code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase__ ( _UpperCAmelCase ): a_ ="""megatron-bert""" def __init__( self , __UpperCAmelCase=29056 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-1_2 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , **__UpperCAmelCase , )-> Dict: '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = position_embedding_type lowerCAmelCase__ = use_cache
340
a_ = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
340
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A_ , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(A_ , 'num_encoder_blocks' ) ) class lowercase : def __init__( self , A_ , A_=13 , A_=64 , A_=3 , A_=4 , A_=[2, 2, 2, 2] , A_=[8, 4, 2, 1] , A_=[16, 32, 64, 128] , A_=[1, 4, 8, 16] , A_=[1, 2, 4, 8] , A_=True , A_=True , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.02 , A_=3 , A_=None , ) -> str: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = num_encoder_blocks UpperCamelCase = sr_ratios UpperCamelCase = depths UpperCamelCase = hidden_sizes UpperCamelCase = downsampling_rates UpperCamelCase = num_attention_heads UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = scope def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> Any: """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = SegformerModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) UpperCamelCase = UpperCamelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = SegformerForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = 1 UpperCamelCase = SegformerForSemanticSegmentation(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(A_ ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertGreater(result.loss , 0.0 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[str] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __lowercase : Optional[Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : List[str] = True __lowercase : int = False __lowercase : str = False __lowercase : Optional[int] = False def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = SegformerModelTester(self ) UpperCamelCase = SegformerConfigTester(self , config_class=A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*A_ ) @unittest.skip('SegFormer does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: UpperCamelCase = True UpperCamelCase = False UpperCamelCase = True UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.attentions UpperCamelCase = sum(self.model_tester.depths ) self.assertEqual(len(A_ ) , A_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase = True UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.attentions self.assertEqual(len(A_ ) , A_ ) # verify the first attentions (first block, first layer) UpperCamelCase = (self.model_tester.image_size // 4) ** 2 UpperCamelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) UpperCamelCase = (self.model_tester.image_size // 32) ** 2 UpperCamelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) UpperCamelCase = len(A_ ) # Check attention is always last and order is fine UpperCamelCase = True UpperCamelCase = True UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + 1 , len(A_ ) ) UpperCamelCase = outputs.attentions self.assertEqual(len(A_ ) , A_ ) # verify the first attentions (first block, first layer) UpperCamelCase = (self.model_tester.image_size // 4) ** 2 UpperCamelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(A_ ) , A_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: if model_class in get_values(A_ ): continue UpperCamelCase = model_class(A_ ) model.to(A_ ) model.train() UpperCamelCase = self._prepare_for_class(A_ , A_ , return_labels=A_ ) UpperCamelCase = model(**A_ ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = SegformerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> List[str]: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowercase ( unittest.TestCase ): @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=A_ , align=A_ , do_random_crop=A_ ) UpperCamelCase = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( A_ ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ) UpperCamelCase = encoded_inputs.pixel_values.to(A_ ) with torch.no_grad(): UpperCamelCase = model(A_ ) UpperCamelCase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=A_ , align=A_ , do_random_crop=A_ ) UpperCamelCase = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(A_ ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ) UpperCamelCase = encoded_inputs.pixel_values.to(A_ ) with torch.no_grad(): UpperCamelCase = model(A_ ) UpperCamelCase = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A_ , atol=1e-1 ) ) @slow def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=A_ , align=A_ , do_random_crop=A_ ) UpperCamelCase = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( A_ ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ) UpperCamelCase = encoded_inputs.pixel_values.to(A_ ) with torch.no_grad(): UpperCamelCase = model(A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(500, 300)] ) UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , A_ )
359
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : Union[str, Any] = 16 _UpperCAmelCase : Dict = 32 def A ( lowercase , lowercase = 16 ) -> str: '''simple docstring''' UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( lowercase , batched=lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( lowercase , padding='longest' , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase , drop_last=lowercase ) UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def A ( lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config['lr'] UpperCamelCase = int(config['num_epochs'] ) UpperCamelCase = int(config['seed'] ) UpperCamelCase = int(config['batch_size'] ) UpperCamelCase = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase = MAX_GPU_BATCH_SIZE set_seed(lowercase ) UpperCamelCase , UpperCamelCase = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**lowercase ) UpperCamelCase = outputs.loss UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**lowercase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowercase , references=lowercase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowercase ) def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowercase , default=lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCamelCase = parser.parse_args() UpperCamelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
110
0
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def a_ ( lowerCamelCase ): return getitem, k def a_ ( lowerCamelCase , lowerCamelCase ): return setitem, k, v def a_ ( lowerCamelCase ): return delitem, k def a_ ( lowerCamelCase , lowerCamelCase , *lowerCamelCase ): try: return fun(lowerCamelCase , *lowerCamelCase ), None except Exception as e: return None, e lowerCAmelCase__ : Union[str, Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase__ : Optional[Any] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase__ : Dict = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase__ : Union[str, Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase__ : int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase__ : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = HashMap(initial_block_size=4 ) UpperCAmelCase__ = {} for _, (fun, *args) in enumerate(lowerCamelCase ): UpperCAmelCase__ , UpperCAmelCase__ = _run_operation(lowerCamelCase , lowerCamelCase , *lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = _run_operation(lowerCamelCase , lowerCamelCase , *lowerCamelCase ) assert my_res == py_res assert str(lowerCamelCase ) == str(lowerCamelCase ) assert set(lowerCamelCase ) == set(lowerCamelCase ) assert len(lowerCamelCase ) == len(lowerCamelCase ) assert set(my.items() ) == set(py.items() ) def a_ ( ): def is_public(lowerCamelCase ) -> bool: return not name.startswith('_' ) UpperCAmelCase__ = {name for name in dir({} ) if is_public(lowerCamelCase )} UpperCAmelCase__ = {name for name in dir(HashMap() ) if is_public(lowerCamelCase )} assert dict_public_names > hash_public_names
98
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =int(lowercase ) # Initialize Result SCREAMING_SNAKE_CASE_: str =[] # Traverse through all denomination for denomination in reversed(lowercase ): # Find denominations while int(lowercase ) >= int(lowercase ): total_value -= int(lowercase ) answer.append(lowercase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _UpperCAmelCase = [] _UpperCAmelCase = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): _UpperCAmelCase = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) _UpperCAmelCase = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter _UpperCAmelCase = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] _UpperCAmelCase = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(f"""Following is minimal change for {value}: """) _UpperCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
173
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Dict = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a : Union[str, Any] = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( ) ->Tuple: '''simple docstring''' a : Dict = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=_lowercase , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=_lowercase , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=_lowercase , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=_lowercase , default="data/dump" , help="The dump file prefix." ) a : Dict = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": a : Optional[Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) a : str = tokenizer.special_tokens_map["cls_token"] # `[CLS]` a : List[str] = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": a : Tuple = RobertaTokenizer.from_pretrained(args.tokenizer_name ) a : Union[str, Any] = tokenizer.special_tokens_map["cls_token"] # `<s>` a : str = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": a : List[Any] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) a : Optional[int] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` a : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: a : List[Any] = fp.readlines() logger.info("Start encoding" ) logger.info(F"""{len(_lowercase )} examples to process.""" ) a : Optional[Any] = [] a : Optional[Any] = 0 a : int = 1_0000 a : Dict = time.time() for text in data: a : List[Any] = F"""{bos} {text.strip()} {sep}""" a : Optional[int] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) rslt.append(_lowercase ) iter += 1 if iter % interval == 0: a : Optional[Any] = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) a : Optional[Any] = time.time() logger.info("Finished binarization" ) logger.info(F"""{len(_lowercase )} examples processed.""" ) a : Optional[int] = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" a : Tuple = tokenizer.vocab_size if vocab_size < (1 << 16): a : Optional[int] = [np.uintaa(_lowercase ) for d in rslt] else: a : Optional[Any] = [np.intaa(_lowercase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(_lowercase , "wb" ) as handle: pickle.dump(rslt_ , _lowercase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
105
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __snake_case ( a ): UpperCAmelCase__ : Union[List[PIL.Image.Image], np.ndarray] UpperCAmelCase__ : Optional[List[bool]] UpperCAmelCase__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
353
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : List[str] , **_snake_case : str): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase ( self : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def lowerCamelCase ( self : Optional[int] , _snake_case : List[str] , _snake_case : Optional[int]): """simple docstring""" UpperCAmelCase_ = vqa_pipeline(_snake_case , top_k=1) self.assertEqual( _snake_case , [ [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}], ] , ) @require_torch def lowerCamelCase ( self : Tuple): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question='''How many cats are there?''' , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( _snake_case , [{'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}, {'''score''': ANY(_snake_case), '''answer''': ANY(_snake_case)}]) @slow @require_torch def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''') UpperCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' UpperCAmelCase_ = '''How many cats are there?''' UpperCAmelCase_ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]) UpperCAmelCase_ = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2) self.assertEqual( nested_simplify(_snake_case , decimals=4) , [[{'''score''': 0.8_7_9_9, '''answer''': '''2'''}, {'''score''': 0.2_9_6, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''') def lowerCamelCase ( self : Tuple): """simple docstring""" pass
7
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ : str ='''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ : Optional[int] =importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCAmelCase__ : str =spec.loader.load_module() lowerCAmelCase__ : Optional[Any] =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ : Optional[Any] =re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCAmelCase__ : List[Any] ={ '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def __lowercase ( ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = [] for config_class in list(CONFIG_MAPPING.values() ): __SCREAMING_SNAKE_CASE = False # source code of `config_class` __SCREAMING_SNAKE_CASE = inspect.getsource(a__ ) __SCREAMING_SNAKE_CASE = _re_checkpoint.findall(a__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = checkpoint # verify the checkpoint name corresponds to the checkpoint link __SCREAMING_SNAKE_CASE = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: __SCREAMING_SNAKE_CASE = True break __SCREAMING_SNAKE_CASE = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(a__ ) if len(a__ ) > 0: __SCREAMING_SNAKE_CASE = '\n'.join(sorted(a__ ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
257
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : jnp.ndarray UpperCamelCase__ : jnp.ndarray class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' UpperCamelCase__ : int UpperCamelCase__ : Tuple[int] = (16, 32, 96, 256) UpperCamelCase__ : jnp.dtype = jnp.floataa def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = [] for i in range(len(self.block_out_channels ) - 1 ): __SCREAMING_SNAKE_CASE = self.block_out_channels[i] __SCREAMING_SNAKE_CASE = self.block_out_channels[i + 1] __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_A ) __SCREAMING_SNAKE_CASE = blocks __SCREAMING_SNAKE_CASE = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.conv_in(_A ) __SCREAMING_SNAKE_CASE = nn.silu(_A ) for block in self.blocks: __SCREAMING_SNAKE_CASE = block(_A ) __SCREAMING_SNAKE_CASE = nn.silu(_A ) __SCREAMING_SNAKE_CASE = self.conv_out(_A ) return embedding @flax_register_to_config class UpperCAmelCase_ ( nn.Module , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : int = 32 UpperCamelCase__ : int = 4 UpperCamelCase__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ : Union[bool, Tuple[bool]] = False UpperCamelCase__ : Tuple[int] = (320, 640, 1280, 1280) UpperCamelCase__ : int = 2 UpperCamelCase__ : Union[int, Tuple[int]] = 8 UpperCamelCase__ : Optional[Union[int, Tuple[int]]] = None UpperCamelCase__ : int = 1280 UpperCamelCase__ : float = 0.0 UpperCamelCase__ : bool = False UpperCamelCase__ : jnp.dtype = jnp.floataa UpperCamelCase__ : bool = True UpperCamelCase__ : int = 0 UpperCamelCase__ : str = "rgb" UpperCamelCase__ : Tuple[int] = (16, 32, 96, 256) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (1, self.in_channels, self.sample_size, self.sample_size) __SCREAMING_SNAKE_CASE = jnp.zeros(_A , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = jnp.ones((1,) , dtype=jnp.intaa ) __SCREAMING_SNAKE_CASE = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = (1, 3, self.sample_size * 8, self.sample_size * 8) __SCREAMING_SNAKE_CASE = jnp.zeros(_A , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = jax.random.split(_A ) __SCREAMING_SNAKE_CASE = {'params': params_rng, 'dropout': dropout_rng} return self.init(_A , _A , _A , _A , _A )["params"] def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.block_out_channels __SCREAMING_SNAKE_CASE = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __SCREAMING_SNAKE_CASE = self.num_attention_heads or self.attention_head_dim # input __SCREAMING_SNAKE_CASE = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __SCREAMING_SNAKE_CASE = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __SCREAMING_SNAKE_CASE = FlaxTimestepEmbedding(_A , dtype=self.dtype ) __SCREAMING_SNAKE_CASE = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __SCREAMING_SNAKE_CASE = self.only_cross_attention if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE = (num_attention_heads,) * len(self.down_block_types ) # down __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = block_out_channels[0] __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) for i, down_block_type in enumerate(self.down_block_types ): __SCREAMING_SNAKE_CASE = output_channel __SCREAMING_SNAKE_CASE = block_out_channels[i] __SCREAMING_SNAKE_CASE = i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": __SCREAMING_SNAKE_CASE = FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE = FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) for _ in range(self.layers_per_block ): __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) if not is_final_block: __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_A ) __SCREAMING_SNAKE_CASE = down_blocks __SCREAMING_SNAKE_CASE = controlnet_down_blocks # mid __SCREAMING_SNAKE_CASE = block_out_channels[-1] __SCREAMING_SNAKE_CASE = FlaxUNetMidBlockaDCrossAttn( in_channels=_A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __SCREAMING_SNAKE_CASE = nn.Conv( _A , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _A , _A , _A , _A , _A = 1.0 , _A = True , _A = False , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.controlnet_conditioning_channel_order if channel_order == "bgr": __SCREAMING_SNAKE_CASE = jnp.flip(_A , axis=1 ) # 1. time if not isinstance(_A , jnp.ndarray ): __SCREAMING_SNAKE_CASE = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE = timesteps.astype(dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE = jnp.expand_dims(_A , 0 ) __SCREAMING_SNAKE_CASE = self.time_proj(_A ) __SCREAMING_SNAKE_CASE = self.time_embedding(_A ) # 2. pre-process __SCREAMING_SNAKE_CASE = jnp.transpose(_A , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE = self.conv_in(_A ) __SCREAMING_SNAKE_CASE = jnp.transpose(_A , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE = self.controlnet_cond_embedding(_A ) sample += controlnet_cond # 3. down __SCREAMING_SNAKE_CASE = (sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = down_block(_A , _A , _A , deterministic=not train ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __SCREAMING_SNAKE_CASE = self.mid_block(_A , _A , _A , deterministic=not train ) # 5. contronet blocks __SCREAMING_SNAKE_CASE = () for down_block_res_sample, controlnet_block in zip(_A , self.controlnet_down_blocks ): __SCREAMING_SNAKE_CASE = controlnet_block(_A ) controlnet_down_block_res_samples += (down_block_res_sample,) __SCREAMING_SNAKE_CASE = controlnet_down_block_res_samples __SCREAMING_SNAKE_CASE = self.controlnet_mid_block(_A ) # 6. scaling __SCREAMING_SNAKE_CASE = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_A , mid_block_res_sample=_A )
257
1
"""simple docstring""" from jiwer import compute_measures import datasets a = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' a = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' a = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : str=False ): if concatenate_texts: return compute_measures(_UpperCAmelCase , _UpperCAmelCase )["wer"] else: _A = 0 _A = 0 for prediction, reference in zip(_UpperCAmelCase , _UpperCAmelCase ): _A = compute_measures(_UpperCAmelCase , _UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
271
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) a = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } a = { '''num_train_timesteps''': 40, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } a = { '''num_train_timesteps''': 201, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } a = { '''num_train_timesteps''': 151, '''sigma_min''': 0.0_0_2, '''sigma_max''': 8_0.0, } def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' if isinstance(_snake_case , _snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : Optional[Any]=False ) -> List[str]: '''simple docstring''' _A = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _A = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _A = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _A = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _A = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _A = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _A = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _A = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _A = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _A = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _A = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _A = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def _snake_case ( _snake_case : List[Any] , _snake_case : int , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : int=None ) -> Optional[int]: '''simple docstring''' _A , _A , _A = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _A , _A , _A = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _A = checkpoint[F'''{old_prefix}.norm.weight'''] _A = checkpoint[F'''{old_prefix}.norm.bias'''] _A = weight_q.squeeze(-1 ).squeeze(-1 ) _A = bias_q.squeeze(-1 ).squeeze(-1 ) _A = weight_k.squeeze(-1 ).squeeze(-1 ) _A = bias_k.squeeze(-1 ).squeeze(-1 ) _A = weight_v.squeeze(-1 ).squeeze(-1 ) _A = bias_v.squeeze(-1 ).squeeze(-1 ) _A = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _A = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _snake_case ( _snake_case : str , _snake_case : Any ) -> str: '''simple docstring''' _A = torch.load(_snake_case , map_location='cpu' ) _A = {} _A = checkpoint['time_embed.0.weight'] _A = checkpoint['time_embed.0.bias'] _A = checkpoint['time_embed.2.weight'] _A = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _A = checkpoint['label_emb.weight'] _A = checkpoint['input_blocks.0.0.weight'] _A = checkpoint['input_blocks.0.0.bias'] _A = unet_config['down_block_types'] _A = unet_config['layers_per_block'] _A = unet_config['attention_head_dim'] _A = unet_config['block_out_channels'] _A = 1 _A = channels_list[0] for i, layer_type in enumerate(_snake_case ): _A = channels_list[i] _A = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_snake_case ): _A = F'''down_blocks.{i}.resnets.{j}''' _A = F'''input_blocks.{current_layer}.0''' _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_snake_case ): _A = F'''down_blocks.{i}.resnets.{j}''' _A = F'''input_blocks.{current_layer}.0''' _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) _A = F'''down_blocks.{i}.attentions.{j}''' _A = F'''input_blocks.{current_layer}.1''' _A = convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''down_blocks.{i}.downsamplers.0''' _A = F'''input_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 _A = current_channels # hardcoded the mid-block for now _A = 'mid_block.resnets.0' _A = 'middle_block.0' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = 'mid_block.attentions.0' _A = 'middle_block.1' _A = convert_attention(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) _A = 'mid_block.resnets.1' _A = 'middle_block.2' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = 0 _A = unet_config['up_block_types'] for i, layer_type in enumerate(_snake_case ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _A = F'''up_blocks.{i}.resnets.{j}''' _A = F'''output_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''up_blocks.{i}.upsamplers.0''' _A = F'''output_blocks.{current_layer-1}.1''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _A = F'''up_blocks.{i}.resnets.{j}''' _A = F'''output_blocks.{current_layer}.0''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case , has_skip=_snake_case ) _A = F'''up_blocks.{i}.attentions.{j}''' _A = F'''output_blocks.{current_layer}.1''' _A = convert_attention( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) current_layer += 1 if i != len(_snake_case ) - 1: _A = F'''up_blocks.{i}.upsamplers.0''' _A = F'''output_blocks.{current_layer-1}.2''' _A = convert_resnet(_snake_case , _snake_case , _snake_case , _snake_case ) _A = checkpoint['out.0.weight'] _A = checkpoint['out.0.bias'] _A = checkpoint['out.2.weight'] _A = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') a = parser.parse_args() a = strabool(args.class_cond) a = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: a = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: a = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: a = None a = con_pt_to_diffuser(args.unet_path, unet_config) a = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: a = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: a = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): a = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') a = CMStochasticIterativeScheduler(**scheduler_config) a = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
271
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: Optional[Any] = logging.get_logger(__name__) UpperCamelCase__: Optional[Any] = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class SCREAMING_SNAKE_CASE( UpperCamelCase__ ): """simple docstring""" lowerCamelCase__ = '''decision_transformer''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict , __snake_case : Tuple=17 , __snake_case : Dict=4 , __snake_case : Dict=128 , __snake_case : Union[str, Any]=4096 , __snake_case : int=True , __snake_case : Union[str, Any]=1 , __snake_case : Tuple=1024 , __snake_case : int=3 , __snake_case : List[str]=1 , __snake_case : Tuple=None , __snake_case : Any="relu" , __snake_case : int=0.1 , __snake_case : Dict=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : List[Any]=1E-5 , __snake_case : List[str]=0.02 , __snake_case : int=True , __snake_case : List[Any]=True , __snake_case : List[Any]=50256 , __snake_case : Optional[int]=50256 , __snake_case : str=False , __snake_case : Union[str, Any]=False , **__snake_case : Tuple , ) -> Optional[int]: UpperCAmelCase : List[Any] = state_dim UpperCAmelCase : Union[str, Any] = act_dim UpperCAmelCase : int = hidden_size UpperCAmelCase : int = max_ep_len UpperCAmelCase : Any = action_tanh UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : Tuple = n_positions UpperCAmelCase : Union[str, Any] = n_layer UpperCAmelCase : Any = n_head UpperCAmelCase : Any = n_inner UpperCAmelCase : Any = activation_function UpperCAmelCase : str = resid_pdrop UpperCAmelCase : List[str] = embd_pdrop UpperCAmelCase : Optional[int] = attn_pdrop UpperCAmelCase : List[str] = layer_norm_epsilon UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : List[str] = scale_attn_weights UpperCAmelCase : Tuple = use_cache UpperCAmelCase : Optional[int] = scale_attn_by_inverse_layer_idx UpperCAmelCase : Any = reorder_and_upcast_attn UpperCAmelCase : Dict = bos_token_id UpperCAmelCase : Dict = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
23
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(SCREAMING_SNAKE_CASE , exponent // 2 , SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(SCREAMING_SNAKE_CASE , exponent - 1 , SCREAMING_SNAKE_CASE )) % modulo_value def _a ( SCREAMING_SNAKE_CASE = 17_77 , SCREAMING_SNAKE_CASE = 18_55 , SCREAMING_SNAKE_CASE = 8 ): """simple docstring""" lowercase__ = base for _ in range(1 , SCREAMING_SNAKE_CASE ): lowercase__ = _modexpt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
110
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : int = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
141
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging A_ : int = logging.get_logger(__name__) # pylint: disable=invalid-name class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=A__ , speech_processor=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , unet=A__ , scheduler=A__ , feature_extractor=A__ , ) def __A ( self , A__ = "auto" ): if slice_size == "auto": A__ : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A__ ) def __A ( self ): self.enable_attention_slicing(A__ ) @torch.no_grad() def __call__( self , A__ , A__=1_6000 , A__ = 512 , A__ = 512 , A__ = 50 , A__ = 7.5 , A__ = None , A__ = 1 , A__ = 0.0 , A__ = None , A__ = None , A__ = "pil" , A__ = True , A__ = None , A__ = 1 , **A__ , ): A__ : Any = self.speech_processor.feature_extractor( A__ , return_tensors="""pt""" , sampling_rate=A__ ).input_features.to(self.device ) A__ : Optional[Any] = self.speech_model.generate(A__ , max_length=48_0000 ) A__ : Union[str, Any] = self.speech_processor.tokenizer.batch_decode(A__ , skip_special_tokens=A__ , normalize=A__ )[ 0 ] if isinstance(A__ , A__ ): A__ : Dict = 1 elif isinstance(A__ , A__ ): A__ : Optional[int] = len(A__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(A__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ , A__ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(A__ )}.""" ) # get prompt text embeddings A__ : Optional[int] = self.tokenizer( A__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A__ : Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) A__ : Dict = text_input_ids[:, : self.tokenizer.model_max_length] A__ : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ , A__ , A__ : List[str] = text_embeddings.shape A__ : Dict = text_embeddings.repeat(1 , A__ , 1 ) A__ : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , A__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ : List[str] if negative_prompt is None: A__ : Union[str, Any] = [""""""] * batch_size elif type(A__ ) is not type(A__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(A__ )} !=""" F""" {type(A__ )}.""" ) elif isinstance(A__ , A__ ): A__ : Union[str, Any] = [negative_prompt] elif batch_size != len(A__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(A__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: A__ : int = negative_prompt A__ : Union[str, Any] = text_input_ids.shape[-1] A__ : int = self.tokenizer( A__ , padding="""max_length""" , max_length=A__ , truncation=A__ , return_tensors="""pt""" , ) A__ : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ : List[Any] = uncond_embeddings.shape[1] A__ : Any = uncond_embeddings.repeat(1 , A__ , 1 ) A__ : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , A__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ : Optional[Any] = torch.randn(A__ , generator=A__ , device="""cpu""" , dtype=A__ ).to( self.device ) else: A__ : str = torch.randn(A__ , generator=A__ , device=self.device , dtype=A__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) A__ : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ : List[str] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ : Any = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ : Tuple = {} if accepts_eta: A__ : str = eta for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance A__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ : Tuple = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual A__ : Union[str, Any] = self.unet(A__ , A__ , encoder_hidden_states=A__ ).sample # perform guidance if do_classifier_free_guidance: A__ , A__ : List[Any] = noise_pred.chunk(2 ) A__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ : Tuple = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ , A__ , A__ ) A__ : str = 1 / 0.1_8_2_1_5 * latents A__ : Optional[Any] = self.vae.decode(A__ ).sample A__ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ : Optional[Any] = self.numpy_to_pil(A__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=A__ , nsfw_content_detected=A__ )
141
1
from math import pi def lowercase_ ( _A : Any , _A : List[str] ): """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
184
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCamelCase__ ( _A , _A ): if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : List[str]=7 , snake_case__ : Optional[Any]=3 , snake_case__ : Dict=30 , snake_case__ : Dict=400 , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=None , snake_case__ : str=True , snake_case__ : str=[0.5, 0.5, 0.5] , snake_case__ : int=[0.5, 0.5, 0.5] , snake_case__ : int=True , snake_case__ : Optional[int]=1 / 255 , snake_case__ : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ : List[str] =size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCamelCase_ : List[str] =parent lowerCamelCase_ : Any =batch_size lowerCamelCase_ : Any =num_channels lowerCamelCase_ : List[Any] =min_resolution lowerCamelCase_ : Any =max_resolution lowerCamelCase_ : str =do_resize lowerCamelCase_ : Union[str, Any] =size lowerCamelCase_ : Dict =do_normalize lowerCamelCase_ : Dict =image_mean lowerCamelCase_ : Any =image_std lowerCamelCase_ : List[Any] =do_rescale lowerCamelCase_ : Tuple =rescale_factor lowerCamelCase_ : Dict =do_pad def UpperCAmelCase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self : Any , snake_case__ : str , snake_case__ : Any=False ): if not batched: lowerCamelCase_ : str =image_inputs[0] if isinstance(snake_case__ , Image.Image ): lowerCamelCase_ : Dict =image.size else: lowerCamelCase_ : int =image.shape[1], image.shape[2] if w < h: lowerCamelCase_ : Union[str, Any] =int(self.size["shortest_edge"] * h / w ) lowerCamelCase_ : Dict =self.size["shortest_edge"] elif w > h: lowerCamelCase_ : int =self.size["shortest_edge"] lowerCamelCase_ : Dict =int(self.size["shortest_edge"] * w / h ) else: lowerCamelCase_ : Optional[int] =self.size["shortest_edge"] lowerCamelCase_ : Tuple =self.size["shortest_edge"] else: lowerCamelCase_ : Dict =[] for image in image_inputs: lowerCamelCase_ : Union[str, Any] =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ : Tuple =max(snake_case__ , key=lambda snake_case__ : item[0] )[0] lowerCamelCase_ : Tuple =max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Any =ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , snake_case__ ) lowerCamelCase_ : List[Any] =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): pass def UpperCAmelCase__ ( self : Union[str, Any] ): # Initialize image_processing lowerCamelCase_ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCamelCase_ : List[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ : Tuple =self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : Union[str, Any] =self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) lowerCamelCase_ : Union[str, Any] =image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : List[str] ): # Initialize image_processing lowerCamelCase_ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowerCamelCase_ : str =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ : List[Any] =self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : Union[str, Any] =image_processing(snake_case__ , return_tensors="pt" ).pixel_values lowerCamelCase_ : List[str] =self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : List[Any] ): # Initialize image_processing lowerCamelCase_ : str =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowerCamelCase_ : Dict =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ : Optional[Any] =self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ : List[Any] =image_processing(snake_case__ , return_tensors="pt" ).pixel_values lowerCamelCase_ : int =self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): # prepare image and target lowerCamelCase_ : List[str] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCamelCase_ : Optional[Any] =json.loads(f.read() ) lowerCamelCase_ : str ={"image_id": 3_9769, "annotations": target} # encode them lowerCamelCase_ : Any =ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) lowerCamelCase_ : Tuple =image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="pt" ) # verify pixel values lowerCamelCase_ : str =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) lowerCamelCase_ : List[Any] =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) ) # verify area lowerCamelCase_ : Dict =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes lowerCamelCase_ : Any =torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) lowerCamelCase_ : List[str] =torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1E-3 ) ) # verify image_id lowerCamelCase_ : List[str] =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd lowerCamelCase_ : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels lowerCamelCase_ : Any =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify orig_size lowerCamelCase_ : Union[str, Any] =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size lowerCamelCase_ : Optional[Any] =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): # prepare image, target and masks_path lowerCamelCase_ : List[str] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCamelCase_ : Union[str, Any] =json.loads(f.read() ) lowerCamelCase_ : int ={"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} lowerCamelCase_ : Optional[int] =pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCamelCase_ : List[Any] =ConditionalDetrImageProcessor(format="coco_panoptic" ) lowerCamelCase_ : Dict =image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="pt" ) # verify pixel values lowerCamelCase_ : Any =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) lowerCamelCase_ : Optional[int] =torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1E-4 ) ) # verify area lowerCamelCase_ : Dict =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes lowerCamelCase_ : int =torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) lowerCamelCase_ : Optional[Any] =torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1E-3 ) ) # verify image_id lowerCamelCase_ : Tuple =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd lowerCamelCase_ : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels lowerCamelCase_ : int =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify masks lowerCamelCase_ : Tuple =82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , snake_case__ ) # verify orig_size lowerCamelCase_ : List[str] =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size lowerCamelCase_ : List[Any] =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) )
364
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowercase__ ( snake_case__ ): def __init__( self : Tuple , snake_case__ : Optional[int] , snake_case__ : int=None , snake_case__ : Union[str, Any]=True , snake_case__ : Optional[int]=None , **snake_case__ : Optional[int] ): lowerCamelCase_ : Dict =parent lowerCamelCase_ : List[str] =config_class lowerCamelCase_ : Union[str, Any] =has_text_modality lowerCamelCase_ : Optional[int] =kwargs lowerCamelCase_ : List[str] =common_properties def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : List[str] =self.config_class(**self.inputs_dict ) lowerCamelCase_ : Any =( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(snake_case__ , snake_case__ ) , msg=F"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(snake_case__ ): try: setattr(snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual( getattr(snake_case__ , snake_case__ ) , snake_case__ , msg=F"""`{name} value {idx} expected, but was {getattr(snake_case__ , snake_case__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(snake_case__ ): try: lowerCamelCase_ : Dict =self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(snake_case__ , snake_case__ ) , snake_case__ , msg=F"""`{name} value {idx} expected, but was {getattr(snake_case__ , snake_case__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Tuple =self.config_class(**self.inputs_dict ) lowerCamelCase_ : Any =json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , snake_case__ ) def UpperCAmelCase__ ( self : int ): lowerCamelCase_ : Tuple =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : List[Any] =os.path.join(snake_case__ , "config.json" ) config_first.to_json_file(snake_case__ ) lowerCamelCase_ : Optional[int] =self.config_class.from_json_file(snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Dict =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(snake_case__ ) lowerCamelCase_ : Optional[int] =self.config_class.from_pretrained(snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Dict =self.config_class(**self.inputs_dict ) lowerCamelCase_ : Dict ="test" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : str =os.path.join(snake_case__ , snake_case__ ) config_first.save_pretrained(snake_case__ ) lowerCamelCase_ : Optional[Any] =self.config_class.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Optional[Any] =self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowerCamelCase_ : List[Any] =3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase__ ( self : List[Any] ): if self.config_class.is_composition: return lowerCamelCase_ : Tuple =self.config_class() self.parent.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : List[str] =copy.deepcopy(snake_case__ ) lowerCamelCase_ : Optional[int] =self.config_class(**snake_case__ ) lowerCamelCase_ : Union[str, Any] =[] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(snake_case__ , snake_case__ ) != value: wrong_values.append((key, getattr(snake_case__ , snake_case__ ), value) ) if len(snake_case__ ) > 0: lowerCamelCase_ : Any ="\n".join([F"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(F"""The following keys were not properly set in the config:\n{errors}""" ) def UpperCAmelCase__ ( self : int ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
209
0
"""simple docstring""" def a__ ( snake_case__ = 60_08_51_47_51_43 ) -> int: try: lowerCamelCase = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) lowerCamelCase = 2 lowerCamelCase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowerCamelCase = i while n % i == 0: lowerCamelCase = n // i i += 1 return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F"""{solution() = }""")
291
from typing import Union import fire import torch from tqdm import tqdm def _snake_case( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = "cpu" , SCREAMING_SNAKE_CASE__ : Union[str, None] = None ) -> None: '''simple docstring''' A__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location=SCREAMING_SNAKE_CASE__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) A__ = v.half() if save_path is None: # overwrite src_path A__ = src_path torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": fire.Fire(convert)
