , snake_case=2 , snake_case=0.1 ): # normalize the observations and create batch dimension snake_case_ = self.normalize(snake_case , 'observations' ) snake_case_ = obs[None].repeat(snake_case , axis=0 ) snake_case_ = {0: self.to_torch(snake_case )} snake_case_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) snake_case_ = randn_tensor(snake_case , device=self.unet.device ) snake_case_ = self.reset_xa(snake_case , snake_case , self.action_dim ) snake_case_ = self.to_torch(snake_case ) # run the diffusion process snake_case_ , snake_case_ = self.run_diffusion(snake_case , snake_case , snake_case , snake_case ) # sort output trajectories by value snake_case_ = y.argsort(0 , descending=snake_case ).squeeze() snake_case_ = x[sorted_idx] snake_case_ = sorted_values[:, :, : self.action_dim] snake_case_ = actions.detach().cpu().numpy() snake_case_ = self.de_normalize(snake_case , key='actions' ) # select the action with the highest value if y is not None: snake_case_ = 0 else: # if we didn't run value guiding, select a random action snake_case_ = np.random.randint(0 , snake_case ) snake_case_ = denorm_actions[selected_index, 0] return denorm_actions
285
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _UpperCAmelCase : Dict = logging.get_logger(__name__) class lowercase : def __init__( self , snake_case = None , snake_case = None , snake_case=None , snake_case=None ): if not conversation_id: snake_case_ = uuid.uuida() if past_user_inputs is None: snake_case_ = [] if generated_responses is None: snake_case_ = [] snake_case_ = conversation_id snake_case_ = past_user_inputs snake_case_ = generated_responses snake_case_ = text def __eq__( self , snake_case ): if not isinstance(snake_case , snake_case ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def a ( self , snake_case , snake_case = False ): if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) snake_case_ = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: snake_case_ = text def a ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) snake_case_ = None def a ( self , snake_case ): self.generated_responses.append(snake_case ) def a ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): snake_case_ = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): snake_case_ = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( lowercase_ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowercase ( lowercase_ ): def __init__( self , *snake_case , **snake_case ): super().__init__(*snake_case , **snake_case ) if self.tokenizer.pad_token_id is None: snake_case_ = self.tokenizer.eos_token def a ( self , snake_case=None , snake_case=None , snake_case=None , **snake_case ): snake_case_ = {} snake_case_ = {} snake_case_ = {} if min_length_for_response is not None: snake_case_ = min_length_for_response if minimum_tokens is not None: snake_case_ = minimum_tokens if "max_length" in generate_kwargs: snake_case_ = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: snake_case_ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(snake_case ) return preprocess_params, forward_params, postprocess_params def __call__( self , snake_case , snake_case=0 , **snake_case ): snake_case_ = super().__call__(snake_case , num_workers=snake_case , **snake_case ) if isinstance(snake_case , snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs def a ( self , snake_case , snake_case=32 ): if not isinstance(snake_case , snake_case ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): snake_case_ = self.tokenizer._build_conversation_input_ids(snake_case ) else: # If the tokenizer cannot handle conversations, we default to only the old version snake_case_ = self._legacy_parse_and_tokenize(snake_case ) if self.framework == "pt": snake_case_ = torch.LongTensor([input_ids] ) elif self.framework == "tf": snake_case_ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def a ( self , snake_case , snake_case=10 , **snake_case ): snake_case_ = generate_kwargs.get('max_length' , self.model.config.max_length ) snake_case_ = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) snake_case_ = max_length - minimum_tokens snake_case_ = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: snake_case_ = model_inputs['attention_mask'][:, -trim:] snake_case_ = model_inputs.pop('conversation' ) snake_case_ = max_length snake_case_ = self.model.generate(**snake_case , **snake_case ) if self.model.config.is_encoder_decoder: snake_case_ = 1 else: snake_case_ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def a ( self , snake_case , snake_case=True ): snake_case_ = model_outputs['output_ids'] snake_case_ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case , ) snake_case_ = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(snake_case ) return conversation def a ( self , snake_case ): snake_case_ = self.tokenizer.eos_token_id snake_case_ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(snake_case , add_special_tokens=snake_case ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(snake_case , add_special_tokens=snake_case ) ) if len(snake_case ) > self.tokenizer.model_max_length: snake_case_ = input_ids[-self.tokenizer.model_max_length :] return input_ids
285
