code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from collections.abc import Sequence def __lowerCamelCase ( snake_case__ = None ) -> int: """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) _SCREAMING_SNAKE_CASE = nums[0] for i in range(1 ,len(snake_case__ ) ): _SCREAMING_SNAKE_CASE = nums[i] _SCREAMING_SNAKE_CASE = max(snake_case__ ,ans + num ,snake_case__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCamelCase = int(input('''Enter number of elements : ''').strip()) UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
306
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __UpperCAmelCase : __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : torch.Tensor # [batch_size x 3] __snake_case : int __snake_case : int __snake_case : float __snake_case : float __snake_case : Tuple[int] def UpperCamelCase ( self: str ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width ) _SCREAMING_SNAKE_CASE = torch.stack( [ pixel_indices % self.width, torch.div(UpperCAmelCase_ , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape _SCREAMING_SNAKE_CASE = int(np.prod(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = self.get_image_coords() _SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _SCREAMING_SNAKE_CASE = self.get_camera_rays(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = rays.view(UpperCAmelCase_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def UpperCamelCase ( self: Any , UpperCAmelCase_: torch.Tensor ): '''simple docstring''' _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _SCREAMING_SNAKE_CASE = coords.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = self.resolution() _SCREAMING_SNAKE_CASE = self.fov() _SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1 _SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 ) _SCREAMING_SNAKE_CASE = fracs.view(UpperCAmelCase_ , -1 , 2 ) _SCREAMING_SNAKE_CASE = ( self.z.view(UpperCAmelCase_ , 1 , 3 ) + self.x.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCAmelCase_ , 1 , 3 ) * fracs[:, :, 1:] ) _SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCAmelCase_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCAmelCase_ , *UpperCAmelCase_ , 2 , 3 ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCAmelCase_ , height=UpperCAmelCase_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def __lowerCamelCase ( snake_case__ ) -> DifferentiableProjectiveCamera: """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for theta in np.linspace(0 ,2 * np.pi ,num=20 ): _SCREAMING_SNAKE_CASE = np.array([np.sin(snake_case__ ), np.cos(snake_case__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _SCREAMING_SNAKE_CASE = -z * 4 _SCREAMING_SNAKE_CASE = np.array([np.cos(snake_case__ ), -np.sin(snake_case__ ), 0.0] ) _SCREAMING_SNAKE_CASE = np.cross(snake_case__ ,snake_case__ ) origins.append(snake_case__ ) xs.append(snake_case__ ) ys.append(snake_case__ ) zs.append(snake_case__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,x=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,y=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,z=torch.from_numpy(np.stack(snake_case__ ,axis=0 ) ).float() ,width=snake_case__ ,height=snake_case__ ,x_fov=0.7 ,y_fov=0.7 ,shape=(1, len(snake_case__ )) ,)
306
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType A_ = logging.get_logger(__name__) A_ = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off A_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] A_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): snake_case_ = 'whisper' snake_case_ = ['past_key_values'] snake_case_ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Union[str, Any] , snake_case : Dict=5_1865 , snake_case : int=80 , snake_case : int=6 , snake_case : Tuple=4 , snake_case : Any=6 , snake_case : str=4 , snake_case : Dict=1536 , snake_case : List[Any]=1536 , snake_case : List[Any]=0.0 , snake_case : int=0.0 , snake_case : Any=5_0257 , snake_case : List[str]=True , snake_case : List[Any]=True , snake_case : List[str]="gelu" , snake_case : Union[str, Any]=256 , snake_case : List[str]=0.0 , snake_case : str=0.0 , snake_case : List[Any]=0.0 , snake_case : int=0.02 , snake_case : List[Any]=False , snake_case : List[str]=1500 , snake_case : Dict=448 , snake_case : Tuple=5_0256 , snake_case : List[str]=5_0256 , snake_case : Any=5_0256 , snake_case : Optional[int]=None , snake_case : Any=[220, 5_0256] , snake_case : Dict=False , snake_case : Dict=256 , snake_case : Dict=False , snake_case : Dict=0.05 , snake_case : Optional[int]=10 , snake_case : str=2 , snake_case : int=0.0 , snake_case : int=10 , snake_case : int=0 , snake_case : int=7 , **snake_case : Optional[Any] , ): '''simple docstring''' A__ : Dict = vocab_size A__ : List[str] = num_mel_bins A__ : str = d_model A__ : Dict = encoder_layers A__ : Tuple = encoder_attention_heads A__ : Dict = decoder_layers A__ : int = decoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : List[Any] = encoder_ffn_dim A__ : Optional[Any] = dropout A__ : Tuple = attention_dropout A__ : str = activation_dropout A__ : Tuple = activation_function A__ : List[Any] = init_std A__ : Dict = encoder_layerdrop A__ : Tuple = decoder_layerdrop A__ : Dict = use_cache A__ : List[Any] = encoder_layers A__ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True A__ : Any = max_source_positions A__ : int = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. A__ : Any = classifier_proj_size A__ : str = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ : Optional[Any] = apply_spec_augment A__ : List[str] = mask_time_prob A__ : List[str] = mask_time_length A__ : Union[str, Any] = mask_time_min_masks A__ : Optional[int] = mask_feature_prob A__ : Union[str, Any] = mask_feature_length A__ : Union[str, Any] = mask_feature_min_masks A__ : Dict = median_filter_width super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , suppress_tokens=__a , begin_suppress_tokens=__a , **__a , ) class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): @property def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Any = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: A__ : List[str] = {0: 'batch'} else: A__ : Dict = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__a , direction="""inputs""" ) return common_inputs def _UpperCamelCase ( self : Optional[int] , snake_case : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , snake_case : int = -1 , snake_case : int = -1 , snake_case : bool = False , snake_case : Optional["TensorType"] = None , snake_case : int = 2_2050 , snake_case : float = 5.0 , snake_case : int = 220 , ): '''simple docstring''' A__ : Union[str, Any] = OrderedDict() A__ : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=__a , framework=__a , sampling_rate=__a , time_duration=__a , frequency=__a , ) A__ : Union[str, Any] = encoder_inputs['input_features'].shape[2] A__ : Optional[Any] = encoder_sequence_length // 2 if self.use_past else seq_length A__ : List[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , __a , __a , __a , __a ) A__ : Any = encoder_inputs.pop("""input_features""" ) A__ : Dict = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: A__ : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 1e-3
350
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , snake_case : int ): '''simple docstring''' A__ : List[Any] = order # a_{0} ... a_{k} A__ : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A__ : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] A__ : List[str] = [0.0] * self.order def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ): '''simple docstring''' if len(snake_case ) < self.order: A__ : Any = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: A__ : str = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: A__ : Union[str, Any] = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) A__ : Dict = a_coeffs A__ : Any = b_coeffs def _UpperCamelCase ( self : List[str] , snake_case : float ): '''simple docstring''' A__ : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A__ : Tuple = self.input_history[:-1] A__ : int = self.output_history[:-1] A__ : Dict = sample A__ : Tuple = result return result
296
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['GLPNFeatureExtractor'] _A = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} _A = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } _A = {'vinai/bartpho-syllable': 1024} class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : str = ["input_ids", "attention_mask"] def __init__( self , A_ , A_ , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_ = None , **A_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =monolingual_vocab_file __UpperCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility __UpperCamelCase ={} __UpperCamelCase =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(A_ ) not in self.fairseq_tokens_to_ids: __UpperCamelCase =cnt cnt += 1 with open(A_ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): __UpperCamelCase =line.strip().split()[0] __UpperCamelCase =len(self.fairseq_tokens_to_ids ) if str(A_ ) not in self.fairseq_tokens_to_ids: __UpperCamelCase =len(self.fairseq_tokens_to_ids ) __UpperCamelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Any: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None __UpperCamelCase =self.sp_model.serialized_model_proto() return state def __setstate__( self , A_ ) -> List[str]: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase =[self.cls_token_id] __UpperCamelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _a ( self ) -> Any: return len(self.fairseq_ids_to_tokens ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> str: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _a ( self , A_ ) -> int: return self.fairseq_ids_to_tokens[index] def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =''.join(A_ ).replace(A_ , ' ' ).strip() return out_string def _a ( self , A_ , A_ = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase =os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( A_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , A_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(A_ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(A_ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
62
1
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple , snake_case_ : list[tuple[float, float]] ): snake_case__ : str = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. snake_case__ : Dict = len(snake_case_ ) - 1 def lowerCamelCase ( self : Optional[Any] , snake_case_ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case__ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , snake_case_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(snake_case_ ) , 5 ) == 1 return output_values def lowerCamelCase ( self : Dict , snake_case_ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case__ : Any = self.basis_function(snake_case_ ) snake_case__ : Dict = 0.0 snake_case__ : Optional[Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCamelCase ( self : Optional[Any] , snake_case_ : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore snake_case__ : list[float] = [] # x coordinates of points to plot snake_case__ : list[float] = [] # y coordinates of points to plot snake_case__ : Tuple = 0.0 while t <= 1: snake_case__ : str = self.bezier_curve_function(snake_case_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size snake_case__ : List[str] = [i[0] for i in self.list_of_points] snake_case__ : str = [i[1] for i in self.list_of_points] plt.plot( snake_case_ , snake_case_ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(snake_case_ , snake_case_ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
357
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case__ : List[Any] = 0 snake_case__ : Union[str, Any] = str(_lowerCAmelCase ) while len(_lowerCAmelCase ) != 1: snake_case__ : List[Any] = [int(_lowerCAmelCase ) for i in num_string] snake_case__ : str = 1 for i in range(0 , len(_lowerCAmelCase ) ): total *= numbers[i] snake_case__ : Optional[Any] = str(_lowerCAmelCase ) steps += 1 return steps def __snake_case( _lowerCAmelCase ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = str(_lowerCAmelCase ) while len(_lowerCAmelCase ) != 1: snake_case__ : Optional[int] = [int(_lowerCAmelCase ) for i in num_string] snake_case__ : Dict = 0 for i in range(0 , len(_lowerCAmelCase ) ): total += numbers[i] snake_case__ : List[Any] = str(_lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
43
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run snake_case : str = True except (ImportError, AttributeError): snake_case : List[Any] = object def lowerCAmelCase_ ( *_snake_case : Optional[Any] , **_snake_case : Any ) -> Tuple: '''simple docstring''' pass snake_case : List[str] = False snake_case : List[str] = logging.get_logger("transformers-cli/serving") def lowerCAmelCase_ ( _snake_case : Namespace ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_snake_case , args.host , args.port , args.workers ) class _snake_case ( snake_case ): UpperCamelCase__ = 42 class _snake_case ( snake_case ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 class _snake_case ( snake_case ): UpperCamelCase__ = 42 class _snake_case ( snake_case ): UpperCamelCase__ = 42 class _snake_case ( snake_case ): @staticmethod def SCREAMING_SNAKE_CASE ( _a ): __magic_name__ : Tuple = parser.add_parser( "serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task" , type=_a , choices=get_supported_tasks() , help="The task to run the pipeline on" , ) serve_parser.add_argument("--host" , type=_a , default="localhost" , help="Interface the server will listen on." ) serve_parser.add_argument("--port" , type=_a , default=8_888 , help="Port the serving will listen to." ) serve_parser.add_argument("--workers" , type=_a , default=1 , help="Number of http workers" ) serve_parser.add_argument("--model" , type=_a , help="Model's name or path to stored model." ) serve_parser.add_argument("--config" , type=_a , help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer" , type=_a , help="Tokenizer name to use." ) serve_parser.add_argument( "--device" , type=_a , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) serve_parser.set_defaults(func=_a ) def __init__( self , _a , _a , _a , _a ): __magic_name__ : Optional[Any] = pipeline __magic_name__ : List[str] = host __magic_name__ : str = port __magic_name__ : Any = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(f'''Serving model over {host}:{port}''' ) __magic_name__ : int = FastAPI( routes=[ APIRoute( "/" , self.model_info , response_model=_a , response_class=_a , methods=["GET"] , ), APIRoute( "/tokenize" , self.tokenize , response_model=_a , response_class=_a , methods=["POST"] , ), APIRoute( "/detokenize" , self.detokenize , response_model=_a , response_class=_a , methods=["POST"] , ), APIRoute( "/forward" , self.forward , response_model=_a , response_class=_a , methods=["POST"] , ), ] , timeout=600 , ) def SCREAMING_SNAKE_CASE ( self ): run(self._app , host=self.host , port=self.port , workers=self.workers ) def SCREAMING_SNAKE_CASE ( self ): return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def SCREAMING_SNAKE_CASE ( self , _a = Body(_a , embed=_a ) , _a = Body(_a , embed=_a ) ): try: __magic_name__ : str = self._pipeline.tokenizer.tokenize(_a ) if return_ids: __magic_name__ : Dict = self._pipeline.tokenizer.convert_tokens_to_ids(_a ) return ServeTokenizeResult(tokens=_a , tokens_ids=_a ) else: return ServeTokenizeResult(tokens=_a ) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(_a )} ) def SCREAMING_SNAKE_CASE ( self , _a = Body(_a , embed=_a ) , _a = Body(_a , embed=_a ) , _a = Body(_a , embed=_a ) , ): try: __magic_name__ : Dict = self._pipeline.tokenizer.decode(_a , _a , _a ) return ServeDeTokenizeResult(model="" , text=_a ) except Exception as e: raise HTTPException(status_code=500 , detail={"model": "", "error": str(_a )} ) async def SCREAMING_SNAKE_CASE ( self , _a=Body(_a , embed=_a ) ): # Check we don't have empty string if len(_a ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __magic_name__ : Any = self._pipeline(_a ) return ServeForwardResult(output=_a ) except Exception as e: raise HTTPException(500 , {"error": str(_a )} )
281