7
0
"""simple docstring""" import sys import turtle def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) __UpperCamelCase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') __UpperCamelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
366
"""simple docstring""" __UpperCamelCase = 256 # Modulus to hash a string __UpperCamelCase = 100_0003 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> bool: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCAmelCase ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def UpperCAmelCase ( ) -> None: snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) and not rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'Lue' assert not rabin_karp(UpperCAmelCase , UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
312
0
'''simple docstring''' def UpperCAmelCase_ (__a : list , __a : list , __a : int ): """simple docstring""" _a : Optional[Any] = len(__a ) _a : int = [[0] * n for i in range(__a )] for i in range(__a ): _a : Tuple = y_points[i] for i in range(2 , __a ): for j in range(__a , __a ): _a : Tuple = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
271
'''simple docstring''' def UpperCAmelCase_ (__a : list , __a : list , __a : int ): """simple docstring""" _a : Optional[Any] = len(__a ) _a : int = [[0] * n for i in range(__a )] for i in range(__a ): _a : Tuple = y_points[i] for i in range(2 , __a ): for j in range(__a , __a ): _a : Tuple = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
271
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( A_ ): UpperCAmelCase__ : torch.FloatTensor class lowerCamelCase ( A_ , A_ ): @register_to_config def __init__(self : Optional[int] , _A : int = 3 , _A : int = 3 , _A : Tuple[str] = ("DownEncoderBlock2D",) , _A : Tuple[str] = ("UpDecoderBlock2D",) , _A : Tuple[int] = (6_4,) , _A : int = 1 , _A : str = "silu" , _A : int = 3 , _A : int = 3_2 , _A : int = 2_5_6 , _A : int = 3_2 , _A : Optional[int] = None , _A : float = 0.1_82_15 , _A : str = "group" , ) -> List[str]: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=_A , out_channels=_A , down_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , double_z=_A , ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(_A , _A , 1 ) snake_case = VectorQuantizer(_A , _A , beta=0.25 , remap=_A , sane_index_shape=_A ) snake_case = nn.Convad(_A , _A , 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=_A , out_channels=_A , up_block_types=_A , block_out_channels=_A , layers_per_block=_A , act_fn=_A , norm_num_groups=_A , norm_type=_A , ) @apply_forward_hook def UpperCAmelCase(self : int , _A : torch.FloatTensor , _A : bool = True ) -> VQEncoderOutput: snake_case = self.encoder(_A ) snake_case = self.quant_conv(_A ) if not return_dict: return (h,) return VQEncoderOutput(latents=_A ) @apply_forward_hook def UpperCAmelCase(self : Union[str, Any] , _A : torch.FloatTensor , _A : bool = False , _A : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(_A ) else: snake_case = h snake_case = self.post_quant_conv(_A ) snake_case = self.decoder(_A , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_A ) def UpperCAmelCase(self : Optional[Any] , _A : torch.FloatTensor , _A : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(_A ).latents snake_case = self.decode(_A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_A )
137
from __future__ import annotations def lowercase_ ( A__ , A__ , A__ ) -> int | float: """simple docstring""" if len(A__ ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(A__ ) or left < -len(A__ ) or right >= len(A__ ) or right < -len(A__ ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A__ , A__ , A__ ) # find max in range[left, mid] snake_case = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
137
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' UpperCAmelCase = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' UpperCAmelCase = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def snake_case ( self : Optional[int] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def snake_case ( self : Union[str, Any] , __lowercase : List[List[List[str]]] , __lowercase : List[List[str]] , __lowercase : int = 1 , __lowercase : int = 4 , ): """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__lowercase , hypotheses=__lowercase , min_len=__lowercase , max_len=__lowercase ) }
141
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self : Optional[int] ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowercase ): __lowercase =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowercase =FlaxAutoModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def snake_case ( self : Optional[Any] ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowercase ): __lowercase =AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) __lowercase =FlaxAutoModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def snake_case ( self : Optional[int] ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: __lowercase =AutoTokenizer.from_pretrained(__lowercase ) __lowercase =FlaxBertModel.from_pretrained(__lowercase ) __lowercase =tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowercase : Optional[Any] ): return model(**__lowercase ) eval(**__lowercase ).block_until_ready() @slow def snake_case ( self : List[Any] ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: __lowercase =AutoTokenizer.from_pretrained(__lowercase ) __lowercase =FlaxRobertaModel.from_pretrained(__lowercase ) __lowercase =tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowercase : Dict ): return model(**__lowercase ) eval(**__lowercase ).block_until_ready() def snake_case ( self : Any ): """simple docstring""" with self.assertRaisesRegex( __lowercase , 'bert-base is not a local folder and is not a valid model identifier' ): __lowercase =FlaxAutoModel.from_pretrained('bert-base' ) def snake_case ( self : Optional[Any] ): """simple docstring""" with self.assertRaisesRegex( __lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowercase =FlaxAutoModel.from_pretrained(__lowercase , revision='aaaaaa' ) def snake_case ( self : Optional[Any] ): """simple docstring""" with self.assertRaisesRegex( __lowercase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): __lowercase =FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def snake_case ( self : Any ): """simple docstring""" with self.assertRaisesRegex(__lowercase , 'Use `from_pt=True` to load this model' ): __lowercase =FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
141
1
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _lowerCAmelCase ( lowercase_=32 , lowercase_=10 , lowercase_=100 , lowercase_=1026 , lowercase_=True , lowercase_="data/tokenized_stories_train_wikitext103.jbl" , lowercase_="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set UpperCAmelCase , UpperCAmelCase = generate_datasets( lowercase_ , lowercase_ , number=lowercase_ , min_len=1026 , trim=lowercase_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCAmelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model UpperCAmelCase = load_gpta('gpt2' ).to(lowercase_ ) print('computing perplexity on objective set' ) UpperCAmelCase = compute_perplexity(lowercase_ , lowercase_ , lowercase_ ).item() print('perplexity on objective set:' , lowercase_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _lowerCAmelCase ( lowercase_ , lowercase_=15 , lowercase_=128 , lowercase_=100 , lowercase_="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model UpperCAmelCase = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model UpperCAmelCase = SecondaryLearner(lowercase_ ) # Train secondary learner UpperCAmelCase = train_secondary_learner( lowercase_ , lowercase_ , max_epochs=lowercase_ , batch_size=lowercase_ , eval_freq=100 , igf_model_path=lowercase_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=32 , lowercase_=1000 , lowercase_=16 , lowercase_=1.0 , lowercase_=recopy_gpta , lowercase_=None , lowercase_=10 , lowercase_="gpt2_finetuned.pt" , ): UpperCAmelCase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) UpperCAmelCase = RandomSampler(lowercase_ ) UpperCAmelCase = DataLoader(lowercase_ , sampler=lowercase_ ) UpperCAmelCase = max_steps // (len(lowercase_ )) + 1 UpperCAmelCase = 0 UpperCAmelCase = torch.zeros((1, context_len) , dtype=torch.long , device=lowercase_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = recopy_model(lowercase_ , lowercase_ , lowercase_ ) model.train() if secondary_learner is not None: secondary_learner.to(lowercase_ ) secondary_learner.eval() UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = [] UpperCAmelCase = [] # Compute the performance of the transformer model at the beginning UpperCAmelCase = compute_perplexity(lowercase_ , lowercase_ , lowercase_ ) test_perps.append(lowercase_ ) print('Test perplexity, step' , lowercase_ , ':' , lowercase_ ) for epoch in range(int(lowercase_ ) ): for step, example in enumerate(lowercase_ ): torch.cuda.empty_cache() UpperCAmelCase = random.randint(0 , example.size(2 ) - context_len - 1 ) UpperCAmelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCAmelCase = model(lowercase_ , labels=lowercase_ ) UpperCAmelCase = True if secondary_learner is not None: UpperCAmelCase = secondary_learner.forward( torch.tensor(lowercase_ , dtype=torch.long , device=lowercase_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(lowercase_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCAmelCase = -1 if predicted_q < threshold: UpperCAmelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) UpperCAmelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCAmelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCAmelCase = compute_perplexity(lowercase_ , lowercase_ , lowercase_ ) test_perps.append(lowercase_ ) print('Test perplexity, step' , lowercase_ , ':' , lowercase_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , lowercase_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _lowerCAmelCase ( ): UpperCAmelCase = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=lowercase_ , type=lowercase_ , required=lowercase_ , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=lowercase_ , type=lowercase_ , required=lowercase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=lowercase_ , default=lowercase_ , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=lowercase_ , default=lowercase_ , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=lowercase_ , type=lowercase_ , required=lowercase_ , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=lowercase_ , type=lowercase_ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=lowercase_ , default=lowercase_ , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=lowercase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=lowercase_ , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=lowercase_ , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1000 , type=lowercase_ , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=lowercase_ , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=lowercase_ , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=lowercase_ , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=lowercase_ , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1026 , type=lowercase_ , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=lowercase_ , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=lowercase_ , type=lowercase_ , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=lowercase_ , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=lowercase_ , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=lowercase_ , type=lowercase_ , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=lowercase_ , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner UpperCAmelCase = joblib.load('data/IGF_values.jbl' ) # Train secondary learner UpperCAmelCase = training_secondary_learner( lowercase_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model UpperCAmelCase = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model UpperCAmelCase , UpperCAmelCase = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=lowercase_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( lowercase_ , lowercase_ , lowercase_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=lowercase_ , secondary_learner=lowercase_ , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
181
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Any , lowercase_ :Optional[Any] , lowercase_ :int=13 , lowercase_ :Optional[Any]=7 , lowercase_ :List[str]=True , lowercase_ :Dict=True , lowercase_ :str=True , lowercase_ :Optional[Any]=True , lowercase_ :Dict=99 , lowercase_ :int=32 , lowercase_ :str=5 , lowercase_ :Dict=4 , lowercase_ :Tuple=37 , lowercase_ :Dict="gelu" , lowercase_ :List[str]=0.1 , lowercase_ :int=0.1 , lowercase_ :Any=5_12 , lowercase_ :Optional[Any]=16 , lowercase_ :Optional[int]=2 , lowercase_ :Union[str, Any]=0.02 , lowercase_ :Dict=False , lowercase_ :Tuple=True , lowercase_ :Optional[Any]="None" , lowercase_ :int=3 , lowercase_ :Tuple=4 , lowercase_ :Optional[int]=None , ) -> Tuple: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = relative_attention UpperCAmelCase = position_biased_input UpperCAmelCase = pos_att_type UpperCAmelCase = scope def UpperCAmelCase__ ( self :Any ) -> Tuple: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self :Tuple ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str ) -> List[str]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str , lowercase_ :Tuple , lowercase_ :str , lowercase_ :int , lowercase_ :Union[str, Any] , lowercase_ :List[str] , lowercase_ :Optional[int] ) -> Optional[int]: UpperCAmelCase = DebertaVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase = model(lowercase_ , token_type_ids=lowercase_ )[0] UpperCAmelCase = model(lowercase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Dict , lowercase_ :List[str] , lowercase_ :Any , lowercase_ :List[str] , lowercase_ :Tuple , lowercase_ :List[Any] , lowercase_ :int ) -> Any: UpperCAmelCase = DebertaVaForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :Any , lowercase_ :Dict , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Dict ) -> Union[str, Any]: UpperCAmelCase = self.num_labels UpperCAmelCase = DebertaVaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowercase_ ) def UpperCAmelCase__ ( self :Any , lowercase_ :Union[str, Any] , lowercase_ :Dict , lowercase_ :Union[str, Any] , lowercase_ :Any , lowercase_ :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :Any ) -> List[Any]: UpperCAmelCase = self.num_labels UpperCAmelCase = DebertaVaForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self :Any , lowercase_ :Any , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :Union[str, Any] , lowercase_ :Dict , lowercase_ :List[Any] , lowercase_ :Optional[int] ) -> Dict: UpperCAmelCase = DebertaVaForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Union[str, Any] , lowercase_ :Any , lowercase_ :Any ) -> List[Any]: UpperCAmelCase = DebertaVaForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self :Dict ) -> int: UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase = DebertaVaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :Optional[Any] ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> List[Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[int]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowercase_ ) @slow def UpperCAmelCase__ ( self :Any ) -> Optional[int]: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = DebertaVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def UpperCAmelCase__ ( self :str ) -> Tuple: pass @slow def UpperCAmelCase__ ( self :List[Any] ) -> Any: UpperCAmelCase = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCAmelCase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ )[0] # compare the actual values for a slice. UpperCAmelCase = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
181
1
"""simple docstring""" def A ( snake_case :Tuple = 1_0_0 ) -> int: __UpperCamelCase = 0 __UpperCamelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
316
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = "▁" _a = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } _a = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } _a = { "facebook/m2m100_418M": 1_024, } # fmt: off _a = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="m2m100" , __lowerCAmelCase = None , __lowerCAmelCase=8 , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__ = language_codes lowerCamelCase__ = FAIRSEQ_LANGUAGE_CODES[language_codes] lowerCamelCase__ = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} lowerCamelCase__ = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , language_codes=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCamelCase__ = vocab_file lowerCamelCase__ = load_json(__lowerCAmelCase ) lowerCamelCase__ = {v: k for k, v in self.encoder.items()} lowerCamelCase__ = spm_file lowerCamelCase__ = load_spm(__lowerCAmelCase , self.sp_model_kwargs ) lowerCamelCase__ = len(self.encoder ) lowerCamelCase__ = { self.get_lang_token(__lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase ) } lowerCamelCase__ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase )} lowerCamelCase__ = {v: k for k, v in self.lang_token_to_id.items()} lowerCamelCase__ = src_lang if src_lang is not None else '''en''' lowerCamelCase__ = tgt_lang lowerCamelCase__ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowerCamelCase__ = num_madeup_words @property def __lowerCamelCase ( self ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def __lowerCamelCase ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowerCAmelCase , self.encoder[self.unk_token] ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowerCAmelCase , self.unk_token ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token lowerCamelCase__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) lowerCamelCase__ = [1] * len(self.prefix_tokens ) lowerCamelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase__ = {} lowerCamelCase__ = load_spm(self.spm_file , self.sp_model_kwargs ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = Path(__lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) lowerCamelCase__ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowerCamelCase__ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (str(__lowerCAmelCase ), str(__lowerCAmelCase )) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = "en" , __lowerCAmelCase = None , __lowerCAmelCase = "ro" , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = src_lang lowerCamelCase__ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCamelCase__ = src_lang lowerCamelCase__ = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = self.get_lang_id(__lowerCAmelCase ) lowerCamelCase__ = tgt_lang_id return inputs def __lowerCamelCase ( self ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def __lowerCamelCase ( self ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.get_lang_token(__lowerCAmelCase ) lowerCamelCase__ = self.lang_token_to_id[lang_token] lowerCamelCase__ = [self.cur_lang_id] lowerCamelCase__ = [self.eos_token_id] def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.get_lang_token(__lowerCAmelCase ) lowerCamelCase__ = self.lang_token_to_id[lang_token] lowerCamelCase__ = [self.cur_lang_id] lowerCamelCase__ = [self.eos_token_id] def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.lang_code_to_token[lang] def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.get_lang_token(__lowerCAmelCase ) return self.lang_token_to_id[lang_token] def lowerCAmelCase__(__snake_case ,__snake_case ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' lowerCamelCase__ = sentencepiece.SentencePieceProcessor(**__snake_case ) spm.Load(str(__snake_case ) ) return spm def lowerCAmelCase__(__snake_case ) -> Union[Dict, List]: '''simple docstring''' with open(__snake_case ,'''r''' ) as f: return json.load(__snake_case ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> None: '''simple docstring''' with open(__snake_case ,'''w''' ) as f: json.dump(__snake_case ,__snake_case ,indent=2 )
209
0
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case (__SCREAMING_SNAKE_CASE): __A : Dict =["image_processor", "tokenizer"] __A : List[str] ="BlipImageProcessor" __A : Optional[int] ="AutoTokenizer" def __init__( self ,_snake_case ,_snake_case ,_snake_case ): super().__init__(_snake_case ,_snake_case ) # add QFormer tokenizer UpperCAmelCase_ : List[str] = qformer_tokenizer def __call__( self ,_snake_case = None ,_snake_case = None ,_snake_case = True ,_snake_case = False ,_snake_case = None ,_snake_case = None ,_snake_case = 0 ,_snake_case = None ,_snake_case = None ,_snake_case = False ,_snake_case = False ,_snake_case = False ,_snake_case = False ,_snake_case = False ,_snake_case = True ,_snake_case = None ,**_snake_case ,): if images is None and text is None: raise ValueError("You have to specify at least images or text." ) UpperCAmelCase_ : str = BatchFeature() if text is not None: UpperCAmelCase_ : List[Any] = self.tokenizer( text=_snake_case ,add_special_tokens=_snake_case ,padding=_snake_case ,truncation=_snake_case ,max_length=_snake_case ,stride=_snake_case ,pad_to_multiple_of=_snake_case ,return_attention_mask=_snake_case ,return_overflowing_tokens=_snake_case ,return_special_tokens_mask=_snake_case ,return_offsets_mapping=_snake_case ,return_token_type_ids=_snake_case ,return_length=_snake_case ,verbose=_snake_case ,return_tensors=_snake_case ,**_snake_case ,) encoding.update(_snake_case ) UpperCAmelCase_ : int = self.qformer_tokenizer( text=_snake_case ,add_special_tokens=_snake_case ,padding=_snake_case ,truncation=_snake_case ,max_length=_snake_case ,stride=_snake_case ,pad_to_multiple_of=_snake_case ,return_attention_mask=_snake_case ,return_overflowing_tokens=_snake_case ,return_special_tokens_mask=_snake_case ,return_offsets_mapping=_snake_case ,return_token_type_ids=_snake_case ,return_length=_snake_case ,verbose=_snake_case ,return_tensors=_snake_case ,**_snake_case ,) UpperCAmelCase_ : Union[str, Any] = qformer_text_encoding.pop("input_ids" ) UpperCAmelCase_ : Tuple = qformer_text_encoding.pop("attention_mask" ) if images is not None: UpperCAmelCase_ : Dict = self.image_processor(_snake_case ,return_tensors=_snake_case ) encoding.update(_snake_case ) return encoding def UpperCamelCase__ ( self ,*_snake_case ,**_snake_case ): return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,*_snake_case ,**_snake_case ): return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.tokenizer.model_input_names UpperCAmelCase_ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase__ ( self ,_snake_case ,**_snake_case ): if os.path.isfile(_snake_case ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(_snake_case ,exist_ok=_snake_case ) UpperCAmelCase_ : List[Any] = os.path.join(_snake_case ,"qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(_snake_case ) return super().save_pretrained(_snake_case ,**_snake_case ) @classmethod def UpperCamelCase__ ( cls ,_snake_case ,**_snake_case ): UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_snake_case ,subfolder="qformer_tokenizer" ) UpperCAmelCase_ : List[Any] = cls._get_arguments_from_pretrained(_snake_case ,**_snake_case ) args.append(_snake_case ) return cls(*_snake_case )
363
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def a__ ( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
67
0
"""simple docstring""" import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Dict = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCamelCase : Tuple = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def A ( snake_case :List[Any] , snake_case :Tuple , snake_case :Union[str, Any] , snake_case :Dict , snake_case :int ) -> str: for attribute in key.split('.' ): __UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: __UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: __UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A ( snake_case :Tuple , snake_case :Union[str, Any] ) -> int: __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __UpperCamelCase = None for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) __UpperCamelCase = True elif name.split('.' )[0] == "proj": __UpperCamelCase = fairseq_model.proj __UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(__UpperCamelCase )[0].split('.' )[-2] __UpperCamelCase = mapped_key.replace('*' , __UpperCamelCase ) if "weight_g" in name: __UpperCamelCase = 'weight_g' elif "weight_v" in name: __UpperCamelCase = 'weight_v' elif "bias" in name: __UpperCamelCase = 'bias' elif "weight" in name: __UpperCamelCase = 'weight' else: __UpperCamelCase = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def A ( snake_case :Any , snake_case :List[Any] , snake_case :Tuple , snake_case :Any , snake_case :Optional[Any] ) -> str: __UpperCamelCase = full_name.split('conv_layers.' )[-1] __UpperCamelCase = name.split('.' ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __UpperCamelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __UpperCamelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __UpperCamelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __UpperCamelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__UpperCamelCase ) def A ( snake_case :Any ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = emb.weight.shape __UpperCamelCase = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) __UpperCamelCase = emb.weight.data return lin_layer def A ( snake_case :List[Any] ) -> Union[str, Any]: with open(__UpperCamelCase , 'r' , encoding='utf-8' ) as f: __UpperCamelCase = f.readlines() __UpperCamelCase = [line.split(' ' )[0] for line in lines] __UpperCamelCase = len(__UpperCamelCase ) __UpperCamelCase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__UpperCamelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def A ( snake_case :int , snake_case :Dict , snake_case :Optional[int] , snake_case :Optional[int] , snake_case :str , snake_case :List[str] , snake_case :Dict , ) -> str: __UpperCamelCase = WavaVecaConfig.from_pretrained(__UpperCamelCase ) __UpperCamelCase = SpeechaTextaConfig.from_pretrained( __UpperCamelCase , vocab_size=__UpperCamelCase , decoder_layers=__UpperCamelCase , do_stable_layer_norm=__UpperCamelCase ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __UpperCamelCase = model[0].eval() # set weights for wav2vec2 encoder __UpperCamelCase = WavaVecaModel(__UpperCamelCase ) __UpperCamelCase = recursively_load_weights_wavaveca(model.encoder , __UpperCamelCase ) __UpperCamelCase = SpeechaTextaForCausalLM(__UpperCamelCase ) __UpperCamelCase , __UpperCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__UpperCamelCase ) # set output linear layer unexpected_keys.remove('embed_out' ) __UpperCamelCase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) __UpperCamelCase = SpeechEncoderDecoderModel(encoder=__UpperCamelCase , decoder=__UpperCamelCase ) __UpperCamelCase = False # add projection layer __UpperCamelCase = nn.Parameter(projection_layer.weight ) __UpperCamelCase = nn.Parameter(projection_layer.bias ) __UpperCamelCase = create_vocab_dict(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , 'vocab.json' ) , 'w' ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase = SpeechaTextaTokenizer(os.path.join(__UpperCamelCase , 'vocab.json' ) ) tokenizer.save_pretrained(__UpperCamelCase ) __UpperCamelCase = hf_wavavec.config.to_dict() __UpperCamelCase = tokenizer.pad_token_id __UpperCamelCase = tokenizer.bos_token_id __UpperCamelCase = tokenizer.eos_token_id __UpperCamelCase = 'speech_to_text_2' __UpperCamelCase = 'wav2vec2' __UpperCamelCase = SpeechEncoderDecoderConfig.from_dict(__UpperCamelCase ) hf_wavavec.save_pretrained(__UpperCamelCase ) feature_extractor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0_2_2_4, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") UpperCamelCase : str = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
316
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __snake_case ( __UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : NDArray[floataa] ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ,): """simple docstring""" A_ , A_ = coefficient_matrix.shape A_ , A_ = constant_matrix.shape if rowsa != colsa: A_ = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if colsa != 1: A_ = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__UpperCamelCase ) if rowsa != rowsa: A_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__UpperCamelCase ) if len(__UpperCamelCase ) != rowsa: A_ = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(__UpperCamelCase )} and {rowsa}''' ) raise ValueError(__UpperCamelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) A_ = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ = table.shape strictly_diagonally_dominant(__UpperCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCamelCase ): A_ = [] for row in range(__UpperCamelCase ): A_ = 0 for col in range(__UpperCamelCase ): if col == row: A_ = table[row][col] elif col == cols - 1: A_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ = (temp + val) / denom new_val.append(__UpperCamelCase ) A_ = new_val return [float(__UpperCamelCase ) for i in new_val] def __snake_case ( __UpperCamelCase : NDArray[floataa] ): """simple docstring""" A_ , A_ = table.shape A_ = True for i in range(0 ,__UpperCamelCase ): A_ = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( __lowercase ): """simple docstring""" _lowerCAmelCase : int = ["""image_processor""", """tokenizer"""] _lowerCAmelCase : Dict = """ViTImageProcessor""" _lowerCAmelCase : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): """simple docstring""" snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _a , ) snake_case = kwargs.pop('feature_extractor' ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_a , _a ) def __call__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: snake_case = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: snake_case = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: snake_case = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: snake_case = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: snake_case = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: snake_case = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def snake_case ( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_a , **_a ) def snake_case ( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*_a , **_a ) @property def snake_case ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _a , ) return self.image_processor_class @property def snake_case ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _a , ) return self.image_processor
350
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=False ) -> Any: """simple docstring""" try: snake_case = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case = default else: # KEY is set, convert it to True or False. try: snake_case = strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value SCREAMING_SNAKE_CASE__ = parse_flag_from_env("RUN_SLOW", default=False) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> str: """simple docstring""" return unittest.skip('Test was skipped' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> str: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> Dict: """simple docstring""" return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> int: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> str: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict=None , _UpperCamelCase : Dict=None ) -> int: """simple docstring""" if test_case is None: return partial(_UpperCamelCase , version=_UpperCamelCase ) return unittest.skipUnless(is_torch_version('>=' , _UpperCamelCase ) , f"""test requires torch version >= {version}""" )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> int: """simple docstring""" return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_UpperCamelCase ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = True @classmethod def snake_case ( cls ): """simple docstring""" snake_case = tempfile.mkdtemp() @classmethod def snake_case ( cls ): """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def snake_case ( self ): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCAmelCase ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = mocks if isinstance(lowerCAmelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Any: """simple docstring""" snake_case = AcceleratorState() snake_case = tensor[None].clone().to(state.device ) snake_case = gather(_UpperCamelCase ).cpu() snake_case = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCamelCase ): return False return True class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = returncode snake_case = stdout snake_case = stderr async def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> List[Any]: """simple docstring""" while True: snake_case = await stream.readline() if line: callback(_UpperCamelCase ) else: break async def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=False , _UpperCamelCase : Optional[int]=False ) -> _RunOutput: """simple docstring""" if echo: print('\nRunning: ' , ' '.join(_UpperCamelCase ) ) snake_case = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case = [] snake_case = [] def tee(_UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str]="" ): snake_case = line.decode('utf-8' ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : str=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Tuple=1_8_0 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[Any]=True ) -> _RunOutput: """simple docstring""" snake_case = asyncio.get_event_loop() snake_case = loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) snake_case = ' '.join(_UpperCamelCase ) if result.returncode > 0: snake_case = '\n'.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) return result class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" pass def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" try: snake_case = subprocess.check_output(_UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCamelCase , 'decode' ): snake_case = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"""Command `{" ".join(_UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
149
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : List[Any] = {'vocab_file': 'spiece.model'} a_ : Dict = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } a_ : Tuple = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) a_ : int = 0 a_ : Optional[int] = 1 a_ : int = 2 a_ : Union[str, Any] = 3 a_ : List[str] = 4 class _snake_case ( A__ ): _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Union[str, Any] = '''left''' def __init__( self , a , a=False , a=True , a=False , a="<s>" , a="</s>" , a="<unk>" , a="<sep>" , a="<pad>" , a="<cls>" , a="<mask>" , a=["<eop>", "<eod>"] , a = None , **a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else mask_token SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = remove_space SCREAMING_SNAKE_CASE = keep_accents SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(a) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return len(self.sp_model) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Tuple: SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE__ ( self , a) -> Any: if self.remove_space: SCREAMING_SNAKE_CASE = ' '.join(inputs.strip().split()) else: SCREAMING_SNAKE_CASE = inputs SCREAMING_SNAKE_CASE = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: SCREAMING_SNAKE_CASE = unicodedata.normalize('NFKD' , a) SCREAMING_SNAKE_CASE = ''.join([c for c in outputs if not unicodedata.combining(a)]) if self.do_lower_case: SCREAMING_SNAKE_CASE = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: SCREAMING_SNAKE_CASE = self.preprocess_text(a) SCREAMING_SNAKE_CASE = self.sp_model.encode(a , out_type=a) SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(a) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(a , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: SCREAMING_SNAKE_CASE = cur_pieces[1:] else: SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(a) else: new_pieces.append(a) return new_pieces def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict: return self.sp_model.PieceToId(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> Tuple: return self.sp_model.IdToPiece(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> int: SCREAMING_SNAKE_CASE = ''.join(a).replace(a , ' ').strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , a , a = False , a = None , a = True , **a , ) -> str: SCREAMING_SNAKE_CASE = kwargs.pop('use_source_tokenizer' , a) SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(a , skip_special_tokens=a) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a)) SCREAMING_SNAKE_CASE = [] sub_texts.append(a) else: current_sub_text.append(a) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE = ''.join(a) SCREAMING_SNAKE_CASE = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE = self.clean_up_tokenization(a) return clean_text else: return text def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) if token_ids_a is not None: return ([0] * len(a)) + [1] + ([0] * len(a)) + [1, 1] return ([0] * len(a)) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: if not os.path.isdir(a): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return SCREAMING_SNAKE_CASE = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , a) elif not os.path.isfile(self.vocab_file): with open(a , 'wb') as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(a) return (out_vocab_file,)
137
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() a_ : str = logging.get_logger(__name__) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = RobertaPreLayerNormConfig.from_pretrained( _UpperCAmelCase , architectures=['RobertaPreLayerNormForMaskedLM']) # convert state_dict SCREAMING_SNAKE_CASE = torch.load(hf_hub_download(repo_id=_UpperCAmelCase , filename='pytorch_model.bin')) SCREAMING_SNAKE_CASE = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.'): SCREAMING_SNAKE_CASE = 'roberta_prelayernorm.' + tensor_key[len('roberta.') :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight') or tensor_key.endswith('.self.LayerNorm.bias'): continue SCREAMING_SNAKE_CASE = tensor_value SCREAMING_SNAKE_CASE = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_UpperCAmelCase , config=_UpperCAmelCase , state_dict=_UpperCAmelCase) model.save_pretrained(_UpperCAmelCase) # convert tokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(_UpperCAmelCase) tokenizer.save_pretrained(_UpperCAmelCase) if __name__ == "__main__": a_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ : int = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
137
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase_ : Optional[Any] = 5_00_00 lowerCAmelCase_ : str = 50_00 lowerCAmelCase_ : str = os.path.split(__file__) lowerCAmelCase_ : Tuple = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _lowerCamelCase ( lowercase : datasets.Dataset , lowercase : int ) -> Optional[Any]: for i in range(lowerCamelCase_ ): _a = dataset[i] @get_duration def _lowerCamelCase ( lowercase : datasets.Dataset , lowercase : Dict , lowercase : str ) -> Any: for i in range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ ): _a = dataset[i : i + batch_size] @get_duration def _lowerCamelCase ( lowercase : datasets.Dataset , lowercase : int , lowercase : int ) -> Dict: with dataset.formatted_as(type=lowerCamelCase_ ): for i in range(lowerCamelCase_ ): _a = dataset[i] @get_duration def _lowerCamelCase ( lowercase : datasets.Dataset , lowercase : Optional[int] , lowercase : List[Any] , lowercase : int ) -> Optional[Any]: with dataset.formatted_as(type=lowerCamelCase_ ): for i in range(0 , lowerCamelCase_ , lowerCamelCase_ ): _a = dataset[i : i + batch_size] def _lowerCamelCase ( ) -> str: _a = {"""num examples""": SPEED_TEST_N_EXAMPLES} _a = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] _a = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) _a = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) _a = generate_example_dataset( os.path.join(lowerCamelCase_ , "dataset.arrow" ) , lowerCamelCase_ , num_examples=lowerCamelCase_ , seq_shapes={"list": (100,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(lowerCamelCase_ ) ) _a = func(lowerCamelCase_ , **lowerCamelCase_ ) print("shuffling dataset" ) _a = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(lowerCamelCase_ ) ) _a = func( lowerCamelCase_ , **lowerCamelCase_ ) with open(lowerCamelCase_ , "wb" ) as f: f.write(json.dumps(lowerCamelCase_ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
358
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCAmelCase_ : List[str] = TypeVar('T') lowerCAmelCase_ : Dict = TypeVar('U') class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" def __init__( self : Union[str, Any] , __a : T | None , __a : U | None ): _a = key _a = val _a = None _a = None def __repr__( self : Any ): return ( f'Node: key: {self.key}, val: {self.val}, ' f'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" def __init__( self : Dict ): _a = DoubleLinkedListNode(__a , __a ) _a = DoubleLinkedListNode(__a , __a ) _a , _a = self.rear, self.head def __repr__( self : str ): _a = ["DoubleLinkedList"] _a = self.head while node.next is not None: rep.append(str(__a ) ) _a = node.next rep.append(str(self.rear ) ) return ",\n ".join(__a ) def UpperCamelCase__ ( self : int , __a : DoubleLinkedListNode[T, U] ): _a = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _a = node _a = previous _a = node _a = self.rear def UpperCamelCase__ ( self : Any , __a : DoubleLinkedListNode[T, U] ): if node.prev is None or node.next is None: return None _a = node.next _a = node.prev _a = None _a = None return node class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" __a ={} def __init__( self : Union[str, Any] , __a : int ): _a = DoubleLinkedList() _a = capacity _a = 0 _a = 0 _a = 0 _a = {} def __repr__( self : Optional[int] ): return ( f'CacheInfo(hits={self.hits}, misses={self.miss}, ' f'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : str , __a : T ): return key in self.cache def UpperCamelCase__ ( self : str , __a : T ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _a = self.cache[key] _a = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__a ) return node.val self.miss += 1 return None def UpperCamelCase__ ( self : Tuple , __a : T , __a : U ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _a = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__a ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _a = DoubleLinkedListNode(__a , __a ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _a = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _a = value self.list.add(__a ) @classmethod def UpperCamelCase__ ( cls : Tuple , __a : int = 1_28 ): def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*__a : T ) -> U: if func not in cls.decorator_function_to_instance_map: _a = LRUCache(__a ) _a = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _a = func(*__a ) cls.decorator_function_to_instance_map[func].put(args[0] , __a ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__a , "cache_info" , __a ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