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } _A = { "b0": { "hidden_dim": 1_2_8_0, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 2_2_4, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1_2_8_0, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 2_4_0, "dropout_rate": 0.2, "dw_padding": [1_6], }, "b2": { "hidden_dim": 1_4_0_8, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 2_6_0, "dropout_rate": 0.3, "dw_padding": [5, 8, 1_6], }, "b3": { "hidden_dim": 1_5_3_6, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 3_0_0, "dropout_rate": 0.3, "dw_padding": [5, 1_8], }, "b4": { "hidden_dim": 1_7_9_2, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 3_8_0, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2_0_4_8, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 4_5_6, "dropout_rate": 0.4, "dw_padding": [1_3, 2_7], }, "b6": { "hidden_dim": 2_3_0_4, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 5_2_8, "dropout_rate": 0.5, "dw_padding": [3_1], }, "b7": { "hidden_dim": 2_5_6_0, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 6_0_0, "dropout_rate": 0.5, "dw_padding": [1_8], }, } def lowercase_ ( __UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Union[str, Any] = EfficientNetConfig() lowerCAmelCase__ : Any = CONFIG_MAP[model_name]['hidden_dim'] lowerCAmelCase__ : Any = CONFIG_MAP[model_name]['width_coef'] lowerCAmelCase__ : Optional[int] = CONFIG_MAP[model_name]['depth_coef'] lowerCAmelCase__ : List[Any] = CONFIG_MAP[model_name]['image_size'] lowerCAmelCase__ : Tuple = CONFIG_MAP[model_name]['dropout_rate'] lowerCAmelCase__ : Dict = CONFIG_MAP[model_name]['dw_padding'] lowerCAmelCase__ : str = 'huggingface/label-files' lowerCAmelCase__ : Optional[Any] = 'imagenet-1k-id2label.json' lowerCAmelCase__ : List[Any] = 1000 lowerCAmelCase__ : str = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase__ : Optional[int] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ : int = idalabel lowerCAmelCase__ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def lowercase_ ( ) -> List[Any]: lowerCAmelCase__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im def lowercase_ ( __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Tuple = CONFIG_MAP[model_name]['image_size'] lowerCAmelCase__ : List[str] = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowerCamelCase_ , ) return preprocessor def lowercase_ ( __UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Tuple = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] lowerCAmelCase__ : Tuple = sorted(set(lowerCamelCase_ ) ) lowerCAmelCase__ : List[Any] = len(lowerCamelCase_ ) lowerCAmelCase__ : List[str] = {b: str(lowerCamelCase_ ) for b, i in zip(lowerCamelCase_ , range(lowerCamelCase_ ) )} lowerCAmelCase__ : Optional[int] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: lowerCAmelCase__ : Union[str, Any] = block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) lowerCAmelCase__ : Optional[Any] = {} for item in rename_keys: if item[0] in original_param_names: lowerCAmelCase__ : str = 'efficientnet.' + item[1] lowerCAmelCase__ : Optional[Any] = 'classifier.weight' lowerCAmelCase__ : List[str] = 'classifier.bias' return key_mapping def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue lowerCAmelCase__ : Any = key_mapping[key] if "_conv" in key and "kernel" in key: lowerCAmelCase__ : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowerCAmelCase__ : Dict = torch.from_numpy(lowerCamelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowerCAmelCase__ : Tuple = torch.from_numpy(np.transpose(lowerCamelCase_ ) ) else: lowerCAmelCase__ : List[str] = torch.from_numpy(lowerCamelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase_ ) @torch.no_grad() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: lowerCAmelCase__ : Any = model_classes[model_name]( include_top=lowerCamelCase_ , weights="""imagenet""" , input_tensor=lowerCamelCase_ , input_shape=lowerCamelCase_ , pooling=lowerCamelCase_ , classes=1000 , classifier_activation="""softmax""" , ) lowerCAmelCase__ : int = original_model.trainable_variables lowerCAmelCase__ : Dict = original_model.non_trainable_variables lowerCAmelCase__ : Optional[Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowerCAmelCase__ : int = param.numpy() lowerCAmelCase__ : int = list(tf_params.keys() ) # Load HuggingFace model lowerCAmelCase__ : int = get_efficientnet_config(lowerCamelCase_ ) lowerCAmelCase__ : List[str] = EfficientNetForImageClassification(lowerCamelCase_ ).eval() lowerCAmelCase__ : str = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) lowerCAmelCase__ : Optional[int] = rename_keys(lowerCamelCase_ ) replace_params(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Initialize preprocessor and preprocess input image lowerCAmelCase__ : Optional[Any] = convert_image_processor(lowerCamelCase_ ) lowerCAmelCase__ : Optional[Any] = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): lowerCAmelCase__ : Any = hf_model(**lowerCamelCase_ ) lowerCAmelCase__ : Optional[int] = outputs.logits.detach().numpy() # Original model inference lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : List[Any] = CONFIG_MAP[model_name]['image_size'] lowerCAmelCase__ : int = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowerCAmelCase__ : Optional[Any] = image.img_to_array(lowerCamelCase_ ) lowerCAmelCase__ : Any = np.expand_dims(lowerCamelCase_ , axis=0 ) lowerCAmelCase__ : Optional[int] = original_model.predict(lowerCamelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase_ ): os.mkdir(lowerCamelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase_ ) preprocessor.save_pretrained(lowerCamelCase_ ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) lowerCAmelCase__ : str = f"""efficientnet-{model_name}""" preprocessor.push_to_hub(lowerCamelCase_ ) hf_model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") _A = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
368