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _snake_case : UpperCamelCase__ = LEDConfig UpperCamelCase__ = {} UpperCamelCase__ = 'gelu' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , _a=4 , ): __magic_name__ : int = parent __magic_name__ : Optional[int] = batch_size __magic_name__ : Tuple = seq_length __magic_name__ : List[Any] = is_training __magic_name__ : Dict = use_labels __magic_name__ : Optional[Any] = vocab_size __magic_name__ : int = hidden_size __magic_name__ : Optional[int] = num_hidden_layers __magic_name__ : Optional[int] = num_attention_heads __magic_name__ : Tuple = intermediate_size __magic_name__ : Any = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : List[str] = max_position_embeddings __magic_name__ : Any = eos_token_id __magic_name__ : str = pad_token_id __magic_name__ : int = bos_token_id __magic_name__ : Optional[int] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __magic_name__ : Tuple = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __magic_name__ : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ : int = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __magic_name__ : List[str] = prepare_led_inputs_dict(_a , _a , _a ) __magic_name__ : Union[str, Any] = tf.concat( [tf.zeros_like(_a )[:, :-1], tf.ones_like(_a )[:, -1:]] , axis=-1 , ) __magic_name__ : List[Any] = global_attention_mask return config, inputs_dict def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Dict = TFLEDModel(config=_a ).get_decoder() __magic_name__ : Optional[int] = inputs_dict["input_ids"] __magic_name__ : Union[str, Any] = input_ids[:1, :] __magic_name__ : str = inputs_dict["attention_mask"][:1, :] __magic_name__ : int = 1 # first forward pass __magic_name__ : Tuple = model(_a , attention_mask=_a , use_cache=_a ) __magic_name__ , __magic_name__ : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __magic_name__ : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __magic_name__ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) __magic_name__ : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __magic_name__ : List[str] = model(_a , attention_mask=_a )[0] __magic_name__ : Dict = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __magic_name__ : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __magic_name__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] __magic_name__ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1e-3 ) def lowerCAmelCase_ ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Any , _snake_case : str=None , _snake_case : List[str]=None , _snake_case : int=None , _snake_case : Any=None , ) -> int: '''simple docstring''' if attention_mask is None: __magic_name__ : str = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __magic_name__ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __magic_name__ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _snake_case ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = TFLEDModelTester(self ) __magic_name__ : List[Any] = ConfigTester(self , config_class=_a ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ , __magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : List[str] = tf.zeros_like(inputs_dict["attention_mask"] ) __magic_name__ : Optional[Any] = 2 __magic_name__ : Tuple = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) __magic_name__ : Any = True __magic_name__ : str = self.model_tester.seq_length __magic_name__ : Dict = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_a ): __magic_name__ : str = outputs.decoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_a ): __magic_name__ : Any = [t.numpy() for t in outputs.encoder_attentions] __magic_name__ : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __magic_name__ : Union[str, Any] = True __magic_name__ : List[str] = False __magic_name__ : Tuple = False __magic_name__ : Optional[int] = model_class(_a ) __magic_name__ : str = model(self._prepare_for_class(_a , _a ) ) __magic_name__ : Any = len(_a ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) if self.is_encoder_decoder: __magic_name__ : Tuple = model_class(_a ) __magic_name__ : Optional[Any] = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_decoder_attentions_output(_a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ : Dict = True __magic_name__ : str = model_class(_a ) __magic_name__ : Any = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) # Check attention is always last and order is fine __magic_name__ : Union[str, Any] = True __magic_name__ : Union[str, Any] = True __magic_name__ : List[str] = model_class(_a ) __magic_name__ : Any = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_a ) ) self.assertEqual(model.config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def SCREAMING_SNAKE_CASE ( self ): pass def SCREAMING_SNAKE_CASE ( self ): # TODO: Head-masking not yet implement pass def lowerCAmelCase_ ( _snake_case : int ) -> Optional[int]: '''simple docstring''' return tf.constant(_snake_case , dtype=tf.intaa ) snake_case : Optional[int] = 1E-4 @slow @require_tf class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here __magic_name__ : Optional[int] = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : str = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Any = prepare_led_inputs_dict(model.config , _a , _a ) __magic_name__ : List[Any] = model(**_a )[0] __magic_name__ : List[str] = (1, 1_024, 768) self.assertEqual(output.shape , _a ) # change to expected output here __magic_name__ : int = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-3 ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here __magic_name__ : int = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Tuple = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]] ) __magic_name__ : Optional[Any] = prepare_led_inputs_dict(model.config , _a , _a ) __magic_name__ : Union[str, Any] = model(**_a )[0] __magic_name__ : Optional[int] = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , _a ) # change to expected output here __magic_name__ : str = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-3 , rtol=1e-3 )
281
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowerCAmelCase__ ) -> List[Any]: return 1 / (1 + np.exp(-z )) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=7_00_00 ) -> List[Any]: UpperCAmelCase__ : Tuple = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : int = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : Optional[int] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 1_00 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a__ ( lowerCAmelCase__ ) -> Dict: return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
299
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Any = """markuplm""" def __init__( self : Optional[int] , _UpperCAmelCase : Union[str, Any]=3_05_22 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1E-12 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : int=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Any=2_56 , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Tuple=2_16 , _UpperCAmelCase : int=10_01 , _UpperCAmelCase : Optional[Any]=32 , _UpperCAmelCase : List[str]=50 , _UpperCAmelCase : Any="absolute" , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[str] , ): """simple docstring""" super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = use_cache UpperCAmelCase__ = classifier_dropout # additional properties UpperCAmelCase__ = max_depth UpperCAmelCase__ = max_xpath_tag_unit_embeddings UpperCAmelCase__ = max_xpath_subs_unit_embeddings UpperCAmelCase__ = tag_pad_id UpperCAmelCase__ = subs_pad_id UpperCAmelCase__ = xpath_unit_hidden_size
346
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase_ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase_ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase_ = model.state_dict() UpperCAmelCase_ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase_ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"] UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
346
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> str: """simple docstring""" with open(SCREAMING_SNAKE_CASE ) as metadata_file: snake_case_ = json.load(SCREAMING_SNAKE_CASE ) snake_case_ = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path snake_case_ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file snake_case_ = load_original_entity_vocab(SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] snake_case_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case_ = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks snake_case_ = AddedToken('''<ent>''' , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) snake_case_ = AddedToken('''<ent2>''' , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: snake_case_ = json.load(SCREAMING_SNAKE_CASE ) snake_case_ = '''MLukeTokenizer''' with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens snake_case_ = tokenizer.convert_tokens_to_ids(['''@'''] )[0] snake_case_ = tokenizer.convert_tokens_to_ids(['''#'''] )[0] snake_case_ = state_dict['''embeddings.word_embeddings.weight'''] snake_case_ = word_emb[ent_init_index].unsqueeze(0 ) snake_case_ = word_emb[enta_init_index].unsqueeze(0 ) snake_case_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case_ = state_dict[bias_name] snake_case_ = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case_ = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case_ = f'''encoder.layer.{layer_index}.attention.self.''' snake_case_ = state_dict[prefix + matrix_name] snake_case_ = state_dict[prefix + matrix_name] snake_case_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case_ = state_dict['''entity_embeddings.entity_embeddings.weight'''] snake_case_ = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) snake_case_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case_ = state_dict['''entity_predictions.bias'''] snake_case_ = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) snake_case_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case_ = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) snake_case_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): snake_case_ = state_dict[key] else: snake_case_ = state_dict[key] snake_case_ , snake_case_ = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) if set(SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case_ = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , task='''entity_classification''' ) snake_case_ = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' snake_case_ = (0, 9) snake_case_ = tokenizer(SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) snake_case_ = model(**SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case_ = torch.Size((1, 33, 768) ) snake_case_ = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case_ = torch.Size((1, 1, 768) ) snake_case_ = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction snake_case_ = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) snake_case_ = '''Tokyo is the capital of <mask>.''' snake_case_ = (24, 30) snake_case_ = tokenizer(SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) snake_case_ = model(**SCREAMING_SNAKE_CASE ) snake_case_ = encoding['''input_ids'''][0].tolist() snake_case_ = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) snake_case_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE ) snake_case_ = outputs.entity_logits[0][0].argmax().item() snake_case_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(SCREAMING_SNAKE_CASE ) ) model.save_pretrained(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Union[str, Any]: """simple docstring""" snake_case_ = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] snake_case_ = [json.loads(SCREAMING_SNAKE_CASE ) for line in open(SCREAMING_SNAKE_CASE )] snake_case_ = {} for entry in data: snake_case_ = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case_ = entity_id break snake_case_ = f'''{language}:{entity_name}''' snake_case_ = entity_id return new_mapping if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) UpperCAmelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
356
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = None __snake_case = None @property def UpperCamelCase__ ( self ): return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''padding_value''' ) ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) for x, y in zip(_UpperCAmelCase , processed_features[input_name] ) ) ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase=False ): def _inputs_have_equal_length(_UpperCAmelCase ): snake_case_ = len(input[0] ) for input_slice in input[1:]: if len(_UpperCAmelCase ) != length: return False return True def _inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ): if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ): if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ): return False return True snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = self.feat_extract_tester.seq_length_diff snake_case_ = self.feat_extract_tester.max_seq_length + pad_diff snake_case_ = self.feat_extract_tester.min_seq_length snake_case_ = self.feat_extract_tester.batch_size snake_case_ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy snake_case_ = feat_extract.pad(_UpperCAmelCase , padding=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) snake_case_ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''max_length''' )[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=_UpperCAmelCase , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy snake_case_ = feat_extract.pad(_UpperCAmelCase , pad_to_multiple_of=10 ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , pad_to_multiple_of=10 ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_UpperCAmelCase , return_tensors='''np''' , ) snake_case_ = input_a[input_name] self.assertTrue(all(len(_UpperCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_UpperCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct snake_case_ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def UpperCamelCase__ ( self , _UpperCAmelCase=False ): def _inputs_have_equal_length(_UpperCAmelCase ): snake_case_ = len(input[0] ) for input_slice in input[1:]: if len(_UpperCAmelCase ) != length: return False return True def _inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ): if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ): if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ): return False return True snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) snake_case_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) # truncate to smallest with np snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=_UpperCAmelCase , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) # truncate to middle snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase , return_tensors='''np''' , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , truncation=_UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''longest''' , truncation=_UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''longest''' , truncation=_UpperCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , truncation=_UpperCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy snake_case_ = 12 snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , truncation=_UpperCAmelCase , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , ) snake_case_ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of snake_case_ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: snake_case_ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) def UpperCamelCase__ ( self ): self._check_padding(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_padding(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_truncation(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_truncation(numpify=_UpperCAmelCase ) @require_torch def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**_UpperCAmelCase ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = [len(_UpperCAmelCase ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**_UpperCAmelCase ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = [len(_UpperCAmelCase ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = min(_UpperCAmelCase ) snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
267
0
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' return round(float(moles / volume ) * nfactor ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: '''simple docstring''' return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
296
import random class UpperCamelCase__ : '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : str ) -> tuple[list[int], list[int]]: '''simple docstring''' SCREAMING_SNAKE_CASE = [ord(lowerCamelCase__ ) for i in text] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i in plain: SCREAMING_SNAKE_CASE = random.randint(1 ,300 ) SCREAMING_SNAKE_CASE = (i + k) * k cipher.append(lowerCamelCase__ ) key.append(lowerCamelCase__ ) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ : list[int] ,lowerCamelCase__ : list[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for i in range(len(lowerCamelCase__ ) ): SCREAMING_SNAKE_CASE = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCamelCase__ ) ) return "".join(lowerCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
296
1