346
0
'''simple docstring''' class lowerCamelCase_ : # Public class to implement a graph def __init__( self : Optional[Any] , _A : int , _A : int , _A : list[list[bool]] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = row UpperCAmelCase__ : Dict = col UpperCAmelCase__ : Any = graph def lowercase_ ( self : int , _A : int , _A : int , _A : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowercase_ ( self : List[str] , _A : int , _A : int , _A : list[list[bool]] ): '''simple docstring''' UpperCAmelCase__ : Any = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ : str = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ : Union[str, Any] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _A ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _A ) def lowercase_ ( self : Any ): # And finally, count all islands. '''simple docstring''' UpperCAmelCase__ : Any = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ : int = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_A , _A , _A ) count += 1 return count
181
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(lowerCAmelCase__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
181
1
"""simple docstring""" import qiskit def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Union[str, Any] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register lowercase_ : Tuple = qiskit.QuantumCircuit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowercase_ : int = qiskit.execute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =single_qubit_measure(2, 2) print(F"Total count for various states are: {counts}")
321
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=50 ,__UpperCamelCase=0.02 ,__UpperCamelCase=True ,__UpperCamelCase=None ,) -> List[str]: '''simple docstring''' lowercase_ : Dict = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Any = use_input_mask lowercase_ : Optional[Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = use_labels lowercase_ : Union[str, Any] = scope def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : List[str] = None if self.use_input_mask: lowercase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : Any = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ) lowercase_ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = True lowercase_ : str = BertGenerationEncoder(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Union[str, Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,) lowercase_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ,) -> int: '''simple docstring''' lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : int = BertGenerationDecoder(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() # first forward pass lowercase_ : str = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,use_cache=__UpperCamelCase ,) lowercase_ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) lowercase_ : Dict = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and lowercase_ : Tuple = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowercase_ : Any = torch.cat([input_mask, next_mask] ,dim=-1 ) lowercase_ : int = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] lowercase_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,encoder_attention_mask=__UpperCamelCase ,past_key_values=__UpperCamelCase ,output_hidden_states=__UpperCamelCase ,)['hidden_states'][0] # select random slice lowercase_ : int = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowercase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1e-3 ) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,*__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[str] = BertGenerationDecoder(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Optional[Any] = BertGenerationEncoderTester(self ) lowercase_ : Tuple = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = 'bert' self.model_tester.create_and_check_model(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCamelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : int = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(__UpperCamelCase ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Tuple = model(__UpperCamelCase )[0] lowercase_ : Dict = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : str = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : str = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase_ : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowercase_ : Dict = model(__UpperCamelCase )[0] lowercase_ : Optional[int] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape ,__UpperCamelCase ) lowercase_ : Dict = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) )
321
1
"""simple docstring""" from __future__ import annotations def lowercase (snake_case__ : str , snake_case__ : Optional[Any] ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowerCAmelCase = int(UpperCamelCase__ ) lowerCAmelCase = int(UpperCamelCase__ ) lowerCAmelCase = [] for temp in range(int(UpperCamelCase__ ) ): series.append(f'''1 / {pow(temp + 1 , int(UpperCamelCase__ ) )}''' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() a = int(input('Enter the last number (nth term) of the P-Series')) a = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
155
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={ "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __UpperCAmelCase =["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase : List[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __UpperCAmelCase : List[Any] = test_metrics @require_cpu def _lowerCamelCase ( self: int ) -> Any: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _lowerCamelCase ( self: List[Any] ) -> List[Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def _lowerCamelCase ( self: Any ) -> Union[str, Any]: self.test_metrics.main() @require_multi_gpu def _lowerCamelCase ( self: List[str] ) -> Tuple: print(f'''Found {torch.cuda.device_count()} devices.''' ) __UpperCAmelCase : Dict = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() )
364
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A ={'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''DeiTFeatureExtractor'''] __A =['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _a ( UpperCamelCase__): """simple docstring""" def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "embed_dim" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "num_heads" ) ) class _a : """simple docstring""" def __init__( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: str=13 , __lowerCamelCase: Tuple=64 , __lowerCamelCase: List[Any]=3 , __lowerCamelCase: List[Any]=[16, 48, 96] , __lowerCamelCase: Union[str, Any]=[1, 3, 6] , __lowerCamelCase: Tuple=[1, 2, 10] , __lowerCamelCase: int=[7, 3, 3] , __lowerCamelCase: Dict=[4, 2, 2] , __lowerCamelCase: int=[2, 1, 1] , __lowerCamelCase: Dict=[2, 2, 2] , __lowerCamelCase: List[str]=[False, False, True] , __lowerCamelCase: str=[0.0, 0.0, 0.0] , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1e-12 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Tuple=True , __lowerCamelCase: Union[str, Any]=2 , ): '''simple docstring''' UpperCamelCase__: Dict = parent UpperCamelCase__: Union[str, Any] = batch_size UpperCamelCase__: int = image_size UpperCamelCase__: Dict = patch_sizes UpperCamelCase__: Any = patch_stride UpperCamelCase__: Optional[int] = patch_padding UpperCamelCase__: Any = is_training UpperCamelCase__: Dict = use_labels UpperCamelCase__: List[str] = num_labels UpperCamelCase__: Tuple = num_channels UpperCamelCase__: int = embed_dim UpperCamelCase__: int = num_heads UpperCamelCase__: Dict = stride_kv UpperCamelCase__: Optional[int] = depth UpperCamelCase__: int = cls_token UpperCamelCase__: Optional[Any] = attention_drop_rate UpperCamelCase__: Tuple = initializer_range UpperCamelCase__: Dict = layer_norm_eps def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__: Any = None if self.use_labels: # create a random int32 tensor of given shape UpperCamelCase__: Tuple = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__: List[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self: Any ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self: int , __lowerCamelCase: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = TFCvtModel(config=__lowerCamelCase ) UpperCamelCase__: str = model(__lowerCamelCase , training=__lowerCamelCase ) UpperCamelCase__: Optional[Any] = (self.image_size, self.image_size) UpperCamelCase__ , UpperCamelCase__: Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCamelCase__: Optional[Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCamelCase__: List[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict ): '''simple docstring''' UpperCamelCase__: int = self.num_labels UpperCamelCase__: Tuple = TFCvtForImageClassification(__lowerCamelCase ) UpperCamelCase__: Tuple = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__: Dict = config_and_inputs UpperCamelCase__: int = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: Optional[Any] = TFCvtModelTester(self ) UpperCamelCase__: int = TFCvtConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: int = tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(__lowerCamelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__: int = model_class(__lowerCamelCase ) UpperCamelCase__: Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__: List[str] = [*signature.parameters.keys()] UpperCamelCase__: Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' def check_hidden_states_output(__lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: str ): UpperCamelCase__: Tuple = model_class(__lowerCamelCase ) UpperCamelCase__: Any = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = outputs.hidden_states UpperCamelCase__: str = len(self.model_tester.depth ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCamelCase__ , UpperCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__: int = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__: Union[str, Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__: List[Any] = TFCvtModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def lowerCAmelCase_ ( ): UpperCamelCase__: Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class _a ( unittest.TestCase): """simple docstring""" @cached_property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase__: str = self.default_image_processor UpperCamelCase__: List[str] = prepare_img() UpperCamelCase__: Tuple = image_processor(images=__lowerCamelCase , return_tensors="tf" ) # forward pass UpperCamelCase__: List[str] = model(**__lowerCamelCase ) # verify the logits UpperCamelCase__: Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCamelCase__: Optional[Any] = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __lowerCamelCase , atol=1e-4 ) )
149
0
"""simple docstring""" def A ( _lowercase , _lowercase , _lowercase ): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(_lowercase , n - 1 , _lowercase ) * a) % mod else: SCREAMING_SNAKE_CASE : Tuple = binary_exponentiation(_lowercase , n / 2 , _lowercase ) return (b * b) % mod # a prime number __UpperCamelCase : Tuple = 701 __UpperCamelCase : int = 10_0000_0000 __UpperCamelCase : Any = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
350
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """encodec""" def __init__( self : int , UpperCamelCase__ : Optional[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , UpperCamelCase__ : List[str]=2_4000 , UpperCamelCase__ : str=1 , UpperCamelCase__ : str=False , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Union[str, Any]=128 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Any=[8, 5, 4, 2] , UpperCamelCase__ : Optional[Any]="weight_norm" , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : int=7 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]="reflect" , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Tuple=1.0 , UpperCamelCase__ : Dict=1024 , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = target_bandwidths SCREAMING_SNAKE_CASE : int = sampling_rate SCREAMING_SNAKE_CASE : List[Any] = audio_channels SCREAMING_SNAKE_CASE : List[str] = normalize SCREAMING_SNAKE_CASE : Any = chunk_length_s SCREAMING_SNAKE_CASE : Optional[int] = overlap SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_filters SCREAMING_SNAKE_CASE : int = num_residual_layers SCREAMING_SNAKE_CASE : List[Any] = upsampling_ratios SCREAMING_SNAKE_CASE : Dict = norm_type SCREAMING_SNAKE_CASE : List[Any] = kernel_size SCREAMING_SNAKE_CASE : int = last_kernel_size SCREAMING_SNAKE_CASE : str = residual_kernel_size SCREAMING_SNAKE_CASE : int = dilation_growth_rate SCREAMING_SNAKE_CASE : List[Any] = use_causal_conv SCREAMING_SNAKE_CASE : List[Any] = pad_mode SCREAMING_SNAKE_CASE : str = compress SCREAMING_SNAKE_CASE : Dict = num_lstm_layers SCREAMING_SNAKE_CASE : List[str] = trim_right_ratio SCREAMING_SNAKE_CASE : Optional[int] = codebook_size SCREAMING_SNAKE_CASE : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : List[str] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**UpperCamelCase__ ) @property def __A ( self : List[str] ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __A ( self : Optional[Any] ): '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
258
0
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
1
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCamelCase : Optional[Any] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Optional[int] , *UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Tuple): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : Optional[int] = eval_examples a : Union[str, Any] = post_process_function a : Union[str, Any] = quant_trainer_args a : str = 1_2_8 # default number of calibration samples def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : int=None): """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.') a : Dict = calib_dataset if calib_dataset is not None else self.calib_dataset a : Optional[Any] = self._remove_unused_columns(UpperCAmelCase_ , description='Calibration') return DataLoader( UpperCAmelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Tuple=None): """simple docstring""" a : List[Any] = self.train_dataset if calib_dataset is None else calib_dataset a : Union[str, Any] = self.get_calib_dataloader(UpperCAmelCase_) a : int = self.model quant_trainer.configure_model(UpperCAmelCase_ , self.quant_trainer_args , calib=UpperCAmelCase_) model.eval() quant_trainer.enable_calibration(UpperCAmelCase_) logger.info('***** Running calibration *****') logger.info(f""" Num examples = {self.calib_num}""") logger.info(f""" Batch size = {calib_dataloader.batch_size}""") for step, inputs in enumerate(UpperCAmelCase_): # Prediction step a , a , a : Union[str, Any] = self.prediction_step(UpperCAmelCase_ , UpperCAmelCase_ , prediction_loss_only=UpperCAmelCase_) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCAmelCase_ , self.quant_trainer_args) a : Dict = model def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : str = "eval"): """simple docstring""" a : Dict = self.eval_dataset if eval_dataset is None else eval_dataset a : Optional[int] = self.get_eval_dataloader(UpperCAmelCase_) a : Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a : Dict = self.compute_metrics a : List[Any] = None a : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a : str = eval_loop( UpperCAmelCase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , ) finally: a : List[Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: a : Optional[Any] = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , output.predictions) a : List[str] = self.compute_metrics(UpperCAmelCase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"""{metric_key_prefix}_"""): a : Optional[Any] = metrics.pop(UpperCAmelCase_) self.log(UpperCAmelCase_) else: a : int = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) a : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase_) return metrics def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str = "test"): """simple docstring""" a : str = self.get_test_dataloader(UpperCAmelCase_) # Temporarily disable metric computation, we will do it in the loop here. a : str = self.compute_metrics a : Optional[int] = None a : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a : str = eval_loop( UpperCAmelCase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase_ , ) finally: a : int = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output a : Optional[int] = self.post_process_function(UpperCAmelCase_ , UpperCAmelCase_ , output.predictions , 'predict') a : int = self.compute_metrics(UpperCAmelCase_) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"""{metric_key_prefix}_"""): a : Any = metrics.pop(UpperCAmelCase_) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : List[str]="./"): """simple docstring""" a : int = self.eval_dataset a : List[Any] = self.get_eval_dataloader(UpperCAmelCase_) a : List[str] = next(iter(UpperCAmelCase_)) # saving device - to make it consistent a : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # convert to tuple a : int = tuple(v.to(UpperCAmelCase_) for k, v in batch.items()) logger.info('Converting model to be onnx compatible') from pytorch_quantization.nn import TensorQuantizer a : List[str] = True a : Optional[int] = self.model.to(UpperCAmelCase_) model.eval() model.float() a : str = model.module if hasattr(UpperCAmelCase_ , 'module') else model quant_trainer.configure_model(UpperCAmelCase_ , self.quant_trainer_args) a : str = os.path.join(UpperCAmelCase_ , 'model.onnx') logger.info(f"""exporting model to {output_model_file}""") a : List[str] = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , export_params=UpperCAmelCase_ , opset_version=1_3 , do_constant_folding=UpperCAmelCase_ , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=UpperCAmelCase_ , ) logger.info('onnx export finished')
345
'''simple docstring''' import torch def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" if torch.cuda.is_available(): a : int = torch.cuda.device_count() else: a : Any = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
345
1
'''simple docstring''' import qiskit def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> qiskit.result.counts.Counts: UpperCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register UpperCamelCase = qiskit.QuantumCircuit(__UpperCamelCase , __UpperCamelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator UpperCamelCase = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
321
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) SCREAMING_SNAKE_CASE__ = _symbol_database.Default() SCREAMING_SNAKE_CASE__ = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) SCREAMING_SNAKE_CASE__ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" SCREAMING_SNAKE_CASE__ = 4_5 SCREAMING_SNAKE_CASE__ = 1_5_8_1 SCREAMING_SNAKE_CASE__ = 1_5_1_7 SCREAMING_SNAKE_CASE__ = 1_5_7_0 SCREAMING_SNAKE_CASE__ = 1_5_8_4 SCREAMING_SNAKE_CASE__ = 1_7_9_3 SCREAMING_SNAKE_CASE__ = 1_7_9_5 SCREAMING_SNAKE_CASE__ = 1_9_1_6 SCREAMING_SNAKE_CASE__ = 1_8_6_4 SCREAMING_SNAKE_CASE__ = 1_9_0_5 SCREAMING_SNAKE_CASE__ = 1_9_1_9 SCREAMING_SNAKE_CASE__ = 2_4_2_9 SCREAMING_SNAKE_CASE__ = 2_2_0_8 SCREAMING_SNAKE_CASE__ = 2_4_1_8 SCREAMING_SNAKE_CASE__ = 2_3_2_3 SCREAMING_SNAKE_CASE__ = 2_4_0_7 # @@protoc_insertion_point(module_scope)
321
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase_ : Tuple = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def _A ( lowercase , lowercase ): """simple docstring""" warnings.warn(lowercase , lowercase ) requires_backends(lowercase , '''sklearn''' ) return (preds == labels).mean() def _A ( lowercase , lowercase ): """simple docstring""" warnings.warn(lowercase , lowercase ) requires_backends(lowercase , '''sklearn''' ) a =simple_accuracy(lowercase , lowercase ) a =fa_score(y_true=lowercase , y_pred=lowercase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _A ( lowercase , lowercase ): """simple docstring""" warnings.warn(lowercase , lowercase ) requires_backends(lowercase , '''sklearn''' ) a =pearsonr(lowercase , lowercase )[0] a =spearmanr(lowercase , lowercase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _A ( lowercase , lowercase , lowercase ): """simple docstring""" warnings.warn(lowercase , lowercase ) requires_backends(lowercase , '''sklearn''' ) assert len(lowercase ) == len(lowercase ), f'''Predictions and labels have mismatched lengths {len(lowercase )} and {len(lowercase )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(lowercase , lowercase )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowercase , lowercase )} elif task_name == "mrpc": return acc_and_fa(lowercase , lowercase ) elif task_name == "sts-b": return pearson_and_spearman(lowercase , lowercase ) elif task_name == "qqp": return acc_and_fa(lowercase , lowercase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowercase , lowercase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowercase , lowercase )} elif task_name == "qnli": return {"acc": simple_accuracy(lowercase , lowercase )} elif task_name == "rte": return {"acc": simple_accuracy(lowercase , lowercase )} elif task_name == "wnli": return {"acc": simple_accuracy(lowercase , lowercase )} elif task_name == "hans": return {"acc": simple_accuracy(lowercase , lowercase )} else: raise KeyError(lowercase ) def _A ( lowercase , lowercase , lowercase ): """simple docstring""" warnings.warn(lowercase , lowercase ) requires_backends(lowercase , '''sklearn''' ) if len(lowercase ) != len(lowercase ): raise ValueError(f'''Predictions and labels have mismatched lengths {len(lowercase )} and {len(lowercase )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(lowercase , lowercase )} else: raise KeyError(lowercase )
364
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : int = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCamelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
215
0
_lowerCamelCase : Tuple = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" assert type(lowercase_ ) in (int, float) and decimal == int(lowercase_ ) A__ = int(lowercase_ ) A__ = '''''' A__ = False if decimal < 0: A__ = True decimal *= -1 while decimal > 0: A__ , A__ = divmod(lowercase_ , 16 ) A__ = values[remainder] + hexadecimal A__ = '''0x''' + hexadecimal if negative: A__ = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
14
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : List[Any] = {"vocab_file": "spm_char.model"} a_ : int = { "vocab_file": { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model", } } a_ : Any = { "microsoft/speecht5_asr": 10_24, "microsoft/speecht5_tts": 10_24, "microsoft/speecht5_vc": 10_24, } class __UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): lowercase : Dict =VOCAB_FILES_NAMES lowercase : str =PRETRAINED_VOCAB_FILES_MAP lowercase : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple =['input_ids', 'attention_mask'] def __init__( self, lowerCAmelCase, lowerCAmelCase="<s>", lowerCAmelCase="</s>", lowerCAmelCase="<unk>", lowerCAmelCase="<pad>", lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_, eos_token=a_, unk_token=a_, pad_token=a_, sp_model_kwargs=self.sp_model_kwargs, **a_, ) lowerCamelCase_ =vocab_file lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def lowercase__ ( self ): """simple docstring""" return self.sp_model.get_piece_size() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase_ =self.__dict__.copy() lowerCamelCase_ =None return state def __setstate__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCamelCase_ ={} lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(a_, out_type=a_ ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.sp_model.piece_to_id(a_ ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.sp_model.IdToPiece(a_ ) return token def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token lowerCamelCase_ =[] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) lowerCamelCase_ =[1] if token_ids_a is None: return ([0] * len(a_ )) + suffix_ones return ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( a_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_, '''wb''' ) as fi: lowerCamelCase_ =self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
358
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( __snake_case : Tuple ) -> str: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __UpperCamelCase ( lowerCamelCase__ ): @staticmethod def lowercase__ ( lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''', type=lowerCAmelCase, default=lowerCAmelCase, help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''', action='''store_true''', help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''', action='''store_true''', help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''', ) download_parser.add_argument('''model''', type=lowerCAmelCase, help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model lowerCamelCase_ =cache lowerCamelCase_ =force lowerCamelCase_ =trust_remote_code def lowercase__ ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
6
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : int = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class __snake_case ( UpperCamelCase_ ): _a = '''roc_bert''' def __init__( self : List[Any] , A_ : Optional[Any]=3_0_5_2_2 , A_ : List[str]=7_6_8 , A_ : Tuple=1_2 , A_ : List[str]=1_2 , A_ : List[str]=3_0_7_2 , A_ : Any="gelu" , A_ : str=0.1 , A_ : int=0.1 , A_ : Optional[int]=5_1_2 , A_ : int=2 , A_ : List[str]=0.02 , A_ : Union[str, Any]=1e-12 , A_ : Union[str, Any]=True , A_ : Tuple=0 , A_ : Union[str, Any]="absolute" , A_ : Optional[Any]=None , A_ : Any=True , A_ : Optional[int]=True , A_ : List[Any]=7_6_8 , A_ : str=9_1_0 , A_ : Dict=5_1_2 , A_ : Optional[int]=2_4_8_5_8 , A_ : Optional[Any]=True , **A_ : Dict , ): lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Any = max_position_embeddings lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Tuple = enable_pronunciation lowerCAmelCase_ : Optional[Any] = enable_shape lowerCAmelCase_ : Union[str, Any] = pronunciation_embed_dim lowerCAmelCase_ : List[Any] = pronunciation_vocab_size lowerCAmelCase_ : Tuple = shape_embed_dim lowerCAmelCase_ : str = shape_vocab_size lowerCAmelCase_ : Optional[int] = concat_input lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Optional[Any] = classifier_dropout super().__init__(pad_token_id=A_ , **A_)
103
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan _lowerCamelCase : List[Any] = 6_3_7_8_1_3_7.0 _lowerCamelCase : List[Any] = 6_3_5_6_7_5_2.3_1_4_2_4_5 _lowerCamelCase : Optional[int] = 637_8137 def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" A = (AXIS_A - AXIS_B) / AXIS_A A = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) A = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) A = radians(UpperCAmelCase ) A = radians(UpperCAmelCase ) # Equation A = sin((phi_a - phi_a) / 2 ) A = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda A = sqrt(sin_sq_phi + (cos(UpperCAmelCase ) * cos(UpperCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
258
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=99 , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : Dict=5 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE__ : int=4 , ) -> List[str]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def __A ( self : str ) -> List[Any]: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __A ( self : Union[str, Any] ) -> int: __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): a__ : str = True a__ : Dict = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self : List[Any] ) -> List[Any]: __lowerCamelCase = FlaxRoFormerModelTester(self ) @slow def __A ( self : Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Optional[int] ) -> List[Any]: __lowerCamelCase = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __lowerCamelCase = jnp.array([[0, 1, 2, 3, 4, 5]] ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )[0] __lowerCamelCase = 5_00_00 __lowerCamelCase = (1, 6, vocab_size) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
354
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
0
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCamelCase_ = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _snake_case ( __snake_case ): '''simple docstring''' def __init__( self: Tuple ,*lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int=None ,lowerCamelCase_: str=None ,lowerCamelCase_: Any=None ,**lowerCamelCase_: Optional[int] ) -> List[str]: super().__init__(*lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = eval_examples UpperCAmelCase_ : str = post_process_function UpperCAmelCase_ : str = quant_trainer_args UpperCAmelCase_ : List[Any] = 128 # default number of calibration samples def A__ ( self: str ,lowerCamelCase_: Optional[int]=None ) -> Union[str, Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) UpperCAmelCase_ : Union[str, Any] = calib_dataset if calib_dataset is not None else self.calib_dataset UpperCAmelCase_ : Optional[int] = self._remove_unused_columns(lowerCamelCase_ ,description="""Calibration""" ) return DataLoader( lowerCamelCase_ ,batch_size=self.args.eval_batch_size ,collate_fn=self.data_collator ,drop_last=self.args.dataloader_drop_last ,num_workers=self.args.dataloader_num_workers ,pin_memory=self.args.dataloader_pin_memory ,shuffle=lowerCamelCase_ ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=None ) -> str: UpperCAmelCase_ : Tuple = self.train_dataset if calib_dataset is None else calib_dataset UpperCAmelCase_ : Tuple = self.get_calib_dataloader(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.model quant_trainer.configure_model(lowerCamelCase_ ,self.quant_trainer_args ,calib=lowerCamelCase_ ) model.eval() quant_trainer.enable_calibration(lowerCamelCase_ ) logger.info("""***** Running calibration *****""" ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(lowerCamelCase_ ): # Prediction step UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.prediction_step(lowerCamelCase_ ,lowerCamelCase_ ,prediction_loss_only=lowerCamelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(lowerCamelCase_ ,self.quant_trainer_args ) UpperCAmelCase_ : int = model def A__ ( self: str ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: Optional[Any]=None ,lowerCamelCase_: int=None ,lowerCamelCase_: str = "eval" ) -> int: UpperCAmelCase_ : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase_ : Optional[Any] = self.get_eval_dataloader(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ : int = self.compute_metrics UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase_ : Dict = eval_loop( lowerCamelCase_ ,description="""Evaluation""" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=lowerCamelCase_ ,) finally: UpperCAmelCase_ : Optional[Any] = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: UpperCAmelCase_ : List[str] = self.post_process_function(lowerCamelCase_ ,lowerCamelCase_ ,output.predictions ) UpperCAmelCase_ : Dict = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): UpperCAmelCase_ : int = metrics.pop(lowerCamelCase_ ) self.log(lowerCamelCase_ ) else: UpperCAmelCase_ : Optional[int] = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase_ : List[Any] = self.callback_handler.on_evaluate(self.args ,self.state ,self.control ,lowerCamelCase_ ) return metrics def A__ ( self: str ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any]=None ,lowerCamelCase_: str = "test" ) -> Tuple: UpperCAmelCase_ : List[str] = self.get_test_dataloader(lowerCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ : List[Any] = self.compute_metrics UpperCAmelCase_ : Any = None UpperCAmelCase_ : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase_ : Dict = eval_loop( lowerCamelCase_ ,description="""Prediction""" ,prediction_loss_only=True if compute_metrics is None else None ,ignore_keys=lowerCamelCase_ ,) finally: UpperCAmelCase_ : str = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase_ : List[str] = self.post_process_function(lowerCamelCase_ ,lowerCamelCase_ ,output.predictions ,"""predict""" ) UpperCAmelCase_ : List[Any] = self.compute_metrics(lowerCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): UpperCAmelCase_ : Optional[Any] = metrics.pop(lowerCamelCase_ ) return PredictionOutput(predictions=predictions.predictions ,label_ids=predictions.label_ids ,metrics=lowerCamelCase_ ) def A__ ( self: List[Any] ,lowerCamelCase_: Any="./" ) -> str: UpperCAmelCase_ : Optional[Any] = self.eval_dataset UpperCAmelCase_ : Dict = self.get_eval_dataloader(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = next(iter(lowerCamelCase_ ) ) # saving device - to make it consistent UpperCAmelCase_ : Optional[Any] = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple UpperCAmelCase_ : Optional[Any] = tuple(v.to(lowerCamelCase_ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer UpperCAmelCase_ : str = True UpperCAmelCase_ : Dict = self.model.to(lowerCamelCase_ ) model.eval() model.float() UpperCAmelCase_ : List[str] = model.module if hasattr(lowerCamelCase_ ,"""module""" ) else model quant_trainer.configure_model(lowerCamelCase_ ,self.quant_trainer_args ) UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""model.onnx""" ) logger.info(F'''exporting model to {output_model_file}''' ) UpperCAmelCase_ : Any = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,export_params=lowerCamelCase_ ,opset_version=13 ,do_constant_folding=lowerCamelCase_ ,input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] ,output_names=["""output_start_logits""", """output_end_logits"""] ,dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } ,verbose=lowerCamelCase_ ,) logger.info("""onnx export finished""" )
345
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = num_heads UpperCAmelCase_ : List[Any] = window_size UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : Optional[int] = out_indices def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : List[Any] = self.type_sequence_label_size UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Any = False A__ : List[str] = False A__ : Any = False A__ : Any = False def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = FocalNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ ) def A__ ( self: List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: List[str] ) -> Union[str, Any]: return def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self: Optional[Any] ) -> Optional[Any]: pass def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]: UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # FocalNet has a different seq_length UpperCAmelCase_ : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : List[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) @slow def A__ ( self: Optional[int] ) -> Optional[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Optional[int] ) -> str: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () A__ : int = FocalNetConfig A__ : List[str] = False def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : str = FocalNetModelTester(self )
345
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
359
def snake_case( __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' lowercase : List[Any] = len(__magic_name__ ) lowercase : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowercase : List[str] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowercase : str = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowercase : Optional[Any] = subset[i - 1][j] if arr[i - 1] <= j: lowercase : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
116
0
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __UpperCamelCase ( lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =tempfile.mkdtemp() lowerCamelCase_ =8 # DPR tok lowerCamelCase_ =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ =os.path.join(self.tmpdirname, '''dpr_tokenizer''' ) os.makedirs(lowerCAmelCase, exist_ok=lowerCAmelCase ) lowerCamelCase_ =os.path.join(lowerCAmelCase, DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok lowerCamelCase_ =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase_ ={'''unk_token''': '''<unk>'''} lowerCamelCase_ =os.path.join(self.tmpdirname, '''bart_tokenizer''' ) os.makedirs(lowerCAmelCase, exist_ok=lowerCAmelCase ) lowerCamelCase_ =os.path.join(lowerCAmelCase, BART_VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join(lowerCAmelCase, BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) def lowercase__ ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, '''dpr_tokenizer''' ) ) def lowercase__ ( self ): """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, '''dpr_tokenizer''' ) ) def lowercase__ ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, '''bart_tokenizer''' ) ) def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''', string_factory='''Flat''', metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_dataset() lowerCamelCase_ =RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: lowerCamelCase_ =dataset lowerCamelCase_ =RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), ) return retriever def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.get_dummy_dataset() lowerCamelCase_ =RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name='''custom''', ) if from_disk: lowerCamelCase_ =os.path.join(self.tmpdirname, '''dataset''' ) lowerCamelCase_ =os.path.join(self.tmpdirname, '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname, '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname, '''dataset''' ) ) del dataset lowerCamelCase_ =RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), ) else: lowerCamelCase_ =RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer(), index=CustomHFIndex(config.retrieval_vector_size, lowerCAmelCase ), ) return retriever def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''', string_factory='''Flat''', metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase_ =os.path.join(self.tmpdirname, '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''', index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''], open(index_file_name + '''.index_meta.dpr''', '''wb''' ) ) lowerCamelCase_ =os.path.join(self.tmpdirname, '''psgs_w100.tsv.pkl''' ) lowerCamelCase_ ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(lowerCAmelCase, open(lowerCAmelCase, '''wb''' ) ) lowerCamelCase_ =RagConfig( retrieval_vector_size=self.retrieval_vector_size, question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict(), index_name='''legacy''', index_path=self.tmpdirname, ) lowerCamelCase_ =RagRetriever( lowerCAmelCase, question_encoder_tokenizer=self.get_dpr_tokenizer(), generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =1 lowerCamelCase_ =self.get_dummy_canonical_hf_index_retriever() lowerCamelCase_ =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0], '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0], '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: lowerCamelCase_ =self.get_dummy_dataset() retriever.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowerCamelCase_ =retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =1 lowerCamelCase_ =self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) lowerCamelCase_ =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0], '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0], '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowerCamelCase_ =retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =1 lowerCamelCase_ =self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) lowerCamelCase_ =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0], '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0], '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowerCamelCase_ =retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =1 lowerCamelCase_ =self.get_dummy_legacy_index_retriever() lowerCamelCase_ =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =retriever.retrieve(lowerCAmelCase, n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ), 2 ) self.assertEqual(sorted(doc_dicts[0] ), ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ), lowerCAmelCase ) self.assertEqual(doc_dicts[0]['''text'''][0], '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0], '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist(), [[1], [0]] ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) lowerCamelCase_ =RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowerCamelCase_ =retriever.retrieve(lowerCAmelCase, n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowercase__ ( self ): """simple docstring""" import torch lowerCamelCase_ =1 lowerCamelCase_ =self.get_dummy_canonical_hf_index_retriever() lowerCamelCase_ =[[5, 7], [10, 11]] lowerCamelCase_ =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowerCamelCase_ =retriever(lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, np.ndarray ) lowerCamelCase_ =retriever( lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase, return_tensors='''pt''', ) lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase, torch.Tensor ) self.assertIsInstance(lowerCAmelCase, torch.Tensor ) self.assertIsInstance(lowerCAmelCase, torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.get_dpr_ctx_encoder_tokenizer() lowerCamelCase_ =1 lowerCamelCase_ =self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) retriever.set_ctx_encoder_tokenizer(lowerCAmelCase ) lowerCamelCase_ =[[5, 7], [10, 11]] lowerCamelCase_ =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )], dtype=np.floataa ) lowerCamelCase_ =retriever(lowerCAmelCase, lowerCAmelCase, prefix=retriever.config.generator.prefix, n_docs=lowerCAmelCase ) self.assertEqual( len(lowerCAmelCase ), 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ), lowerCAmelCase ) # check for doc token related keys in dictionary.