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _A = 2_5_6_0_4_7 _A = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :Any = NllbTokenizer _lowerCamelCase :Dict = NllbTokenizerFast _lowerCamelCase :str = True _lowerCamelCase :Optional[Any] = True _lowerCamelCase :Union[str, Any] = {} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : Optional[int] = NllbTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Dict = NllbTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) lowerCAmelCase__ : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase__ : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase__ : List[str] = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" lowerCAmelCase__ : str = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : str = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : int = tempfile.mkdtemp() lowerCAmelCase__ : Tuple = tokenizer_r.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCAmelCase__ : Dict = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCamelCase , UpperCamelCase ) # Checks everything loads correctly in the same way lowerCAmelCase__ : int = tokenizer_r.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) # Save tokenizer rust, legacy_format=True lowerCAmelCase__ : List[str] = tempfile.mkdtemp() lowerCAmelCase__ : Optional[Any] = tokenizer_r.save_pretrained(UpperCamelCase , legacy_format=UpperCamelCase ) lowerCAmelCase__ : List[str] = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase , UpperCamelCase ) # Checks everything loads correctly in the same way lowerCAmelCase__ : List[str] = tokenizer_r.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) # Save tokenizer rust, legacy_format=False lowerCAmelCase__ : List[Any] = tempfile.mkdtemp() lowerCAmelCase__ : int = tokenizer_r.save_pretrained(UpperCamelCase , legacy_format=UpperCamelCase ) lowerCAmelCase__ : str = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase__ : Dict = tokenizer_r.from_pretrained(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) @require_torch def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" if not self.test_seqaseq: return lowerCAmelCase__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. lowerCAmelCase__ : Any = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] lowerCAmelCase__ : Optional[int] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: lowerCAmelCase__ : Dict = tokenizer.prepare_seqaseq_batch( src_texts=UpperCamelCase , tgt_texts=UpperCamelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowerCAmelCase__ : str = tokenizer.prepare_seqaseq_batch( UpperCamelCase , tgt_texts=UpperCamelCase , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowerCAmelCase__ : int = tokenizer.prepare_seqaseq_batch( src_texts=UpperCamelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , UpperCamelCase ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" pass def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ : str = [AddedToken("""<special>""" , lstrip=UpperCamelCase )] lowerCAmelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : Dict = tokenizer_r.encode("""Hey this is a <special> token""" ) lowerCAmelCase__ : Dict = tokenizer_r.encode("""<special>""" , add_special_tokens=UpperCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowerCAmelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase , ) lowerCAmelCase__ : Dict = self.tokenizer_class.from_pretrained( UpperCamelCase , additional_special_tokens=UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer_p.encode("""Hey this is a <special> token""" ) lowerCAmelCase__ : Dict = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): _lowerCamelCase :int = "facebook/nllb-200-distilled-600M" _lowerCamelCase :List[str] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _lowerCamelCase :Optional[Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _lowerCamelCase :Tuple = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def _lowerCAmelCase ( cls : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) lowerCAmelCase__ : Optional[Any] = 1 return cls def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 25_60_57 ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" self.assertIn(UpperCamelCase , self.tokenizer.all_special_ids ) # fmt: off lowerCAmelCase__ : str = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on lowerCAmelCase__ : Any = self.tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) lowerCAmelCase__ : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : List[Any] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , UpperCamelCase ) lowerCAmelCase__ : int = 10 lowerCAmelCase__ : Any = self.tokenizer(UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_62_03, 3] ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = tempfile.mkdtemp() lowerCAmelCase__ : int = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = NllbTokenizer.from_pretrained(UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase ) @require_torch def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCAmelCase__ : int = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowerCAmelCase__ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) self.assertEqual(UpperCamelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowerCAmelCase__ : str = self.tokenizer(self.src_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=3 , return_tensors="""pt""" ) lowerCAmelCase__ : Any = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=10 , return_tensors="""pt""" ) lowerCAmelCase__ : str = targets["""input_ids"""] lowerCAmelCase__ : Any = shift_tokens_right( UpperCamelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(UpperCamelCase ) , { # A, test, EOS, en_XX """input_ids""": [[25_60_47, 70, 73_56, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_60_57, } , ) @require_torch def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : str = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Union[str, Any] = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