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a : Union[str, Any] = logging.getLogger(__name__) a : List[str] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : lowerCamelCase : Optional[str] =field( default=a__ , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a__ )} , ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class __UpperCamelCase : lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """The input training data file (a text file)."""} ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) lowerCamelCase : Optional[str] =field( default=a__ , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) lowerCamelCase : bool =field( default=a__ , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) lowerCamelCase : bool =field( default=a__ , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) lowerCamelCase : bool =field(default=a__ , metadata={"""help""": """Whether ot not to use whole word mask."""} ) lowerCamelCase : float =field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) lowerCamelCase : float =field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) lowerCamelCase : int =field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) lowerCamelCase : int =field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) lowerCamelCase : bool =field( default=a__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _SCREAMING_SNAKE_CASE ( _lowercase : DataTrainingArguments , _lowercase : PreTrainedTokenizer , _lowercase : bool = False , _lowercase : Optional[str] = None , ) ->Optional[int]: '''simple docstring''' def _dataset(_lowercase : List[Any] , _lowercase : Any=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=_lowercase , file_path=_lowercase , block_size=args.block_size , ref_path=_lowercase , ) return LineByLineTextDataset(tokenizer=_lowercase , file_path=_lowercase , block_size=args.block_size ) else: return TextDataset( tokenizer=_lowercase , file_path=_lowercase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_lowercase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_lowercase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _SCREAMING_SNAKE_CASE ( ) ->Optional[int]: '''simple docstring''' a : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) a, a, a : Tuple = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _lowercase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: a : List[str] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: a : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: a : List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: a : Any = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: a : Dict = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: a : Tuple = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) a : Any = AutoModelWithLMHead.from_config(_lowercase ) model.resize_token_embeddings(len(_lowercase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: a : int = tokenizer.max_len # Our input block size will be the max possible for the model else: a : int = min(data_args.block_size , tokenizer.max_len ) # Get datasets a : int = ( get_dataset(_lowercase , tokenizer=_lowercase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) a : List[Any] = ( get_dataset(_lowercase , tokenizer=_lowercase , evaluate=_lowercase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": a : Any = DataCollatorForPermutationLanguageModeling( tokenizer=_lowercase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: a : Any = DataCollatorForWholeWordMask( tokenizer=_lowercase , mlm_probability=data_args.mlm_probability ) else: a : Tuple = DataCollatorForLanguageModeling( tokenizer=_lowercase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer a : Optional[Any] = Trainer( model=_lowercase , args=_lowercase , data_collator=_lowercase , train_dataset=_lowercase , eval_dataset=_lowercase , prediction_loss_only=_lowercase , ) # Training if training_args.do_train: a : Dict = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_lowercase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a : List[str] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a : int = trainer.evaluate() a : List[Any] = math.exp(eval_output["eval_loss"] ) a : Tuple = {"perplexity": perplexity} a : int = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(_lowercase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _lowercase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(_lowercase ) return results def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->List[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
79
"""simple docstring""" a : Optional[int] = 8.31_4462 # Unit - J mol-1 K-1 def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
79
1
def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int )->str: return x if y == 0 else greatest_common_divisor(UpperCamelCase__ , x % y ) def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any )->Any: return (x * y) // greatest_common_divisor(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : str = 20 )->List[str]: A__ = 1 for i in range(1 , n + 1 ): A__ = lcm(UpperCamelCase__ , UpperCamelCase__ ) return g if __name__ == "__main__": print(F"{solution() = }")
193
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = ["""pixel_values"""] def __init__( self , __lowercase = True , __lowercase = 32 , __lowercase=PILImageResampling.BILINEAR , __lowercase = True , **__lowercase , ) -> None: __UpperCamelCase :Optional[int] = do_resize __UpperCamelCase :Any = do_rescale __UpperCamelCase :str = size_divisor __UpperCamelCase :Dict = resample super().__init__(**__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase) -> np.ndarray: __UpperCamelCase , __UpperCamelCase :int = get_image_size(__lowercase) # Rounds the height and width down to the closest multiple of size_divisor __UpperCamelCase :List[Any] = height // size_divisor * size_divisor __UpperCamelCase :List[str] = width // size_divisor * size_divisor __UpperCamelCase :str = resize(__lowercase , (new_h, new_w) , resample=__lowercase , data_format=__lowercase , **__lowercase) return image def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase) -> np.ndarray: return rescale(image=__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase=None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> BatchFeature: __UpperCamelCase :Union[str, Any] = do_resize if do_resize is not None else self.do_resize __UpperCamelCase :Tuple = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase :List[str] = size_divisor if size_divisor is not None else self.size_divisor __UpperCamelCase :List[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''') __UpperCamelCase :List[Any] = make_list_of_images(__lowercase) if not valid_images(__lowercase): raise ValueError('''Invalid image(s)''') # All transformations expect numpy arrays. __UpperCamelCase :Optional[Any] = [to_numpy_array(__lowercase) for img in images] if do_resize: __UpperCamelCase :List[str] = [self.resize(__lowercase , size_divisor=__lowercase , resample=__lowercase) for image in images] if do_rescale: __UpperCamelCase :Dict = [self.rescale(__lowercase , scale=1 / 255) for image in images] __UpperCamelCase :str = [to_channel_dimension_format(__lowercase , __lowercase) for image in images] __UpperCamelCase :int = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase)
43
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : Any = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
"""simple docstring""" def a_ ( lowerCamelCase ): UpperCAmelCase__ = [0] * len(lowerCamelCase ) for i in range(1 , len(lowerCamelCase ) ): # use last results for better performance - dynamic programming UpperCAmelCase__ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCAmelCase__ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCAmelCase__ = j return prefix_result def a_ ( lowerCamelCase ): return max(prefix_function(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
import functools def A__ ( __lowerCamelCase, __lowerCamelCase ): # Validation if not isinstance(__lowerCamelCase, __lowerCamelCase ) or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__lowerCamelCase ) != 3 or not all(isinstance(__lowerCamelCase, __lowerCamelCase ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__lowerCamelCase ) == 0: return 0 if min(__lowerCamelCase ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__lowerCamelCase ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) SCREAMING_SNAKE_CASE_ = set(__lowerCamelCase ) @functools.cache def dynamic_programming(__lowerCamelCase ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ), costs[1] + dynamic_programming(index + 7 ), costs[2] + dynamic_programming(index + 30 ), ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
299
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __A = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __A = { '''RUCAIBox/mvp''': 1024, } class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] snake_case__ = MvpTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[Any]="replace" , UpperCAmelCase : Dict="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : Dict="</s>" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Union[str, Any]="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : List[Any]="<mask>" , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : List[str]=True , **UpperCAmelCase : List[Any] , ): super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: __lowerCamelCase : List[str] = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) __lowerCamelCase : Dict = add_prefix_space __lowerCamelCase : str = pre_tok_class(**UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowerCamelCase : int = "post_processor" __lowerCamelCase : List[str] = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: __lowerCamelCase : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCamelCase : List[str] = tuple(state["sep"] ) if "cls" in state: __lowerCamelCase : Dict = tuple(state["cls"] ) __lowerCamelCase : str = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: __lowerCamelCase : List[str] = add_prefix_space __lowerCamelCase : Optional[Any] = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: __lowerCamelCase : Dict = trim_offsets __lowerCamelCase : Tuple = True if changes_to_apply: __lowerCamelCase : List[Any] = getattr(UpperCAmelCase , state.pop("type" ) ) __lowerCamelCase : Union[str, Any] = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def lowerCamelCase__ ( self : Tuple ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase__ ( self : Any , UpperCAmelCase : Tuple ): __lowerCamelCase : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value __lowerCamelCase : List[str] = value def lowerCamelCase__ ( self : List[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ): __lowerCamelCase : List[str] = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : str ): __lowerCamelCase : Optional[Any] = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): __lowerCamelCase : Tuple = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=None ): __lowerCamelCase : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : Union[str, Any] = [self.sep_token_id] __lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
367
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(a__ ) class _snake_case ( a__ ): def __init__( self : List[Any] , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) requires_backends(self , "decord" ) self.check_model_type(UpperCAmelCase ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Any=None ): __lowerCamelCase : int = {} if frame_sampling_rate is not None: __lowerCamelCase : int = frame_sampling_rate if num_frames is not None: __lowerCamelCase : List[str] = num_frames __lowerCamelCase : Optional[Any] = {} if top_k is not None: __lowerCamelCase : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : int , UpperCAmelCase : Union[str, List[str]] , **UpperCAmelCase : Tuple ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def lowerCamelCase__ ( self : int , UpperCAmelCase : str , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[str]=1 ): if num_frames is None: __lowerCamelCase : Optional[int] = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): __lowerCamelCase : Optional[int] = BytesIO(requests.get(UpperCAmelCase ).content ) __lowerCamelCase : Optional[Any] = VideoReader(UpperCAmelCase ) videoreader.seek(0 ) __lowerCamelCase : str = 0 __lowerCamelCase : int = num_frames * frame_sampling_rate - 1 __lowerCamelCase : Any = np.linspace(UpperCAmelCase , UpperCAmelCase , num=UpperCAmelCase , dtype=np.intaa ) __lowerCamelCase : List[str] = videoreader.get_batch(UpperCAmelCase ).asnumpy() __lowerCamelCase : Any = list(UpperCAmelCase ) __lowerCamelCase : Any = self.image_processor(UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : List[Any] ): __lowerCamelCase : Union[str, Any] = self.model(**UpperCAmelCase ) return model_outputs def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase : str = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase : Any = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase , __lowerCamelCase : int = probs.topk(UpperCAmelCase ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) __lowerCamelCase : Union[str, Any] = scores.tolist() __lowerCamelCase : List[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase , UpperCAmelCase )]
64
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : int = KandinskyVaaControlnetImgaImgPipeline __lowerCAmelCase : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __lowerCAmelCase : Any = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __lowerCAmelCase : Optional[int] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __lowerCAmelCase : List[Any] = False @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : List[str] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase : int = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] = self.dummy_unet UpperCAmelCase : Dict = self.dummy_movq UpperCAmelCase : List[str] = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } UpperCAmelCase : Optional[Any] = DDIMScheduler(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _SCREAMING_SNAKE_CASE ) # create init_image UpperCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : Optional[Any] = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((256, 256) ) # create hint UpperCAmelCase : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith("""mps""" ): UpperCAmelCase : List[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase : Tuple = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[str] = """cpu""" UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : Optional[Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase : int = output.images UpperCAmelCase : Optional[Any] = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Any = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCAmelCase : Tuple = init_image.resize((512, 512) ) UpperCAmelCase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) UpperCAmelCase : Optional[int] = torch.from_numpy(np.array(_SCREAMING_SNAKE_CASE ) ).float() / 255.0 UpperCAmelCase : Optional[int] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase : Any = """A robot, 4k photo""" UpperCAmelCase : Dict = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) UpperCAmelCase : Optional[Any] = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase : int = pipe_prior( _SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.85 , generator=_SCREAMING_SNAKE_CASE , negative_prompt="""""" , ).to_tuple() UpperCAmelCase : Union[str, Any] = pipeline( image=_SCREAMING_SNAKE_CASE , image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , hint=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) UpperCAmelCase : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
109
'''simple docstring''' import numpy as np def a__ ( a__ , a__ , a__ = 1E-1_2 , a__ = 1_00 , ): """simple docstring""" assert np.shape(a__ )[0] == np.shape(a__ )[1] # Ensure proper dimensionality. assert np.shape(a__ )[0] == np.shape(a__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a__ ) == np.iscomplexobj(a__ ) __SCREAMING_SNAKE_CASE = np.iscomplexobj(a__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1E1_2 while not convergence: # Multiple matrix by the vector. __SCREAMING_SNAKE_CASE = np.dot(a__ , a__ ) # Normalize the resulting output vector. __SCREAMING_SNAKE_CASE = w / np.linalg.norm(a__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __SCREAMING_SNAKE_CASE = vector.conj().T if is_complex else vector.T __SCREAMING_SNAKE_CASE = np.dot(a__ , np.dot(a__ , a__ ) ) # Check convergence. __SCREAMING_SNAKE_CASE = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = lambda_ if is_complex: __SCREAMING_SNAKE_CASE = np.real(lambda_ ) return lambda_, vector def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ) __SCREAMING_SNAKE_CASE = real_input_matrix.astype(np.complexaaa ) __SCREAMING_SNAKE_CASE = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __SCREAMING_SNAKE_CASE = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __SCREAMING_SNAKE_CASE = real_input_matrix __SCREAMING_SNAKE_CASE = real_vector elif problem_type == "complex": __SCREAMING_SNAKE_CASE = complex_input_matrix __SCREAMING_SNAKE_CASE = complex_vector # Our implementation. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = power_iteration(a__ , a__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = np.linalg.eigh(a__ ) # Last eigenvalue is the maximum one. __SCREAMING_SNAKE_CASE = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __SCREAMING_SNAKE_CASE = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a__ ) - np.abs(a__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