75
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Union[str, Any] = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] A_ : int = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = torch.load(lowerCAmelCase_ , map_location="""cpu""" ) return sd def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=rename_keys_prefix )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = OrderedDict() _UpperCAmelCase : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _UpperCAmelCase : Dict = key for name_pair in rename_keys_prefix: _UpperCAmelCase : str = new_key.replace(name_pair[0] , name_pair[1] ) _UpperCAmelCase : str = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _UpperCAmelCase : int = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _UpperCAmelCase : Optional[int] = """pretraining""" if "vcr" in checkpoint_path: _UpperCAmelCase : Optional[int] = {"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase : List[Any] = {"""visual_embedding_dim""": 2048} elif "vqa" in checkpoint_path: _UpperCAmelCase : Any = {"""visual_embedding_dim""": 2048} elif "nlvr" in checkpoint_path: _UpperCAmelCase : Any = {"""visual_embedding_dim""": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _UpperCAmelCase : str = {"""visual_embedding_dim""": 512} _UpperCAmelCase : int = """multichoice""" elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase : str = {"""visual_embedding_dim""": 2048} _UpperCAmelCase : int = """vqa_advanced""" elif "vqa" in checkpoint_path: _UpperCAmelCase : List[str] = {"""visual_embedding_dim""": 2048, """num_labels""": 3129} _UpperCAmelCase : int = """vqa""" elif "nlvr" in checkpoint_path: _UpperCAmelCase : int = { """visual_embedding_dim""": 1024, """num_labels""": 2, } _UpperCAmelCase : Optional[Any] = """nlvr""" _UpperCAmelCase : int = VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict _UpperCAmelCase : Any = load_state_dict(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = get_new_dict(lowerCAmelCase_ , lowerCAmelCase_ ) if model_type == "pretraining": _UpperCAmelCase : List[str] = VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": _UpperCAmelCase : Optional[int] = VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": _UpperCAmelCase : str = VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": _UpperCAmelCase : Dict = VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") A_ : int = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
215
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } A_ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Any ) ->int: for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A__ : Tuple = """lm_head""" A__ : Optional[Any] = getattr(UpperCAmelCase__, UpperCAmelCase__ ) if weight_type is not None: A__ : int = getattr(UpperCAmelCase__, UpperCAmelCase__ ).shape else: A__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A__ : Optional[Any] = value elif weight_type == "weight_g": A__ : int = value elif weight_type == "weight_v": A__ : Union[str, Any] = value elif weight_type == "bias": A__ : Tuple = value else: A__ : Optional[Any] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Any ) ->List[str]: A__ : Optional[int] = [] A__ : List[str] = fairseq_model.state_dict() A__ : Any = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, hf_model.config.feat_extract_norm == """group""", ) A__ : Optional[int] = True else: for key, mapped_key in MAPPING.items(): A__ : Optional[Any] = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A__ : int = True if "*" in mapped_key: A__ : Any = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] A__ : List[str] = mapped_key.replace("""*""", UpperCAmelCase__ ) if "weight_g" in name: A__ : List[Any] = """weight_g""" elif "weight_v" in name: A__ : Dict = """weight_v""" elif "bias" in name: A__ : List[str] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ : Any = """weight""" else: A__ : List[str] = None set_recursively(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple ) ->int: A__ : int = full_name.split("""conv_layers.""" )[-1] A__ : Optional[Any] = name.split(""".""" ) A__ : List[Any] = int(items[0] ) A__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A__ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A__ : List[Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A__ : List[str] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple=None, UpperCAmelCase__ : str=None, UpperCAmelCase__ : Optional[int]=True ) ->Union[str, Any]: if config_path is not None: A__ : Optional[int] = UniSpeechConfig.from_pretrained(UpperCAmelCase__ ) else: A__ : Any = UniSpeechConfig() if is_finetuned: if dict_path: A__ : int = Dictionary.load_from_json(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A__ : Any = target_dict.pad_index A__ : Union[str, Any] = target_dict.bos_index A__ : Tuple = target_dict.eos_index A__ : int = len(target_dict.symbols ) A__ : int = os.path.join(UpperCAmelCase__, """vocab.json""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) A__ : str = target_dict.indices # fairseq has the <pad> and <s> switched A__ : List[str] = 4_2 A__ : List[str] = 4_3 with open(UpperCAmelCase__, """w""", encoding="""utf-8""" ) as vocab_handle: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A__ : Union[str, Any] = WavaVecaPhonemeCTCTokenizer( UpperCAmelCase__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="""|""", do_lower_case=UpperCAmelCase__, ) A__ : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False A__ : Dict = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6_0_0_0, padding_value=0, do_normalize=UpperCAmelCase__, return_attention_mask=UpperCAmelCase__, ) A__ : Optional[int] = WavaVecaProcessor(feature_extractor=UpperCAmelCase__, tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) A__ : Any = UniSpeechForCTC(UpperCAmelCase__ ) else: A__ : Union[str, Any] = UniSpeechForPreTraining(UpperCAmelCase__ ) if is_finetuned: A__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: A__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A__ : str = model[0].eval() recursively_load_weights(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) hf_unispeech.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) A_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
368
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A_ = random.Random() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]: if rng is None: A__ : Optional[int] = global_rng A__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ): '''simple docstring''' A__ : Any = parent A__ : str = batch_size A__ : List[str] = min_seq_length A__ : Dict = max_seq_length A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : Dict = padding_value A__ : Optional[Any] = sampling_rate A__ : Any = return_attention_mask A__ : Optional[int] = do_normalize A__ : Tuple = feature_size A__ : Optional[Any] = chunk_length A__ : Union[str, Any] = hop_length def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ): '''simple docstring''' def _flatten(snake_case : Dict ): return list(itertools.chain(*snake_case ) ) if equal_length: A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = WhisperFeatureExtractor if is_speech_available() else None def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : str = WhisperFeatureExtractionTester(self ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case ) A__ : str = feat_extract_first.to_dict() A__ : Union[str, Any] = feat_extract_second.to_dict() A__ : List[Any] = feat_extract_first.mel_filters A__ : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(snake_case , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case ) A__ : int = self.feature_extraction_class.from_json_file(snake_case ) A__ : Dict = feat_extract_first.to_dict() A__ : str = feat_extract_second.to_dict() A__ : str = feat_extract_first.mel_filters A__ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test batched A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : str = np.asarray(snake_case ) A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test truncation required A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' import torch A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa ) A__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ): '''simple docstring''' A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on A__ : Optional[Any] = self._load_datasamples(1 ) A__ : Union[str, Any] = WhisperFeatureExtractor() A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : Union[str, Any] = self._load_datasamples(1 )[0] A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
296
0
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : bool , _UpperCAmelCase : list[int] , _UpperCAmelCase : float ) -> int: """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(_UpperCAmelCase ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , ) def UpperCamelCase_ ( ) -> None: """simple docstring""" _UpperCAmelCase : int = [90, 23, 6, 33, 21, 65, 123, 34_423] _UpperCAmelCase : List[Any] = math.log(len(_UpperCAmelCase ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
31
def __lowerCAmelCase ( a__ , a__ , a__ ) -> list: __a = len(a__ ) __a = [[0] * n for i in range(a__ )] for i in range(a__ ): __a = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): __a = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __A : Tuple = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __A : Any = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __A : str = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __A : Optional[int] = { "num_train_timesteps": 40, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } __A : Union[str, Any] = { "num_train_timesteps": 201, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } __A : Optional[Any] = { "num_train_timesteps": 151, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } def UpperCamelCase_ ( A__ : str ): '''simple docstring''' if isinstance(A__ , A__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def UpperCamelCase_ ( A__ : Tuple , A__ : Tuple , A__ : str , A__ : Tuple , A__ : Any=False ): '''simple docstring''' lowerCAmelCase_ : Dict = checkpoint[f'{old_prefix}.in_layers.0.weight'] lowerCAmelCase_ : Any = checkpoint[f'{old_prefix}.in_layers.0.bias'] lowerCAmelCase_ : Tuple = checkpoint[f'{old_prefix}.in_layers.2.weight'] lowerCAmelCase_ : Optional[int] = checkpoint[f'{old_prefix}.in_layers.2.bias'] lowerCAmelCase_ : Optional[int] = checkpoint[f'{old_prefix}.emb_layers.1.weight'] lowerCAmelCase_ : List[Any] = checkpoint[f'{old_prefix}.emb_layers.1.bias'] lowerCAmelCase_ : Tuple = checkpoint[f'{old_prefix}.out_layers.0.weight'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'{old_prefix}.out_layers.0.bias'] lowerCAmelCase_ : Union[str, Any] = checkpoint[f'{old_prefix}.out_layers.3.weight'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'{old_prefix}.out_layers.3.bias'] if has_skip: lowerCAmelCase_ : Any = checkpoint[f'{old_prefix}.skip_connection.weight'] lowerCAmelCase_ : Union[str, Any] = checkpoint[f'{old_prefix}.skip_connection.bias'] return new_checkpoint def UpperCamelCase_ ( A__ : Dict , A__ : Any , A__ : int , A__ : Optional[Any] , A__ : Union[str, Any]=None ): '''simple docstring''' lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : str = checkpoint[f'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[str] = checkpoint[f'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) lowerCAmelCase_ : Any = checkpoint[f'{old_prefix}.norm.weight'] lowerCAmelCase_ : Union[str, Any] = checkpoint[f'{old_prefix}.norm.bias'] lowerCAmelCase_ : Any = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ : Tuple = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ : Any = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ : Optional[int] = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ : int = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase_ : List[Any] = ( checkpoint[f'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) lowerCAmelCase_ : Dict = checkpoint[f'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase_ ( A__ : str , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = torch.load(A__ , map_location="""cpu""" ) lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : Optional[Any] = checkpoint["""time_embed.0.weight"""] lowerCAmelCase_ : List[str] = checkpoint["""time_embed.0.bias"""] lowerCAmelCase_ : Union[str, Any] = checkpoint["""time_embed.2.weight"""] lowerCAmelCase_ : Dict = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: lowerCAmelCase_ : List[Any] = checkpoint["""label_emb.weight"""] lowerCAmelCase_ : List[str] = checkpoint["""input_blocks.0.0.weight"""] lowerCAmelCase_ : Any = checkpoint["""input_blocks.0.0.bias"""] lowerCAmelCase_ : int = unet_config["""down_block_types"""] lowerCAmelCase_ : List[Any] = unet_config["""layers_per_block"""] lowerCAmelCase_ : int = unet_config["""attention_head_dim"""] lowerCAmelCase_ : Dict = unet_config["""block_out_channels"""] lowerCAmelCase_ : Optional[Any] = 1 lowerCAmelCase_ : Tuple = channels_list[0] for i, layer_type in enumerate(A__ ): lowerCAmelCase_ : Optional[int] = channels_list[i] lowerCAmelCase_ : Union[str, Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(A__ ): lowerCAmelCase_ : List[Any] = f'down_blocks.{i}.resnets.{j}' lowerCAmelCase_ : Union[str, Any] = f'input_blocks.{current_layer}.0' lowerCAmelCase_ : Union[str, Any] = True if j == 0 and downsample_block_has_skip else False lowerCAmelCase_ : Dict = convert_resnet(A__ , A__ , A__ , A__ , has_skip=A__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(A__ ): lowerCAmelCase_ : Dict = f'down_blocks.{i}.resnets.{j}' lowerCAmelCase_ : Tuple = f'input_blocks.{current_layer}.0' lowerCAmelCase_ : str = True if j == 0 and downsample_block_has_skip else False lowerCAmelCase_ : List[str] = convert_resnet(A__ , A__ , A__ , A__ , has_skip=A__ ) lowerCAmelCase_ : Union[str, Any] = f'down_blocks.{i}.attentions.{j}' lowerCAmelCase_ : List[str] = f'input_blocks.{current_layer}.1' lowerCAmelCase_ : Optional[int] = convert_attention( A__ , A__ , A__ , A__ , A__ ) current_layer += 1 if i != len(A__ ) - 1: lowerCAmelCase_ : Union[str, Any] = f'down_blocks.{i}.downsamplers.0' lowerCAmelCase_ : str = f'input_blocks.{current_layer}.0' lowerCAmelCase_ : Optional[int] = convert_resnet(A__ , A__ , A__ , A__ ) current_layer += 1 lowerCAmelCase_ : List[str] = current_channels # hardcoded the mid-block for now lowerCAmelCase_ : str = """mid_block.resnets.0""" lowerCAmelCase_ : Optional[Any] = """middle_block.0""" lowerCAmelCase_ : int = convert_resnet(A__ , A__ , A__ , A__ ) lowerCAmelCase_ : Dict = """mid_block.attentions.0""" lowerCAmelCase_ : str = """middle_block.1""" lowerCAmelCase_ : List[Any] = convert_attention(A__ , A__ , A__ , A__ , A__ ) lowerCAmelCase_ : Optional[int] = """mid_block.resnets.1""" lowerCAmelCase_ : Tuple = """middle_block.2""" lowerCAmelCase_ : Tuple = convert_resnet(A__ , A__ , A__ , A__ ) lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Tuple = unet_config["""up_block_types"""] for i, layer_type in enumerate(A__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCAmelCase_ : Optional[Any] = f'up_blocks.{i}.resnets.{j}' lowerCAmelCase_ : str = f'output_blocks.{current_layer}.0' lowerCAmelCase_ : Dict = convert_resnet(A__ , A__ , A__ , A__ , has_skip=A__ ) current_layer += 1 if i != len(A__ ) - 1: lowerCAmelCase_ : Any = f'up_blocks.{i}.upsamplers.0' lowerCAmelCase_ : Dict = f'output_blocks.{current_layer-1}.1' lowerCAmelCase_ : List[Any] = convert_resnet(A__ , A__ , A__ , A__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCAmelCase_ : str = f'up_blocks.{i}.resnets.{j}' lowerCAmelCase_ : Optional[int] = f'output_blocks.{current_layer}.0' lowerCAmelCase_ : Any = convert_resnet(A__ , A__ , A__ , A__ , has_skip=A__ ) lowerCAmelCase_ : Tuple = f'up_blocks.{i}.attentions.{j}' lowerCAmelCase_ : Dict = f'output_blocks.{current_layer}.1' lowerCAmelCase_ : Union[str, Any] = convert_attention( A__ , A__ , A__ , A__ , A__ ) current_layer += 1 if i != len(A__ ) - 1: lowerCAmelCase_ : Optional[int] = f'up_blocks.{i}.upsamplers.0' lowerCAmelCase_ : Tuple = f'output_blocks.{current_layer-1}.2' lowerCAmelCase_ : str = convert_resnet(A__ , A__ , A__ , A__ ) lowerCAmelCase_ : Union[str, Any] = checkpoint["""out.0.weight"""] lowerCAmelCase_ : Any = checkpoint["""out.0.bias"""] lowerCAmelCase_ : str = checkpoint["""out.2.weight"""] lowerCAmelCase_ : List[Any] = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __A : Optional[int] = parser.parse_args() __A : List[Any] = strabool(args.class_cond) __A : str = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: __A : List[str] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __A : int = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __A : Union[str, Any] = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: __A : List[str] = None __A : Dict = con_pt_to_diffuser(args.unet_path, unet_config) __A : Tuple = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __A : int = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __A : Union[str, Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __A : Optional[int] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') __A : Optional[Any] = CMStochasticIterativeScheduler(**scheduler_config) __A : Tuple = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
89
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 42 class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE): """simple docstring""" @register_to_config def __init__( self : Optional[int] , lowerCamelCase : int = 6_55_36 , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 2 , lowerCamelCase : int = 2 , lowerCamelCase : int = 0 , lowerCamelCase : str = "fourier" , lowerCamelCase : bool = True , lowerCamelCase : bool = False , lowerCamelCase : float = 0.0 , lowerCamelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCamelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCamelCase : Tuple[str] = "UNetMidBlock1D" , lowerCamelCase : str = None , lowerCamelCase : Tuple[int] = (32, 32, 64) , lowerCamelCase : str = None , lowerCamelCase : int = 8 , lowerCamelCase : int = 1 , lowerCamelCase : bool = False , ) -> List[Any]: super().__init__() lowerCAmelCase_ : Optional[Any] = sample_size # time if time_embedding_type == "fourier": lowerCAmelCase_ : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase , log=lowerCamelCase , flip_sin_to_cos=lowerCamelCase ) lowerCAmelCase_ : List[Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCAmelCase_ : Optional[int] = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase , downscale_freq_shift=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = block_out_channels[0] if use_timestep_embedding: lowerCAmelCase_ : List[str] = block_out_channels[0] * 4 lowerCAmelCase_ : List[str] = TimestepEmbedding( in_channels=lowerCamelCase , time_embed_dim=lowerCamelCase , act_fn=lowerCamelCase , out_dim=block_out_channels[0] , ) lowerCAmelCase_ : str = nn.ModuleList([] ) lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : str = nn.ModuleList([] ) lowerCAmelCase_ : List[str] = None # down lowerCAmelCase_ : List[str] = in_channels for i, down_block_type in enumerate(lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = output_channel lowerCAmelCase_ : str = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCAmelCase_ : int = i == len(lowerCamelCase ) - 1 lowerCAmelCase_ : List[str] = get_down_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase ) # mid lowerCAmelCase_ : Dict = get_mid_block( lowerCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase , add_downsample=lowerCamelCase , ) # up lowerCAmelCase_ : List[str] = list(reversed(lowerCamelCase ) ) lowerCAmelCase_ : str = reversed_block_out_channels[0] if out_block_type is None: lowerCAmelCase_ : Optional[int] = out_channels else: lowerCAmelCase_ : Optional[Any] = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase ): lowerCAmelCase_ : Any = output_channel lowerCAmelCase_ : str = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase ) - 1 else final_upsample_channels ) lowerCAmelCase_ : int = i == len(lowerCamelCase ) - 1 lowerCAmelCase_ : Any = get_up_block( lowerCamelCase , num_layers=lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = output_channel # out lowerCAmelCase_ : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCAmelCase_ : Union[str, Any] = get_out_block( out_block_type=lowerCamelCase , num_groups_out=lowerCamelCase , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase , act_fn=lowerCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def __lowercase ( self : List[Any] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : Union[torch.Tensor, float, int] , lowerCamelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCAmelCase_ : Optional[Any] = timestep if not torch.is_tensor(lowerCamelCase ): lowerCAmelCase_ : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase ) and len(timesteps.shape ) == 0: lowerCAmelCase_ : Dict = timesteps[None].to(sample.device ) lowerCAmelCase_ : int = self.time_proj(lowerCamelCase ) if self.config.use_timestep_embedding: lowerCAmelCase_ : int = self.time_mlp(lowerCamelCase ) else: lowerCAmelCase_ : Tuple = timestep_embed[..., None] lowerCAmelCase_ : Dict = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCAmelCase_ : Union[str, Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCAmelCase_ : Optional[Any] = () for downsample_block in self.down_blocks: lowerCAmelCase_, lowerCAmelCase_ : Any = downsample_block(hidden_states=lowerCamelCase , temb=lowerCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCAmelCase_ : int = self.mid_block(lowerCamelCase , lowerCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCAmelCase_ : str = down_block_res_samples[-1:] lowerCAmelCase_ : Union[str, Any] = down_block_res_samples[:-1] lowerCAmelCase_ : List[str] = upsample_block(lowerCamelCase , res_hidden_states_tuple=lowerCamelCase , temb=lowerCamelCase ) # 5. post-process if self.out_block: lowerCAmelCase_ : Union[str, Any] = self.out_block(lowerCamelCase , lowerCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase )
89
1
'''simple docstring''' import cmath import math def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Union[str, Any] = math.radians(_UpperCAmelCase ) __UpperCamelCase : int = math.radians(_UpperCAmelCase ) # Convert voltage and current to rectangular form __UpperCamelCase : Tuple = cmath.rect(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : Tuple = cmath.rect(_UpperCAmelCase , _UpperCAmelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
298
from functools import reduce UpperCAmelCase__ = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A ( _UpperCAmelCase : str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _UpperCAmelCase , _UpperCAmelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
339
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = ["""pixel_values"""] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : bool = True , **SCREAMING_SNAKE_CASE : Tuple , ): super().__init__(**__UpperCAmelCase ) lowercase__ : Any = size if size is not None else {"shortest_edge": 224} lowercase__ : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) lowercase__ : int = crop_size if crop_size is not None else {"height": 256, "width": 256} lowercase__ : str = get_size_dict(__UpperCAmelCase , param_name="crop_size" ) lowercase__ : Any = do_resize lowercase__ : List[Any] = size lowercase__ : Optional[int] = resample lowercase__ : Optional[Any] = do_rescale lowercase__ : Optional[Any] = rescale_factor lowercase__ : Tuple = do_center_crop lowercase__ : str = crop_size lowercase__ : str = do_flip_channel_order def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Dict[str, int] , SCREAMING_SNAKE_CASE : PILImageResampling = PIL.Image.BILINEAR , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : List[Any] , ): lowercase__ : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase__ : str = get_resize_output_image_size(__UpperCAmelCase , size=size["shortest_edge"] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Dict[str, int] , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Any , ): lowercase__ : List[Any] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size["height"], size["width"]) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Union[int, float] , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Optional[int] , ): return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None ): return flip_channel_order(__UpperCAmelCase , data_format=__UpperCAmelCase ) def snake_case ( self : Any , SCREAMING_SNAKE_CASE : ImageInput , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : PILImageResampling = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : float = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE : int , ): lowercase__ : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase__ : List[Any] = resample if resample is not None else self.resample lowercase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : List[Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : List[Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) lowercase__ : int = crop_size if crop_size is not None else self.crop_size lowercase__ : Dict = get_size_dict(__UpperCAmelCase , param_name="crop_size" ) lowercase__ : Optional[Any] = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. lowercase__ : Union[str, Any] = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: lowercase__ : Union[str, Any] = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: lowercase__ : Union[str, Any] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowercase__ : List[Any] = [self.flip_channel_order(image=__UpperCAmelCase ) for image in images] lowercase__ : Optional[Any] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowercase__ : Any = {"pixel_values": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Tuple] = None ): lowercase__ : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__UpperCAmelCase ): lowercase__ : Optional[Any] = target_sizes.numpy() lowercase__ : Optional[int] = [] for idx in range(len(__UpperCAmelCase ) ): lowercase__ : Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__UpperCAmelCase ) lowercase__ : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCAmelCase ) else: lowercase__ : Union[str, Any] = logits.argmax(dim=1 ) lowercase__ : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
354
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class snake_case__(Generic[KEY, VAL] ): """simple docstring""" lowercase_ = 42 lowercase_ = 42 class snake_case__(_Item ): """simple docstring""" def __init__( self : List[str] ): super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __bool__( self : Tuple ): return False lowerCAmelCase__ = _DeletedItem() class snake_case__(MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : int = 8 , SCREAMING_SNAKE_CASE : float = 0.75 ): lowercase__ : Any = initial_block_size lowercase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase__ : Dict = capacity_factor lowercase__ : Optional[int] = 0 def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : KEY ): return hash(SCREAMING_SNAKE_CASE ) % len(self._buckets ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ): return (ind + 1) % len(self._buckets ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): lowercase__ : Tuple = self._buckets[ind] if not stored: lowercase__ : int = _Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self._len += 1 return True elif stored.key == key: lowercase__ : str = _Item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return True else: return False def snake_case ( self : str ): lowercase__ : str = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[str] ): if len(self._buckets ) <= self._initial_block_size: return False lowercase__ : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : int ): lowercase__ : Tuple = self._buckets lowercase__ : Optional[int] = [None] * new_size lowercase__ : int = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def snake_case ( self : int ): self._resize(len(self._buckets ) * 2 ) def snake_case ( self : Optional[Any] ): self._resize(len(self._buckets ) // 2 ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : KEY ): lowercase__ : Tuple = self._get_bucket_index(SCREAMING_SNAKE_CASE ) for _ in range(len(self._buckets ) ): yield ind lowercase__ : Union[str, Any] = self._get_next_ind(SCREAMING_SNAKE_CASE ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): if self._try_set(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): break def __setitem__( self : List[str] , SCREAMING_SNAKE_CASE : KEY , SCREAMING_SNAKE_CASE : VAL ): if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __delitem__( self : int , SCREAMING_SNAKE_CASE : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): lowercase__ : Union[str, Any] = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE ) if item is _deleted: continue if item.key == key: lowercase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple , SCREAMING_SNAKE_CASE : KEY ): for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE ): lowercase__ : Any = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE ) def __len__( self : Optional[Any] ): return self._len def __iter__( self : List[str] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): lowercase__ : int = " ,".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
121
0
'''simple docstring''' def a_ ( __snake_case : str = 100_0000 ) -> int: """simple docstring""" lowerCamelCase_ =limit + 1 lowerCamelCase_ =[0] * limit for first_term in range(1 , _lowerCAmelCase ): for n in range(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase_ =first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase_ =sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
75
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = KandinskyVaaControlnetPipeline __lowerCamelCase : Optional[int] = ["image_embeds", "negative_image_embeds", "hint"] __lowerCamelCase : Dict = ["image_embeds", "negative_image_embeds", "hint"] __lowerCamelCase : List[str] = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowerCamelCase : Dict = False @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return 32 @property def _lowerCAmelCase ( self ): return self.time_input_dim @property def _lowerCAmelCase ( self ): return self.time_input_dim * 4 @property def _lowerCAmelCase ( self ): return 100 @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : Any = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A : List[str] = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def _lowerCAmelCase ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self ): torch.manual_seed(0 ) A : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self ): A : Optional[Any] = self.dummy_unet A : Tuple = self.dummy_movq A : List[Any] = DDIMScheduler( num_train_timesteps=1000, beta_schedule="""linear""", beta_start=0.0_0085, beta_end=0.012, clip_sample=lowerCamelCase__, set_alpha_to_one=lowerCamelCase__, steps_offset=1, prediction_type="""epsilon""", thresholding=lowerCamelCase__, ) A : int = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=0 ): A : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) A : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create hint A : int = floats_tensor((1, 3, 64, 64), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith("""mps""" ): A : Optional[Any] = torch.manual_seed(lowerCamelCase__ ) else: A : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) A : List[str] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _lowerCAmelCase ( self ): A : Dict = """cpu""" A : List[str] = self.get_dummy_components() A : Dict = self.pipeline_class(**lowerCamelCase__ ) A : Optional[Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A : int = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) A : Union[str, Any] = output.images A : str = pipe( **self.get_dummy_inputs(lowerCamelCase__ ), return_dict=lowerCamelCase__, )[0] A : Optional[int] = image[0, -3:, -3:, -1] A : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A : Dict = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): A : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) A : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A : Optional[Any] = torch.from_numpy(np.array(lowerCamelCase__ ) ).float() / 255.0 A : List[str] = hint.permute(2, 0, 1 ).unsqueeze(0 ) A : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""", torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) A : Tuple = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""", torch_dtype=torch.floataa ) A : Union[str, Any] = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) A : Optional[Any] = """A robot, 4k photo""" A : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) A , A : int = pipe_prior( lowerCamelCase__, generator=lowerCamelCase__, num_inference_steps=5, negative_prompt="""""", ).to_tuple() A : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) A : int = pipeline( image_embeds=lowerCamelCase__, negative_image_embeds=lowerCamelCase__, hint=lowerCamelCase__, generator=lowerCamelCase__, num_inference_steps=100, output_type="""np""", ) A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCamelCase__, lowerCamelCase__ )
116
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = """naver-clova-ix/donut-base-finetuned-docvqa""" UpperCAmelCase_ : str = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) UpperCAmelCase_ : Any = """document_qa""" UpperCAmelCase_ : Tuple = AutoProcessor UpperCAmelCase_ : Any = VisionEncoderDecoderModel UpperCAmelCase_ : List[Any] = ["""image""", """text"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def __init__( self : Dict , *lowercase_ : Optional[Any] , **lowercase_ : Dict ) -> Any: if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : "Image" , lowercase_ : str ) -> Any: UpperCAmelCase : Any = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' UpperCAmelCase : Dict = task_prompt.replace('{user_input}' , lowercase_ ) UpperCAmelCase : Any = self.pre_processor.tokenizer( lowercase_ , add_special_tokens=lowercase_ , return_tensors='pt' ).input_ids UpperCAmelCase : Optional[Any] = self.pre_processor(lowercase_ , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase_ ( self : str , lowercase_ : int ) -> Any: return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowercase_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowercase_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowercase_ , ).sequences def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.pre_processor.batch_decode(lowercase_ )[0] UpperCAmelCase : Tuple = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) UpperCAmelCase : List[Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) UpperCAmelCase : Tuple = re.sub(R'<.*?>' , '' , lowercase_ , count=1 ).strip() # remove first task start token UpperCAmelCase : List[Any] = self.pre_processor.tokenajson(lowercase_ ) return sequence["answer"]
280
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
280
1
"""simple docstring""" def __a ( __lowerCamelCase ): UpperCAmelCase_ : Dict = len(_SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr UpperCAmelCase_ : Union[str, Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase_ : int = arr[mi::-1] + arr[mi + 1 : len(_SCREAMING_SNAKE_CASE )] # Reverse whole list UpperCAmelCase_ : List[Any] = arr[cur - 1 :: -1] + arr[cur : len(_SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": _a = input('Enter numbers separated by a comma:\n').strip() _a = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
61
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = SwinConfig() SCREAMING_SNAKE_CASE = swin_name.split("""_""" ) SCREAMING_SNAKE_CASE = name_split[1] SCREAMING_SNAKE_CASE = int(name_split[4] ) SCREAMING_SNAKE_CASE = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 6, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE = 96 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE = 1_28 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE = 1_92 SCREAMING_SNAKE_CASE = (2, 2, 18, 2) SCREAMING_SNAKE_CASE = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE = 2_18_41 else: SCREAMING_SNAKE_CASE = 10_00 SCREAMING_SNAKE_CASE = """huggingface/label-files""" SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = img_size SCREAMING_SNAKE_CASE = num_classes SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size return config def __lowercase ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: SCREAMING_SNAKE_CASE = """encoder.""" + name if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": SCREAMING_SNAKE_CASE = """layernorm.weight""" if name == "norm.bias": SCREAMING_SNAKE_CASE = """layernorm.bias""" if "head" in name: SCREAMING_SNAKE_CASE = name.replace("""head""" , """classifier""" ) else: SCREAMING_SNAKE_CASE = """swin.""" + name return name def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE = key.split(""".""" ) SCREAMING_SNAKE_CASE = int(key_split[1] ) SCREAMING_SNAKE_CASE = int(key_split[3] ) SCREAMING_SNAKE_CASE = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE = val[:dim, :] SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE = val[-dim:, :] else: SCREAMING_SNAKE_CASE = val[ :dim ] SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE = val[ -dim: ] else: SCREAMING_SNAKE_CASE = val return orig_state_dict def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() SCREAMING_SNAKE_CASE = get_swin_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = SwinForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) SCREAMING_SNAKE_CASE = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) SCREAMING_SNAKE_CASE = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE = timm_model(inputs["""pixel_values"""] ) SCREAMING_SNAKE_CASE = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
296
0
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCAmelCase__ ( A_ ): __a = 42 __a = jnp.floataa __a = True def lowercase ( self : Tuple ): super().setup() _snake_case = nn.Dense(5 , dtype=self.dtype ) def __call__( self : str , *_lowerCamelCase : int , **_lowerCamelCase : Any ): _snake_case = super().__call__(*_lowerCamelCase , **_lowerCamelCase ) _snake_case = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCAmelCase__ ( A_ ): __a = FlaxBigBirdForNaturalQuestionsModule def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> Any: def cross_entropy(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=None ): _snake_case = logits.shape[-1] _snake_case = (labels[..., None] == jnp.arange(__lowerCamelCase )[None]).astype('''f4''' ) _snake_case = jax.nn.log_softmax(__lowerCamelCase , axis=-1 ) _snake_case = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _snake_case = reduction(__lowerCamelCase ) return loss _snake_case = partial(__lowerCamelCase , reduction=jnp.mean ) _snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase ) _snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase ) _snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCAmelCase__ : __a = "google/bigbird-roberta-base" __a = 3000 __a = 10500 __a = 128 __a = 3 __a = 1 __a = 5 # tx_args __a = 3e-5 __a = 0.0 __a = 20000 __a = 0.0095 __a = "bigbird-roberta-natural-questions" __a = "training-expt" __a = "data/nq-training.jsonl" __a = "data/nq-validation.jsonl" def lowercase ( self : Optional[Any] ): os.makedirs(self.base_dir , exist_ok=_lowerCamelCase ) _snake_case = os.path.join(self.base_dir , self.save_dir ) _snake_case = self.batch_size_per_device * jax.device_count() @dataclass class lowerCAmelCase__ : __a = 42 __a = 4096 # no dynamic padding on TPUs def __call__( self : Dict , _lowerCamelCase : Any ): _snake_case = self.collate_fn(_lowerCamelCase ) _snake_case = jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase ) return batch def lowercase ( self : Dict , _lowerCamelCase : str ): _snake_case , _snake_case = self.fetch_inputs(features['''input_ids'''] ) _snake_case = { '''input_ids''': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def lowercase ( self : List[Any] , _lowerCamelCase : list ): _snake_case = [self._fetch_inputs(_lowerCamelCase ) for ids in input_ids] return zip(*_lowerCamelCase ) def lowercase ( self : Optional[Any] , _lowerCamelCase : list ): _snake_case = [1 for _ in range(len(_lowerCamelCase ) )] while len(_lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=None ) -> str: if seed is not None: _snake_case = dataset.shuffle(seed=__lowerCamelCase ) for i in range(len(__lowerCamelCase ) // batch_size ): _snake_case = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__lowerCamelCase ) @partial(jax.pmap , axis_name='''batch''' ) def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , **__lowerCamelCase : Optional[Any] ) -> Union[str, Any]: def loss_fn(__lowerCamelCase : Union[str, Any] ): _snake_case = model_inputs.pop('''start_labels''' ) _snake_case = model_inputs.pop('''end_labels''' ) _snake_case = model_inputs.pop('''pooled_labels''' ) _snake_case = state.apply_fn(**__lowerCamelCase , params=__lowerCamelCase , dropout_rng=__lowerCamelCase , train=__lowerCamelCase ) _snake_case , _snake_case , _snake_case = outputs return state.loss_fn( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _snake_case , _snake_case = jax.random.split(__lowerCamelCase ) _snake_case = jax.value_and_grad(__lowerCamelCase ) _snake_case , _snake_case = grad_fn(state.params ) _snake_case = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) _snake_case = jax.lax.pmean(__lowerCamelCase , '''batch''' ) _snake_case = state.apply_gradients(grads=__lowerCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def _UpperCAmelCase ( __lowerCamelCase : str , **__lowerCamelCase : List[str] ) -> Any: _snake_case = model_inputs.pop('''start_labels''' ) _snake_case = model_inputs.pop('''end_labels''' ) _snake_case = model_inputs.pop('''pooled_labels''' ) _snake_case = state.apply_fn(**__lowerCamelCase , params=state.params , train=__lowerCamelCase ) _snake_case , _snake_case , _snake_case = outputs _snake_case = state.loss_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class lowerCAmelCase__ ( train_state.TrainState ): __a = struct.field(pytree_node=A_ ) @dataclass class lowerCAmelCase__ : __a = 42 __a = 42 __a = 42 __a = 42 __a = 42 __a = 42 __a = None def lowercase ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Dict=None ): _snake_case = model.params _snake_case = TrainState.create( apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , ) if ckpt_dir is not None: _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = restore_checkpoint(_lowerCamelCase , _lowerCamelCase ) _snake_case = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } _snake_case , _snake_case = build_tx(**_lowerCamelCase ) _snake_case = train_state.TrainState( step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , ) _snake_case = args _snake_case = data_collator _snake_case = lr _snake_case = params _snake_case = jax_utils.replicate(_lowerCamelCase ) return state def lowercase ( self : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str ): _snake_case = self.args _snake_case = len(_lowerCamelCase ) // args.batch_size _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(_lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): _snake_case = jnp.array(0 , dtype=jnp.floataa ) _snake_case = get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase ) _snake_case = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=f'''Running EPOCH-{epoch}''' ): _snake_case = self.data_collator(_lowerCamelCase ) _snake_case , _snake_case , _snake_case = self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: _snake_case = jax_utils.unreplicate(state.step ) _snake_case = running_loss.item() / i _snake_case = self.scheduler_fn(state_step - 1 ) _snake_case = self.evaluate(_lowerCamelCase , _lowerCamelCase ) _snake_case = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(_lowerCamelCase ) ) self.logger.log(_lowerCamelCase , commit=_lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=_lowerCamelCase ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] ): _snake_case = get_batched_dataset(_lowerCamelCase , self.args.batch_size ) _snake_case = len(_lowerCamelCase ) // self.args.batch_size _snake_case = jnp.array(0 , dtype=jnp.floataa ) _snake_case = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='''Evaluating ... ''' ): _snake_case = self.data_collator(_lowerCamelCase ) _snake_case = self.val_step_fn(_lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def lowercase ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : Dict ): _snake_case = jax_utils.unreplicate(_lowerCamelCase ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=''' ... ''' ) self.model_save_fn(_lowerCamelCase , params=state.params ) with open(os.path.join(_lowerCamelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCamelCase , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(_lowerCamelCase , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , _lowerCamelCase ) print('''DONE''' ) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) -> Tuple: print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(__lowerCamelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: _snake_case = from_bytes(state.params , f.read() ) with open(os.path.join(__lowerCamelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: _snake_case = from_bytes(state.opt_state , f.read() ) _snake_case = joblib.load(os.path.join(__lowerCamelCase , '''args.joblib''' ) ) _snake_case = joblib.load(os.path.join(__lowerCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(__lowerCamelCase , '''training_state.json''' ) , '''r''' ) as f: _snake_case = json.load(__lowerCamelCase ) _snake_case = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ) -> List[Any]: _snake_case = num_train_steps - warmup_steps _snake_case = optax.linear_schedule(init_value=__lowerCamelCase , end_value=__lowerCamelCase , transition_steps=__lowerCamelCase ) _snake_case = optax.linear_schedule(init_value=__lowerCamelCase , end_value=1E-7 , transition_steps=__lowerCamelCase ) _snake_case = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ) -> List[str]: def weight_decay_mask(__lowerCamelCase : List[Any] ): _snake_case = traverse_util.flatten_dict(__lowerCamelCase ) _snake_case = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(__lowerCamelCase ) _snake_case = scheduler_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = optax.adamw(learning_rate=__lowerCamelCase , weight_decay=__lowerCamelCase , mask=__lowerCamelCase ) return tx, lr