212
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _A ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): # Load checkpoint UpperCamelCase :int = torch.load(_a , map_location='''cpu''' ) UpperCamelCase :Dict = chkpt["model"] # We have the base model one level deeper than the original XLM repository UpperCamelCase :Optional[int] = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase :List[str] = v else: UpperCamelCase :int = v UpperCamelCase :int = chkpt["params"] UpperCamelCase :Union[str, Any] = {n: v for n, v in config.items() if not isinstance(_a , (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase :List[Any] = chkpt["dico_word2id"] UpperCamelCase :List[Any] = {s + "</w>" if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase :Tuple = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCamelCase :Any = pytorch_dump_folder_path + "/" + CONFIG_NAME UpperCamelCase :Optional[int] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(_a , _a ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_a , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_a , indent=2 ) + '''\n''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
259
import os def lowerCamelCase__ ( ): with open(os.path.dirname(_a) + "/p022_names.txt") as file: SCREAMING_SNAKE_CASE : List[str] = str(file.readlines()[0]) SCREAMING_SNAKE_CASE : List[Any] = names.replace("\"" , "").split(",") names.sort() SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Dict = 0 for i, name in enumerate(_a): for letter in name: name_score += ord(_a) - 64 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE : str = 0 return total_score if __name__ == "__main__": print(solution())
76
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __A( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) UpperCamelCase__ = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(SCREAMING_SNAKE_CASE_ ) from datasets import load_dataset UpperCamelCase__ = load_dataset("""nielsr/rvlcdip-demo""" ) UpperCamelCase__ = dataset["""train"""][0]["""image"""].convert("""RGB""" ) UpperCamelCase__ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs.logits UpperCamelCase__ = torch.Size((1, 16) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=SCREAMING_SNAKE_CASE_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
371
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase_ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase_ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCamelCase_ = spec.loader.load_module() lowerCamelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase_ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCamelCase_ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCamelCase__ = False # source code of `config_class` UpperCamelCase__ = inspect.getsource(__a ) UpperCamelCase__ = _re_checkpoint.findall(__a ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCamelCase__ , UpperCamelCase__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase__ = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: UpperCamelCase__ = True break UpperCamelCase__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: UpperCamelCase__ = """\n""".join(sorted(__a ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
178
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def a__ ( snake_case__ ) -> Optional[Any]: lowerCamelCase = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2] lowerCamelCase = True if """large""" in model_name or """huge""" in model_name else False lowerCamelCase = True if """large""" in model_name or """huge""" in model_name else False lowerCamelCase = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase = [3, 3, 3, 3] lowerCamelCase = [5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase = [4, 4, 4, 4] lowerCamelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase = [3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase = [3, 3, 3, 3] else: lowerCamelCase = [2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase = 96 elif "small" in model_name: lowerCamelCase = 96 elif "base" in model_name: lowerCamelCase = 1_28 elif "large" in model_name: lowerCamelCase = 1_92 elif "xlarge" in model_name: lowerCamelCase = 2_56 elif "huge" in model_name: lowerCamelCase = 3_52 # set label information lowerCamelCase = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: lowerCamelCase = """imagenet-22k-id2label.json""" else: lowerCamelCase = """imagenet-1k-id2label.json""" lowerCamelCase = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase = {int(snake_case__ ): v for k, v in idalabel.items()} lowerCamelCase = {v: k for k, v in idalabel.items()} lowerCamelCase = FocalNetConfig( embed_dim=snake_case__ , depths=snake_case__ , focal_levels=snake_case__ , focal_windows=snake_case__ , use_conv_embed=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , use_post_layernorm=snake_case__ , use_layerscale=snake_case__ , ) return config def a__ ( snake_case__ ) -> Union[str, Any]: if "patch_embed.proj" in name: lowerCamelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: lowerCamelCase = """encoder.""" + name if "encoder.layers" in name: lowerCamelCase = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: lowerCamelCase = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: lowerCamelCase = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": lowerCamelCase = """layernorm.weight""" if name == "norm.bias": lowerCamelCase = """layernorm.bias""" if "head" in name: lowerCamelCase = name.replace("""head""" , """classifier""" ) else: lowerCamelCase = """focalnet.""" + name return name def a__ ( snake_case__ , snake_case__ , snake_case__=False ) -> Any: # fmt: off lowerCamelCase = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on lowerCamelCase = model_name_to_url[model_name] print("""Checkpoint URL: """ , snake_case__ ) lowerCamelCase = torch.hub.load_state_dict_from_url(snake_case__ , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): lowerCamelCase = state_dict.pop(snake_case__ ) lowerCamelCase = val lowerCamelCase = get_focalnet_config(snake_case__ ) lowerCamelCase = FocalNetForImageClassification(snake_case__ ) model.eval() # load state dict model.load_state_dict(snake_case__ ) # verify conversion lowerCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase = BitImageProcessor( do_resize=snake_case__ , size={"""shortest_edge""": 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=snake_case__ , crop_size=2_24 , do_normalize=snake_case__ , image_mean=snake_case__ , image_std=snake_case__ , ) lowerCamelCase = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) lowerCamelCase = processor(images=snake_case__ , return_tensors="""pt""" ) lowerCamelCase = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCamelCase = image_transforms(snake_case__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , snake_case__ , atol=1E-4 ) lowerCamelCase = model(**snake_case__ ) lowerCamelCase = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": lowerCamelCase = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": lowerCamelCase = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": lowerCamelCase = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": lowerCamelCase = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(F'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(F'{model_name}' ) processor.push_to_hub(F'{model_name}' ) if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
291
"""simple docstring""" def a__ ( snake_case__ , snake_case__ = False ) -> str: if not isinstance(snake_case__ , snake_case__ ): lowerCamelCase = F'Expected string as input, found {type(snake_case__ )}' raise ValueError(snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): lowerCamelCase = F'Expected boolean as use_pascal parameter, found {type(snake_case__ )}' raise ValueError(snake_case__ ) lowerCamelCase = input_str.split("""_""" ) lowerCamelCase = 0 if use_pascal else 1 lowerCamelCase = words[start_index:] lowerCamelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCamelCase = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
291
1
from sklearn.metrics import fa_score import datasets snake_case : Optional[int] = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' snake_case : List[Any] = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' snake_case : Union[str, Any] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ (datasets.Metric ): def lowerCamelCase__( self :List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] ,) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str ,__snake_case :List[str] ,__snake_case :Dict=None ,__snake_case :int=1 ,__snake_case :Tuple="binary" ,__snake_case :List[str]=None ) -> Union[str, Any]: a__ = fa_score( __snake_case ,__snake_case ,labels=__snake_case ,pos_label=__snake_case ,average=__snake_case ,sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
109
from __future__ import annotations def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ): # noqa: E741 while r - l > 1: a__ = (l + r) // 2 if v[m] >= key: a__ = m else: a__ = m # noqa: E741 return r def __lowercase ( __lowerCAmelCase : list[int] ): if len(__lowerCAmelCase ) == 0: return 0 a__ = [0] * len(__lowerCAmelCase ) a__ = 1 a__ = v[0] for i in range(1 , len(__lowerCAmelCase ) ): if v[i] < tail[0]: a__ = v[i] elif v[i] > tail[length - 1]: a__ = v[i] length += 1 else: a__ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
109
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _lowerCamelCase( a , a , a ): __a = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __a = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a ): os.makedirs(a ) __a = model.state_dict() def to_tf_var_name(a ): for patt, repl in iter(a ): __a = name.replace(a , a ) return F"bert/{name}" def create_tf_var(a , a , a ): __a = tf.dtypes.as_dtype(tensor.dtype ) __a = tf.get_variable(dtype=a , shape=tensor.shape , name=a , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __a = to_tf_var_name(a ) __a = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __a = torch_tensor.T __a = create_tf_var(tensor=a , name=a , session=a ) tf.keras.backend.set_value(a , a ) __a = session.run(a ) print(F"Successfully created {tf_name}: {np.allclose(a , a )}" ) __a = tf.train.Saver(tf.trainable_variables() ) saver.save(a , os.path.join(a , model_name.replace("-" , "_" ) + ".ckpt" ) ) def _lowerCamelCase( a=None ): __a = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a , required=a , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a , default=a , required=a , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a , required=a , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a , required=a , help="Directory in which to save tensorflow model" ) __a = parser.parse_args(a ) __a = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
261
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case__ ( snake_case_, snake_case_ ): @register_to_config def __init__( self , lowerCamelCase = 768 , ): super().__init__() __a = nn.Parameter(torch.zeros(1 , lowerCamelCase ) ) __a = nn.Parameter(torch.ones(1 , lowerCamelCase ) ) def a__ ( self , lowerCamelCase = None , lowerCamelCase = None , ): __a = nn.Parameter(self.mean.to(lowerCamelCase ).to(lowerCamelCase ) ) __a = nn.Parameter(self.std.to(lowerCamelCase ).to(lowerCamelCase ) ) return self def a__ ( self , lowerCamelCase ): __a = (embeds - self.mean) * 1.0 / self.std return embeds def a__ ( self , lowerCamelCase ): __a = (embeds * self.std) + self.mean return embeds