267
0
"""simple docstring""" from __future__ import annotations import queue class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Union[str, Any]: lowerCAmelCase_ :Dict = data lowerCAmelCase_ :Dict = None lowerCAmelCase_ :Optional[int] = None def _snake_case ( ) -> TreeNode: '''simple docstring''' print("""\n********Press N to stop entering at any point of time********\n""" ) lowerCAmelCase_ :Dict = input("""Enter the value of the root node: """ ).strip().lower() lowerCAmelCase_ :queue.Queue = queue.Queue() lowerCAmelCase_ :Tuple = TreeNode(int(lowercase__ ) ) q.put(lowercase__ ) while not q.empty(): lowerCAmelCase_ :int = q.get() lowerCAmelCase_ :List[str] = f"""Enter the left node of {node_found.data}: """ lowerCAmelCase_ :Optional[int] = input(lowercase__ ).strip().lower() or """n""" if check == "n": return tree_node lowerCAmelCase_ :Optional[Any] = TreeNode(int(lowercase__ ) ) lowerCAmelCase_ :int = left_node q.put(lowercase__ ) lowerCAmelCase_ :List[str] = f"""Enter the right node of {node_found.data}: """ lowerCAmelCase_ :Optional[int] = input(lowercase__ ).strip().lower() or """n""" if check == "n": return tree_node lowerCAmelCase_ :str = TreeNode(int(lowercase__ ) ) lowerCAmelCase_ :Optional[Any] = right_node q.put(lowercase__ ) raise def _snake_case ( lowercase__ : TreeNode ) -> None: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def _snake_case ( lowercase__ : TreeNode ) -> None: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def _snake_case ( lowercase__ : TreeNode ) -> None: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def _snake_case ( lowercase__ : TreeNode ) -> None: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return lowerCAmelCase_ :queue.Queue = queue.Queue() q.put(lowercase__ ) while not q.empty(): lowerCAmelCase_ :Union[str, Any] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _snake_case ( lowercase__ : TreeNode ) -> None: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return lowerCAmelCase_ :queue.Queue = queue.Queue() q.put(lowercase__ ) while not q.empty(): lowerCAmelCase_ :List[str] = [] while not q.empty(): lowerCAmelCase_ :Tuple = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowercase__ ) def _snake_case ( lowercase__ : TreeNode ) -> None: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return lowerCAmelCase_ :list[TreeNode] = [] lowerCAmelCase_ :Tuple = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(lowercase__ ) lowerCAmelCase_ :Optional[int] = n.left # end of while means current node doesn't have left child lowerCAmelCase_ :List[Any] = stack.pop() # start to traverse its right child lowerCAmelCase_ :Union[str, Any] = n.right def _snake_case ( lowercase__ : TreeNode ) -> None: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return lowerCAmelCase_ :list[TreeNode] = [] lowerCAmelCase_ :Union[str, Any] = node while n or stack: while n: stack.append(lowercase__ ) lowerCAmelCase_ :List[str] = n.left lowerCAmelCase_ :Any = stack.pop() print(n.data , end=""",""" ) lowerCAmelCase_ :Any = n.right def _snake_case ( lowercase__ : TreeNode ) -> None: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or not node: return lowerCAmelCase_ , lowerCAmelCase_ :Dict = [], [] lowerCAmelCase_ :Optional[Any] = node stacka.append(lowercase__ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase_ :Optional[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowercase__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def _snake_case ( lowercase__ : str = "" , lowercase__ : Union[str, Any]=5_0 , lowercase__ : int="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char lowerCAmelCase_ , lowerCAmelCase_ :Tuple = divmod(width - len(lowercase__ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) __UpperCAmelCase = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Any = """laion/clap-htsat-unfused""" lowerCAmelCase_ :Optional[Any] = tempfile.mkdtemp() def __lowerCAmelCase ( self , **__A ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **__A ) def __lowerCAmelCase ( self , **__A ) -> Tuple: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__A ) def __lowerCAmelCase ( self ) -> int: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Optional[Any] = self.get_tokenizer() lowerCAmelCase_ :Optional[Any] = self.get_feature_extractor() lowerCAmelCase_ :Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ :Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Dict = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ :str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase_ :Dict = self.get_feature_extractor(do_normalize=__A , padding_value=1.0 ) lowerCAmelCase_ :Union[str, Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Dict = self.get_feature_extractor() lowerCAmelCase_ :str = self.get_tokenizer() lowerCAmelCase_ :List[Any] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) lowerCAmelCase_ :Optional[Any] = floats_list((3, 1000) ) lowerCAmelCase_ :Optional[Any] = feature_extractor(__A , return_tensors="""np""" ) lowerCAmelCase_ :str = processor(audios=__A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[Any] = self.get_feature_extractor() lowerCAmelCase_ :Any = self.get_tokenizer() lowerCAmelCase_ :Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) lowerCAmelCase_ :List[Any] = """This is a test string""" lowerCAmelCase_ :Dict = processor(text=__A ) lowerCAmelCase_ :List[str] = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :int = self.get_feature_extractor() lowerCAmelCase_ :Tuple = self.get_tokenizer() lowerCAmelCase_ :Optional[Any] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) lowerCAmelCase_ :int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ :Tuple = processor.batch_decode(__A ) lowerCAmelCase_ :Optional[Any] = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[Any] = self.get_feature_extractor() lowerCAmelCase_ :Any = self.get_tokenizer() lowerCAmelCase_ :Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
1
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class _UpperCAmelCase ( snake_case_ , snake_case_ ): """simple docstring""" snake_case = '''bit''' snake_case = ['''preactivation''', '''bottleneck'''] snake_case = ['''SAME''', '''VALID'''] def __init__( self : List[str] , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : int=64 , __UpperCAmelCase : List[str]=[256, 512, 1024, 2048] , __UpperCAmelCase : Any=[3, 4, 6, 3] , __UpperCAmelCase : List[Any]="preactivation" , __UpperCAmelCase : Tuple="relu" , __UpperCAmelCase : int=None , __UpperCAmelCase : int=32 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : List[str]=1 , __UpperCAmelCase : int=None , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _A = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) _A = num_channels _A = embedding_size _A = hidden_sizes _A = depths _A = layer_type _A = hidden_act _A = global_padding _A = num_groups _A = drop_path_rate _A = embedding_dynamic_padding _A = output_stride _A = width_factor _A = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(__UpperCAmelCase ) + 1 )] _A , _A = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
79
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''gpt_neox''' def __init__( self : List[Any] , __UpperCAmelCase : List[Any]=50432 , __UpperCAmelCase : Any=6144 , __UpperCAmelCase : List[str]=44 , __UpperCAmelCase : List[Any]=64 , __UpperCAmelCase : List[str]=24576 , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Tuple=0.25 , __UpperCAmelCase : Optional[Any]=10000 , __UpperCAmelCase : int=0.0 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Tuple=2048 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Union[str, Any]=1E-5 , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : str=True , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Tuple , ): '''simple docstring''' super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = rotary_pct _A = rotary_emb_base _A = attention_dropout _A = hidden_dropout _A = classifier_dropout _A = initializer_range _A = layer_norm_eps _A = use_cache _A = tie_word_embeddings _A = use_parallel_residual _A = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) _A = self.rope_scaling.get("type" , __UpperCAmelCase ) _A = self.rope_scaling.get("factor" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
79
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """marian""" __SCREAMING_SNAKE_CASE = ["""past_key_values"""] __SCREAMING_SNAKE_CASE = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _snake_case=5_8101 , _snake_case=None , _snake_case=1024 , _snake_case=12 , _snake_case=4096 , _snake_case=16 , _snake_case=12 , _snake_case=4096 , _snake_case=16 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=True , _snake_case=True , _snake_case="gelu" , _snake_case=1024 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=5_8100 , _snake_case=False , _snake_case=5_8100 , _snake_case=0 , _snake_case=0 , _snake_case=True , **_snake_case , ) -> Any: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , forced_eos_token_id=_snake_case , **_snake_case , ) class lowercase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_snake_case , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(_snake_case ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(_snake_case , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(_snake_case ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def snake_case_ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) UpperCAmelCase = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**_snake_case , **_snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_snake_case , _snake_case )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(_snake_case , _snake_case ) UpperCAmelCase = max(_snake_case , _snake_case ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_snake_case ): common_inputs["past_key_values"].append( ( torch.zeros(_snake_case ), torch.zeros(_snake_case ), torch.zeros(_snake_case ), torch.zeros(_snake_case ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_snake_case , _snake_case ): common_inputs["past_key_values"].append((torch.zeros(_snake_case ), torch.zeros(_snake_case )) ) return common_inputs def snake_case_ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_snake_case , _snake_case , dtype=_snake_case )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(_snake_case ), torch.zeros(_snake_case )) for _ in range(_snake_case ) ] return common_inputs def snake_case_ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(_snake_case ) UpperCAmelCase = compute_effective_axis_dimension( _snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_snake_case ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(_snake_case , return_tensors=_snake_case ) ) return common_inputs def snake_case_ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( _snake_case , batch_size=_snake_case , seq_length=_snake_case , is_pair=_snake_case , framework=_snake_case ) return common_inputs def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(_snake_case , _snake_case , _snake_case , _snake_case ) else: UpperCAmelCase = super(_snake_case , self )._flatten_past_key_values_( _snake_case , _snake_case , _snake_case , _snake_case ) @property def snake_case_ ( self ) -> float: """simple docstring""" return 1e-4
351
def _lowerCAmelCase ( A__: list[int] , A__: list[int] ): '''simple docstring''' UpperCAmelCase = len(A__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCAmelCase = 0 print(A__ , end=''',''' ) # Consider rest of the activities for j in range(A__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(A__ , end=''',''' ) UpperCAmelCase = j if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = [1, 3, 0, 5, 8, 5] __magic_name__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
152
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
1
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __snake_case : """simple docstring""" pass
367
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __A : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : int = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } __A : List[Any] = { "unc-nlp/lxmert-base-uncased": 512, } __A : Optional[Any] = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = LxmertTokenizer def __init__( self : Dict , lowerCamelCase : Tuple=None , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=True , lowerCamelCase : List[Any]="[UNK]" , lowerCamelCase : Tuple="[SEP]" , lowerCamelCase : str="[PAD]" , lowerCamelCase : Any="[CLS]" , lowerCamelCase : str="[MASK]" , lowerCamelCase : Dict=True , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) lowerCAmelCase_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Tuple = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : Optional[Any] = do_lower_case lowerCAmelCase_ : Dict = strip_accents lowerCAmelCase_ : List[Any] = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCamelCase ) lowerCAmelCase_ : Tuple = do_lower_case def __lowercase ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[Any]=None ) -> int: lowerCAmelCase_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase_ : int = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
89
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) class UpperCAmelCase ( __a ): A__ : List[str] = ["pixel_values"] def __init__(self : List[Any] , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PIL.Image.BICUBIC , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , **snake_case__ : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**a_ ) snake_case : int = size if size is not None else {"""height""": 2_56, """width""": 2_56} snake_case : Optional[int] = get_size_dict(a_ ) snake_case : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} snake_case : str = get_size_dict(a_ , param_name="crop_size" ) snake_case : int = do_resize snake_case : Any = size snake_case : List[str] = resample snake_case : str = do_center_crop snake_case : Optional[Any] = crop_size snake_case : Dict = do_rescale snake_case : Optional[int] = rescale_factor snake_case : str = do_normalize snake_case : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : PILImageResampling = PIL.Image.BICUBIC , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Optional[Any] , ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( a_ , size=(size["height"], size["width"]) , resample=a_ , data_format=a_ , **a_ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : int , ) -> Optional[int]: '''simple docstring''' snake_case : Dict = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(a_ , size=(size["height"], size["width"]) , data_format=a_ , **a_ ) def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : np.ndarray , snake_case__ : Union[int, float] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Union[str, Any] , ) -> List[str]: '''simple docstring''' return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : np.ndarray , snake_case__ : Union[float, List[float]] , snake_case__ : Union[float, List[float]] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : int , ) -> Union[str, Any]: '''simple docstring''' return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : Union[str, Any]=None , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : Optional[Any] , ) -> List[Any]: '''simple docstring''' snake_case : Dict = do_resize if do_resize is not None else self.do_resize snake_case : Optional[Any] = resample if resample is not None else self.resample snake_case : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case : Optional[Any] = image_std if image_std is not None else self.image_std snake_case : Union[str, Any] = size if size is not None else self.size snake_case : Dict = get_size_dict(a_ ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[Any] = get_size_dict(a_ , param_name="crop_size" ) snake_case : List[str] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case : Union[str, Any] = [to_numpy_array(a_ ) for image in images] if do_resize: snake_case : Optional[int] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: snake_case : Any = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: snake_case : Optional[Any] = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: snake_case : List[Any] = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] snake_case : int = [to_channel_dimension_format(a_ , a_ ) for image in images] snake_case : int = {"""pixel_values""": images} return BatchFeature(data=a_ , tensor_type=a_ )
59