40
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): __a = MODEL_FOR_MASKED_LM_MAPPING __a = TF_MODEL_FOR_MASKED_LM_MAPPING def lowercase ( self : Optional[int] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowercase ( self : Tuple ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 38015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 25506, '''token_str''': ''' accuser'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 38015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 25506, '''token_str''': ''' accuser''', }, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowercase ( self : List[str] ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13606, '''token_str''': ''' Clara'''}, ] , ) _snake_case = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ [ { '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def lowercase ( self : Optional[Any] ): _snake_case = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() _snake_case = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) @slow @require_torch def lowercase ( self : Dict ): _snake_case = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(_lowerCamelCase ) @slow @require_tf def lowercase ( self : Tuple ): _snake_case = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(_lowerCamelCase ) def lowercase ( self : Tuple , _lowerCamelCase : Optional[int] ): _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_0_8, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_0_7, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_5_1, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_1_4, '''token''': 12790, '''token_str''': ''' Lyon''', }, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_0_5, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_0_0, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_0_0, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowercase ( self : str ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) _snake_case = None _snake_case = None self.run_pipeline_test(_lowerCamelCase , [] ) @require_tf def lowercase ( self : Any ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) _snake_case = None _snake_case = None self.run_pipeline_test(_lowerCamelCase , [] ) def lowercase ( self : int , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def lowercase ( self : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] ): _snake_case = fill_masker.tokenizer _snake_case = fill_masker.model _snake_case = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _lowerCamelCase , [ [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], ] , ) with self.assertRaises(_lowerCamelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowerCamelCase ): fill_masker('''This is''' ) self.run_test_top_k(_lowerCamelCase , _lowerCamelCase ) self.run_test_targets(_lowerCamelCase , _lowerCamelCase ) self.run_test_top_k_targets(_lowerCamelCase , _lowerCamelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowerCamelCase , _lowerCamelCase ) self.fill_mask_with_multiple_masks(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): _snake_case = tokenizer.get_vocab() _snake_case = sorted(vocab.keys() )[:2] # Pipeline argument _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase , targets=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowerCamelCase ) _snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowerCamelCase ) ) # Call argument _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowerCamelCase ) _snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowerCamelCase ) ) # Score equivalence _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) _snake_case = [top_mask['''token_str'''] for top_mask in outputs] _snake_case = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCamelCase ) == set(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) _snake_case = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) # Raises with invalid with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets='''''' ) def lowercase ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Tuple ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase , top_k=2 ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : List[str] ): _snake_case = tokenizer.get_vocab() _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) # top_k=2, ntargets=3 _snake_case = sorted(vocab.keys() )[:3] _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_lowerCamelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results _snake_case = [el['''token_str'''] for el in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x["score"] , reverse=_lowerCamelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCamelCase ).issubset(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_lowerCamelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = tokenizer.get_vocab() # String duplicates + id duplicates _snake_case = sorted(vocab.keys() )[:3] _snake_case = [targets[0], targets[1], targets[0], targets[2], targets[1]] _snake_case = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=_lowerCamelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowerCamelCase ) , 3 ) def lowercase ( self : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowerCamelCase , [ [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], ] , )
40
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = '''▁''' __lowerCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __lowerCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __lowerCAmelCase = { '''facebook/m2m100_418M''': 1_024, } # fmt: off __lowerCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Union[str, Any] = ['input_ids', 'attention_mask'] lowerCAmelCase : List[int] = [] lowerCAmelCase : List[int] = [] def __init__( self : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : Optional[Any]=None ,_UpperCAmelCase : Union[str, Any]="<s>" ,_UpperCAmelCase : Union[str, Any]="</s>" ,_UpperCAmelCase : int="</s>" ,_UpperCAmelCase : Tuple="<pad>" ,_UpperCAmelCase : str="<unk>" ,_UpperCAmelCase : Tuple="m2m100" ,_UpperCAmelCase : Optional[Dict[str, Any]] = None ,_UpperCAmelCase : List[Any]=8 ,**_UpperCAmelCase : Union[str, Any] ,): _a : int = {} if sp_model_kwargs is None else sp_model_kwargs _a : int = language_codes _a : List[Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] _a : Union[str, Any] = {lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code} _a : List[str] = kwargs.get('additional_special_tokens' ,[] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_UpperCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(_UpperCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_UpperCAmelCase ,tgt_lang=_UpperCAmelCase ,bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,language_codes=_UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,num_madeup_words=_UpperCAmelCase ,**_UpperCAmelCase ,) _a : Any = vocab_file _a : int = load_json(_UpperCAmelCase ) _a : Dict = {v: k for k, v in self.encoder.items()} _a : int = spm_file _a : int = load_spm(_UpperCAmelCase ,self.sp_model_kwargs ) _a : Any = len(self.encoder ) _a : str = { self.get_lang_token(_UpperCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(_UpperCAmelCase ) } _a : Optional[int] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_UpperCAmelCase )} _a : Dict = {v: k for k, v in self.lang_token_to_id.items()} _a : Union[str, Any] = src_lang if src_lang is not None else 'en' _a : Optional[int] = tgt_lang _a : Optional[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _a : List[Any] = num_madeup_words @property def __lowercase ( self : int ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def __lowercase ( self : Optional[int] ): return self._src_lang @src_lang.setter def __lowercase ( self : str ,_UpperCAmelCase : str ): _a : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : str ): return self.sp_model.encode(_UpperCAmelCase ,out_type=_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : int ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_UpperCAmelCase ,self.encoder[self.unk_token] ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : int ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_UpperCAmelCase ,self.unk_token ) def __lowercase ( self : int ,_UpperCAmelCase : Dict ): _a : Dict = [] _a : List[str] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCAmelCase ) + token _a : Optional[Any] = [] else: current_sub_tokens.append(_UpperCAmelCase ) out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ,_UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase ,token_ids_a=_UpperCAmelCase ,already_has_special_tokens=_UpperCAmelCase ) _a : List[str] = [1] * len(self.prefix_tokens ) _a : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def __lowercase ( self : Optional[int] ,_UpperCAmelCase : List[int] ,_UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowercase ( self : List[Any] ): _a : Dict = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): _a : Dict = self.__dict__.copy() _a : Any = None return state def __setstate__( self : Union[str, Any] ,_UpperCAmelCase : Dict ): _a : List[Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : Union[str, Any] = {} _a : Any = load_spm(self.spm_file ,self.sp_model_kwargs ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ): _a : List[str] = Path(_UpperCAmelCase ) if not save_dir.is_dir(): raise OSError(F"""{save_directory} should be a directory""" ) _a : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) _a : Tuple = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder ,_UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file ,_UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase ,'wb' ) as fi: _a : Tuple = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def __lowercase ( self : List[str] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : str = "en" ,_UpperCAmelCase : Optional[List[str]] = None ,_UpperCAmelCase : str = "ro" ,**_UpperCAmelCase : List[Any] ,): _a : int = src_lang _a : List[str] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Dict ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Optional[str] ,_UpperCAmelCase : Optional[str] ,**_UpperCAmelCase : List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _a : List[str] = src_lang _a : Optional[int] = self(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ,**_UpperCAmelCase ) _a : List[str] = self.get_lang_id(_UpperCAmelCase ) _a : List[str] = tgt_lang_id return inputs def __lowercase ( self : List[str] ): self.set_src_lang_special_tokens(self.src_lang ) def __lowercase ( self : Any ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : str ): _a : Tuple = self.get_lang_token(_UpperCAmelCase ) _a : Optional[Any] = self.lang_token_to_id[lang_token] _a : Union[str, Any] = [self.cur_lang_id] _a : Union[str, Any] = [self.eos_token_id] def __lowercase ( self : List[str] ,_UpperCAmelCase : str ): _a : int = self.get_lang_token(_UpperCAmelCase ) _a : Optional[Any] = self.lang_token_to_id[lang_token] _a : Dict = [self.cur_lang_id] _a : Optional[int] = [self.eos_token_id] def __lowercase ( self : str ,_UpperCAmelCase : str ): return self.lang_code_to_token[lang] def __lowercase ( self : List[Any] ,_UpperCAmelCase : str ): _a : Optional[int] = self.get_lang_token(_UpperCAmelCase ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> sentencepiece.SentencePieceProcessor: _a : int = sentencepiece.SentencePieceProcessor(**lowerCAmelCase_ ) spm.Load(str(lowerCAmelCase_ ) ) return spm def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[Dict, List]: with open(lowerCAmelCase_ , 'r' ) as f: return json.load(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: with open(lowerCAmelCase_ , 'w' ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ , indent=2 )
89
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase : Dict = 4 UpperCAmelCase : Optional[Any] = 3 class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" pass def lowerCamelCase ( _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' for shard in shards: for i in range(lowerCAmelCase__ ): yield {"i": i, "shard": shard} def lowerCamelCase ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = int(os.environ["""RANK"""] ) __UpperCAmelCase : Optional[Any] = int(os.environ["""WORLD_SIZE"""] ) __UpperCAmelCase : Tuple = ArgumentParser() parser.add_argument("""--streaming""" , type=lowerCAmelCase__ ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase__ ) parser.add_argument("""--num_workers""" , type=lowerCAmelCase__ , default=0 ) __UpperCAmelCase : Dict = parser.parse_args() __UpperCAmelCase : Dict = args.streaming __UpperCAmelCase : Optional[int] = args.num_workers __UpperCAmelCase : str = {"""shards""": [f'''shard_{shard_idx}''' for shard_idx in range(lowerCAmelCase__ )]} __UpperCAmelCase : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ ) if not streaming: __UpperCAmelCase : Tuple = Dataset.from_list(list(lowerCAmelCase__ ) ) __UpperCAmelCase : Any = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ ) __UpperCAmelCase : str = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ ) __UpperCAmelCase : List[str] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __UpperCAmelCase : List[Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __UpperCAmelCase : List[str] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
366
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): """simple docstring""" __a = ["""keras_nlp"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
320
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__: Tuple = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__: Optional[int] = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys UpperCamelCase__: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
23
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ : Any = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = '''maskformer-swin''' __UpperCamelCase : Any = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , lowerCAmelCase_ : int=2_2_4 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Dict=9_6 , lowerCAmelCase_ : Union[str, Any]=[2, 2, 6, 2] , lowerCAmelCase_ : Optional[Any]=[3, 6, 1_2, 2_4] , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Optional[Any]=4.0 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : str=1e-5 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : int , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: List[Any] = image_size _A: Optional[int] = patch_size _A: Optional[Any] = num_channels _A: str = embed_dim _A: Any = depths _A: str = len(lowerCAmelCase_ ) _A: Any = num_heads _A: int = window_size _A: Dict = mlp_ratio _A: str = qkv_bias _A: List[str] = hidden_dropout_prob _A: List[Any] = attention_probs_dropout_prob _A: Dict = drop_path_rate _A: List[Any] = hidden_act _A: Optional[int] = use_absolute_embeddings _A: Tuple = layer_norm_eps _A: Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A: Any = int(embed_dim * 2 ** (len(lowerCAmelCase_ ) - 1) ) _A: Tuple = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] _A , _A: str = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
121
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE (__lowerCamelCase , unittest.TestCase ): _UpperCamelCase : List[str] = SpeechTaTokenizer _UpperCamelCase : Optional[int] = False _UpperCamelCase : Dict = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = SpeechTaTokenizer(UpperCamelCase_ ) lowercase__ = AddedToken('<mask>' , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) lowercase__ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : str )-> Tuple: """simple docstring""" lowercase__ = 'this is a test' lowercase__ = 'this is a test' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[Any] , a : List[str]=False , a : Any=20 , a : Tuple=5 )-> List[str]: """simple docstring""" lowercase__ , lowercase__ = self.get_input_output_texts(UpperCamelCase_ ) lowercase__ = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowercase__ = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) return text, ids def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[Any]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(UpperCamelCase_ ) , 81 ) def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Tuple: """simple docstring""" lowercase__ = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowercase__ = tokenizer.vocab_size lowercase__ = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowercase__ = ['aaaaa bbbbbb', 'cccccccccdddddddd'] lowercase__ = tokenizer.add_tokens(UpperCamelCase_ ) lowercase__ = tokenizer.vocab_size lowercase__ = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , all_size + len(UpperCamelCase_ ) ) lowercase__ = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowercase__ = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} lowercase__ = tokenizer.add_special_tokens(UpperCamelCase_ ) lowercase__ = tokenizer.vocab_size lowercase__ = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , all_size_a + len(UpperCamelCase_ ) ) lowercase__ = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> str: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : str )-> Dict: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Any )-> List[Any]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(UpperCamelCase_ , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCamelCase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) # fmt: off self.assertListEqual(UpperCamelCase_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[Any]: """simple docstring""" lowercase__ = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off lowercase__ = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=UpperCamelCase_ , )
357
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase ) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _UpperCamelCase : ClassVar[Features] = Features({'text': Value('string' )} ) _UpperCamelCase : ClassVar[Features] = Features({} ) _UpperCamelCase : str = "text" @property def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
269
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase : Dict = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
280
import colorsys from PIL import Image # type: ignore def _SCREAMING_SNAKE_CASE ( a , a , a ) -> float: __A : List[str] = x __A : str = y for step in range(a ): # noqa: B007 __A : Union[str, Any] = a * a - b * b + x __A : Optional[int] = 2 * a * b + y __A : List[str] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _SCREAMING_SNAKE_CASE ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _SCREAMING_SNAKE_CASE ( a ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(a , 1 , 1 ) ) def _SCREAMING_SNAKE_CASE ( a = 8_00 , a = 6_00 , a = -0.6 , a = 0 , a = 3.2 , a = 50 , a = True , ) -> Image.Image: __A : str = Image.new('RGB' , (image_width, image_height) ) __A : Dict = img.load() # loop through the image-coordinates for image_x in range(a ): for image_y in range(a ): # determine the figure-coordinates based on the image-coordinates __A : Dict = figure_width / image_width * image_height __A : Union[str, Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width __A : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height __A : Union[str, Any] = get_distance(a , a , a ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __A : Optional[Any] = get_color_coded_rgb(a ) else: __A : Dict = get_black_and_white_rgb(a ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase : str = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
280
1
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase: Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[Any] , _UpperCamelCase : str ) -> Union[str, Any]: '''simple docstring''' for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) UpperCamelCase__ = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) UpperCamelCase__ = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCamelCase__ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_weight[ -encoder_config.hidden_size :, : ] def SCREAMING_SNAKE_CASE__( _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : List[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ = dct.pop(_UpperCamelCase ) UpperCamelCase__ = val def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Tuple ) -> Tuple: '''simple docstring''' if "handwritten" in checkpoint_url: UpperCamelCase__ = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCamelCase__ = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" UpperCamelCase__ = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = ViTConfig(image_size=3_84 , qkv_bias=_UpperCamelCase ) UpperCamelCase__ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCamelCase__ = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder UpperCamelCase__ = 10_24 UpperCamelCase__ = 40_96 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 10_24 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCamelCase__ = False UpperCamelCase__ = "relu" UpperCamelCase__ = 10_24 UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False # load HuggingFace model UpperCamelCase__ = ViTModel(_UpperCamelCase , add_pooling_layer=_UpperCamelCase ) UpperCamelCase__ = TrOCRForCausalLM(_UpperCamelCase ) UpperCamelCase__ = VisionEncoderDecoderModel(encoder=_UpperCamelCase , decoder=_UpperCamelCase ) model.eval() # load state_dict of original model, rename some keys UpperCamelCase__ = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="cpu" , check_hash=_UpperCamelCase )["model"] UpperCamelCase__ = create_rename_keys(_UpperCamelCase , _UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCamelCase__ = state_dict.pop(_UpperCamelCase ) if key.startswith("decoder" ) and "output_projection" not in key: UpperCamelCase__ = val else: UpperCamelCase__ = val # load state dict model.load_state_dict(_UpperCamelCase ) # Check outputs on an image UpperCamelCase__ = ViTImageProcessor(size=encoder_config.image_size ) UpperCamelCase__ = RobertaTokenizer.from_pretrained("roberta-large" ) UpperCamelCase__ = TrOCRProcessor(_UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = processor(images=prepare_img(_UpperCamelCase ) , return_tensors="pt" ).pixel_values # verify logits UpperCamelCase__ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) UpperCamelCase__ = model(pixel_values=_UpperCamelCase , decoder_input_ids=_UpperCamelCase ) UpperCamelCase__ = outputs.logits UpperCamelCase__ = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: UpperCamelCase__ = torch.tensor( [-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] ) elif "trocr-large-handwritten" in checkpoint_url: UpperCamelCase__ = torch.tensor( [-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] ) elif "trocr-base-printed" in checkpoint_url: UpperCamelCase__ = torch.tensor( [-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] ) elif "trocr-large-printed" in checkpoint_url: UpperCamelCase__ = torch.tensor( [-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _UpperCamelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCamelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __lowercase: Dict = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowercase: Union[str, Any] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
31
1
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def lowercase ( )-> Any: '''simple docstring''' a : str = 9 a : Tuple = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] a : List[str] = kruskal(A_ , A_ ) a : List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(A_ ) == sorted(A_ )
40
"""simple docstring""" class _A : """simple docstring""" def __init__( self : int , __UpperCAmelCase : int): a : Tuple = size a : Dict = [0] * size a : Optional[int] = [0] * size @staticmethod def __snake_case ( __UpperCAmelCase : int): return index | (index + 1) @staticmethod def __snake_case ( __UpperCAmelCase : int): return (index & (index + 1)) - 1 def __snake_case ( self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : int): a : Union[str, Any] = value while index < self.size: a : Dict = self.get_prev(__UpperCAmelCase) + 1 if current_left_border == index: a : Optional[int] = value else: a : Any = max(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Optional[int] = self.get_next(__UpperCAmelCase) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int): right -= 1 # Because of right is exclusive a : List[str] = 0 while left <= right: a : Dict = self.get_prev(__UpperCAmelCase) if left <= current_left: a : Optional[int] = max(__UpperCAmelCase , self.tree[right]) a : Optional[Any] = current_left else: a : List[str] = max(__UpperCAmelCase , self.arr[right]) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
40
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _a : List[Any]= { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any]= [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _a : Any= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: __snake_case , __snake_case : Union[str, Any] = b % a, a return b def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __snake_case : Union[str, Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case : List[str] = 1, 0, a __snake_case , __snake_case , __snake_case : Dict = 0, 1, m while va != 0: __snake_case : List[str] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
95
0
"""simple docstring""" from __future__ import annotations import math def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) ) def __UpperCAmelCase ( ) -> None: lowercase__ : Any = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ : Optional[Any] = math.log(len(__lowerCamelCase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
0
'''simple docstring''' def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCAmelCase = str(bin(A ) )[2:] # remove the leading "0b" UpperCAmelCase = str(bin(A ) )[2:] # remove the leading "0b" UpperCAmelCase = max(len(A ) , len(A ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(A ) , b_binary.zfill(A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
91
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowercase : List[str] = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase__ ( A : str , A : str , A : List[Any]=None ): '''simple docstring''' if rng is None: UpperCAmelCase = random.Random() UpperCAmelCase = 1 for dim in shape: total_dims *= dim UpperCAmelCase = [] for _ in range(A ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCAmelCase = np.array(A , dtype=jnp.intaa ).reshape(A ) return output def lowerCamelCase__ ( A : int , A : Optional[int]=None ): '''simple docstring''' UpperCAmelCase = ids_tensor(A , vocab_size=2 , rng=A ) # make sure that at least one token is attended to for each batch UpperCAmelCase = 1 return attn_mask @require_flax class UpperCamelCase__: __magic_name__ : Optional[int] = None __magic_name__ : Optional[Any] = () def a__( self : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCAmelCase = 2 UpperCAmelCase = inputs['''input_ids'''].shape[-1] // 2 UpperCAmelCase = inputs['''input_ids'''][:max_batch_size, :sequence_length] UpperCAmelCase = jnp.ones_like(lowerCAmelCase ) UpperCAmelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCAmelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCAmelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 0 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase = getattr(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = pt_model_class(lowerCAmelCase ).eval() UpperCAmelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase , flax_model.params ) UpperCAmelCase = flax_model.generate(lowerCAmelCase ).sequences UpperCAmelCase = pt_model.generate(torch.tensor(lowerCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCAmelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = True UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : str )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = False UpperCAmelCase = max_length UpperCAmelCase = 2 UpperCAmelCase = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def a__( self : Tuple )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = True UpperCAmelCase = max_length UpperCAmelCase = 0.8 UpperCAmelCase = 10 UpperCAmelCase = 0.3 UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = max_length UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() UpperCAmelCase = max_length UpperCAmelCase = 2 UpperCAmelCase = 1 UpperCAmelCase = 8 UpperCAmelCase = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = False UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = True UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase = 2 UpperCAmelCase = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase ) UpperCAmelCase = jit(model.generate ) UpperCAmelCase = jit_generate(lowerCAmelCase , attention_mask=lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class UpperCamelCase__( unittest.TestCase ): def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) UpperCAmelCase = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase = '''Hello world''' UpperCAmelCase = tokenizer(lowerCAmelCase , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase , '''do_samples''' ): model.generate(lowerCAmelCase , do_samples=lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase , '''foo''' ): UpperCAmelCase = {'''foo''': '''bar'''} model.generate(lowerCAmelCase , **lowerCAmelCase )
91
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: __SCREAMING_SNAKE_CASE :Any = None __SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :Optional[Any] = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } __SCREAMING_SNAKE_CASE :str = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } __SCREAMING_SNAKE_CASE :str = '''▁''' # Segments (not really needed) __SCREAMING_SNAKE_CASE :Union[str, Any] = 0 __SCREAMING_SNAKE_CASE :List[str] = 1 __SCREAMING_SNAKE_CASE :Tuple = 2 __SCREAMING_SNAKE_CASE :Any = 3 __SCREAMING_SNAKE_CASE :Union[str, Any] = 4 class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Optional[Any] = """left""" _lowerCamelCase : Any = XLNetTokenizer def __init__( self : List[str] , snake_case_ : Union[str, Any]=None , snake_case_ : str=None , snake_case_ : Optional[Any]=False , snake_case_ : List[Any]=True , snake_case_ : str=False , snake_case_ : str="<s>" , snake_case_ : Any="</s>" , snake_case_ : int="<unk>" , snake_case_ : str="<sep>" , snake_case_ : Tuple="<pad>" , snake_case_ : Any="<cls>" , snake_case_ : Union[str, Any]="<mask>" , snake_case_ : int=["<eop>", "<eod>"] , **snake_case_ : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( vocab_file=snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , additional_special_tokens=snake_case_ , **snake_case_ , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def lowercase ( self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase ( self : Tuple , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase ( self : str , snake_case_ : str , snake_case_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
22
"""simple docstring""" import os from math import logaa def _lowercase ( __snake_case = "base_exp.txt" ) -> int: __lowerCAmelCase : float = 0 __lowerCAmelCase : Any = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ) ,__snake_case ) ) ): __lowerCAmelCase , __lowerCAmelCase : List[str] = list(map(__snake_case ,line.split("," ) ) ) if x * logaa(__snake_case ) > largest: __lowerCAmelCase : Tuple = x * logaa(__snake_case ) __lowerCAmelCase : Optional[Any] = i + 1 return result if __name__ == "__main__": print(solution())
269
0
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _lowercase : Optional[int] = 'scheduler_config.json' class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _a = 1 _a = 2 _a = 3 _a = 4 _a = 5 _a = 6 _a = 7 _a = 8 _a = 9 _a = 1_0 _a = 1_1 _a = 1_2 _a = 1_3 _a = 1_4 @dataclass class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _a = 4_2 class __SCREAMING_SNAKE_CASE : '''simple docstring''' _a = SCHEDULER_CONFIG_NAME _a = [] _a = True @classmethod def snake_case ( cls : List[Any], lowerCamelCase : Dict[str, Any] = None, lowerCamelCase : Optional[str] = None, lowerCamelCase : Tuple=False, **lowerCamelCase : Union[str, Any], )-> Optional[int]: lowerCamelCase__ : List[Any] =cls.load_config( pretrained_model_name_or_path=_SCREAMING_SNAKE_CASE, subfolder=_SCREAMING_SNAKE_CASE, return_unused_kwargs=_SCREAMING_SNAKE_CASE, return_commit_hash=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE, ) return cls.from_config(_SCREAMING_SNAKE_CASE, return_unused_kwargs=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) def snake_case ( self : Union[str, Any], lowerCamelCase : Union[str, os.PathLike], lowerCamelCase : bool = False, **lowerCamelCase : Dict )-> List[Any]: self.save_config(save_directory=_SCREAMING_SNAKE_CASE, push_to_hub=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) @property def snake_case ( self : Dict )-> Optional[int]: return self._get_compatibles() @classmethod def snake_case ( cls : int )-> Optional[Any]: lowerCamelCase__ : List[str] =list(set([cls.__name__] + cls._compatibles ) ) lowerCamelCase__ : Optional[Any] =importlib.import_module(__name__.split('''.''' )[0] ) lowerCamelCase__ : str =[ getattr(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) for c in compatible_classes_str if hasattr(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) ] return compatible_classes
364
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[str] = logging.get_logger(__name__) def snake_case__ ( __lowerCamelCase : Union[tf.Tensor, np.ndarray] ): """simple docstring""" if isinstance(__lowerCamelCase , np.ndarray ): return list(tensor.shape ) lowerCamelCase__ : List[Any] =tf.shape(__lowerCamelCase ) if tensor.shape == tf.TensorShape(__lowerCamelCase ): return dynamic lowerCamelCase__ : List[str] =tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCamelCase )] def snake_case__ ( __lowerCamelCase : tf.Tensor , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[str] = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=__lowerCamelCase , name=__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=1e-5 , __lowerCamelCase : str=-1 ): """simple docstring""" # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized lowerCamelCase__ , lowerCamelCase__ : Optional[int] =tf.nn.moments(__lowerCamelCase , axes=[axis] , keepdims=__lowerCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowerCamelCase__ : Optional[Any] =[1] * inputs.shape.rank lowerCamelCase__ : Union[str, Any] =shape_list(__lowerCamelCase )[axis] lowerCamelCase__ : Optional[Any] =tf.reshape(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Any =tf.reshape(__lowerCamelCase , __lowerCamelCase ) # Compute layer normalization using the batch_normalization # function. lowerCamelCase__ : List[str] =tf.nn.batch_normalization( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , offset=__lowerCamelCase , scale=__lowerCamelCase , variance_epsilon=__lowerCamelCase , ) return outputs def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : int=-1 ): """simple docstring""" # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowerCamelCase__ : Optional[int] =tf.shape(__lowerCamelCase ) lowerCamelCase__ : Optional[int] =tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowerCamelCase__ : List[Any] =tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__lowerCamelCase , __lowerCamelCase ) def snake_case__ ( __lowerCamelCase : tf.Tensor ): """simple docstring""" if not isinstance(__lowerCamelCase , tf.Tensor ): lowerCamelCase__ : List[Any] =tf.convert_to_tensor(__lowerCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowerCamelCase__ : int =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowerCamelCase__ : int =encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowerCamelCase__ : str =( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def snake_case__ ( __lowerCamelCase : tf.Tensor , __lowerCamelCase : int , __lowerCamelCase : str = "input_ids" ): """simple docstring""" tf.debugging.assert_less( __lowerCamelCase , tf.cast(__lowerCamelCase , dtype=tensor.dtype ) , message=( f'''The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCamelCase )}) must be smaller than the embedding ''' f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ): """simple docstring""" lowerCamelCase__ : Any =64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowerCamelCase__ : Tuple =[x for x in data if len(__lowerCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' f'''bytes: {bad_attributes}''' ) lowerCamelCase__ : Optional[Any] =np.asarray(__lowerCamelCase ) lowerCamelCase__ : str =1 lowerCamelCase__ : List[Any] =np.array_split(__lowerCamelCase , __lowerCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowerCamelCase__ : Union[str, Any] =np.array_split(__lowerCamelCase , __lowerCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCamelCase ): lowerCamelCase__ : List[str] =chunk_data else: lowerCamelCase__ : Dict =data def snake_case__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): """simple docstring""" if name in group.attrs: lowerCamelCase__ : Optional[int] =[n.decode('''utf8''' ) if hasattr(__lowerCamelCase , '''decode''' ) else n for n in group.attrs[name]] else: lowerCamelCase__ : str =[] lowerCamelCase__ : str =0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(__lowerCamelCase , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def snake_case__ ( __lowerCamelCase : Dict ): """simple docstring""" def _expand_single_ad_tensor(__lowerCamelCase : List[Any] ): if isinstance(__lowerCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __lowerCamelCase )
272
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Any = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Any , A : Optional[int]=None , A : Tuple=None , *A : Tuple , **A : List[str] ): super().__init__(*A , **A ) if config is None: assert isinstance(self.model , A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) _UpperCAmelCase : str = self.model.config else: _UpperCAmelCase : List[str] = config _UpperCAmelCase : List[Any] = data_args _UpperCAmelCase : str = self.config.tgt_vocab_size if isinstance(self.config , A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" " padding.." ) if self.args.label_smoothing == 0: _UpperCAmelCase : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase : Dict = label_smoothed_nll_loss def _A ( self : Tuple , A : int ): if self.optimizer is None: _UpperCAmelCase : Tuple = ["bias", "LayerNorm.weight"] _UpperCAmelCase : str = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] _UpperCAmelCase : int = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase : List[str] = Adafactor _UpperCAmelCase : List[Any] = {"scale_parameter": False, "relative_step": False} else: _UpperCAmelCase : List[str] = AdamW _UpperCAmelCase : List[str] = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } _UpperCAmelCase : List[Any] = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase : List[Any] = OSS( params=A , optim=A , **A , ) else: _UpperCAmelCase : Union[str, Any] = optimizer_cls(A , **A ) if self.lr_scheduler is None: _UpperCAmelCase : List[str] = self._get_lr_scheduler(A ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def _A ( self : List[str] , A : Optional[int] ): _UpperCAmelCase : List[str] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase : str = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase : str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A ) return scheduler def _A ( self : Tuple ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _A ( self : Any , A : Union[str, Any] , A : Union[str, Any] , A : List[Any] ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase : List[str] = model(**A , use_cache=A )[0] _UpperCAmelCase : int = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase : Any = model(**A , labels=A , use_cache=A )[:2] else: # compute label smoothed loss _UpperCAmelCase : Optional[int] = model(**A , use_cache=A )[0] _UpperCAmelCase : List[str] = torch.nn.functional.log_softmax(A , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self.loss_fn(A , A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _A ( self : List[str] , A : Optional[int] , A : Optional[int] ): _UpperCAmelCase : Union[str, Any] = inputs.pop("labels" ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self._compute_loss(A , A , A ) return loss def _A ( self : List[str] , A : nn.Module , A : Dict[str, Union[torch.Tensor, Any]] , A : bool , A : Optional[List[str]] = None , ): _UpperCAmelCase : List[str] = self._prepare_inputs(A ) _UpperCAmelCase : Dict = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase : Dict = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase : int = self._pad_tensors_to_max_len(A , gen_kwargs["max_length"] ) _UpperCAmelCase : Any = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase : str = self._compute_loss(A , A , A ) _UpperCAmelCase : List[str] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase : Optional[Any] = self._pad_tensors_to_max_len(A , gen_kwargs["max_length"] ) return (loss, logits, labels) def _A ( self : Dict , A : int , A : List[str] ): # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase : Union[str, Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" F""" padded to `max_length`={max_length}""" ) _UpperCAmelCase : Tuple = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase : Tuple = tensor return padded_tensor
31
1