261
1
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) UpperCamelCase = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE( __lowercase ) -> Union[str, Any]: A: Tuple = git.Repo(search_parent_directories=__lowercase ) A: List[str] = { '''repo_id''': str(__lowercase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(__lowercase , '''git_log.json''' ) , '''w''' ) as f: json.dump(__lowercase , __lowercase , indent=4 ) def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if params.n_gpu <= 0: A: Dict = 0 A: Any = -1 A: List[str] = True A: List[Any] = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 A: Any = int(os.environ['''WORLD_SIZE'''] ) A: Tuple = int(os.environ['''N_GPU_NODE'''] ) A: int = int(os.environ['''RANK'''] ) # number of nodes / node ID A: Any = params.world_size // params.n_gpu_per_node A: List[Any] = params.global_rank // params.n_gpu_per_node A: Union[str, Any] = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 A: Any = 1 A: List[Any] = 0 A: int = 0 A: Any = 0 A: Optional[int] = 1 A: List[str] = 1 A: Any = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode A: str = params.node_id == 0 and params.local_rank == 0 A: List[Any] = params.n_nodes > 1 # summary A: Tuple = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
334
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCamelCase = logging.get_logger('''transformers.models.encodec''') UpperCamelCase = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } UpperCamelCase = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } UpperCamelCase = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } UpperCamelCase = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } UpperCamelCase = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCamelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCamelCase = [] UpperCamelCase = [] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict: for attribute in key.split('''.''' ): A: Union[str, Any] = getattr(__lowercase , __lowercase ) if weight_type is not None: A: Tuple = getattr(__lowercase , __lowercase ).shape else: A: str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": A: Dict = value elif weight_type == "weight_g": A: Tuple = value elif weight_type == "weight_v": A: Any = value elif weight_type == "bias": A: str = value elif weight_type == "running_mean": A: List[Any] = value elif weight_type == "running_var": A: Dict = value elif weight_type == "num_batches_tracked": A: List[str] = value elif weight_type == "weight_ih_l0": A: Dict = value elif weight_type == "weight_hh_l0": A: Optional[int] = value elif weight_type == "bias_ih_l0": A: List[Any] = value elif weight_type == "bias_hh_l0": A: str = value elif weight_type == "weight_ih_l1": A: Optional[int] = value elif weight_type == "weight_hh_l1": A: int = value elif weight_type == "bias_ih_l1": A: Optional[Any] = value elif weight_type == "bias_hh_l1": A: str = value else: A: Optional[int] = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: A , A: Any = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: A: Any = [] if model_name == "encodec_24khz" or "encodec_32khz": A: List[str] = MAPPING_24K elif model_name == "encodec_48khz": A: List[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__lowercase , __lowercase ): logger.info(F"""{name} was ignored""" ) continue A: Optional[int] = False for key, mapped_key in MAPPING.items(): if "*" in key: A , A: Optional[int] = key.split('''.*.''' ) if prefix in name and suffix in name: A: str = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue A: Optional[Any] = True if "*" in mapped_key: A: Any = name.split(__lowercase )[0].split('''.''' )[-2] A: Tuple = mapped_key.replace('''*''' , __lowercase ) if "weight_g" in name: A: str = '''weight_g''' elif "weight_v" in name: A: List[Any] = '''weight_v''' elif "weight_ih_l0" in name: A: Dict = '''weight_ih_l0''' elif "weight_hh_l0" in name: A: int = '''weight_hh_l0''' elif "bias_ih_l0" in name: A: Union[str, Any] = '''bias_ih_l0''' elif "bias_hh_l0" in name: A: Tuple = '''bias_hh_l0''' elif "weight_ih_l1" in name: A: int = '''weight_ih_l1''' elif "weight_hh_l1" in name: A: Optional[Any] = '''weight_hh_l1''' elif "bias_ih_l1" in name: A: Dict = '''bias_ih_l1''' elif "bias_hh_l1" in name: A: str = '''bias_hh_l1''' elif "bias" in name: A: Union[str, Any] = '''bias''' elif "weight" in name: A: Dict = '''weight''' elif "running_mean" in name: A: Tuple = '''running_mean''' elif "running_var" in name: A: Any = '''running_var''' elif "num_batches_tracked" in name: A: str = '''num_batches_tracked''' else: A: Tuple = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ) -> Dict: if config_path is not None: A: Tuple = EncodecConfig.from_pretrained(__lowercase ) else: A: Union[str, Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A: Union[str, Any] = [8, 5, 4, 4] A: Dict = [2.2] A: List[Any] = 6_4 A: Optional[Any] = 3_2_0_0_0 A: List[Any] = 2_0_4_8 A: Optional[Any] = False A: int = False A: Union[str, Any] = False elif model_name == "encodec_48khz": A: Optional[int] = [8, 5, 4, 2] A: List[Any] = [3.0, 6.0, 1_2.0, 2_4.0] A: List[Any] = 4_8_0_0_0 A: int = 2 A: List[Any] = False A: Any = '''time_group_norm''' A: Optional[Any] = True A: Any = 1.0 A: Any = 0.0_1 else: raise ValueError(F"""Unknown model name: {model_name}""" ) A: str = EncodecModel(__lowercase ) A: Optional[Any] = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__lowercase ) A: Union[str, Any] = torch.load(__lowercase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A: Optional[int] = original_checkpoint['''best_state'''] recursively_load_weights(__lowercase , __lowercase , __lowercase ) model.save_pretrained(__lowercase ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