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] _snake_case : List[Any] = [] def generate(snake_case__ : int , snake_case__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even _snake_case , _snake_case : Optional[Any] = arr[k - 1], arr[i] else: # k is odd _snake_case , _snake_case : List[str] = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
64
0
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( __UpperCamelCase ): def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Optional[int] = [label.strip() for label in labels.split(''',''' ) if label.strip()] return labels def __call__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) == 0 or len(SCREAMING_SNAKE_CASE__ ) == 0: raise ValueError('''You must include at least one label and at least one sequence.''' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(SCREAMING_SNAKE_CASE__ ) ) if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :int = [sequences] __SCREAMING_SNAKE_CASE :Optional[int] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(SCREAMING_SNAKE_CASE__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCamelCase ) class _SCREAMING_SNAKE_CASE( __UpperCamelCase ): def __init__( self ,SCREAMING_SNAKE_CASE__=ZeroShotClassificationArgumentHandler() ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = args_parser super().__init__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' ) @property def _UpperCamelCase ( self ) -> Dict: """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail''' ): return ind return -1 def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=TruncationStrategy.ONLY_FIRST ,**SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''' ) __SCREAMING_SNAKE_CASE :Optional[int] = self.tokenizer.eos_token try: __SCREAMING_SNAKE_CASE :Optional[int] = self.tokenizer( SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=SCREAMING_SNAKE_CASE__ ,) except Exception as e: if "too short" in str(SCREAMING_SNAKE_CASE__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. __SCREAMING_SNAKE_CASE :Union[str, Any] = self.tokenizer( SCREAMING_SNAKE_CASE__ ,add_special_tokens=SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ,padding=SCREAMING_SNAKE_CASE__ ,truncation=TruncationStrategy.DO_NOT_TRUNCATE ,) else: raise e return inputs def _UpperCamelCase ( self ,**SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" if kwargs.get('''multi_class''' ,SCREAMING_SNAKE_CASE__ ) is not None: __SCREAMING_SNAKE_CASE :Optional[Any] = kwargs['multi_class'] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''' ) __SCREAMING_SNAKE_CASE :Dict = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE :Optional[int] = self._args_parser._parse_labels(kwargs['''candidate_labels'''] ) if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE :List[str] = kwargs['hypothesis_template'] __SCREAMING_SNAKE_CASE :List[Any] = {} if "multi_label" in kwargs: __SCREAMING_SNAKE_CASE :Union[str, Any] = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self ,SCREAMING_SNAKE_CASE__ ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) -> List[str]: """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) == 0: pass elif len(SCREAMING_SNAKE_CASE__ ) == 1 and "candidate_labels" not in kwargs: __SCREAMING_SNAKE_CASE :int = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__="This example is {}." ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self._args_parser(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) ): __SCREAMING_SNAKE_CASE :Dict = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(SCREAMING_SNAKE_CASE__ ) - 1, **model_input, } def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = inputs['candidate_label'] __SCREAMING_SNAKE_CASE :Dict = inputs['sequence'] __SCREAMING_SNAKE_CASE :int = {k: inputs[k] for k in self.tokenizer.model_input_names} __SCREAMING_SNAKE_CASE :Optional[Any] = self.model(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = [outputs['candidate_label'] for outputs in model_outputs] __SCREAMING_SNAKE_CASE :List[str] = [outputs['sequence'] for outputs in model_outputs] __SCREAMING_SNAKE_CASE :Tuple = np.concatenate([output['''logits'''].numpy() for output in model_outputs] ) __SCREAMING_SNAKE_CASE :Dict = logits.shape[0] __SCREAMING_SNAKE_CASE :Dict = len(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = N // n __SCREAMING_SNAKE_CASE :Any = logits.reshape((num_sequences, n, -1) ) if multi_label or len(SCREAMING_SNAKE_CASE__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently __SCREAMING_SNAKE_CASE :str = self.entailment_id __SCREAMING_SNAKE_CASE :List[str] = -1 if entailment_id == 0 else 0 __SCREAMING_SNAKE_CASE :List[str] = reshaped_outputs[..., [contradiction_id, entailment_id]] __SCREAMING_SNAKE_CASE :Optional[Any] = np.exp(SCREAMING_SNAKE_CASE__ ) / np.exp(SCREAMING_SNAKE_CASE__ ).sum(-1 ,keepdims=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels __SCREAMING_SNAKE_CASE :int = reshaped_outputs[..., self.entailment_id] __SCREAMING_SNAKE_CASE :Tuple = np.exp(SCREAMING_SNAKE_CASE__ ) / np.exp(SCREAMING_SNAKE_CASE__ ).sum(-1 ,keepdims=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
351
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __SCREAMING_SNAKE_CASE :Optional[int] = deepcopy(SCREAMING_SNAKE_CASE__ ) elif os.path.exists(SCREAMING_SNAKE_CASE__ ): with io.open(SCREAMING_SNAKE_CASE__ ,'''r''' ,encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE :Dict = json.load(SCREAMING_SNAKE_CASE__ ) else: try: __SCREAMING_SNAKE_CASE :str = baseaa.urlsafe_baadecode(SCREAMING_SNAKE_CASE__ ).decode('''utf-8''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = json.loads(SCREAMING_SNAKE_CASE__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) __SCREAMING_SNAKE_CASE :Optional[int] = config self.set_stage_and_offload() def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.get_value('''zero_optimization.stage''' ,-1 ) # offload __SCREAMING_SNAKE_CASE :Any = False if self.is_zeroa() or self.is_zeroa(): __SCREAMING_SNAKE_CASE :Optional[Any] = set(['''cpu''', '''nvme'''] ) __SCREAMING_SNAKE_CASE :Optional[Any] = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __SCREAMING_SNAKE_CASE :int = True def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.config # find the config node of interest if it exists __SCREAMING_SNAKE_CASE :Union[str, Any] = ds_key_long.split('''.''' ) __SCREAMING_SNAKE_CASE :List[str] = nodes.pop() for node in nodes: __SCREAMING_SNAKE_CASE :Dict = config.get(SCREAMING_SNAKE_CASE__ ) if config is None: return None, ds_key return config, ds_key def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = self.find_config_node(SCREAMING_SNAKE_CASE__ ) if config is None: return default return config.get(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=False ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.config # find the config node of interest if it exists __SCREAMING_SNAKE_CASE :str = ds_key_long.split('''.''' ) for node in nodes: __SCREAMING_SNAKE_CASE :Any = config __SCREAMING_SNAKE_CASE :int = config.get(SCREAMING_SNAKE_CASE__ ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.get_value(SCREAMING_SNAKE_CASE__ ) return False if value is None else bool(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.get_value(SCREAMING_SNAKE_CASE__ ) return False if value is None else not bool(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._stage == 2 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return self._stage == 3 def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return self._offload class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = engine def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" self.engine.backward(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ,device_placement=SCREAMING_SNAKE_CASE__ ,scaler=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = hasattr(self.optimizer ,'''overflow''' ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=None ) -> Union[str, Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _UpperCamelCase ( self ) -> Dict: """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=0.0_0_1 ,SCREAMING_SNAKE_CASE__=0 ,**SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = params __SCREAMING_SNAKE_CASE :str = lr __SCREAMING_SNAKE_CASE :str = weight_decay __SCREAMING_SNAKE_CASE :int = kwargs class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=0 ,**SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = optimizer __SCREAMING_SNAKE_CASE :Union[str, Any] = total_num_steps __SCREAMING_SNAKE_CASE :Any = warmup_num_steps __SCREAMING_SNAKE_CASE :int = kwargs
239
0
'''simple docstring''' from __future__ import annotations import queue class __A : def __init__(self : Optional[Any] , __a : str ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCAmelCase_ ( ) -> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = left_node q.put(snake_case_ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = right_node q.put(snake_case_ ) raise def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(snake_case_ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(snake_case_ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowerCAmelCase_ ( snake_case_ : str = "" , snake_case_ : Any=50 , snake_case_ : Union[str, Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(snake_case_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_: TreeNode =build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __A ( UpperCamelCase__ ): a__ : Optional[Any] = DistilBertTokenizer a__ : Any = DistilBertTokenizerFast a__ : str = True @slow def _lowercase (self : int ): UpperCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a ) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
1
1
'''simple docstring''' def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): while second != 0: __a : List[Any] = first & second first ^= second __a : Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __lowercase : Any = int(input('Enter the first number: ').strip()) __lowercase : int = int(input('Enter the second number: ').strip()) print(f'''{add(first, second) = }''')
368
'''simple docstring''' import sys __lowercase : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a : List[str] = 1 for digit in s: product *= int(_SCREAMING_SNAKE_CASE ) return product def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = N ): __a : Optional[int] = -sys.maxsize - 1 __a : Optional[Any] = n[:13] __a : int = 13 while cur_index < len(_SCREAMING_SNAKE_CASE ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __a : List[Any] = substr[1:] + n[cur_index] cur_index += 1 else: __a : Dict = max(_SCREAMING_SNAKE_CASE , str_eval(_SCREAMING_SNAKE_CASE ) ) __a : Optional[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
294
0
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowerCamelCase_ (): _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=UpperCamelCase__ , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=UpperCamelCase__ , default=5 ) parser.add_argument('''--batch_size''' , type=UpperCamelCase__ , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=UpperCamelCase__ , default=1 ) parser.add_argument('''--freeze''' , type=UpperCamelCase__ , default=UpperCamelCase__ ) parser.add_argument('''--learning_rate''' , type=UpperCamelCase__ , default=5E-4 ) parser.add_argument('''--seed''' , type=UpperCamelCase__ , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=UpperCamelCase__ , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=UpperCamelCase__ , default=10 ) parser.add_argument('''--weight_decay''' , type=UpperCamelCase__ , default=0.01 ) parser.add_argument('''--output_dir''' , type=UpperCamelCase__ , default='''./results''' ) return parser.parse_args() _lowerCAmelCase :int = load('accuracy') def lowerCamelCase_ (UpperCamelCase__ : Any ): _UpperCAmelCase : Any = eval_pred _UpperCAmelCase : Any = np.argmax(UpperCamelCase__ , axis=1 ) return metric.compute(predictions=UpperCamelCase__ , references=UpperCamelCase__ ) class _UpperCAmelCase ( a ): '''simple docstring''' def __init__( self , A ) -> None: super().__init__() _UpperCAmelCase : Any = trainer def __lowerCAmelCase ( self , A , A , A , **A ) -> Dict: if control.should_evaluate: _UpperCAmelCase : Union[str, Any] = deepcopy(__lowercase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowerCamelCase_ (): _UpperCAmelCase : Optional[int] = get_args() set_seed(args.seed ) _UpperCAmelCase : List[str] = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase : List[Any] = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase : Union[str, Any] = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase : Optional[Any] = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase : Any = tokenizer.eos_token _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase : List[str] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(UpperCamelCase__ : Union[str, Any] ): _UpperCAmelCase : Optional[int] = tokenizer(example['''src'''] , truncation=UpperCamelCase__ , max_length=1024 ) _UpperCAmelCase : Optional[Any] = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase : Optional[Any] = train_test_validation.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase : Any = DataCollatorWithPadding(tokenizer=UpperCamelCase__ ) _UpperCAmelCase : Dict = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase : Any = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , ) print('''Training...''' ) trainer.add_callback(CustomCallback(UpperCamelCase__ ) ) trainer.train() if __name__ == "__main__": main()
263
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""image_processor""", """tokenizer"""] snake_case_ = """CLIPImageProcessor""" snake_case_ = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[Any] , __lowercase : Union[str, Any]=None , __lowercase : int=None , **__lowercase : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ : str =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowercase , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE__ : Optional[int] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowercase , __lowercase ) def __call__( self : Union[str, Any] , __lowercase : Optional[Any]=None , __lowercase : Union[str, Any]=None , __lowercase : List[str]=None , **__lowercase : str ) -> Tuple: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.tokenizer(__lowercase , return_tensors=__lowercase , **__lowercase ) if images is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ : int =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowercase ) , tensor_type=__lowercase ) def __magic_name__ ( self : int , *__lowercase : Optional[Any] , **__lowercase : Tuple ) -> Dict: return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def __magic_name__ ( self : List[Any] , *__lowercase : Optional[Any] , **__lowercase : Union[str, Any] ) -> Union[str, Any]: return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def __magic_name__ ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ : str =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
152