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> List[Any]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Optional[Any]: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Union[str, Any]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Dict: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> Optional[int]: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Any: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> Optional[Any]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[str]: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Tuple: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> int: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : Dict = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : Tuple = True A_ : Dict = False A_ : List[str] = False A_ : Optional[int] = True A_ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : List[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Optional[Any]: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> str: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
153
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class __lowerCamelCase ( a__ ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A_ : str = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) A_ : ClassVar[Features] = Features({'text': Value('string' )} ) A_ : ClassVar[Features] = Features({'summary': Value('string' )} ) A_ : str = "text" A_ : str = "summary" @property def _UpperCAmelCase ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
153
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Tuple = '''trocr''' _UpperCAmelCase : int = ['''past_key_values'''] _UpperCAmelCase : Any = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str=5_0_2_6_5 ,SCREAMING_SNAKE_CASE__ : int=1_0_2_4 ,SCREAMING_SNAKE_CASE__ : List[str]=1_2 ,SCREAMING_SNAKE_CASE__ : str=1_6 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=4_0_9_6 ,SCREAMING_SNAKE_CASE__ : str="gelu" ,SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 ,SCREAMING_SNAKE_CASE__ : Tuple=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=0.0 ,SCREAMING_SNAKE_CASE__ : str=0.0 ,SCREAMING_SNAKE_CASE__ : Any=2 ,SCREAMING_SNAKE_CASE__ : Any=0.02 ,SCREAMING_SNAKE_CASE__ : Tuple=0.0 ,SCREAMING_SNAKE_CASE__ : List[str]=True ,SCREAMING_SNAKE_CASE__ : Any=False ,SCREAMING_SNAKE_CASE__ : List[str]=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : int=1 ,SCREAMING_SNAKE_CASE__ : str=0 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,**SCREAMING_SNAKE_CASE__ : int ,): __lowerCamelCase : Optional[Any] = vocab_size __lowerCamelCase : Dict = d_model __lowerCamelCase : Union[str, Any] = decoder_layers __lowerCamelCase : Optional[int] = decoder_attention_heads __lowerCamelCase : str = decoder_ffn_dim __lowerCamelCase : Optional[Any] = activation_function __lowerCamelCase : List[Any] = max_position_embeddings __lowerCamelCase : Dict = dropout __lowerCamelCase : Any = attention_dropout __lowerCamelCase : List[str] = activation_dropout __lowerCamelCase : Optional[Any] = init_std __lowerCamelCase : Tuple = decoder_layerdrop __lowerCamelCase : Dict = use_cache __lowerCamelCase : Dict = scale_embedding __lowerCamelCase : List[str] = use_learned_position_embeddings __lowerCamelCase : int = layernorm_embedding super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,decoder_start_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,)
73
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Any = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
95
0
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCAmelCase : Optional[int] = 'pt' elif is_tf_available(): UpperCAmelCase : Tuple = 'tf' else: UpperCAmelCase : Tuple = 'jax' class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = PerceiverTokenizer __a = False def lowerCamelCase__ ( self : str ): '''simple docstring''' super().setUp() __UpperCAmelCase : List[str] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def lowerCamelCase__ ( self : int , **UpperCamelCase : Optional[int] ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict=False , UpperCamelCase : str=20 , UpperCamelCase : str=5 ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [] for i in range(len(UpperCamelCase ) ): try: __UpperCAmelCase : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __UpperCAmelCase : Optional[Any] = list(filter(lambda UpperCamelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , UpperCamelCase ) ) __UpperCAmelCase : List[str] = list(filter(lambda UpperCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase ) , UpperCamelCase ) ) if max_length is not None and len(UpperCamelCase ) > max_length: __UpperCAmelCase : int = toks[:max_length] if min_length is not None and len(UpperCamelCase ) < min_length and len(UpperCamelCase ) > 0: while len(UpperCamelCase ) < min_length: __UpperCAmelCase : Optional[Any] = toks + toks # toks_str = [t[1] for t in toks] __UpperCAmelCase : Union[str, Any] = [t[0] for t in toks] # Ensure consistency __UpperCAmelCase : Any = tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) if " " not in output_txt and len(UpperCamelCase ) > 1: __UpperCAmelCase : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase ) ) if with_prefix_space: __UpperCAmelCase : str = """ """ + output_txt __UpperCAmelCase : int = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) return output_txt, output_ids def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = self.perceiver_tokenizer __UpperCAmelCase : int = """Unicode €.""" __UpperCAmelCase : int = tokenizer(UpperCamelCase ) __UpperCAmelCase : Tuple = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["""input_ids"""] , UpperCamelCase ) # decoding __UpperCAmelCase : Optional[int] = tokenizer.decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , """[CLS]Unicode €.[SEP]""" ) __UpperCAmelCase : str = tokenizer("""e è é ê ë""" ) __UpperCAmelCase : int = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["""input_ids"""] , UpperCamelCase ) # decoding __UpperCAmelCase : Tuple = tokenizer.decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : List[str] = self.perceiver_tokenizer __UpperCAmelCase : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __UpperCAmelCase : Tuple = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) if FRAMEWORK != "jax": __UpperCAmelCase : Any = list(batch.input_ids.numpy()[0] ) else: __UpperCAmelCase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.perceiver_tokenizer __UpperCAmelCase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCAmelCase : List[Any] = tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , UpperCamelCase ) self.assertIn("""attention_mask""" , UpperCamelCase ) self.assertNotIn("""decoder_input_ids""" , UpperCamelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCamelCase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : str = self.perceiver_tokenizer __UpperCAmelCase : int = [ """Summary of the text.""", """Another summary.""", ] __UpperCAmelCase : Any = tokenizer( text_target=UpperCamelCase , max_length=32 , padding="""max_length""" , truncation=UpperCamelCase , return_tensors=UpperCamelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[str] = tempfile.mkdtemp() __UpperCAmelCase : Dict = """ He is very happy, UNwant\u00E9d,running""" __UpperCAmelCase : List[Any] = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) tokenizer.save_pretrained(UpperCamelCase ) __UpperCAmelCase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = after_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) shutil.rmtree(UpperCamelCase ) __UpperCAmelCase : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() __UpperCAmelCase : Tuple = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __UpperCAmelCase : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __UpperCAmelCase : int = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) tokenizer.save_pretrained(UpperCamelCase ) __UpperCAmelCase : Any = tokenizer.__class__.from_pretrained(UpperCamelCase ) __UpperCAmelCase : List[Any] = after_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase ) with open(os.path.join(UpperCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __UpperCAmelCase : List[Any] = json.load(UpperCamelCase ) with open(os.path.join(UpperCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __UpperCAmelCase : List[Any] = json.load(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(125 )] __UpperCAmelCase : str = added_tokens_extra_ids + [ """an_additional_special_token""" ] __UpperCAmelCase : str = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(UpperCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCamelCase , UpperCamelCase ) with open(os.path.join(UpperCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCamelCase , UpperCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained( UpperCamelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : Optional[Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=UpperCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( UpperCamelCase , additional_special_tokens=UpperCamelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , """�""" ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Any ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizers(fast=UpperCamelCase , do_lower_case=UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] __UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase )
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" def _A (__a ) -> list[list]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = current_set.copy() for row_index, row in enumerate(__a ): SCREAMING_SNAKE_CASE_ : int = row[0] for column_index, column in enumerate(__a ): if magnitude == 0: SCREAMING_SNAKE_CASE_ : str = column continue SCREAMING_SNAKE_CASE_ : Union[str, Any] = column / magnitude # Subtract to cancel term SCREAMING_SNAKE_CASE_ : Optional[Any] = current_set[0] SCREAMING_SNAKE_CASE_ : Optional[int] = [first_row] SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_set[1::] for row in current_set: SCREAMING_SNAKE_CASE_ : Optional[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__a ) continue for column_index in range(len(__a ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__a ) # Create next recursion iteration set if len(final_set[0] ) != 3: SCREAMING_SNAKE_CASE_ : str = final_set[0] SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : int = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = simplify(__a ) for i in range(len(__a ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __a ) SCREAMING_SNAKE_CASE_ : Tuple = resultant return final_set def _A (__a ) -> list: """simple docstring""" if len(__a ) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) SCREAMING_SNAKE_CASE_ : int = len(__a ) + 1 if any(len(__a ) != _length for item in equations ): raise IndexError('''solve_simultaneous() requires n lists of length n+1''' ) for row in equations: if any(not isinstance(__a , (int, float) ) for column in row ): raise ValueError('''solve_simultaneous() requires lists of integers''' ) if len(__a ) == 1: return [equations[0][-1] / equations[0][0]] SCREAMING_SNAKE_CASE_ : List[Any] = equations.copy() if any(0 in row for row in data_set ): SCREAMING_SNAKE_CASE_ : Optional[Any] = data_set.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for row_index, row in enumerate(__a ): if 0 not in row: SCREAMING_SNAKE_CASE_ : Any = data_set.pop(__a ) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''' ) data_set.insert(0 , __a ) SCREAMING_SNAKE_CASE_ : Optional[int] = data_set.copy() SCREAMING_SNAKE_CASE_ : int = simplify(__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = simplified[::-1] SCREAMING_SNAKE_CASE_ : list = [] for row in simplified: SCREAMING_SNAKE_CASE_ : Dict = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue SCREAMING_SNAKE_CASE_ : List[str] = row.copy()[: len(__a ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__a ) == 0: solutions.append(0 ) continue SCREAMING_SNAKE_CASE_ : Any = temp_row[1::] SCREAMING_SNAKE_CASE_ : Dict = temp_row[::-1] for column_index, column in enumerate(__a ): current_solution -= column * solutions[column_index] solutions.append(__a ) SCREAMING_SNAKE_CASE_ : Any = [] for item in solutions: final.append(float(round(__a , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
91
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _A (__a , __a , __a ) -> Dict: """simple docstring""" if gpta_config_file == "": SCREAMING_SNAKE_CASE_ : Optional[Any] = GPTaConfig() else: SCREAMING_SNAKE_CASE_ : Tuple = GPTaConfig.from_json_file(__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = GPTaModel(__a ) # Load weights from numpy load_tf_weights_in_gpta(__a , __a , __a ) # Save pytorch-model SCREAMING_SNAKE_CASE_ : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE_ : List[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , __a ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
91
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase: Optional[Any] = logging.get_logger(__name__) def a( A : Optional[int] ) -> Union[str, Any]: """simple docstring""" a = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: a = 1024 a = 4096 a = 24 a = 16 a = [5, 11, 17, 23] a = [256, 512, 1024, 1024] a = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: a = 768 a = [1, 1, 1, 0.5] a = [256, 512, 768, 768] a = 150 a = 16 a = (1, 384, 384) a = False a = "project" if "ade" in checkpoint_url: a = True a = 768 a = [1, 1, 1, 0.5] a = 150 a = 16 a = "huggingface/label-files" a = "ade20k-id2label.json" a = json.load(open(cached_download(hf_hub_url(A , A , repo_type="dataset" ) ) , "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} a = [1, 150, 480, 480] return config, expected_shape def a( A : Union[str, Any] ) -> Dict: """simple docstring""" a = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(A , A ) def a( A : List[str] ) -> int: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): a = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: a = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: a = name.replace("patch_embed" , "" ) if "pos_embed" in name: a = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: a = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: a = name.replace("proj" , "projection" ) if "blocks" in name: a = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: a = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: a = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: a = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: a = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: a = name.replace("scratch" , "neck" ) if "layer1_rn" in name: a = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: a = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: a = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: a = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: a = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 a = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: a = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: a = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: a = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: a = name.replace("conv1" , "convolution1" ) if "conv2" in name: a = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: a = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: a = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: a = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: a = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: a = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: a = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: a = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: a = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: a = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: a = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: a = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: a = name.replace("pretrained" , "dpt" ) if "bn" in name: a = name.replace("bn" , "batch_norm" ) if "head" in name: a = name.replace("head" , "head.head" ) if "encoder.norm" in name: a = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: a = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: a = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: a = name.replace(".." , "." ) if "stem.conv" in name: a = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: a = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: a = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: a = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: a = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: a = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: a = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def a( A : List[Any] , A : Union[str, Any] ) -> Optional[int]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) a = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[: config.hidden_size, :] a = in_proj_bias[: config.hidden_size] a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a = in_proj_weight[ -config.hidden_size :, : ] a = in_proj_bias[-config.hidden_size :] def a( ) -> Any: """simple docstring""" a = "http://images.cocodataset.org/val2017/000000039769.jpg" a = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def a( A : int , A : Optional[Any] , A : str , A : Union[str, Any] , A : List[Any] ) -> Union[str, Any]: """simple docstring""" a , a = get_dpt_config(A ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") a = torch.load(A , map_location="cpu" ) # remove certain keys remove_ignore_keys_(A ) # rename keys for key in state_dict.copy().keys(): a = state_dict.pop(A ) a = val # read in qkv matrices read_in_q_k_v(A , A ) # load HuggingFace model a = DPTForSemanticSegmentation(A ) if "ade" in checkpoint_url else DPTForDepthEstimation(A ) model.load_state_dict(A ) model.eval() # Check outputs on an image a = 480 if "ade" in checkpoint_url else 384 a = DPTImageProcessor(size=A ) a = prepare_img() a = image_processor(A , return_tensors="pt" ) # forward pass a = model(**A ).logits if "ade" in checkpoint_url else model(**A ).predicted_depth if show_prediction: a = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(A ).mkdir(exist_ok=A ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": _lowercase: int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _lowercase: Optional[int] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
359
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = 384 a = 7 if "tiny" in model_name: a = 96 a = (2, 2, 6, 2) a = (3, 6, 12, 24) elif "small" in model_name: a = 96 a = (2, 2, 18, 2) a = (3, 6, 12, 24) elif "base" in model_name: a = 128 a = (2, 2, 18, 2) a = (4, 8, 16, 32) a = 12 a = 512 elif "large" in model_name: a = 192 a = (2, 2, 18, 2) a = (6, 12, 24, 48) a = 12 a = 768 # set label information a = 150 a = "huggingface/label-files" a = "ade20k-id2label.json" a = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = {v: k for k, v in idalabel.items()} a = SwinConfig( embed_dim=A , depths=A , num_heads=A , window_size=A , out_features=["stage1", "stage2", "stage3", "stage4"] , ) a = UperNetConfig( backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , ) return config def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a( A : List[str] , A : List[str] , A : Dict ) -> Any: """simple docstring""" a = dct.pop(A ) a = val def a( A : str , A : List[str] ) -> List[Any]: """simple docstring""" a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[:dim, :] a = in_proj_bias[: dim] a = in_proj_weight[ dim : dim * 2, : ] a = in_proj_bias[ dim : dim * 2 ] a = in_proj_weight[ -dim :, : ] a = in_proj_bias[-dim :] # fmt: on def a( A : Optional[int] ) -> Optional[Any]: """simple docstring""" a , a = x.shape a = x.reshape(A , 4 , in_channel // 4 ) a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A , A ) return x def a( A : int ) -> Dict: """simple docstring""" a , a = x.shape a = x.reshape(A , in_channel // 4 , 4 ) a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A , A ) return x def a( A : List[Any] ) -> Dict: """simple docstring""" a = x.shape[0] a = x.reshape(4 , in_channel // 4 ) a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A ) return x def a( A : Optional[Any] ) -> List[str]: """simple docstring""" a = x.shape[0] a = x.reshape(in_channel // 4 , 4 ) a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A ) return x def a( A : Any , A : int , A : Dict ) -> Union[str, Any]: """simple docstring""" a = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(A , map_location="cpu" , file_name=A )[ "state_dict" ] for name, param in state_dict.items(): print(A , param.shape ) a = get_upernet_config(A ) a = UperNetForSemanticSegmentation(A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a = state_dict.pop(A ) if "bn" in key: a = key.replace("bn" , "batch_norm" ) a = val # rename keys a = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: a = reverse_correct_unfold_reduction_order(A ) if "norm" in key: a = reverse_correct_unfold_norm_order(A ) model.load_state_dict(A ) # verify on image a = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" a = Image.open(requests.get(A , stream=A ).raw ).convert("RGB" ) a = SegformerImageProcessor() a = processor(A , return_tensors="pt" ).pixel_values with torch.no_grad(): a = model(A ) a = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": a = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": a = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": a = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": a = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowercase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase: int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
71
0
def A (__A : str , __A : int ) -> list: """simple docstring""" UpperCAmelCase_ = word.split() def justify(__A : list , __A : int , __A : int ) -> str: UpperCAmelCase_ = max_width - width UpperCAmelCase_ = len(__A ) if len(__A ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCAmelCase_ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCAmelCase_ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCAmelCase_ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__A ): num_spaces_between_words_list[i] += 1 UpperCAmelCase_ = [] for i in range(__A ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__A ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = 0 for word in words: if width + len(__A ) + len(__A ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__A ) width += len(__A ) else: # justify the line and add it to result answer.append(justify(__A , __A , __A ) ) # reset new line and new width UpperCAmelCase_ , UpperCAmelCase_ = [word], len(__A ) UpperCAmelCase_ = max_width - width - len(__A ) answer.append(''' '''.join(__A ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
51
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Tuple = XLMRobertaTokenizer UpperCAmelCase_ : int = XLMRobertaTokenizerFast UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Optional[int] = True def a_ ( self): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def a_ ( self): """simple docstring""" lowerCAmelCase = """<pad>""" lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase) , __lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase) , __lowerCAmelCase) def a_ ( self): """simple docstring""" lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<s>""") self.assertEqual(vocab_keys[1] , """<pad>""") self.assertEqual(vocab_keys[-1] , """<mask>""") self.assertEqual(len(__lowerCAmelCase) , 1002) def a_ ( self): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002) def a_ ( self): """simple docstring""" lowerCAmelCase = XLMRobertaTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase) lowerCAmelCase = tokenizer.tokenize("""This is a test""") self.assertListEqual(__lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase) self.assertListEqual( __lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def a_ ( self): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase) lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files)) lowerCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f) self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCAmelCase) # Save tokenizer rust, legacy_format=True lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase) lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase) # Checks it save with the same files self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase)) shutil.rmtree(__lowerCAmelCase) # Save tokenizer rust, legacy_format=False lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase) lowerCAmelCase = tokenizer_p.save_pretrained(__lowerCAmelCase) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(__lowerCAmelCase) lowerCAmelCase = tokenizer_p.from_pretrained(__lowerCAmelCase) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase)) shutil.rmtree(__lowerCAmelCase) @cached_property def a_ ( self): """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""") def a_ ( self): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowerCAmelCase , f.name) lowerCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=__lowerCAmelCase) lowerCAmelCase = pickle.dumps(__lowerCAmelCase) pickle.loads(__lowerCAmelCase) def a_ ( self): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = """I was born in 92000, and this is falsé.""" lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase) lowerCAmelCase = rust_tokenizer.tokenize(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) lowerCAmelCase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(__lowerCAmelCase) lowerCAmelCase = rust_tokenizer.encode(__lowerCAmelCase) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase) @slow def a_ ( self): """simple docstring""" lowerCAmelCase = """Hello World!""" lowerCAmelCase = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase)) @slow def a_ ( self): """simple docstring""" lowerCAmelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCAmelCase = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowerCAmelCase , self.big_tokenizer.encode(__lowerCAmelCase)) @slow def a_ ( self): """simple docstring""" lowerCAmelCase = {"""input_ids""": [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
272
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Optional[Any] =get_tests_dir("fixtures/test_sentencepiece.model") _lowercase : Optional[Any] ={'target_lang': 'fi', 'source_lang': 'en'} _lowercase : List[Any] ='>>zh<<' _lowercase : int ='Helsinki-NLP/' if is_torch_available(): _lowercase : Tuple ='pt' elif is_tf_available(): _lowercase : Any ='tf' else: _lowercase : Any ='jax' @require_sentencepiece class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Optional[int] = MarianTokenizer __lowerCAmelCase :Union[str, Any] = False __lowerCAmelCase :List[str] = True def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" super().setUp() a__ : Dict = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] a__ : Tuple = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) a__ : Dict = Path(self.tmpdirname ) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) a__ : List[str] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]: """simple docstring""" return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Optional[Any] = """</s>""" a__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_snake_case ) , 9 ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : List[str] = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) a__ : List[Any] = en_de_tokenizer(["""I am a small frog"""] , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) a__ : str = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(_snake_case , batch.input_ids[0] ) a__ : int = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_snake_case ) a__ : Tuple = [x.name for x in Path(_snake_case ).glob("""*""" )] self.assertIn("""source.spm""" , _snake_case ) MarianTokenizer.from_pretrained(_snake_case ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : List[Any] = self.get_tokenizer() a__ : Tuple = tok( ["""I am a small frog""" * 1_0_0_0, """I am a small frog"""] , padding=_snake_case , truncation=_snake_case , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : List[Any] = self.get_tokenizer() a__ : List[str] = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=_snake_case , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Any = {"""input_ids""": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Tuple = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) a__ : int = """Tämä on testi""" a__ : str = """This is a test""" a__ : Optional[Any] = [7_6, 7, 2_0_4_7, 2] a__ : Optional[int] = [6_9, 1_2, 1_1, 9_4_0, 2] a__ : Any = tokenizer(_snake_case ).input_ids self.assertListEqual(_snake_case , _snake_case ) a__ : Dict = tokenizer(text_target=_snake_case ).input_ids self.assertListEqual(_snake_case , _snake_case ) a__ : Any = tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) self.assertEqual(_snake_case , _snake_case )
361
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : Union[str, Any] =16 _lowercase : Dict =32 def lowerCAmelCase_ ( _lowercase : Accelerator , _lowercase : int = 16 , _lowercase : str = "bert-base-cased") -> Union[str, Any]: """simple docstring""" a__ : Union[str, Any] = AutoTokenizer.from_pretrained(_lowercase) a__ : Any = load_dataset("""glue""" , """mrpc""") def tokenize_function(_lowercase : str): # max_length=None => use the model max length (it's actually the default) a__ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowercase , max_length=_lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ : Any = datasets.map( _lowercase , batched=_lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_lowercase) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""") def collate_fn(_lowercase : Optional[Any]): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""") return tokenizer.pad(_lowercase , padding="""longest""" , return_tensors="""pt""") # Instantiate dataloaders. a__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase) a__ : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Dict) -> int: """simple docstring""" # Initialize accelerator a__ : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : Union[str, Any] = config["""lr"""] a__ : List[str] = int(config["""num_epochs"""]) a__ : List[str] = int(config["""seed"""]) a__ : Tuple = int(config["""batch_size"""]) a__ : int = args.model_name_or_path set_seed(_lowercase) a__ , a__ : int = get_dataloaders(_lowercase , _lowercase , _lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase) # Instantiate optimizer a__ : int = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowercase) if accelerator.state.deepspeed_plugin is not None: a__ : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: a__ : List[str] = 1 a__ : List[Any] = (len(_lowercase) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ : Dict = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: a__ : Dict = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ : List[Any] = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) # We need to keep track of how many total steps we have iterated over a__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly a__ : Optional[int] = 0 # Now we train the model a__ : Tuple = evaluate.load("""glue""" , """mrpc""") a__ : List[Any] = 0 a__ : Tuple = {} for epoch in range(_lowercase , _lowercase): model.train() for step, batch in enumerate(_lowercase): a__ : Union[str, Any] = model(**_lowercase) a__ : Tuple = outputs.loss a__ : Any = loss / gradient_accumulation_steps accelerator.backward(_lowercase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() a__ : int = 0 for step, batch in enumerate(_lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): a__ : str = model(**_lowercase) a__ : Union[str, Any] = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times a__ , a__ : Optional[int] = accelerator.gather( (predictions, batch["""labels"""])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase) - 1: a__ : Union[str, Any] = predictions[: len(eval_dataloader.dataset) - samples_seen] a__ : Any = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) a__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowercase) a__ : Any = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: a__ : List[str] = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""") , """w""") as f: json.dump(_lowercase , _lowercase) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" a__ : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""") parser.add_argument( """--model_name_or_path""" , type=_lowercase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_lowercase , ) parser.add_argument( """--output_dir""" , type=_lowercase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=_lowercase , default=_lowercase , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=_lowercase , default=3 , help="""Number of train epochs.""" , ) a__ : Any = parser.parse_args() a__ : Dict = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_lowercase , _lowercase) if __name__ == "__main__": main()
266
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a = None , __a = None , __a = None , __a = False , __a = False , __a = None , __a = None , **__a , ) -> str: super().__init__( __a , split=__a , features=__a , cache_dir=__a , keep_in_memory=__a , streaming=__a , num_proc=__a , **__a , ) UpperCamelCase = field UpperCamelCase = path_or_paths if isinstance(__a , __a ) else {self.split: path_or_paths} UpperCamelCase = Json( cache_dir=__a , data_files=__a , features=__a , field=__a , **__a , ) def snake_case_ (self ) -> Any: # Build iterable dataset if self.streaming: UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None self.builder.download_and_prepare( download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , num_proc=self.num_proc , ) UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=__a , in_memory=self.keep_in_memory ) return dataset class _lowerCamelCase : def __init__(self , __a , __a , __a = None , __a = None , **__a , ) -> Dict: if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) UpperCamelCase = dataset UpperCamelCase = path_or_buf UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCamelCase = num_proc UpperCamelCase = "utf-8" UpperCamelCase = to_json_kwargs def snake_case_ (self ) -> int: UpperCamelCase = self.to_json_kwargs.pop("path_or_buf" , __a ) UpperCamelCase = self.to_json_kwargs.pop("orient" , "records" ) UpperCamelCase = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) UpperCamelCase = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) UpperCamelCase = self.to_json_kwargs.pop("compression" , __a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"`datasets` currently does not support {compression} compression" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=__a ) as buffer: UpperCamelCase = self._write(file_obj=__a , orient=__a , lines=__a , index=__a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"The compression parameter is not supported when writing to a buffer, but compression={compression}" " was passed. Please provide a local path instead." ) UpperCamelCase = self._write( file_obj=self.path_or_buf , orient=__a , lines=__a , index=__a , **self.to_json_kwargs ) return written def snake_case_ (self , __a ) -> str: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = args UpperCamelCase = query_table( table=self.dataset.data , key=slice(__a , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCamelCase = batch.to_pandas().to_json( path_or_buf=__a , orient=__a , lines=__a , index=__a , **__a ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def snake_case_ (self , __a , __a , __a , __a , **__a , ) -> int: UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): UpperCamelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__a ) else: UpperCamelCase , UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __a , __a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(__a ) return written
153
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> Tuple: UpperCamelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) UpperCamelCase = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__a ) , torch_builtin(__a ) ) ) self.assertFalse(torch.allclose(gelu_python(__a ) , gelu_new(__a ) ) ) def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) UpperCamelCase = get_activation("gelu" ) UpperCamelCase = get_activation("gelu_10" ) UpperCamelCase = torch_builtin(__a ) UpperCamelCase = geluaa(__a ) UpperCamelCase = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def snake_case_ (self ) -> Any: get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__a ): get_activation("bogus" ) with self.assertRaises(__a ): get_activation(__a ) def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = get_activation("gelu" ) UpperCamelCase = 1 UpperCamelCase = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__a ): UpperCamelCase = acta.a
153
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=sys.maxsize ) -> List[str]: UpperCAmelCase_ : List[str] = 'bilinear' UpperCAmelCase_ : List[str] = max_size UpperCAmelCase_ : List[Any] = short_edge_length def __call__( self , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = [] for img in imgs: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase_ : Optional[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase_ : int = size * 1.0 / min(_UpperCamelCase , _UpperCamelCase ) if h < w: UpperCAmelCase_ , UpperCAmelCase_ : int = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = scale * h, size if max(_UpperCamelCase , _UpperCamelCase ) > self.max_size: UpperCAmelCase_ : Tuple = self.max_size * 1.0 / max(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : int = newh * scale UpperCAmelCase_ : Union[str, Any] = neww * scale UpperCAmelCase_ : Tuple = int(neww + 0.5 ) UpperCAmelCase_ : List[str] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase_ : int = Image.fromarray(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase_ : Any = np.asarray(_UpperCamelCase ) else: UpperCAmelCase_ : Optional[Any] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase_ : int = nn.functional.interpolate( _UpperCamelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCamelCase ).squeeze(0 ) img_augs.append(_UpperCamelCase ) return img_augs class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase_ : Union[str, Any] = cfg.INPUT.FORMAT UpperCAmelCase_ : str = cfg.SIZE_DIVISIBILITY UpperCAmelCase_ : Optional[Any] = cfg.PAD_VALUE UpperCAmelCase_ : Tuple = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase_ : Dict = cfg.MODEL.DEVICE UpperCAmelCase_ : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase_ : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase_ : str = lambda _UpperCamelCase : (x - self.pixel_mean) / self.pixel_std def __UpperCAmelCase ( self , _UpperCamelCase ) -> int: UpperCAmelCase_ : List[Any] = tuple(max(_UpperCamelCase ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase_ : Union[str, Any] = [im.shape[-2:] for im in images] UpperCAmelCase_ : Union[str, Any] = [ nn.functional.pad( _UpperCamelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCamelCase , _UpperCamelCase ) ] return torch.stack(_UpperCamelCase ), torch.tensor(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase=False ) -> List[Any]: with torch.no_grad(): if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : int = [images] if single_image: assert len(_UpperCamelCase ) == 1 for i in range(len(_UpperCamelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_UpperCamelCase , images.pop(_UpperCamelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _UpperCamelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCamelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase_ : Optional[int] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase_ : List[str] = self.aug(_UpperCamelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase_ : Tuple = [self.normalizer(_UpperCamelCase ) for x in images] # now pad them to do the following operations UpperCAmelCase_ , UpperCAmelCase_ : str = self.pad(_UpperCamelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase_ : Dict = torch.true_divide(_UpperCamelCase , _UpperCamelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowercase__ ( __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowercase__ ( __snake_case : Any , __snake_case : Tuple[int, int] ): '''simple docstring''' assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
145
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Union[str, Any] = '''umt5''' _snake_case : Union[str, Any] = ['''past_key_values'''] def __init__( self , _UpperCamelCase=2_5_0_1_1_2 , _UpperCamelCase=5_1_2 , _UpperCamelCase=6_4 , _UpperCamelCase=1_0_2_4 , _UpperCamelCase=8 , _UpperCamelCase=None , _UpperCamelCase=6 , _UpperCamelCase=3_2 , _UpperCamelCase=1_2_8 , _UpperCamelCase=0.1 , _UpperCamelCase=1E-6 , _UpperCamelCase=1.0 , _UpperCamelCase="gated-gelu" , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase="T5Tokenizer" , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase=1 , _UpperCamelCase=0 , **_UpperCamelCase , ) -> List[Any]: super().__init__( is_encoder_decoder=_UpperCamelCase , tokenizer_class=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , decoder_start_token_id=_UpperCamelCase , **_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : List[str] = d_model UpperCAmelCase_ : Any = d_kv UpperCAmelCase_ : Optional[int] = d_ff UpperCAmelCase_ : List[Any] = num_layers UpperCAmelCase_ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Optional[int] = relative_attention_num_buckets UpperCAmelCase_ : Dict = relative_attention_max_distance UpperCAmelCase_ : Tuple = dropout_rate UpperCAmelCase_ : Union[str, Any] = layer_norm_epsilon UpperCAmelCase_ : Optional[int] = initializer_factor UpperCAmelCase_ : List[str] = feed_forward_proj UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : List[Any] = self.feed_forward_proj.split('-' ) UpperCAmelCase_ : List[Any] = act_info[-1] UpperCAmelCase_ : Union[str, Any] = act_info[0] == 'gated' if len(_UpperCamelCase ) > 1 and act_info[0] != "gated" or len(_UpperCamelCase ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": UpperCAmelCase_ : Optional[int] = 'gelu_new' @property def __UpperCAmelCase ( self ) -> int: return self.d_model @property def __UpperCAmelCase ( self ) -> Any: return self.num_heads @property def __UpperCAmelCase ( self ) -> List[Any]: return self.num_layers class lowerCamelCase (_snake_case ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase_ : str = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: UpperCAmelCase_ : Optional[int] = 'past_encoder_sequence + sequence' UpperCAmelCase_ : str = {0: 'batch'} UpperCAmelCase_ : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCAmelCase_ : Optional[int] = {0: 'batch', 1: 'decoder_sequence'} UpperCAmelCase_ : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __UpperCAmelCase ( self ) -> int: return 1_3 @property def __UpperCAmelCase ( self ) -> float: return 5E-4
145