334
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase_ = None lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase_ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase_ = { '''t5-small''': 5_12, '''t5-base''': 5_12, '''t5-large''': 5_12, '''t5-3b''': 5_12, '''t5-11b''': 5_12, } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['''input_ids''', '''attention_mask'''] snake_case = TaTokenizer snake_case = [] def __init__( self : Union[str, Any] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : int="<pad>" , __UpperCAmelCase : Optional[Any]=100 , __UpperCAmelCase : str=None , **__UpperCAmelCase : Tuple , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: _A = [f'''<extra_id_{i}>''' for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _A = len(set(filter(lambda __UpperCAmelCase : bool("extra_id_" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) _A = vocab_file _A = False if not self.vocab_file else True _A = extra_ids @staticmethod def lowerCAmelCase ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _A = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , __UpperCAmelCase , ) return max_model_length def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _A = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __UpperCAmelCase : bool(re.search(R"<extra_id_\d+>" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
79
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = MvpTokenizer lowercase = MvpTokenizerFast lowercase = True lowercase = filter_roberta_detectors def _lowerCamelCase ( self : int ): '''simple docstring''' super().setUp() lowerCAmelCase__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase__ : Any = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase__ : Any = {'unk_token': '<unk>'} lowerCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : str , **a : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self : Dict , **a : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self : Tuple , a : Dict ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def _lowerCamelCase ( self : Dict ): '''simple docstring''' return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowerCAmelCase__ : List[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : int = tokenizer(a , max_length=len(a ) , padding=a , return_tensors='pt' ) self.assertIsInstance(a , a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCAmelCase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(a , a ) # Test that special tokens are reset @require_torch def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : Any = tokenizer(a , padding=a , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , a ) self.assertIn('attention_mask' , a ) self.assertNotIn('labels' , a ) self.assertNotIn('decoder_attention_mask' , a ) @require_torch def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : Tuple = tokenizer(text_target=a , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : str = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=a , truncation=a , return_tensors='pt' ) self.assertIsInstance(a , a ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ['A long paragraph for summarization.'] lowerCAmelCase__ : Any = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCAmelCase__ : List[Any] = tokenizer(a , text_target=a , return_tensors='pt' ) lowerCAmelCase__ : Optional[int] = inputs['input_ids'] lowerCAmelCase__ : str = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : str = self.rust_tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : Optional[int] = 'A, <mask> AllenNLP sentence.' lowerCAmelCase__ : int = tokenizer_r.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) lowerCAmelCase__ : Optional[int] = tokenizer_p.encode_plus(a , add_special_tokens=a , return_token_type_ids=a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowerCAmelCase__ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCAmelCase__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
212
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""ConditionalDetrFeatureExtractor"""] lowercase = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
35
1
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __A ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=__lowerCAmelCase , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ = controlnet_params lowerCamelCase__ = '''bird''' lowerCamelCase__ = jax.device_count() lowerCamelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) lowerCamelCase__ = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ = jax.random.PRNGKey(0 ) lowerCamelCase__ = jax.random.split(__lowerCAmelCase , jax.device_count() ) lowerCamelCase__ = replicate(__lowerCAmelCase ) lowerCamelCase__ = shard(__lowerCAmelCase ) lowerCamelCase__ = shard(__lowerCAmelCase ) lowerCamelCase__ = pipe( prompt_ids=__lowerCAmelCase , image=__lowerCAmelCase , params=__lowerCAmelCase , prng_seed=__lowerCAmelCase , num_inference_steps=5_0 , jit=__lowerCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowerCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=__lowerCAmelCase , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa ) lowerCamelCase__ = controlnet_params lowerCamelCase__ = '''Chef in the kitchen''' lowerCamelCase__ = jax.device_count() lowerCamelCase__ = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) lowerCamelCase__ = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ = jax.random.PRNGKey(0 ) lowerCamelCase__ = jax.random.split(__lowerCAmelCase , jax.device_count() ) lowerCamelCase__ = replicate(__lowerCAmelCase ) lowerCamelCase__ = shard(__lowerCAmelCase ) lowerCamelCase__ = shard(__lowerCAmelCase ) lowerCamelCase__ = pipe( prompt_ids=__lowerCAmelCase , image=__lowerCAmelCase , params=__lowerCAmelCase , prng_seed=__lowerCAmelCase , num_inference_steps=5_0 , jit=__lowerCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) lowerCamelCase__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] lowerCamelCase__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