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : str = PegasusTokenizer A : Dict = PegasusTokenizerFast A : str = True A : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a : Any = PegasusTokenizer(UpperCAmelCase_) tokenizer.save_pretrained(self.tmpdirname) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" return PegasusTokenizer.from_pretrained('google/pegasus-large') def SCREAMING_SNAKE_CASE_ ( self : Tuple , **UpperCAmelCase_ : Tuple): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : int): """simple docstring""" return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = '</s>' a : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_) , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : int = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<pad>') self.assertEqual(vocab_keys[1] , '</s>') self.assertEqual(vocab_keys[-1] , 'v') self.assertEqual(len(UpperCAmelCase_) , 1_1_0_3) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) a : int = self.tokenizer_class.from_pretrained(self.tmpdirname) a : Tuple = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) a : List[str] = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_).input_ids[0] a : Dict = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : Optional[int] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word a : str = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' a : Tuple = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] a : str = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Union[str, Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 a : List[str] = 'To ensure a smooth flow of bank resolutions.' a : Any = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] a : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : Any = ['This is going to be way too long.' * 1_5_0, 'short example'] a : str = ['not super long but more than 5 tokens', 'tiny'] a : int = self._large_tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt') a : Tuple = self._large_tokenizer( text_target=UpperCAmelCase_ , max_length=5 , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt') assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(UpperCAmelCase_) == 2 # input_ids, attention_mask. @slow def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Tuple = {'input_ids': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Union[str, Any] = PegasusTokenizer A : Any = PegasusTokenizerFast A : List[str] = True A : str = True def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a : Union[str, Any] = PegasusTokenizer(UpperCAmelCase_ , offset=0 , mask_token_sent=UpperCAmelCase_ , mask_token='[MASK]') tokenizer.save_pretrained(self.tmpdirname) @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv') def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **UpperCAmelCase_ : List[str]): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[Any]): """simple docstring""" return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) a : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname) a : Any = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) a : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_).input_ids[0] a : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) @require_torch def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" a : str = ['This is going to be way too long.' * 1_0_0_0, 'short example'] a : int = ['not super long but more than 5 tokens', 'tiny'] a : List[Any] = self._large_tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt') a : Tuple = self._large_tokenizer( text_target=UpperCAmelCase_ , max_length=5 , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors='pt') assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(UpperCAmelCase_) == 2 # input_ids, attention_mask. def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) a : Dict = self._large_tokenizer(UpperCAmelCase_).input_ids self.assertListEqual( UpperCAmelCase_ , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
354
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=1_3 , UpperCAmelCase_ : List[str]=3_0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=3_2 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : Dict=3_7 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Dict=1_0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=2 , ): """simple docstring""" a : Any = parent a : Optional[int] = batch_size a : str = image_size a : str = patch_size a : List[Any] = num_channels a : Optional[int] = is_training a : Dict = use_labels a : Any = hidden_size a : Optional[int] = num_hidden_layers a : int = num_attention_heads a : int = intermediate_size a : Any = hidden_act a : Optional[int] = hidden_dropout_prob a : Optional[int] = attention_probs_dropout_prob a : Dict = type_sequence_label_size a : Tuple = initializer_range a : List[str] = scope a : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a : Optional[Any] = (image_size // patch_size) ** 2 a : str = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a : List[Any] = None if self.use_labels: a : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) a : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict): """simple docstring""" a : int = ViTModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]): """simple docstring""" a : str = ViTForMaskedImageModeling(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : List[Any] = model(UpperCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images a : int = 1 a : Union[str, Any] = ViTForMaskedImageModeling(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[Any] = model(UpperCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : str = self.type_sequence_label_size a : Tuple = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a : List[Any] = 1 a : Union[str, Any] = ViTForImageClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() a : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Optional[int] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ) : Tuple = config_and_inputs a : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A : str = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) A : Optional[Any] = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) A : List[str] = True A : Optional[int] = False A : Dict = False A : Optional[int] = False def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : str = ViTModelTester(self) a : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=3_7) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(UpperCAmelCase_) a : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Dict = [*signature.parameters.keys()] a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Dict = ViTModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: """simple docstring""" a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" a : Optional[Any] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(UpperCAmelCase_) a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(**UpperCAmelCase_) # verify the logits a : List[str] = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) a : Union[str, Any] = torch.tensor([-0.27_44, 0.82_15, -0.08_36]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : List[str] = ViTModel.from_pretrained('facebook/dino-vits8').to(UpperCAmelCase_) a : Any = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_8_0) a : int = prepare_img() a : List[str] = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : List[str] = inputs.pixel_values.to(UpperCAmelCase_) # forward pass with torch.no_grad(): a : List[Any] = model(UpperCAmelCase_ , interpolate_pos_encoding=UpperCAmelCase_) # verify the logits a : Dict = torch.Size((1, 3_6_0_1, 3_8_4)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) a : str = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" a : str = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') a : List[Any] = self.default_image_processor a : List[str] = prepare_img() a : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt') a : Tuple = inputs.pixel_values.to(UpperCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): a : Tuple = model(UpperCAmelCase_)
345
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Optional[int] = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) __lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _a : List[Any] = model_type_to_module_name(lowerCAmelCase_ ) _a : Optional[Any] = importlib.import_module(f""".{module_name}""" , 'transformers.models' ) try: return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase_ , '__name__' , lowerCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _a : Dict = importlib.import_module('transformers' ) if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) return None def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , **lowerCAmelCase_ , ) -> Tuple: _a : List[str] = get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(lowerCAmelCase_ , encoding='utf-8' ) as reader: return json.load(lowerCAmelCase_ ) class __magic_name__ : def __init__( self : List[str] ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_UpperCAmelCase ) def __lowercase ( cls : Dict ,_UpperCAmelCase : Union[str, Any] ,**_UpperCAmelCase : Optional[Any] ): _a : Any = kwargs.pop('config' ,_UpperCAmelCase ) _a : Dict = kwargs.pop('trust_remote_code' ,_UpperCAmelCase ) _a : Any = True _a , _a : Tuple = ImageProcessingMixin.get_image_processor_dict(_UpperCAmelCase ,**_UpperCAmelCase ) _a : List[Any] = config_dict.get('image_processor_type' ,_UpperCAmelCase ) _a : int = None if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ): _a : Any = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _a : List[Any] = config_dict.pop('feature_extractor_type' ,_UpperCAmelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _a : Optional[int] = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ): _a : List[Any] = config_dict['auto_map']['AutoFeatureExtractor'] _a : List[str] = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : Dict = AutoConfig.from_pretrained(_UpperCAmelCase ,**_UpperCAmelCase ) # It could be in `config.image_processor_type`` _a : Optional[int] = getattr(_UpperCAmelCase ,'image_processor_type' ,_UpperCAmelCase ) if hasattr(_UpperCAmelCase ,'auto_map' ) and "AutoImageProcessor" in config.auto_map: _a : Union[str, Any] = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _a : Optional[int] = image_processor_class_from_name(_UpperCAmelCase ) _a : List[str] = image_processor_auto_map is not None _a : Optional[int] = image_processor_class is not None or type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING _a : Optional[int] = resolve_trust_remote_code( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) if has_remote_code and trust_remote_code: _a : Dict = get_class_from_dynamic_module( _UpperCAmelCase ,_UpperCAmelCase ,**_UpperCAmelCase ) _a : int = kwargs.pop('code_revision' ,_UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING: _a : Dict = IMAGE_PROCESSOR_MAPPING[type(_UpperCAmelCase )] return image_processor_class.from_dict(_UpperCAmelCase ,**_UpperCAmelCase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __lowercase ( _UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Dict ): IMAGE_PROCESSOR_MAPPING.register(_UpperCAmelCase ,_UpperCAmelCase )
89
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : jnp.ndarray UpperCAmelCase__ : jnp.ndarray class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :List[str] ) -> int: a__ = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) a__ = [] for i in range(len(self.block_out_channels ) - 1 ): a__ = self.block_out_channels[i] a__ = self.block_out_channels[i + 1] a__ = nn.Conv( __snake_case ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(__snake_case ) a__ = nn.Conv( __snake_case ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(__snake_case ) a__ = blocks a__ = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self :Tuple ,__snake_case :List[str] ) -> Tuple: a__ = self.conv_in(__snake_case ) a__ = nn.silu(__snake_case ) for block in self.blocks: a__ = block(__snake_case ) a__ = nn.silu(__snake_case ) a__ = self.conv_out(__snake_case ) return embedding @flax_register_to_config class snake_case_ (nn.Module , lowerCamelCase_ , lowerCamelCase_ ): UpperCAmelCase__ : int = 3_2 UpperCAmelCase__ : int = 4 UpperCAmelCase__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase__ : Union[bool, Tuple[bool]] = False UpperCAmelCase__ : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) UpperCAmelCase__ : int = 2 UpperCAmelCase__ : Union[int, Tuple[int]] = 8 UpperCAmelCase__ : Optional[Union[int, Tuple[int]]] = None UpperCAmelCase__ : int = 1_2_8_0 UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa UpperCAmelCase__ : bool = True UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = "rgb" UpperCAmelCase__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def lowerCamelCase__( self :Any ,__snake_case :jax.random.KeyArray ) -> FrozenDict: # init input tensors a__ = (1, self.in_channels, self.sample_size, self.sample_size) a__ = jnp.zeros(__snake_case ,dtype=jnp.floataa ) a__ = jnp.ones((1,) ,dtype=jnp.intaa ) a__ = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) a__ = (1, 3, self.sample_size * 8, self.sample_size * 8) a__ = jnp.zeros(__snake_case ,dtype=jnp.floataa ) a__ , a__ = jax.random.split(__snake_case ) a__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case )["params"] def lowerCamelCase__( self :Dict ) -> Union[str, Any]: a__ = self.block_out_channels a__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a__ = self.num_attention_heads or self.attention_head_dim # input a__ = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time a__ = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) a__ = FlaxTimestepEmbedding(__snake_case ,dtype=self.dtype ) a__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) a__ = self.only_cross_attention if isinstance(__snake_case ,__snake_case ): a__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__snake_case ,__snake_case ): a__ = (num_attention_heads,) * len(self.down_block_types ) # down a__ = [] a__ = [] a__ = block_out_channels[0] a__ = nn.Conv( __snake_case ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(__snake_case ) for i, down_block_type in enumerate(self.down_block_types ): a__ = output_channel a__ = block_out_channels[i] a__ = i == len(__snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": a__ = FlaxCrossAttnDownBlockaD( in_channels=__snake_case ,out_channels=__snake_case ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: a__ = FlaxDownBlockaD( in_channels=__snake_case ,out_channels=__snake_case ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(__snake_case ) for _ in range(self.layers_per_block ): a__ = nn.Conv( __snake_case ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(__snake_case ) if not is_final_block: a__ = nn.Conv( __snake_case ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(__snake_case ) a__ = down_blocks a__ = controlnet_down_blocks # mid a__ = block_out_channels[-1] a__ = FlaxUNetMidBlockaDCrossAttn( in_channels=__snake_case ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) a__ = nn.Conv( __snake_case ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self :Optional[int] ,__snake_case :Union[str, Any] ,__snake_case :List[str] ,__snake_case :str ,__snake_case :Tuple ,__snake_case :float = 1.0 ,__snake_case :bool = True ,__snake_case :bool = False ,) -> Union[FlaxControlNetOutput, Tuple]: a__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": a__ = jnp.flip(__snake_case ,axis=1 ) # 1. time if not isinstance(__snake_case ,jnp.ndarray ): a__ = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(__snake_case ,jnp.ndarray ) and len(timesteps.shape ) == 0: a__ = timesteps.astype(dtype=jnp.floataa ) a__ = jnp.expand_dims(__snake_case ,0 ) a__ = self.time_proj(__snake_case ) a__ = self.time_embedding(__snake_case ) # 2. pre-process a__ = jnp.transpose(__snake_case ,(0, 2, 3, 1) ) a__ = self.conv_in(__snake_case ) a__ = jnp.transpose(__snake_case ,(0, 2, 3, 1) ) a__ = self.controlnet_cond_embedding(__snake_case ) sample += controlnet_cond # 3. down a__ = (sample,) for down_block in self.down_blocks: if isinstance(__snake_case ,__snake_case ): a__ , a__ = down_block(__snake_case ,__snake_case ,__snake_case ,deterministic=not train ) else: a__ , a__ = down_block(__snake_case ,__snake_case ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid a__ = self.mid_block(__snake_case ,__snake_case ,__snake_case ,deterministic=not train ) # 5. contronet blocks a__ = () for down_block_res_sample, controlnet_block in zip(__snake_case ,self.controlnet_down_blocks ): a__ = controlnet_block(__snake_case ) controlnet_down_block_res_samples += (down_block_res_sample,) a__ = controlnet_down_block_res_samples a__ = self.controlnet_mid_block(__snake_case ) # 6. scaling a__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__snake_case ,mid_block_res_sample=__snake_case )
109
snake_case : str = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def __lowercase ( __lowerCAmelCase : float ): assert type(__lowerCAmelCase ) in (int, float) and decimal == int(__lowerCAmelCase ) a__ = int(__lowerCAmelCase ) a__ = '' a__ = False if decimal < 0: a__ = True decimal *= -1 while decimal > 0: a__ , a__ = divmod(__lowerCAmelCase , 1_6 ) a__ = values[remainder] + hexadecimal a__ = '0x' + hexadecimal if negative: a__ = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
109
1
def __A ( __lowerCAmelCase )-> str: """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" _UpperCAmelCase = False if num < 0: _UpperCAmelCase = True _UpperCAmelCase = -num _UpperCAmelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(__lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
39
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowercase : List[str] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowercase : Tuple = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _lowercase : Optional[int] = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class __magic_name__ ( datasets.Metric): def SCREAMING_SNAKE_CASE_ ( self : int ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , ): lowercase_ : int = len(references[0] ) if any(len(lowercase_ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) lowercase_ : Optional[int] = [[refs[i] for refs in references] for i in range(lowercase_ )] lowercase_ : List[str] = TER( normalized=lowercase_ , no_punct=lowercase_ , asian_support=lowercase_ , case_sensitive=lowercase_ , ) lowercase_ : List[str] = sb_ter.corpus_score(lowercase_ , lowercase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
239
0