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __snake_case = '''pt''' elif is_tf_available(): __snake_case = '''tf''' else: __snake_case = '''jax''' class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = PerceiverTokenizer A_ : Optional[Any] = False def _UpperCAmelCase ( self ) -> Optional[int]: super().setUp() _a = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase ( self ) -> int: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=20 , __UpperCAmelCase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _a = [] for i in range(len(__UpperCAmelCase ) ): try: _a = tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _a = list(filter(lambda __UpperCAmelCase : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , __UpperCAmelCase ) ) _a = list(filter(lambda __UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__UpperCAmelCase ) , __UpperCAmelCase ) ) if max_length is not None and len(__UpperCAmelCase ) > max_length: _a = toks[:max_length] if min_length is not None and len(__UpperCAmelCase ) < min_length and len(__UpperCAmelCase ) > 0: while len(__UpperCAmelCase ) < min_length: _a = toks + toks # toks_str = [t[1] for t in toks] _a = [t[0] for t in toks] # Ensure consistency _a = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) if " " not in output_txt and len(__UpperCAmelCase ) > 1: _a = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCAmelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCAmelCase ) ) if with_prefix_space: _a = ''' ''' + output_txt _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) return output_txt, output_ids def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.perceiver_tokenizer _a = '''Unicode €.''' _a = tokenizer(__UpperCAmelCase ) _a = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , __UpperCAmelCase ) # decoding _a = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , '''[CLS]Unicode €.[SEP]''' ) _a = tokenizer('''e è é ê ë''' ) _a = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , __UpperCAmelCase ) # decoding _a = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def _UpperCAmelCase ( self ) -> Any: _a = self.perceiver_tokenizer _a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off _a = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on _a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) if FRAMEWORK != "jax": _a = list(batch.input_ids.numpy()[0] ) else: _a = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _UpperCAmelCase ( self ) -> int: _a = self.perceiver_tokenizer _a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __UpperCAmelCase ) self.assertIn('''attention_mask''' , __UpperCAmelCase ) self.assertNotIn('''decoder_input_ids''' , __UpperCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.perceiver_tokenizer _a = [ '''Summary of the text.''', '''Another summary.''', ] _a = tokenizer( text_target=__UpperCAmelCase , max_length=32 , padding='''max_length''' , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _UpperCAmelCase ( self ) -> Optional[int]: # safety check on max_len default value so we are sure the test works _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _a = tempfile.mkdtemp() _a = ''' He is very happy, UNwant\u00E9d,running''' _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) _a = tokenizer.__class__.from_pretrained(__UpperCAmelCase ) _a = after_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) shutil.rmtree(__UpperCAmelCase ) _a = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _a = tempfile.mkdtemp() _a = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) _a = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) _a = tokenizer.__class__.from_pretrained(__UpperCAmelCase ) _a = after_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _a = tokenizer.__class__.from_pretrained(__UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: _a = json.load(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: _a = json.load(__UpperCAmelCase ) _a = [F'<extra_id_{i}>' for i in range(125 )] _a = added_tokens_extra_ids + [ '''an_additional_special_token''' ] _a = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__UpperCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__UpperCAmelCase , __UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _a = tokenizer_class.from_pretrained( __UpperCAmelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _a = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__UpperCAmelCase )] _a = tokenizer_class.from_pretrained( __UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> List[Any]: pass def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Dict: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _a = self.get_tokenizers(fast=__UpperCAmelCase , do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _a = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] _a = tokenizer.convert_tokens_to_string(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
320
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
1
'''simple docstring''' a : List[Any] = 8.3_144_598 def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> float: '''simple docstring''' if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example a : Dict = 300 a : Any = 28 a : str = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
356
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class a ( unittest.TestCase ): def A_ ( self : List[Any] ): snake_case_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : Optional[Any] ): snake_case_ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : List[Any] ): snake_case_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : str ): snake_case_ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : Optional[int] ): snake_case_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : Union[str, Any] ): snake_case_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : int ): snake_case_ = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : Any ): # pass variant but use the non-variant filenames snake_case_ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : int ): snake_case_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] snake_case_ = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : str ): snake_case_ = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : Tuple ): # pass variant but use the non-variant filenames snake_case_ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : List[str] ): snake_case_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) )
72
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = SwinConfig(image_size=192 ) if "base" in model_name: _lowerCamelCase : Optional[int] = 6 _lowerCamelCase : int = 128 _lowerCamelCase : List[Any] = (2, 2, 18, 2) _lowerCamelCase : Optional[int] = (4, 8, 16, 32) elif "large" in model_name: _lowerCamelCase : int = 12 _lowerCamelCase : str = 192 _lowerCamelCase : Tuple = (2, 2, 18, 2) _lowerCamelCase : Optional[int] = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) _lowerCamelCase : List[str] = window_size _lowerCamelCase : int = embed_dim _lowerCamelCase : Optional[Any] = depths _lowerCamelCase : Any = num_heads return config def _snake_case ( lowercase__ ): if "encoder.mask_token" in name: _lowerCamelCase : Dict = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: _lowerCamelCase : Any = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: _lowerCamelCase : List[str] = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: _lowerCamelCase : Tuple = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowerCamelCase : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowerCamelCase : Dict = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCamelCase : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : int = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": _lowerCamelCase : int = 'layernorm.weight' if name == "encoder.norm.bias": _lowerCamelCase : List[str] = 'layernorm.bias' if "decoder" in name: pass else: _lowerCamelCase : Union[str, Any] = 'swin.' + name return name def _snake_case ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): _lowerCamelCase : Any = orig_state_dict.pop(lowercase__ ) if "attn_mask" in key: pass elif "qkv" in key: _lowerCamelCase : List[Any] = key.split('.' ) _lowerCamelCase : Dict = int(key_split[2] ) _lowerCamelCase : List[Any] = int(key_split[4] ) _lowerCamelCase : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCamelCase : Optional[Any] = val[:dim, :] _lowerCamelCase : Any = val[ dim : dim * 2, : ] _lowerCamelCase : Optional[Any] = val[-dim:, :] else: _lowerCamelCase : str = val[ :dim ] _lowerCamelCase : Optional[int] = val[ dim : dim * 2 ] _lowerCamelCase : List[Any] = val[ -dim: ] else: _lowerCamelCase : Optional[int] = val return orig_state_dict def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = torch.load(lowercase__ , map_location='cpu' )['model'] _lowerCamelCase : Optional[Any] = get_swin_config(lowercase__ ) _lowerCamelCase : Optional[int] = SwinForMaskedImageModeling(lowercase__ ) model.eval() _lowerCamelCase : List[Any] = convert_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ ) _lowerCamelCase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase : int = ViTImageProcessor(size={'height': 192, 'width': 192} ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) _lowerCamelCase : Union[str, Any] = image_processor(images=lowercase__ , return_tensors='pt' ) with torch.no_grad(): _lowerCamelCase : List[Any] = model(**lowercase__ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase__ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
96
import re def A ( a_ ) -> bool: __UpperCamelCase : Any =re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(a_ ,a_ ) ) if __name__ == "__main__": A_ :List[str] = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
71
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = '''transfo-xl''' __snake_case = ['''mems'''] __snake_case = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : str , __UpperCAmelCase : Optional[Any]=267_735 , __UpperCAmelCase : str=[20_000, 40_000, 200_000] , __UpperCAmelCase : List[str]=1_024 , __UpperCAmelCase : int=1_024 , __UpperCAmelCase : int=16 , __UpperCAmelCase : List[str]=64 , __UpperCAmelCase : Tuple=4_096 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Optional[int]=18 , __UpperCAmelCase : Optional[Any]=1_600 , __UpperCAmelCase : Tuple=1_000 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[int]=0 , __UpperCAmelCase : Any=-1 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : str=True , __UpperCAmelCase : Union[str, Any]="normal" , __UpperCAmelCase : Optional[int]=0.01 , __UpperCAmelCase : Optional[int]=0.01 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Dict=1e-5 , __UpperCAmelCase : List[Any]=0 , **__UpperCAmelCase : int , ) ->Tuple: """simple docstring""" a = vocab_size a = [] self.cutoffs.extend(__UpperCAmelCase ) if proj_share_all_but_first: a = [False] + [True] * len(self.cutoffs ) else: a = [False] + [False] * len(self.cutoffs ) a = d_model a = d_embed a = d_head a = d_inner a = div_val a = pre_lnorm a = n_layer a = n_head a = mem_len a = same_length a = attn_type a = clamp_len a = sample_softmax a = adaptive a = dropout a = dropatt a = untie_r a = init a = init_range a = proj_init_std a = init_std a = layer_norm_epsilon super().__init__(eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) @property def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __lowerCAmelCase ( self : str , __UpperCAmelCase : Any ) ->Tuple: """simple docstring""" raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a=None , _a=None , _a=0 ) -> List[Any]: _A : int = 1.0 if scale is None else scale _A : Dict = 0.0 if loc is None else loc super().__init__(_a , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_a )] ) @property def a__ ( self ) -> Tuple: return self.base_dist.mean * self.scale + self.loc @property def a__ ( self ) -> int: return self.base_dist.variance * self.scale**2 @property def a__ ( self ) -> Tuple: return self.variance.sqrt() class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , **_a ) -> None: super().__init__(**_a ) _A : List[Any] = args_dim _A : Optional[Any] = nn.ModuleList([nn.Linear(_a , _a ) for dim in args_dim.values()] ) _A : Dict = domain_map def a__ ( self , _a ) -> Tuple[torch.Tensor]: _A : Optional[Any] = [proj(_a ) for proj in self.proj] return self.domain_map(*_a ) class lowercase ( nn.Module ): def __init__( self , _a ) -> List[Any]: super().__init__() _A : Any = function def a__ ( self , _a , *_a ) -> Optional[int]: return self.function(_a , *_a ) class lowercase : _a = 42 _a = 42 _a = 42 def __init__( self , _a = 1 ) -> None: _A : Tuple = dim _A : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def a__ ( self , _a ) -> Optional[int]: if self.dim == 1: return self.distribution_class(*_a ) else: return Independent(self.distribution_class(*_a ) , 1 ) def a__ ( self , _a , _a = None , _a = None , ) -> Distribution: _A : Union[str, Any] = self._base_distribution(_a ) if loc is None and scale is None: return distr else: return AffineTransformed(_a , loc=_a , scale=_a , event_dim=self.event_dim ) @property def a__ ( self ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def a__ ( self ) -> int: return len(self.event_shape ) @property def a__ ( self ) -> float: return 0.0 def a__ ( self , _a ) -> nn.Module: return ParameterProjection( in_features=_a , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def a__ ( self , *_a ) -> Dict: raise NotImplementedError() @staticmethod def a__ ( _a ) -> torch.Tensor: return (x + torch.sqrt(torch.square(_a ) + 4.0 )) / 2.0 class lowercase ( UpperCamelCase__ ): _a = {"df": 1, "loc": 1, "scale": 1} _a = StudentT @classmethod def a__ ( cls , _a , _a , _a ) -> int: _A : int = cls.squareplus(_a ).clamp_min(torch.finfo(scale.dtype ).eps ) _A : Any = 2.0 + cls.squareplus(_a ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class lowercase ( UpperCamelCase__ ): _a = {"loc": 1, "scale": 1} _a = Normal @classmethod def a__ ( cls , _a , _a ) -> List[Any]: _A : List[str] = cls.squareplus(_a ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class lowercase ( UpperCamelCase__ ): _a = {"total_count": 1, "logits": 1} _a = NegativeBinomial @classmethod def a__ ( cls , _a , _a ) -> Union[str, Any]: _A : List[str] = cls.squareplus(_a ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def a__ ( self , _a ) -> Distribution: _A , _A : Tuple = distr_args if self.dim == 1: return self.distribution_class(total_count=_a , logits=_a ) else: return Independent(self.distribution_class(total_count=_a , logits=_a ) , 1 ) def a__ ( self , _a , _a = None , _a = None ) -> Distribution: _A , _A : List[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
26
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[int] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''], model_result['''ss'''] ): __A = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sgugger/tiny-distilbert-classification''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, only_pretrain_model=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, torchscript=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''', '''Cant do half precision''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, fpaa=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) # set architectures equal to `None` __A = None __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''', '''Can\'t do half precision''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], fpaa=_lowerCamelCase, multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = '''sshleifer/tinier_bart''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = '''sshleifer/tinier_bart''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, save_to_csv=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(_lowerCamelCase, '''inf_time.csv''' ), train_memory_csv_file=os.path.join(_lowerCamelCase, '''train_mem.csv''' ), inference_memory_csv_file=os.path.join(_lowerCamelCase, '''inf_mem.csv''' ), train_time_csv_file=os.path.join(_lowerCamelCase, '''train_time.csv''' ), env_info_csv_file=os.path.join(_lowerCamelCase, '''env.csv''' ), multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCamelCase, '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''env.csv''' ) ).exists() ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCamelCase : List[Any] ): self.assertTrue(hasattr(_lowerCamelCase, '''sequential''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''current''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(_lowerCamelCase, '''log.txt''' ), log_print=_lowerCamelCase, trace_memory_line_by_line=_lowerCamelCase, multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''log.txt''' ) ).exists() )
266
0
def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = min(a__ , a__ ) for row in range(a__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , a__ ): __SCREAMING_SNAKE_CASE = matrix[col][row] / matrix[row][row] for i in range(a__ , a__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __SCREAMING_SNAKE_CASE = True for i in range(row + 1 , a__ ): if matrix[i][row] != 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = matrix[i], matrix[row] __SCREAMING_SNAKE_CASE = False break if reduce: rank -= 1 for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
118
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _A , _A=12 , _A=7 , _A=True , _A=True , _A=True , _A=99 , _A=32 , _A=32 , _A=2 , _A=4 , _A=37 , _A=0.1 , _A=0.1 , _A=512 , _A=0.0_2 , _A=0 , _A=None , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = projection_dim __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = bos_token_id def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __SCREAMING_SNAKE_CASE = input_mask.numpy() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = input_mask.shape __SCREAMING_SNAKE_CASE = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def _A ( self ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _A ( self , _A , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = TFBlipTextModel(config=_A ) __SCREAMING_SNAKE_CASE = model(_A , attention_mask=_A , training=_A ) __SCREAMING_SNAKE_CASE = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : str = (TFBlipTextModel,) if is_tf_available() else () UpperCamelCase__ : int = False UpperCamelCase__ : Optional[Any] = False UpperCamelCase__ : Tuple = False def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = BlipTextModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_A , hidden_size=37 ) def _A ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _A ( self ): '''simple docstring''' pass def _A ( self ): '''simple docstring''' pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _A ( self ): '''simple docstring''' pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _A ( self ): '''simple docstring''' pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _A ( self ): '''simple docstring''' pass @slow def _A ( self ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _A ( self , _A=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
118
1
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __a = logging.get_logger(__name__) logging.set_verbosity_info() def __UpperCAmelCase ( a_: str, a_: str ): if "xprophetnet" in prophetnet_checkpoint_path: _UpperCAmelCase : int = XLMProphetNetForConditionalGenerationOld.from_pretrained(a_ ) _UpperCAmelCase , _UpperCAmelCase : int = XLMProphetNetForConditionalGeneration.from_pretrained( a_, output_loading_info=a_ ) else: _UpperCAmelCase : Union[str, Any] = ProphetNetForConditionalGenerationOld.from_pretrained(a_ ) _UpperCAmelCase , _UpperCAmelCase : str = ProphetNetForConditionalGeneration.from_pretrained( a_, output_loading_info=a_ ) _UpperCAmelCase : Tuple = ["key_proj", "value_proj", "query_proj"] _UpperCAmelCase : Tuple = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: _UpperCAmelCase : Optional[Any] = key.split("." ) if attributes[0] == "lm_head": _UpperCAmelCase : str = prophet _UpperCAmelCase : int = prophet_old else: _UpperCAmelCase : Tuple = prophet.prophetnet _UpperCAmelCase : Union[str, Any] = prophet_old.model _UpperCAmelCase : Any = False for attribute in attributes: if attribute in mapping: _UpperCAmelCase : Tuple = mapping[attribute] if not hasattr(a_, a_ ) and len(a_ ) > 0: _UpperCAmelCase : Union[str, Any] = attribute elif hasattr(a_, a_ ): _UpperCAmelCase : Any = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCAmelCase : Tuple = old_model.weight logger.info(f"""{attribute} is initialized.""" ) _UpperCAmelCase : List[str] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCAmelCase : List[str] = old_model.bias logger.info(f"""{attribute} is initialized""" ) _UpperCAmelCase : Optional[int] = True break elif attribute in special_keys and hasattr(a_, "in_proj_weight" ): _UpperCAmelCase : Any = old_model.in_proj_weight.shape[0] // 3 _UpperCAmelCase : List[str] = getattr(a_, a_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCAmelCase : Tuple = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCAmelCase : Dict = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCAmelCase : Optional[int] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCAmelCase : List[str] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCAmelCase : List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCAmelCase : Optional[int] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCAmelCase : List[Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _UpperCAmelCase : Tuple = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _UpperCAmelCase : Optional[Any] = True break if attribute.isdigit(): _UpperCAmelCase : List[str] = model[int(a_ )] _UpperCAmelCase : int = old_model[int(a_ )] else: _UpperCAmelCase : Any = getattr(a_, a_ ) if old_attribute == "": _UpperCAmelCase : Union[str, Any] = old_model else: if not hasattr(a_, a_ ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) _UpperCAmelCase : List[str] = getattr(a_, a_ ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
145
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : List[Any] = self.delimiter if self.column_names is not None: _UpperCAmelCase : Union[str, Any] = self.column_names @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : Tuple = CsvConfig def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : Tuple = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : Union[str, Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Tuple = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : List[Any] = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Tuple = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
145
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available lowercase : str = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A_ ( A__ ) -> Optional[int]: if is_torch_version('<' , '2.0.0' ) or not hasattr(A__ , '_dynamo' ): return False return isinstance(A__ , torch._dynamo.eval_frame.OptimizedModule ) def A_ ( A__ , A__ = True ) -> int: a__ : Optional[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) a__ : Union[str, Any] = is_compiled_module(A__ ) if is_compiled: a__ : List[str] = model a__ : Dict = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__ , A__ ): a__ : str = model.module if not keep_fpaa_wrapper: a__ : Union[str, Any] = getattr(A__ , 'forward' ) a__ : List[Any] = model.__dict__.pop('_original_forward' , A__ ) if original_forward is not None: while hasattr(A__ , '__wrapped__' ): a__ : int = forward.__wrapped__ if forward == original_forward: break a__ : List[Any] = forward if getattr(A__ , '_converted_to_transformer_engine' , A__ ): convert_model(A__ , to_transformer_engine=A__ ) if is_compiled: a__ : List[str] = model a__ : Any = compiled_model return model def A_ ( ) -> int: PartialState().wait_for_everyone() def A_ ( A__ , A__ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(A__ , A__ ) elif PartialState().local_process_index == 0: torch.save(A__ , A__ ) @contextmanager def A_ ( **A__ ) -> Any: for key, value in kwargs.items(): a__ : Optional[int] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A_ ( A__ ) -> List[str]: if not hasattr(A__ , '__qualname__' ) and not hasattr(A__ , '__name__' ): a__ : Dict = getattr(A__ , '__class__' , A__ ) if hasattr(A__ , '__qualname__' ): return obj.__qualname__ if hasattr(A__ , '__name__' ): return obj.__name__ return str(A__ ) def A_ ( A__ , A__ ) -> Dict: for key, value in source.items(): if isinstance(A__ , A__ ): a__ : Optional[Any] = destination.setdefault(A__ , {} ) merge_dicts(A__ , A__ ) else: a__ : Optional[int] = value return destination def A_ ( A__ = None ) -> bool: if port is None: a__ : List[Any] = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
225
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowercase : Tuple = logging.get_logger(__name__) _lowercase : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowercase : Union[str, Any] = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } _lowercase : Union[str, Any] = { "roberta-base": 5_1_2, "roberta-large": 5_1_2, "roberta-large-mnli": 5_1_2, "distilroberta-base": 5_1_2, "roberta-base-openai-detector": 5_1_2, "roberta-large-openai-detector": 5_1_2, } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = RobertaTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="replace" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowercase_ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: lowercase_ : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) lowercase_ : Dict = add_prefix_space lowercase_ : Optional[int] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = add_prefix_space lowercase_ : Tuple = '''post_processor''' lowercase_ : Any = getattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: lowercase_ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : List[str] = tuple(state['''sep'''] ) if "cls" in state: lowercase_ : List[str] = tuple(state['''cls'''] ) lowercase_ : List[Any] = False if state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: lowercase_ : int = add_prefix_space lowercase_ : Optional[int] = True if state.get('''trim_offsets''' , __SCREAMING_SNAKE_CASE ) != trim_offsets: lowercase_ : Tuple = trim_offsets lowercase_ : int = True if changes_to_apply: lowercase_ : Tuple = getattr(__SCREAMING_SNAKE_CASE , state.pop('''type''' ) ) lowercase_ : Optional[Any] = component_class(**__SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def _snake_case ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else value lowercase_ : Union[str, Any] = value def _snake_case ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Optional[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase_ : List[str] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Optional[int] = [self.sep_token_id] lowercase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
93
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase__ = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } lowerCAmelCase__ = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } class __snake_case ( _lowercase): snake_case__ : Any = VOCAB_FILES_NAMES snake_case__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[int] = ["input_ids", "attention_mask"] snake_case__ : Any = BartTokenizer def __init__( self : int , __lowerCAmelCase : Dict=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[Any]="replace" , __lowerCAmelCase : Any="<s>" , __lowerCAmelCase : Optional[int]="</s>" , __lowerCAmelCase : str="</s>" , __lowerCAmelCase : Dict="<s>" , __lowerCAmelCase : Union[str, Any]="<unk>" , __lowerCAmelCase : Any="<pad>" , __lowerCAmelCase : Optional[Any]="<mask>" , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Dict=True , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , ) _lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: _lowerCamelCase : Dict = getattr(__lowerCAmelCase , pre_tok_state.pop('''type''' ) ) _lowerCamelCase : Any = add_prefix_space _lowerCamelCase : int = pre_tok_class(**__lowerCAmelCase ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = '''post_processor''' _lowerCamelCase : List[str] = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) if tokenizer_component_instance: _lowerCamelCase : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : Tuple = tuple(state['''sep'''] ) if "cls" in state: _lowerCamelCase : int = tuple(state['''cls'''] ) _lowerCamelCase : Union[str, Any] = False if state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: _lowerCamelCase : Dict = add_prefix_space _lowerCamelCase : Optional[Any] = True if state.get('''trim_offsets''' , __lowerCAmelCase ) != trim_offsets: _lowerCamelCase : Any = trim_offsets _lowerCamelCase : str = True if changes_to_apply: _lowerCamelCase : List[str] = getattr(__lowerCAmelCase , state.pop('''type''' ) ) _lowerCamelCase : str = component_class(**__lowerCAmelCase ) setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Tuple = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value _lowerCamelCase : str = value def SCREAMING_SNAKE_CASE ( self : int , *__lowerCAmelCase : Optional[Any] , **__lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Dict = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): """simple docstring""" _lowerCamelCase : Tuple = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=None ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): """simple docstring""" _lowerCamelCase : List[str] = [self.sep_token_id] _lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
72
0
"""simple docstring""" from collections.abc import Callable import numpy as np def _snake_case ( UpperCamelCase : Callable , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): UpperCAmelCase : Any = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Tuple = np.zeros((n + 1,) ) UpperCAmelCase : List[Any] = ya UpperCAmelCase : Any = xa for k in range(UpperCamelCase ): UpperCAmelCase : Optional[Any] = y[k] + step_size * ode_func(UpperCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Dict = 'naver-clova-ix/donut-base-finetuned-docvqa' __lowerCAmelCase : Dict = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) __lowerCAmelCase : Union[str, Any] = 'document_qa' __lowerCAmelCase : Optional[Any] = AutoProcessor __lowerCAmelCase : List[Any] = VisionEncoderDecoderModel __lowerCAmelCase : Union[str, Any] = ['image', 'text'] __lowerCAmelCase : str = ['text'] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" UpperCAmelCase : Any = task_prompt.replace("""{user_input}""" , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = self.pre_processor.tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids UpperCAmelCase : Optional[Any] = self.pre_processor(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_SCREAMING_SNAKE_CASE , ).sequences def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = self.pre_processor.batch_decode(_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase : int = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) UpperCAmelCase : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) UpperCAmelCase : Union[str, Any] = re.sub(r"""<.*?>""" , """""" , _SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token UpperCAmelCase : Tuple = self.pre_processor.tokenajson(_SCREAMING_SNAKE_CASE ) return sequence["answer"]
76
0
from __future__ import annotations import bisect def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0 , UpperCAmelCase = -1 ) -> Tuple: """simple docstring""" if hi < 0: lowerCamelCase__ : List[Any] = len(snake_case_ ) while lo < hi: lowerCamelCase__ : str = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowerCamelCase__ : str = mid + 1 else: lowerCamelCase__ : Tuple = mid return lo def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0 , UpperCAmelCase = -1 ) -> Optional[Any]: """simple docstring""" if hi < 0: lowerCamelCase__ : List[str] = len(snake_case_ ) while lo < hi: lowerCamelCase__ : Tuple = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowerCamelCase__ : Union[str, Any] = mid + 1 else: lowerCamelCase__ : Any = mid return lo def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0 , UpperCAmelCase = -1 ) -> int: """simple docstring""" sorted_collection.insert(bisect_left(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0 , UpperCAmelCase = -1 ) -> Optional[Any]: """simple docstring""" sorted_collection.insert(bisect_right(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) def _a ( UpperCAmelCase , UpperCAmelCase ) -> int: """simple docstring""" lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Optional[Any] = len(snake_case_ ) - 1 while left <= right: lowerCamelCase__ : List[str] = left + (right - left) // 2 lowerCamelCase__ : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowerCamelCase__ : List[Any] = midpoint - 1 else: lowerCamelCase__ : List[str] = midpoint + 1 return None def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : int = bisect.bisect_left(snake_case_ , snake_case_ ) if index != len(snake_case_ ) and sorted_collection[index] == item: return index return None def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" if right < left: return None lowerCamelCase__ : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(snake_case_ , snake_case_ , snake_case_ , midpoint - 1 ) else: return binary_search_by_recursion(snake_case_ , snake_case_ , midpoint + 1 , snake_case_ ) if __name__ == "__main__": _A : Union[str, Any] = input('Enter numbers separated by comma:\n').strip() _A : List[Any] = sorted(int(item) for item in user_input.split(',')) _A : Tuple = int(input('Enter a single number to be found in the list:\n')) _A : List[str] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
142
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "xmod" def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Tuple = vocab_size _A : Union[str, Any] = hidden_size _A : Dict = num_hidden_layers _A : Dict = num_attention_heads _A : List[Any] = hidden_act _A : Optional[Any] = intermediate_size _A : Any = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Dict = max_position_embeddings _A : Any = type_vocab_size _A : List[Any] = initializer_range _A : int = layer_norm_eps _A : int = position_embedding_type _A : Any = use_cache _A : int = classifier_dropout _A : int = pre_norm _A : Optional[Any] = adapter_reduction_factor _A : List[Any] = adapter_layer_norm _A : Optional[int] = adapter_reuse_layer_norm _A : Any = ln_before_adapter _A : Union[str, Any] = list(_a ) _A : List[Any] = default_language class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
26
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase = tuple[int, int, int] UpperCAmelCase = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase UpperCAmelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- UpperCAmelCase = """EGZWVONAHDCLFQMSIPJBYUKXTR""" UpperCAmelCase = """FOBHMDKEXQNRAULPGSJVTYICZW""" UpperCAmelCase = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- UpperCAmelCase = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- UpperCAmelCase = """RMDJXFUWGISLHVTCQNKYPBEZOA""" UpperCAmelCase = """SGLCPQWZHKXAREONTFBVIYJUDM""" UpperCAmelCase = """HVSICLTYKQUBXDWAJZOMFGPREN""" UpperCAmelCase = """RZWQHFMVDBKICJLNTUXAGYPSOE""" UpperCAmelCase = """LFKIJODBEGAMQPXVUHYSTCZRWN""" UpperCAmelCase = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def lowercase ( a__ : RotorPositionT , a__ : RotorSelectionT , a__ : str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(a__ ) )) < 3: _UpperCamelCase = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(a__ ) # Checks if rotor positions are valid _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = rotpos if not 0 < rotorposa <= len(a__ ): _UpperCamelCase = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(a__ ) if not 0 < rotorposa <= len(a__ ): _UpperCamelCase = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(a__ ) if not 0 < rotorposa <= len(a__ ): _UpperCamelCase = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(a__ ) # Validates string and returns dict _UpperCamelCase = _plugboard(a__ ) return rotpos, rotsel, pbdict def lowercase ( a__ : str ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(a__ , a__ ): _UpperCamelCase = F'''Plugboard setting isn\'t type string ({type(a__ )})''' raise TypeError(a__ ) elif len(a__ ) % 2 != 0: _UpperCamelCase = F'''Odd number of symbols ({len(a__ )})''' raise Exception(a__ ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique _UpperCamelCase = set() for i in pbstring: if i not in abc: _UpperCamelCase = F'''\'{i}\' not in list of symbols''' raise Exception(a__ ) elif i in tmppbl: _UpperCamelCase = F'''Duplicate symbol ({i})''' raise Exception(a__ ) else: tmppbl.add(a__ ) del tmppbl # Created the dictionary _UpperCamelCase = {} for j in range(0 , len(a__ ) - 1 , 2 ): _UpperCamelCase = pbstring[j + 1] _UpperCamelCase = pbstring[j] return pb def lowercase ( a__ : str , a__ : RotorPositionT , a__ : RotorSelectionT = (rotora, rotora, rotora) , a__ : str = "" , ) -> str: _UpperCamelCase = text.upper() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = _validator( a__ , a__ , plugb.upper() ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = rotor_position _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _UpperCamelCase = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _UpperCamelCase = plugboard[symbol] # rotor ra -------------------------- _UpperCamelCase = abc.index(a__ ) + rotorposa _UpperCamelCase = rotora[index % len(a__ )] # rotor rb -------------------------- _UpperCamelCase = abc.index(a__ ) + rotorposa _UpperCamelCase = rotora[index % len(a__ )] # rotor rc -------------------------- _UpperCamelCase = abc.index(a__ ) + rotorposa _UpperCamelCase = rotora[index % len(a__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _UpperCamelCase = reflector[symbol] # 2nd rotors _UpperCamelCase = abc[rotora.index(a__ ) - rotorposa] _UpperCamelCase = abc[rotora.index(a__ ) - rotorposa] _UpperCamelCase = abc[rotora.index(a__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: _UpperCamelCase = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(a__ ): _UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(a__ ): _UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(a__ ): _UpperCamelCase = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(a__ ) return "".join(a__ ) if __name__ == "__main__": UpperCAmelCase = """This is my Python script that emulates the Enigma machine from WWII.""" UpperCAmelCase = (1, 1, 1) UpperCAmelCase = """pictures""" UpperCAmelCase = (rotora, rotora, rotora) UpperCAmelCase = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
54
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
54
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() A : str = logging.get_logger(__name__) A : List[Any] = "Hello, World!" A : Tuple = "en_XX" def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = Path("data_bin" ) SCREAMING_SNAKE_CASE_ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__UpperCamelCase ).parent ) , checkpoint_file=Path(__UpperCamelCase ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(__UpperCamelCase ) , bpe="sentencepiece" , sentencepiece_model=str(Path(__UpperCamelCase ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE_ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: SCREAMING_SNAKE_CASE_ = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = XmodForSequenceClassification(__UpperCamelCase ) if classification_head else XmodForMaskedLM(__UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE_ = xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE_ = xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE_ = xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE_ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE_ = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE_ = xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE_ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) SCREAMING_SNAKE_CASE_ = xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE_ = xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE_ = xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE_ = xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE_ = xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE_ = xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE_ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) SCREAMING_SNAKE_CASE_ = xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE_ = xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE_ = xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE_ = xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE_ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) SCREAMING_SNAKE_CASE_ = xmod_layer.fca.weight SCREAMING_SNAKE_CASE_ = xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE_ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) SCREAMING_SNAKE_CASE_ = xmod_layer.fca.weight SCREAMING_SNAKE_CASE_ = xmod_layer.fca.bias SCREAMING_SNAKE_CASE_ = xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE_ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE_ = xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE_ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE_ = bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_ = xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_ = from_adapter.fca.weight SCREAMING_SNAKE_CASE_ = from_adapter.fca.bias SCREAMING_SNAKE_CASE_ = from_adapter.fca.weight SCREAMING_SNAKE_CASE_ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE_ = xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE_ = xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE_ = xmod.model.classification_heads["mnli"].dense.weight SCREAMING_SNAKE_CASE_ = xmod.model.classification_heads["mnli"].dense.bias SCREAMING_SNAKE_CASE_ = xmod.model.classification_heads["mnli"].out_proj.weight SCREAMING_SNAKE_CASE_ = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE_ = xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE_ = xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE_ = xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE_ = xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE_ = xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE_ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE_ = xmod.encode(__UpperCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model(__UpperCamelCase )[0] if classification_head: SCREAMING_SNAKE_CASE_ = xmod.model.classification_heads["mnli"](xmod.extract_features(__UpperCamelCase ) ) else: SCREAMING_SNAKE_CASE_ = xmod.model(__UpperCamelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE_ = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 SCREAMING_SNAKE_CASE_ = torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(__UpperCamelCase ).mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) A : Union[str, Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
118
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
118
1
import datasets from .evaluate import evaluate lowercase : List[str] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' lowercase : int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' lowercase : Optional[Any] = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): '''simple docstring''' def _lowerCamelCase ( self :List[str] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def _lowerCamelCase ( self :str , a :Tuple , a :Optional[int] ) -> Optional[int]: __UpperCamelCase : List[str] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} __UpperCamelCase : Tuple = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] __UpperCamelCase : List[Any] = evaluate(dataset=a , predictions=a ) return score
151
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : int) -> int: '''simple docstring''' return int((input_a, input_a).count(0) == 0) def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' assert and_gate(0 , 0) == 0 assert and_gate(0 , 1) == 0 assert and_gate(1 , 0) == 0 assert and_gate(1 , 1) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
151
1
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : List[Any] ) -> Optional[Any]: _lowerCAmelCase = logging.get_logger() # the current default level is logging.WARNING _lowerCAmelCase = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__snake_case ) def lowercase__ ( self : int ) -> str: _lowerCAmelCase = logging.get_verbosity() _lowerCAmelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) _lowerCAmelCase = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(__snake_case ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowercase__ ( self : Tuple ) -> Tuple: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowerCAmelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) _lowerCAmelCase = os.getenv("""TRANSFORMERS_VERBOSITY""" , __snake_case ) _lowerCAmelCase = logging.log_levels[env_level_str] _lowerCAmelCase = logging.get_verbosity() self.assertEqual( __snake_case , __snake_case , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level _lowerCAmelCase = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowercase__ ( self : Optional[int] ) -> Any: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowerCAmelCase = logging.logging.getLogger() with CaptureLogger(__snake_case ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowercase__ ( self : Dict ) -> Any: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowerCAmelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) _lowerCAmelCase = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(__snake_case ) as cl: logger.warning_advice(__snake_case ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__snake_case ) as cl: logger.warning_advice(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) def UpperCamelCase__ ( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