209
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def __UpperCAmelCase ( a_ , a_ , a_=8): snake_case_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a , a , ) -> Tuple: super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCamelCase ( self , a , a , a , a , a , a ) -> Any: if latents is None: snake_case_ = randn_tensor(a , generator=a , device=a , dtype=a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) snake_case_ = latents.to(a ) snake_case_ = latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self , a=0 ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) snake_case_ = torch.device(F'''cuda:{gpu_id}''' ) snake_case_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def _UpperCamelCase ( self , a=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) snake_case_ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case_ = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case_ , snake_case_ = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. snake_case_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCamelCase ( self ) -> Any: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(a , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self , a , a , a , a = 5_12 , a = 5_12 , a = 1_00 , a = 4.0 , a = 1 , a = None , a = None , a = "pil" , a = True , ) -> List[str]: snake_case_ = self._execution_device snake_case_ = guidance_scale > 1.0 if isinstance(a , a ): snake_case_ = torch.cat(a , dim=0 ) if isinstance(a , a ): snake_case_ = torch.cat(a , dim=0 ) if isinstance(a , a ): snake_case_ = torch.cat(a , dim=0 ) snake_case_ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: snake_case_ = image_embeds.repeat_interleave(a , dim=0 ) snake_case_ = negative_image_embeds.repeat_interleave(a , dim=0 ) snake_case_ = hint.repeat_interleave(a , dim=0 ) snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) snake_case_ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=a ) self.scheduler.set_timesteps(a , device=a ) snake_case_ = self.scheduler.timesteps snake_case_ = self.movq.config.latent_channels snake_case_ , snake_case_ = downscale_height_and_width(a , a , self.movq_scale_factor ) # create initial latent snake_case_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , a , a , a , self.scheduler , ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = {'image_embeds': image_embeds, 'hint': hint} snake_case_ = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) snake_case_ , snake_case_ = noise_pred.chunk(2 ) snake_case_ , snake_case_ = variance_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing snake_case_ = self.movq.decode(a , force_not_quantize=a )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case_ = image * 0.5 + 0.5 snake_case_ = image.clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
178
0
from string import ascii_uppercase lowerCAmelCase : Any = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase : Union[str, Any] = dict(enumerate(ascii_uppercase)) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = 0 while True: if x == i: SCREAMING_SNAKE_CASE_: List[str] = 0 if len(_UpperCAmelCase ) == len(_UpperCAmelCase ): break key += key[i] i += 1 return key def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = "" SCREAMING_SNAKE_CASE_: List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: SCREAMING_SNAKE_CASE_: str = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = "" SCREAMING_SNAKE_CASE_: Dict = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: SCREAMING_SNAKE_CASE_: List[str] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def A_ ( ): SCREAMING_SNAKE_CASE_: Dict = "THE GERMAN ATTACK" SCREAMING_SNAKE_CASE_: Union[str, Any] = "SECRET" SCREAMING_SNAKE_CASE_: Dict = generate_key(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = cipher_text(_UpperCAmelCase , _UpperCAmelCase ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(_UpperCAmelCase , _UpperCAmelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
353
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : int = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = '''fnet''' def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=3_2000 , lowerCAmelCase__ : Union[str, Any]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : Tuple=3072 , lowerCAmelCase__ : Any="gelu_new" , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Optional[Any]=512 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : Union[str, Any]=1E-12 , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Any=512 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : int=1 , lowerCAmelCase__ : List[Any]=2 , **lowerCAmelCase__ : Optional[int] , ): super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = vocab_size SCREAMING_SNAKE_CASE_: Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_: Tuple = hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_: Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_: int = initializer_range SCREAMING_SNAKE_CASE_: Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE_: int = layer_norm_eps SCREAMING_SNAKE_CASE_: Union[str, Any] = use_tpu_fourier_optimizations SCREAMING_SNAKE_CASE_: int = tpu_short_seq_length
127
0