lowerCamelCase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def lowerCAmelCase__ ( ) -> None: lowerCAmelCase__ : Any = input('Enter message: ' ) lowerCAmelCase__ : Tuple = input('Enter key [alphanumeric]: ' ) lowerCAmelCase__ : Optional[int] = input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): lowerCAmelCase__ : Tuple = 'encrypt' lowerCAmelCase__ : Any = encrypt_message(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif mode.lower().startswith('d' ): lowerCAmelCase__ : Any = 'decrypt' lowerCAmelCase__ : List[str] = decrypt_message(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F'''\n{mode.title()}ed message:''' ) print(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: return translate_message(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'encrypt' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: return translate_message(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'decrypt' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Tuple = key.upper() for symbol in message: lowerCAmelCase__ : int = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(SCREAMING_SNAKE_CASE_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = 0 else: translated.append(SCREAMING_SNAKE_CASE_ ) return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
307
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
1
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Tuple = TextToVideoSDPipeline SCREAMING_SNAKE_CASE_ : Optional[Any] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE_ : Optional[Any] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def A ( self : str ) -> int: torch.manual_seed(0 ) lowercase_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) lowercase_ : Union[str, Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) lowercase_ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowercase_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) lowercase_ : Any = CLIPTextModel(A ) lowercase_ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase_ : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def A ( self : int , A : List[str] , A : List[str]=0 ) -> Any: if str(A ).startswith('''mps''' ): lowercase_ : Optional[Any] = torch.manual_seed(A ) else: lowercase_ : List[Any] = torch.Generator(device=A ).manual_seed(A ) lowercase_ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def A ( self : str ) -> Optional[Any]: lowercase_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase_ : int = self.get_dummy_components() lowercase_ : List[Any] = TextToVideoSDPipeline(**A ) lowercase_ : Optional[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) lowercase_ : int = self.get_dummy_inputs(A ) lowercase_ : Optional[Any] = '''np''' lowercase_ : Tuple = sd_pipe(**A ).frames lowercase_ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowercase_ : Tuple = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : int ) -> int: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=A , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A ( self : List[str] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A , expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def A ( self : Dict ) -> List[Any]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def A ( self : Tuple ) -> Optional[Any]: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def A ( self : Optional[Any] ) -> Tuple: pass def A ( self : List[str] ) -> Tuple: return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Any ) -> Union[str, Any]: lowercase_ : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) lowercase_ : List[str] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) lowercase_ : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ : List[str] = pipe.to('''cuda''' ) lowercase_ : List[str] = '''Spiderman is surfing''' lowercase_ : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ : int = pipe(A , generator=A , num_inference_steps=25 , output_type='''pt''' ).frames lowercase_ : Union[str, Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A ( self : Any ) -> Dict: lowercase_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) lowercase_ : int = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) lowercase_ : List[Any] = pipe.to('''cuda''' ) lowercase_ : Optional[Any] = '''Spiderman is surfing''' lowercase_ : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ : Union[str, Any] = pipe(A , generator=A , num_inference_steps=2 , output_type='''pt''' ).frames lowercase_ : Optional[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
33
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _snake_case = logging.getLogger(__name__) class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int]=-1 ) -> Tuple: # in NER datasets, the last column is usually reserved for NER label _a : Optional[int] = label_idx def _lowercase ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Any = mode.value _a : Optional[int] = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) _a : int = 1 _a : int = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: _a : str = [] _a : str = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 _a : List[str] = [] _a : str = [] else: _a : List[Any] = line.split(""" """ ) words.append(splits[0] ) if len(UpperCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) return examples def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Union[str, Any]: _a : List[str] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(UpperCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _a : int = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(UpperCAmelCase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: _a : List[Any] = f.read().splitlines() if "O" not in labels: _a : Union[str, Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] ) -> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: _a : Optional[int] = f.read().splitlines() if "O" not in labels: _a : Optional[Any] = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : List[Any] = mode.value _a : Union[str, Any] = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) _a : List[str] = 1 _a : Optional[Any] = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(UpperCAmelCase__ ): _a : List[Any] = [] _a : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 return examples def _lowercase ( self : Tuple , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Dict: _a : Optional[Any] = 0 for sentence in parse_incr(UpperCAmelCase__ ): _a : List[str] = preds_list[example_id] _a : str = """""" for token in sentence: out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(UpperCAmelCase__ ) example_id += 1 def _lowercase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
294
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : str = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowercase ( lowercase__ ): lowercase__ : Dict = """trocr""" lowercase__ : str = ["""past_key_values"""] lowercase__ : str = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : List[str] , _UpperCamelCase : Union[str, Any]=50_265 , _UpperCamelCase : Any=1_024 , _UpperCamelCase : List[str]=12 , _UpperCamelCase : Optional[Any]=16 , _UpperCamelCase : Tuple=4_096 , _UpperCamelCase : Optional[Any]="gelu" , _UpperCamelCase : int=512 , _UpperCamelCase : Any=0.1 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : Optional[int]=0.0_2 , _UpperCamelCase : int=0.0 , _UpperCamelCase : Tuple=True , _UpperCamelCase : str=False , _UpperCamelCase : List[str]=True , _UpperCamelCase : Tuple=True , _UpperCamelCase : Tuple=1 , _UpperCamelCase : Optional[int]=0 , _UpperCamelCase : Dict=2 , **_UpperCamelCase : str , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = decoder_layers SCREAMING_SNAKE_CASE = decoder_attention_heads SCREAMING_SNAKE_CASE = decoder_ffn_dim SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = init_std SCREAMING_SNAKE_CASE = decoder_layerdrop SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = scale_embedding SCREAMING_SNAKE_CASE = use_learned_position_embeddings SCREAMING_SNAKE_CASE = layernorm_embedding super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
351
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase : List[Any] = logging.get_logger(__name__) class lowercase ( a ): lowercase__ : List[str] = ["""pixel_values"""] def __init__( self : List[str] , _UpperCamelCase : bool = True , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : float = None , _UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCamelCase : bool = True , _UpperCamelCase : Union[int, float] = 1 / 255 , _UpperCamelCase : bool = True , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , **_UpperCamelCase : Dict , ) -> None: '''simple docstring''' super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 384} SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size # Default value set here for backwards compatibility where the value in config is None SCREAMING_SNAKE_CASE = crop_pct if crop_pct is not None else 224 / 256 SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def __snake_case( self : Optional[Any] , _UpperCamelCase : np.ndarray , _UpperCamelCase : Dict[str, int] , _UpperCamelCase : float , _UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain 'shortest_edge' key. Got {size.keys()}" ) SCREAMING_SNAKE_CASE = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct SCREAMING_SNAKE_CASE = int(shortest_edge / crop_pct ) SCREAMING_SNAKE_CASE = get_resize_output_image_size(_UpperCamelCase , size=_UpperCamelCase , default_to_square=_UpperCamelCase ) SCREAMING_SNAKE_CASE = resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCamelCase , size=(shortest_edge, shortest_edge) , data_format=_UpperCamelCase , **_UpperCamelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCamelCase , size=(shortest_edge, shortest_edge) , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : int , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[int, float] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : Optional[Any] , ) -> List[Any]: '''simple docstring''' return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Tuple , _UpperCamelCase : np.ndarray , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Union[float, List[float]] , _UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCamelCase : List[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : List[str] , _UpperCamelCase : ImageInput , _UpperCamelCase : bool = None , _UpperCamelCase : Dict[str, int] = None , _UpperCamelCase : float = None , _UpperCamelCase : PILImageResampling = None , _UpperCamelCase : bool = None , _UpperCamelCase : float = None , _UpperCamelCase : bool = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[float, List[float]]] = None , _UpperCamelCase : Optional[Union[str, TensorType]] = None , _UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCamelCase : Any , ) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = crop_pct if crop_pct is not None else self.crop_pct SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) SCREAMING_SNAKE_CASE = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , crop_pct=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] SCREAMING_SNAKE_CASE = {"pixel_values": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
206
0
from math import pi, sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_a ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_a ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _snake_case( ) -> List[Any]: assert gamma(0.5 ) == sqrt(_a ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowercase : Optional[int] = 1.0 while num: lowercase : List[str] = float(input("""Gamma of: """)) print(F'''gamma({num}) = {gamma(num)}''') print("""\nEnter 0 to exit...""")
20
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ) -> int: UpperCAmelCase_ : List[Any] = """ylacombe/bark-small""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = """en_speaker_1""" UpperCAmelCase_ : Optional[Any] = """This is a test string""" UpperCAmelCase_ : int = """speaker_embeddings_path.json""" UpperCAmelCase_ : Any = """speaker_embeddings""" def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) UpperCAmelCase_ : Optional[int] = 35 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Dict = 8 UpperCAmelCase_ : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ) UpperCAmelCase_ : str = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
345
0
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowercase : Union[str, Any] = get_logger(__name__) class A ( enum.Enum ): __magic_name__ = '''all_checks''' __magic_name__ = '''basic_checks''' __magic_name__ = '''no_checks''' class A ( UpperCamelCase__ ): pass class A ( UpperCamelCase__ ): pass class A ( UpperCamelCase__ ): pass class A ( UpperCamelCase__ ): pass def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) A : str = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] A : Dict = ''' for ''' + verification_name if verification_name is not None else '''''' if len(UpperCamelCase__ ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class A ( UpperCamelCase__ ): pass class A ( UpperCamelCase__ ): pass class A ( UpperCamelCase__ ): pass class A ( UpperCamelCase__ ): pass def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) A : int = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(UpperCamelCase__ ) > 0: raise NonMatchingSplitsSizesError(str(UpperCamelCase__ ) ) logger.info('''All the splits matched successfully.''' ) def lowerCAmelCase_ ( snake_case__ , snake_case__ = True ): '''simple docstring''' if record_checksum: A : Union[str, Any] = shaaaa() with open(UpperCamelCase__ , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'''''' ): m.update(UpperCamelCase__ ) A : Dict = m.hexdigest() else: A : List[str] = None return {"num_bytes": os.path.getsize(UpperCamelCase__ ), "checksum": checksum} def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
367
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( __snake_case ): __magic_name__ = (UniPCMultistepScheduler,) __magic_name__ = (('''num_inference_steps''', 25),) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : str = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**SCREAMING_SNAKE_CASE ) return config def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : List[Any] = dict(self.forward_default_kwargs ) A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : int = 0.1 * sample A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] A, A : Tuple = sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Optional[Any] = dict(self.forward_default_kwargs ) A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : List[Any] = self.dummy_sample A : int = 0.1 * sample A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) A : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if scheduler is None: A : Dict = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : int = 10 A : Tuple = self.dummy_model() A : Any = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = dict(self.forward_default_kwargs ) A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config() A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): A : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] A : List[str] = dummy_past_residuals[: scheduler.config.solver_order] A : List[Any] = scheduler.timesteps[5] A : Dict = scheduler.timesteps[6] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) A : Dict = self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : int = self.full_loop() A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.scheduler_classes[0] A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = 10 A : Union[str, Any] = self.dummy_model() A : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
311
0