70
from __future__ import annotations lowerCamelCase__ : Optional[int] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCamelCase__ : List[Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) for i in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = -1 for j in range(i + 1 , __UpperCAmelCase ): if arr[i] < arr[j]: SCREAMING_SNAKE_CASE_ = arr[j] break result.append(__UpperCAmelCase ) return result def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = [] for i, outer in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = -1 for inner in arr[i + 1 :]: if outer < inner: SCREAMING_SNAKE_CASE_ = inner break result.append(__UpperCAmelCase ) return result def UpperCAmelCase_ ( __UpperCAmelCase : list[float] ) -> list[float]: SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [-1] * arr_size for index in reversed(range(__UpperCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: SCREAMING_SNAKE_CASE_ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase__ : List[str] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
225
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @slow def snake_case__ ( self ): _lowerCamelCase = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) _lowerCamelCase = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _lowerCamelCase = model(lowerCamelCase__ )['''last_hidden_state'''] _lowerCamelCase = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. _lowerCamelCase = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
73
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : Dict = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __snake_case ( unittest.TestCase ): def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : Optional[Any] = BlipImageProcessor() snake_case__ : Optional[Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) snake_case__ : List[str] = BlipProcessor(__UpperCamelCase , __UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def __a ( self , **__UpperCamelCase ) -> Dict: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).tokenizer def __a ( self , **__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).image_processor def __a ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case__ : Optional[Any] = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Dict = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) snake_case__ : List[Any] = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 ) snake_case__ : Union[str, Any] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Any = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : str = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) snake_case__ : Tuple = self.prepare_image_inputs() snake_case__ : Tuple = image_processor(__UpperCamelCase , return_tensors='np' ) snake_case__ : Dict = processor(images=__UpperCamelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : Optional[Any] = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) snake_case__ : List[str] = "lower newer" snake_case__ : Tuple = processor(text=__UpperCamelCase ) snake_case__ : str = tokenizer(__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Dict = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : List[str] = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) snake_case__ : Any = "lower newer" snake_case__ : Optional[int] = self.prepare_image_inputs() snake_case__ : Any = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __a ( self ) -> Any: '''simple docstring''' snake_case__ : str = self.get_image_processor() snake_case__ : Dict = self.get_tokenizer() snake_case__ : List[str] = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) snake_case__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : Union[str, Any] = processor.batch_decode(__UpperCamelCase ) snake_case__ : Optional[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : str = self.get_image_processor() snake_case__ : str = self.get_tokenizer() snake_case__ : List[str] = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) snake_case__ : Optional[int] = "lower newer" snake_case__ : Any = self.prepare_image_inputs() snake_case__ : Union[str, Any] = processor(text=__UpperCamelCase , images=__UpperCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
143
def lowerCamelCase__ ( _a , _a): return int((input_a, input_a).count(1) != 0) def lowerCamelCase__ ( ): assert or_gate(0 , 0) == 0 assert or_gate(0 , 1) == 1 assert or_gate(1 , 0) == 1 assert or_gate(1 , 1) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
76
0
'''simple docstring''' import math import random def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : bool = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value SCREAMING_SNAKE_CASE_: Any =0.02 def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> float: '''simple docstring''' UpperCAmelCase_ = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(snake_case_ ): # Forward propagation UpperCAmelCase_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCAmelCase_ = (expected / 1_00) - layer_a # Error delta UpperCAmelCase_ = layer_1_error * sigmoid_function(snake_case_ , snake_case_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_: List[Any] =int(input('Expected value: ')) SCREAMING_SNAKE_CASE_: Union[str, Any] =int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
106
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Dict ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } SCREAMING_SNAKE_CASE_: List[str] =[ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Any ) -> Optional[int]: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ) if weight_type is not None: UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase_ = None for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True elif name.split("." )[0] == "proj": UpperCAmelCase_ = fairseq_model.proj UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(snake_case_ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "bias" in name: UpperCAmelCase_ = "bias" elif "weight" in name: UpperCAmelCase_ = "weight" else: UpperCAmelCase_ = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) return proj_weight def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : int ) -> Dict: '''simple docstring''' UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) UpperCAmelCase_ = emb.weight.data return lin_layer def lowerCAmelCase_ ( snake_case_ : int ) -> List[str]: '''simple docstring''' with open(snake_case_ , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [line.split(" " )[0] for line in lines] UpperCAmelCase_ = len(snake_case_ ) UpperCAmelCase_ = { "<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3, } vocab_dict.update(dict(zip(snake_case_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Any , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = WavaVecaConfig.from_pretrained(snake_case_ ) UpperCAmelCase_ = SpeechaTextaConfig.from_pretrained( snake_case_ , vocab_size=snake_case_ , decoder_layers=snake_case_ , do_stable_layer_norm=snake_case_ ) UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) UpperCAmelCase_ = model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase_ = WavaVecaModel(snake_case_ ) UpperCAmelCase_ = recursively_load_weights_wavaveca(model.encoder , snake_case_ ) UpperCAmelCase_ = SpeechaTextaForCausalLM(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case_ ) # set output linear layer unexpected_keys.remove("embed_out" ) UpperCAmelCase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase_ = SpeechEncoderDecoderModel(encoder=snake_case_ , decoder=snake_case_ ) UpperCAmelCase_ = False # add projection layer UpperCAmelCase_ = nn.Parameter(projection_layer.weight ) UpperCAmelCase_ = nn.Parameter(projection_layer.bias ) UpperCAmelCase_ = create_vocab_dict(snake_case_ ) with open(os.path.join(snake_case_ , "vocab.json" ) , "w" ) as fp: json.dump(snake_case_ , snake_case_ ) UpperCAmelCase_ = SpeechaTextaTokenizer(os.path.join(snake_case_ , "vocab.json" ) ) tokenizer.save_pretrained(snake_case_ ) UpperCAmelCase_ = hf_wavavec.config.to_dict() UpperCAmelCase_ = tokenizer.pad_token_id UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = tokenizer.eos_token_id UpperCAmelCase_ = "speech_to_text_2" UpperCAmelCase_ = "wav2vec2" UpperCAmelCase_ = SpeechEncoderDecoderConfig.from_dict(snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) feature_extractor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') SCREAMING_SNAKE_CASE_: Dict =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
106
1
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ = 1000 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 2**power __SCREAMING_SNAKE_CASE = 0 while n: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
54
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase_ ( UpperCAmelCase__ : ArgumentParser ) -> int: raise NotImplementedError() @abstractmethod def UpperCAmelCase_ ( self : int ) -> Optional[int]: raise NotImplementedError()
54
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = tmp_path / 'cache' UpperCAmelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : int = JsonDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_json_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = tmp_path / 'cache' UpperCAmelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : Optional[int] = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : List[str] = JsonDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_json_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : List[str] = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} UpperCAmelCase : int = features.copy() if features else default_expected_features UpperCAmelCase : List[Any] = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Union[str, Any] = JsonDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase : Optional[int] = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} UpperCAmelCase : Tuple = features.copy() UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : Optional[Any] = JsonDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path / 'cache' UpperCAmelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : Optional[int] = JsonDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , split=UpperCAmelCase_ ).read() _check_json_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = jsonl_path elif issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : List[str] = [jsonl_path] UpperCAmelCase : List[str] = tmp_path / 'cache' UpperCAmelCase : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : Any = JsonDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_json_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=("train",) ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for split in splits: UpperCAmelCase : Optional[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path / 'cache' UpperCAmelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Optional[int] = JsonDatasetReader({'train': jsonl_path} , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_json_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features UpperCAmelCase : Optional[int] = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : List[Any] = JsonDatasetReader({'train': jsonl_path} , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_json_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if split: UpperCAmelCase : Tuple = {split: jsonl_path} else: UpperCAmelCase : str = 'train' UpperCAmelCase : str = {'train': jsonl_path, 'test': jsonl_path} UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCAmelCase : Dict = JsonDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_json_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCamelCase( UpperCAmelCase_ ): return json.load(UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ ): return [json.loads(UpperCAmelCase_ ) for line in buffer] class A_ : '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : List[Any] ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ ).write() buffer.seek(0 ) UpperCAmelCase : List[str] = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Dict ) -> Dict: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ ).write() buffer.seek(0 ) UpperCAmelCase : Optional[int] = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : int ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : Optional[int] = load_json_function(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) assert isinstance(exported_content[0] , lowercase_ ) assert len(lowercase_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def UpperCAmelCase_ ( self : Any , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Any ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , lines=lowercase_ , orient=lowercase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase : Tuple = load_json(lowercase_ ) assert isinstance(lowercase_ , lowercase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowercase_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowercase_ ) == 10 def UpperCAmelCase_ ( self : Tuple , lowercase_ : Optional[Any] ) -> List[Any]: with pytest.raises(lowercase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowercase_ , lowercase_ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Any ) -> List[str]: UpperCAmelCase : Any = tmp_path_factory.mktemp('data' ) / f"""test.json.{extension}""" UpperCAmelCase : Optional[int] = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(lowercase_ , lowercase_ , compression=lowercase_ ).write() with fsspec.open(lowercase_ , 'rb' , compression='infer' ) as f: UpperCAmelCase : str = f.read() with fsspec.open(lowercase_ , 'rb' , compression='infer' ) as f: UpperCAmelCase : Tuple = f.read() assert exported_content == original_content
151
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["YolosFeatureExtractor"] lowercase__ = ["YolosImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
151
1
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __lowerCamelCase = HUGGINGFACE_HUB_CACHE __lowerCamelCase = 'config.json' __lowerCamelCase = 'diffusion_pytorch_model.bin' __lowerCamelCase = 'diffusion_flax_model.msgpack' __lowerCamelCase = 'model.onnx' __lowerCamelCase = 'diffusion_pytorch_model.safetensors' __lowerCamelCase = 'weights.pb' __lowerCamelCase = 'https://huggingface.co' __lowerCamelCase = default_cache_path __lowerCamelCase = 'diffusers_modules' __lowerCamelCase = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) __lowerCamelCase = ['fp16', 'non-ema'] __lowerCamelCase = '.self_attn'
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
101
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[str, Any] = '''mgp-str''' def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str]=[3_2, 1_2_8] ,SCREAMING_SNAKE_CASE__ : Any=4 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3 ,SCREAMING_SNAKE_CASE__ : Tuple=2_7 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3_8 ,SCREAMING_SNAKE_CASE__ : Tuple=5_0_2_5_7 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_0_5_2_2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 ,SCREAMING_SNAKE_CASE__ : Dict=1_2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=1_2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=4.0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : List[Any]=False ,SCREAMING_SNAKE_CASE__ : int=1E-5 ,SCREAMING_SNAKE_CASE__ : List[str]=0.0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : int=False ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 ,**SCREAMING_SNAKE_CASE__ : int ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = image_size __lowerCamelCase : Optional[Any] = patch_size __lowerCamelCase : Any = num_channels __lowerCamelCase : Tuple = max_token_length __lowerCamelCase : Tuple = num_character_labels __lowerCamelCase : List[str] = num_bpe_labels __lowerCamelCase : int = num_wordpiece_labels __lowerCamelCase : Any = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : List[str] = mlp_ratio __lowerCamelCase : List[str] = distilled __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : Any = drop_rate __lowerCamelCase : Tuple = qkv_bias __lowerCamelCase : Any = attn_drop_rate __lowerCamelCase : int = drop_path_rate __lowerCamelCase : str = output_aa_attentions __lowerCamelCase : int = initializer_range
73
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class A_ ( unittest.TestCase ): def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any=1_3 ,SCREAMING_SNAKE_CASE__ : int=7 ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : List[Any]=9_9 ,SCREAMING_SNAKE_CASE__ : List[Any]=3_2 ,SCREAMING_SNAKE_CASE__ : int=5 ,SCREAMING_SNAKE_CASE__ : List[Any]=4 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3_7 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 ,SCREAMING_SNAKE_CASE__ : Dict=1_6 ,SCREAMING_SNAKE_CASE__ : Dict=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=4 ,): __lowerCamelCase : int = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : Union[str, Any] = seq_length __lowerCamelCase : List[Any] = is_training __lowerCamelCase : Tuple = use_attention_mask __lowerCamelCase : List[str] = use_token_type_ids __lowerCamelCase : Any = use_labels __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Any = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Union[str, Any] = type_vocab_size __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : Optional[int] = num_choices def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) __lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length]) __lowerCamelCase : str = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=SCREAMING_SNAKE_CASE__ ,) return config, input_ids, attention_mask def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = config_and_inputs __lowerCamelCase : Any = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Dict = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Tuple = FlaxDistilBertModelTester(self) @slow def lowerCAmelCase ( self : int): for model_class_name in self.all_model_classes: __lowerCamelCase : List[Any] = model_class_name.from_pretrained('distilbert-base-uncased') __lowerCamelCase : List[str] = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) @require_flax class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : str): __lowerCamelCase : Union[str, Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased') __lowerCamelCase : str = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __lowerCamelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) __lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__)[0] __lowerCamelCase : Optional[int] = (1, 1_1, 7_6_8) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4))
73
1
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __lowerCamelCase : List[Any] = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __lowerCamelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ = "maskformer" a_ = {"hidden_size": "mask_feature_size"} a_ = ["resnet", "swin"] a_ = ["detr"] def __init__( self : int , __A : int = 2_5_6 , __A : int = 2_5_6 , __A : float = 0.1 , __A : bool = False , __A : Optional[Dict] = None , __A : Optional[Dict] = None , __A : float = 0.0_2 , __A : float = 1.0 , __A : float = 1.0 , __A : float = 1.0 , __A : float = 2_0.0 , __A : Optional[bool] = None , **__A : Dict , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k snake_case__ : Any = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case__ : Any = backbone_config.pop("model_type" ) snake_case__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] snake_case__ : int = config_class.from_dict(UpperCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 snake_case__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported snake_case__ : Tuple = ( decoder_config.pop("model_type" ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case__ : Union[str, Any] = CONFIG_MAPPING[decoder_type] snake_case__ : str = config_class.from_dict(UpperCamelCase__ ) snake_case__ : Optional[Any] = backbone_config snake_case__ : str = decoder_config # main feature dimension for the model snake_case__ : Optional[int] = fpn_feature_size snake_case__ : Optional[int] = mask_feature_size # initializer snake_case__ : Dict = init_std snake_case__ : List[str] = init_xavier_std # Hungarian matcher && loss snake_case__ : Union[str, Any] = cross_entropy_weight snake_case__ : int = dice_weight snake_case__ : List[str] = mask_weight snake_case__ : str = use_auxiliary_loss snake_case__ : Optional[int] = no_object_weight snake_case__ : Union[str, Any] = output_auxiliary_logits snake_case__ : Tuple = self.decoder_config.encoder_attention_heads snake_case__ : List[str] = self.decoder_config.num_hidden_layers super().__init__(**UpperCamelCase__ ) @classmethod def _lowercase ( cls : List[str] , __A : PretrainedConfig , __A : PretrainedConfig , **__A : Dict ): return cls( backbone_config=UpperCamelCase__ , decoder_config=UpperCamelCase__ , **UpperCamelCase__ , ) def _lowercase ( self : List[Any] ): snake_case__ : Any = copy.deepcopy(self.__dict__ ) snake_case__ : List[str] = self.backbone_config.to_dict() snake_case__ : Union[str, Any] = self.decoder_config.to_dict() snake_case__ : List[str] = self.__class__.model_type return output
367
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __lowerCamelCase : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : bool , snake_case_ : bool ): def run_func(snake_case_ : str ): @wraps(snake_case_ ) def run_in_eager_mode(*snake_case_ : str , **snake_case_ : Union[str, Any] ): return func(*snake_case_ , **snake_case_ ) @wraps(snake_case_ ) @tf.function(experimental_compile=snake_case_ ) def run_in_graph_mode(*snake_case_ : List[Any] , **snake_case_ : List[Any] ): return func(*snake_case_ , **snake_case_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : int , snake_case_ : int ): snake_case__ : Dict = random.Random() snake_case__ : List[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = 42 a_ = 42 a_ = "TensorFlow" @property def _lowercase ( self : List[str] ): return tf.__version__ def _lowercase ( self : List[str] , __A : str , __A : int , __A : int ): # initialize GPU on separate process snake_case__ : str = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) snake_case__ : Dict = self._prepare_inference_func(__A , __A , __A ) return self._measure_speed(_inference ) def _lowercase ( self : Tuple , __A : str , __A : int , __A : int ): snake_case__ : Optional[int] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) snake_case__ : Any = self._prepare_train_func(__A , __A , __A ) return self._measure_speed(_train ) def _lowercase ( self : List[Any] , __A : str , __A : int , __A : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __A ) snake_case__ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) snake_case__ : Optional[Any] = self._prepare_inference_func(__A , __A , __A ) return self._measure_memory(_inference ) def _lowercase ( self : str , __A : str , __A : int , __A : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __A ) snake_case__ : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) snake_case__ : int = self._prepare_train_func(__A , __A , __A ) return self._measure_memory(_train ) def _lowercase ( self : Union[str, Any] , __A : str , __A : int , __A : int ): snake_case__ : int = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) snake_case__ : Tuple = ( hasattr(__A , "architectures" ) and isinstance(config.architectures , __A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: snake_case__ : Dict = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model snake_case__ : Union[str, Any] = __import__("transformers" , fromlist=[model_class] ) snake_case__ : Any = getattr(__A , __A ) snake_case__ : Dict = model_cls(__A ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: snake_case__ : Dict = TF_MODEL_MAPPING[config.__class__](__A ) # encoder-decoder has vocab size saved differently snake_case__ : Optional[int] = config.vocab_size if hasattr(__A , "vocab_size" ) else config.encoder.vocab_size snake_case__ : List[Any] = random_input_ids(__A , __A , __A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__A , decoder_input_ids=__A , training=__A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__A , training=__A ) snake_case__ : Optional[int] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowercase ( self : List[str] , __A : str , __A : int , __A : int ): snake_case__ : Optional[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) snake_case__ : Any = ( hasattr(__A , "architectures" ) and isinstance(config.architectures , __A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: snake_case__ : Dict = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model snake_case__ : List[Any] = __import__("transformers" , fromlist=[model_class] ) snake_case__ : Optional[int] = getattr(__A , __A ) snake_case__ : str = model_cls(__A ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: snake_case__ : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__A ) # encoder-decoder has vocab size saved differently snake_case__ : Union[str, Any] = config.vocab_size if hasattr(__A , "vocab_size" ) else config.encoder.vocab_size snake_case__ : List[str] = random_input_ids(__A , __A , __A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): snake_case__ : str = model(__A , decoder_input_ids=__A , labels=__A , training=__A )[0] snake_case__ : Dict = tf.gradients(__A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): snake_case__ : Optional[Any] = model(__A , labels=__A , training=__A )[0] snake_case__ : Dict = tf.gradients(__A , model.trainable_variables ) return gradients snake_case__ : int = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowercase ( self : int , __A : List[Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average snake_case__ : Optional[Any] = timeit.repeat( __A , repeat=self.args.repeat , number=1_0 , ) return min(__A ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowercase ( self : str , __A : Callable[[], None] ): logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) snake_case__ : Optional[int] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) snake_case__ : List[str] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() snake_case__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) snake_case__ : Optional[Any] = nvml.nvmlDeviceGetMemoryInfo(__A ) snake_case__ : Optional[int] = meminfo.used snake_case__ : Any = Memory(__A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) snake_case__ : int = None else: snake_case__ : Any = measure_peak_memory_cpu(__A ) snake_case__ : Tuple = Memory(__A ) if isinstance(__A , __A ) else memory_bytes if self.args.trace_memory_line_by_line: snake_case__ : Optional[int] = stop_memory_tracing(__A ) if memory is None: snake_case__ : Dict = summary.total else: snake_case__ : List[str] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
286
0
"""simple docstring""" __UpperCamelCase : Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __UpperCamelCase : Any = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __UpperCamelCase : Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''CLIPFeatureExtractor'''] __UpperCamelCase : Optional[Any] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase_ : Optional[Any] = '''src/diffusers''' UpperCAmelCase_ : Any = '''.''' # This is to make sure the diffusers module imported is the one in the repo. UpperCAmelCase_ : List[str] = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCAmelCase_ : Optional[int] = spec.loader.load_module() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Any ) -> int: """simple docstring""" return line.startswith(__magic_name__ ) or len(__magic_name__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , __magic_name__ ) is not None def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any ) -> List[Any]: """simple docstring""" UpperCamelCase :List[Any] = object_name.split(""".""" ) UpperCamelCase :Any = 0 # First let's find the module where our object lives. UpperCamelCase :List[str] = parts[i] while i < len(__magic_name__ ) and not os.path.isfile(os.path.join(__magic_name__ , f"""{module}.py""" ) ): i += 1 if i < len(__magic_name__ ): UpperCamelCase :Dict = os.path.join(__magic_name__ , parts[i] ) if i >= len(__magic_name__ ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__magic_name__ , f"""{module}.py""" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase :Dict = f.readlines() # Now let's find the class / func in the code! UpperCamelCase :Tuple = """""" UpperCamelCase :List[str] = 0 for name in parts[i + 1 :]: while ( line_index < len(__magic_name__ ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__magic_name__ ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCamelCase :int = line_index while line_index < len(__magic_name__ ) and _should_continue(lines[line_index] , __magic_name__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCamelCase :List[str] = lines[start_index:line_index] return "".join(__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') UpperCAmelCase_ : List[str] = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') UpperCAmelCase_ : Optional[int] = re.compile(R'''<FILL\s+[^>]*>''') def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase :int = code.split("""\n""" ) UpperCamelCase :Tuple = 0 while idx < len(__magic_name__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__magic_name__ ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase :Optional[int] = len(get_indent(__magic_name__ ) ) > 0 if has_indent: UpperCamelCase :Optional[int] = f"""class Bla:\n{code}""" UpperCamelCase :str = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__magic_name__ ) UpperCamelCase :List[Any] = black.format_str(__magic_name__ , mode=__magic_name__ ) UpperCamelCase , UpperCamelCase :Dict = style_docstrings_in_code(__magic_name__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : Any=False ) -> str: """simple docstring""" with open(__magic_name__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase :List[Any] = f.readlines() UpperCamelCase :str = [] UpperCamelCase :Any = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__magic_name__ ): UpperCamelCase :Any = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCamelCase , UpperCamelCase , UpperCamelCase :Union[str, Any] = search.groups() UpperCamelCase :Any = find_code_in_diffusers(__magic_name__ ) UpperCamelCase :Tuple = get_indent(__magic_name__ ) UpperCamelCase :Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCamelCase :Optional[Any] = theoretical_indent UpperCamelCase :Any = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCamelCase :str = True while line_index < len(__magic_name__ ) and should_continue: line_index += 1 if line_index >= len(__magic_name__ ): break UpperCamelCase :Any = lines[line_index] UpperCamelCase :int = _should_continue(__magic_name__ , __magic_name__ ) and re.search(f"""^{indent}# End copy""" , __magic_name__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCamelCase :Dict = lines[start_index:line_index] UpperCamelCase :List[str] = """""".join(__magic_name__ ) # Remove any nested `Copied from` comments to avoid circular copies UpperCamelCase :Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(__magic_name__ ) is None] UpperCamelCase :Any = """\n""".join(__magic_name__ ) # Before comparing, use the `replace_pattern` on the original code. if len(__magic_name__ ) > 0: UpperCamelCase :str = replace_pattern.replace("""with""" , """""" ).split(""",""" ) UpperCamelCase :str = [_re_replace_pattern.search(__magic_name__ ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCamelCase , UpperCamelCase , UpperCamelCase :List[str] = pattern.groups() UpperCamelCase :List[Any] = re.sub(__magic_name__ , __magic_name__ , __magic_name__ ) if option.strip() == "all-casing": UpperCamelCase :Optional[Any] = re.sub(obja.lower() , obja.lower() , __magic_name__ ) UpperCamelCase :Any = re.sub(obja.upper() , obja.upper() , __magic_name__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCamelCase :Tuple = blackify(lines[start_index - 1] + theoretical_code ) UpperCamelCase :str = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCamelCase :Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCamelCase :Dict = start_index + 1 if overwrite and len(__magic_name__ ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(__magic_name__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__magic_name__ ) return diffs def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bool = False ) -> str: """simple docstring""" UpperCamelCase :int = glob.glob(os.path.join(__magic_name__ , """**/*.py""" ) , recursive=__magic_name__ ) UpperCamelCase :List[str] = [] for filename in all_files: UpperCamelCase :Optional[Any] = is_copy_consistent(__magic_name__ , __magic_name__ ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__magic_name__ ) > 0: UpperCamelCase :List[str] = """\n""".join(__magic_name__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase_ : int = parser.parse_args() check_copies(args.fix_and_overwrite)
62
from string import ascii_uppercase UpperCAmelCase_ : str = {str(ord(c) - 55): c for c in ascii_uppercase} def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> str: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""int() can't convert non-string with explicit base""" ) if num < 0: raise ValueError("""parameter must be positive int""" ) if isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if isinstance(__magic_name__ , __magic_name__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if base in (0, 1): raise ValueError("""base must be >= 2""" ) if base > 36: raise ValueError("""base must be <= 36""" ) UpperCamelCase :Any = """""" UpperCamelCase :Any = 0 UpperCamelCase :int = 0 while div != 1: UpperCamelCase , UpperCamelCase :str = divmod(__magic_name__ , __magic_name__ ) if base >= 11 and 9 < mod < 36: UpperCamelCase :List[str] = ALPHABET_VALUES[str(__magic_name__ )] else: UpperCamelCase :Dict = str(__magic_name__ ) new_value += actual_value UpperCamelCase :int = num // base UpperCamelCase :Any = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(__magic_name__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
62
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class A_ ( unittest.TestCase ): def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any=1_3 ,SCREAMING_SNAKE_CASE__ : int=7 ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : List[Any]=9_9 ,SCREAMING_SNAKE_CASE__ : List[Any]=3_2 ,SCREAMING_SNAKE_CASE__ : int=5 ,SCREAMING_SNAKE_CASE__ : List[Any]=4 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3_7 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 ,SCREAMING_SNAKE_CASE__ : Dict=1_6 ,SCREAMING_SNAKE_CASE__ : Dict=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=4 ,): __lowerCamelCase : int = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : Union[str, Any] = seq_length __lowerCamelCase : List[Any] = is_training __lowerCamelCase : Tuple = use_attention_mask __lowerCamelCase : List[str] = use_token_type_ids __lowerCamelCase : Any = use_labels __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Any = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Union[str, Any] = type_vocab_size __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : Optional[int] = num_choices def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) __lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length]) __lowerCamelCase : str = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=SCREAMING_SNAKE_CASE__ ,) return config, input_ids, attention_mask def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = config_and_inputs __lowerCamelCase : Any = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Dict = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Tuple = FlaxDistilBertModelTester(self) @slow def lowerCAmelCase ( self : int): for model_class_name in self.all_model_classes: __lowerCamelCase : List[Any] = model_class_name.from_pretrained('distilbert-base-uncased') __lowerCamelCase : List[str] = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) @require_flax class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : str): __lowerCamelCase : Union[str, Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased') __lowerCamelCase : str = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __lowerCamelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) __lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__)[0] __lowerCamelCase : Optional[int] = (1, 1_1, 7_6_8) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4))
73
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCamelCase : Optional[int] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _lowerCamelCase : Union[str, Any] = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _lowerCamelCase : Dict = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _lowerCamelCase : Optional[Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _lowerCamelCase : List[Any] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _lowerCamelCase : List[str] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = randrange(len(A__ ) ), randrange(len(A__ ) ) UpperCamelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] UpperCamelCase , UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __lowerCamelCase ( A__ = 100 ) -> Optional[Any]: """simple docstring""" return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> str: """simple docstring""" UpperCamelCase = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> Dict: """simple docstring""" assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def __lowerCamelCase ( A__ , A__ ) -> str: """simple docstring""" assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Tuple: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def __lowerCamelCase ( A__ , A__ , A__ ) -> List[str]: """simple docstring""" assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def __lowerCamelCase ( ) -> str: """simple docstring""" UpperCamelCase = [PokerHand(A__ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(A__ ) UpperCamelCase = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" # Test that five high straights are compared correctly. UpperCamelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __lowerCamelCase ( ) -> str: """simple docstring""" # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. UpperCamelCase = PokerHand('2C 4S AS 3D 5C' ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __lowerCamelCase ( ) -> List[str]: """simple docstring""" # Problem number 54 from Project Euler # Testing from poker_hands.txt file UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(A__ ) ) UpperCamelCase = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase , UpperCamelCase = PokerHand(A__ ), PokerHand(A__ ) UpperCamelCase = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
28
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase : List[Any] = False class __lowercase ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Tuple): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg") SCREAMING_SNAKE_CASE_: Tuple = torch.manual_seed(0) SCREAMING_SNAKE_CASE_: str = pipe.dual_guided( prompt="first prompt" , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase__ , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = generator.manual_seed(0) SCREAMING_SNAKE_CASE_: List[str] = pipe.dual_guided( prompt="first prompt" , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: int = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = "cyberpunk 2077" SCREAMING_SNAKE_CASE_: Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg") SCREAMING_SNAKE_CASE_: Dict = torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Dict = pipe.dual_guided( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images SCREAMING_SNAKE_CASE_: Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_: Dict = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 SCREAMING_SNAKE_CASE_: List[str] = "A painting of a squirrel eating a burger " SCREAMING_SNAKE_CASE_: str = torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = pipe.text_to_image( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy").images SCREAMING_SNAKE_CASE_: Any = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 SCREAMING_SNAKE_CASE_: Optional[Any] = pipe.image_variation(lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="numpy").images SCREAMING_SNAKE_CASE_: Any = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_: int = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
127
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase : Union[str, Any] = get_tests_dir("""fixtures/dummy-config.json""") class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Dict = 0 def _SCREAMING_SNAKE_CASE ( self : Any): self.assertIsNotNone(transformers.models.auto.__spec__) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto")) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[Any] = AutoConfig.from_pretrained("bert-base-uncased") self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[Any] = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[Any] = AutoConfig.for_model("roberta") self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. SCREAMING_SNAKE_CASE_: int = os.path.join(lowerCAmelCase__ , "fake-roberta") os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) with open(os.path.join(lowerCAmelCase__ , "config.json") , "w") as f: f.write(json.dumps({})) SCREAMING_SNAKE_CASE_: Any = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertEqual(type(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): try: AutoConfig.register("custom" , lowerCAmelCase__) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase__): AutoConfig.register("model" , lowerCAmelCase__) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__): AutoConfig.register("bert" , lowerCAmelCase__) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_: List[Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = AutoConfig.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _SCREAMING_SNAKE_CASE ( self : List[str]): with self.assertRaisesRegex( lowerCAmelCase__ , "bert-base is not a local folder and is not a valid model identifier"): SCREAMING_SNAKE_CASE_: List[str] = AutoConfig.from_pretrained("bert-base") def _SCREAMING_SNAKE_CASE ( self : List[Any]): with self.assertRaisesRegex( lowerCAmelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): SCREAMING_SNAKE_CASE_: str = AutoConfig.from_pretrained(lowerCAmelCase__ , revision="aaaaaa") def _SCREAMING_SNAKE_CASE ( self : Optional[int]): with self.assertRaisesRegex( lowerCAmelCase__ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): SCREAMING_SNAKE_CASE_: int = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo") def _SCREAMING_SNAKE_CASE ( self : List[str]): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model") # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__) self.assertEqual(config.__class__.__name__ , "NewModelConfig") # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = AutoConfig.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig") def _SCREAMING_SNAKE_CASE ( self : List[Any]): class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = '''new-model''' try: AutoConfig.register("new-model" , lowerCAmelCase__) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_: int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model") self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal") # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_: Optional[int] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal") # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_: int = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__) self.assertEqual(config.__class__.__name__ , "NewModelConfig") finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
127
1