"""simple docstring""" def _snake_case ( UpperCamelCase : float , UpperCamelCase : list[float] ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) UpperCAmelCase : Optional[Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(UpperCamelCase ) ) return round(UpperCamelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A: Optional[Any] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[int] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[str] = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys A: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : str=1_3 ,SCREAMING_SNAKE_CASE__ : Optional[int]=3_0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 ,SCREAMING_SNAKE_CASE__ : Any=3 ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]=True ,SCREAMING_SNAKE_CASE__ : Any=3_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=5 ,SCREAMING_SNAKE_CASE__ : List[str]=4 ,SCREAMING_SNAKE_CASE__ : int=3_7 ,SCREAMING_SNAKE_CASE__ : Dict="gelu" ,SCREAMING_SNAKE_CASE__ : Dict=0.1 ,SCREAMING_SNAKE_CASE__ : List[str]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1_0 ,SCREAMING_SNAKE_CASE__ : Dict=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=3 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.6 ,SCREAMING_SNAKE_CASE__ : List[str]=None ,): __lowerCamelCase : Union[str, Any] = parent __lowerCamelCase : Optional[Any] = batch_size __lowerCamelCase : Dict = image_size __lowerCamelCase : Dict = patch_size __lowerCamelCase : List[str] = num_channels __lowerCamelCase : List[str] = is_training __lowerCamelCase : int = use_labels __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : Optional[int] = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : List[str] = intermediate_size __lowerCamelCase : int = hidden_act __lowerCamelCase : str = hidden_dropout_prob __lowerCamelCase : List[Any] = attention_probs_dropout_prob __lowerCamelCase : Any = type_sequence_label_size __lowerCamelCase : int = initializer_range __lowerCamelCase : str = mask_ratio __lowerCamelCase : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __lowerCamelCase : Optional[int] = (image_size // patch_size) ** 2 __lowerCamelCase : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCamelCase : Dict = None if self.use_labels: __lowerCamelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size) __lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Dict): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A__ ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]): __lowerCamelCase : Union[str, Any] = ViTMAEModel(config=A__) model.to(A__) model.eval() __lowerCamelCase : Optional[int] = model(A__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Dict): __lowerCamelCase : str = ViTMAEForPreTraining(A__) model.to(A__) model.eval() __lowerCamelCase : Any = model(A__) __lowerCamelCase : Tuple = (self.image_size // self.patch_size) ** 2 __lowerCamelCase : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels)) # test greyscale images __lowerCamelCase : int = 1 __lowerCamelCase : Dict = ViTMAEForPreTraining(A__) model.to(A__) model.eval() __lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __lowerCamelCase : Any = model(A__) __lowerCamelCase : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels)) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Any = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = config_and_inputs __lowerCamelCase : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): _UpperCAmelCase : Any = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _UpperCAmelCase : Optional[int] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _UpperCAmelCase : int = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : str = False _UpperCAmelCase : int = False def lowerCAmelCase ( self : int): __lowerCamelCase : List[str] = ViTMAEModelTester(self) __lowerCamelCase : int = ConfigTester(self ,config_class=A__ ,has_text_modality=A__ ,hidden_size=3_7) def lowerCAmelCase ( self : Optional[Any]): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def lowerCAmelCase ( self : Optional[Any]): pass def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Tuple = model_class(A__) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module)) __lowerCamelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ ,nn.Linear)) def lowerCAmelCase ( self : Dict): __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(A__) __lowerCamelCase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Union[str, Any] = [*signature.parameters.keys()] __lowerCamelCase : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] ,A__) def lowerCAmelCase ( self : int): __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__) def lowerCAmelCase ( self : Any): __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__) def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Any ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Optional[int]): # make masks reproducible np.random.seed(2) __lowerCamelCase : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) __lowerCamelCase : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) __lowerCamelCase : List[Any] = torch.from_numpy(A__) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __lowerCamelCase : List[str] = pt_noise super().check_pt_tf_models(A__ ,A__ ,A__) def lowerCAmelCase ( self : Tuple): __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(A__) model.to(A__) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): __lowerCamelCase : str = model(**self._prepare_for_class(A__ ,A__)) __lowerCamelCase : int = outputs[0].cpu().numpy() __lowerCamelCase : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A__) __lowerCamelCase : Any = model_class.from_pretrained(A__) model.to(A__) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): __lowerCamelCase : Any = model(**self._prepare_for_class(A__ ,A__)) # Make sure we don't have nans __lowerCamelCase : Dict = after_outputs[0].cpu().numpy() __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : List[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(A__ ,1E-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def lowerCAmelCase ( self : Any): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def lowerCAmelCase ( self : List[str]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def lowerCAmelCase ( self : List[Any]): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def lowerCAmelCase ( self : Dict): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCAmelCase ( self : Optional[int]): pass @slow def lowerCAmelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[int] = ViTMAEModel.from_pretrained(A__) self.assertIsNotNone(A__) def SCREAMING_SNAKE_CASE__ ( ) -> Any: __lowerCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self : str): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def lowerCAmelCase ( self : List[Any]): # make random mask reproducible across the PT and TF model np.random.seed(2) __lowerCamelCase : List[str] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(A__) __lowerCamelCase : str = self.default_image_processor __lowerCamelCase : Union[str, Any] = prepare_img() __lowerCamelCase : Optional[int] = image_processor(images=A__ ,return_tensors='pt').to(A__) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __lowerCamelCase : Any = ViTMAEConfig() __lowerCamelCase : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) __lowerCamelCase : Optional[int] = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): __lowerCamelCase : int = model(**A__ ,noise=torch.from_numpy(A__).to(device=A__)) # verify the logits __lowerCamelCase : List[str] = torch.Size((1, 1_9_6, 7_6_8)) self.assertEqual(outputs.logits.shape ,A__) __lowerCamelCase : Dict = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,expected_slice.to(A__) ,atol=1E-4))
359
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller a =3 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: print('Generating primitive root of p' ) while True: __lowerCamelCase : Tuple = random.randrange(3 , lowerCamelCase__ ) if pow(lowerCamelCase__ , 2 , lowerCamelCase__ ) == 1: continue if pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) __lowerCamelCase : List[str] = rabin_miller.generate_large_prime(lowerCamelCase__ ) # select large prime number. __lowerCamelCase : Dict = primitive_root(lowerCamelCase__ ) # one primitive root on modulo p. __lowerCamelCase : Optional[int] = random.randrange(3 , lowerCamelCase__ ) # private_key -> have to be greater than 2 for safety. __lowerCamelCase : List[Any] = cryptomath.find_mod_inverse(pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase : int = (key_size, e_a, e_a, p) __lowerCamelCase : str = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> None: if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print('\nWARNING:' ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" 'Use a different name or delete these files and re-run this program.' ) sys.exit() __lowerCamelCase , __lowerCamelCase : List[Any] = generate_key(lowerCamelCase__ ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , 'w' ) as fo: fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , 'w' ) as fo: fo.write(F"{private_key[0]},{private_key[1]}" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 2_0_4_8 ) print('Key files generation successful' ) if __name__ == "__main__": main()
113
0
import os def a_ ( ) -> Tuple: """simple docstring""" with open(os.path.dirname(_A ) + '/grid.txt' ) as f: snake_case__ = [] # noqa: E741 for _ in range(20 ): l.append([int(_A ) for x in f.readline().split()] ) snake_case__ = 0 # right for i in range(20 ): for j in range(17 ): snake_case__ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case__ = temp # down for i in range(17 ): for j in range(20 ): snake_case__ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case__ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case__ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case__ = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): snake_case__ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case__ = temp return maximum if __name__ == "__main__": print(solution())
307
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __A ( lowerCAmelCase_ ): if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(lowerCAmelCase_ , """_dynamo""" ): return False return isinstance(lowerCAmelCase_ , torch._dynamo.eval_frame.OptimizedModule ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ = True ): _UpperCAmelCase : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Tuple = is_compiled_module(lowerCAmelCase_ ) if is_compiled: _UpperCAmelCase : Union[str, Any] = model _UpperCAmelCase : int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : Tuple = getattr(lowerCAmelCase_ , """forward""" ) _UpperCAmelCase : Optional[int] = model.__dict__.pop("""_original_forward""" , lowerCAmelCase_ ) if original_forward is not None: while hasattr(lowerCAmelCase_ , """__wrapped__""" ): _UpperCAmelCase : int = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : int = forward if getattr(lowerCAmelCase_ , """_converted_to_transformer_engine""" , lowerCAmelCase_ ): convert_model(lowerCAmelCase_ , to_transformer_engine=lowerCAmelCase_ ) if is_compiled: _UpperCAmelCase : List[Any] = model _UpperCAmelCase : List[Any] = compiled_model return model def __A ( ): PartialState().wait_for_everyone() def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCAmelCase_ , lowerCAmelCase_ ) elif PartialState().local_process_index == 0: torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) @contextmanager def __A ( **lowerCAmelCase_ ): for key, value in kwargs.items(): _UpperCAmelCase : Optional[Any] = str(lowerCAmelCase_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __A ( lowerCAmelCase_ ): if not hasattr(lowerCAmelCase_ , """__qualname__""" ) and not hasattr(lowerCAmelCase_ , """__name__""" ): _UpperCAmelCase : Dict = getattr(lowerCAmelCase_ , """__class__""" , lowerCAmelCase_ ) if hasattr(lowerCAmelCase_ , """__qualname__""" ): return obj.__qualname__ if hasattr(lowerCAmelCase_ , """__name__""" ): return obj.__name__ return str(lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): for key, value in source.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Dict = destination.setdefault(lowerCAmelCase_ , {} ) merge_dicts(lowerCAmelCase_ , lowerCAmelCase_ ) else: _UpperCAmelCase : Optional[Any] = value return destination def __A ( lowerCAmelCase_ = None ): if port is None: _UpperCAmelCase : Dict = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
170
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowerCAmelCase_ : str = logging.get_logger(__name__) lowerCAmelCase_ : Union[str, Any] = TypeVar('''DatasetType''', Dataset, IterableDataset) def __A ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(lowerCAmelCase_ ): if not isinstance(lowerCAmelCase_ , (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " """is an empty dataset dictionary.""" ) raise ValueError( f"Dataset at position {i} has at least one split: {list(lowerCAmelCase_ )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCAmelCase_ ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase_ ).__name__}." ) if i == 0: _UpperCAmelCase , _UpperCAmelCase : Dict = ( (Dataset, IterableDataset) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , info=lowerCAmelCase_ , split=lowerCAmelCase_ , stopping_strategy=lowerCAmelCase_ ) else: return _interleave_iterable_datasets( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , info=lowerCAmelCase_ , split=lowerCAmelCase_ , stopping_strategy=lowerCAmelCase_ ) def __A ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , ): if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(lowerCAmelCase_ ): if not isinstance(lowerCAmelCase_ , (Dataset, IterableDataset) ): if isinstance(lowerCAmelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " """is an empty dataset dictionary.""" ) raise ValueError( f"Dataset at position {i} has at least one split: {list(lowerCAmelCase_ )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCAmelCase_ ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCAmelCase_ ).__name__}." ) if i == 0: _UpperCAmelCase , _UpperCAmelCase : Dict = ( (Dataset, IterableDataset) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCAmelCase_ , info=lowerCAmelCase_ , split=lowerCAmelCase_ , axis=lowerCAmelCase_ ) else: return _concatenate_iterable_datasets(lowerCAmelCase_ , info=lowerCAmelCase_ , split=lowerCAmelCase_ , axis=lowerCAmelCase_ )
170
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : List[str] = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class a__ ( A__ ): A = 'rwkv' A = {'max_position_embeddings': 'context_length'} def __init__( self : List[Any],_A : int=5_0277,_A : Any=1024,_A : List[str]=4096,_A : Union[str, Any]=32,_A : List[str]=None,_A : List[str]=None,_A : Optional[int]=1E-5,_A : Any=0,_A : Any=0,_A : Any=6,_A : Any=False,_A : Any=True,**_A : Optional[Any],): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = context_length SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE_ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE_ : Tuple = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Optional[Any] = rescale_every SCREAMING_SNAKE_CASE_ : str = use_cache SCREAMING_SNAKE_CASE_ : Any = bos_token_id SCREAMING_SNAKE_CASE_ : int = eos_token_id super().__init__( tie_word_embeddings=_A,bos_token_id=_A,eos_token_id=_A,**_A )
18
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class _lowerCAmelCase : def __init__(self ): A_ : int = {} def _a (self , lowercase , lowercase , lowercase=1 ): if self.graph.get(lowercase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A_ : Tuple = [[w, v]] if not self.graph.get(lowercase ): A_ : Union[str, Any] = [] def _a (self ): return list(self.graph ) def _a (self , lowercase , lowercase ): if self.graph.get(lowercase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase ) def _a (self , lowercase=-2 , lowercase=-1 ): if s == d: return [] A_ : Union[str, Any] = [] A_ : Dict = [] if s == -2: A_ : List[Any] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Any = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A_ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase ) != 0: A_ : List[str] = stack[len(lowercase ) - 1] else: A_ : str = ss # check if se have reached the starting point if len(lowercase ) == 0: return visited def _a (self , lowercase=-1 ): if c == -1: A_ : Tuple = floor(random() * 10000 ) + 10 for i in range(lowercase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A_ : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase , lowercase , 1 ) def _a (self , lowercase=-2 ): A_ : Union[str, Any] = deque() A_ : Tuple = [] if s == -2: A_ : int = list(self.graph )[0] d.append(lowercase ) visited.append(lowercase ) while d: A_ : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _a (self , lowercase ): A_ : Dict = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _a (self , lowercase ): return len(self.graph[u] ) def _a (self , lowercase=-2 ): A_ : Dict = [] A_ : Optional[Any] = [] if s == -2: A_ : int = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Optional[Any] = s A_ : int = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase ) != 0: A_ : int = stack[len(lowercase ) - 1] else: A_ : Optional[Any] = ss # check if se have reached the starting point if len(lowercase ) == 0: return sorted_nodes def _a (self ): A_ : Dict = [] A_ : Tuple = [] A_ : Any = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Optional[int] = -2 A_ : List[Any] = [] A_ : List[str] = s A_ : Optional[int] = False A_ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Dict = len(lowercase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : str = True if len(lowercase ) != 0: A_ : Union[str, Any] = stack[len(lowercase ) - 1] else: A_ : Tuple = False indirect_parents.append(lowercase ) A_ : Tuple = s A_ : Tuple = ss # check if se have reached the starting point if len(lowercase ) == 0: return list(lowercase ) def _a (self ): A_ : Union[str, Any] = [] A_ : str = [] A_ : List[Any] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : List[Any] = -2 A_ : Tuple = [] A_ : Optional[Any] = s A_ : Union[str, Any] = False A_ : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Dict = len(lowercase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : List[str] = True if len(lowercase ) != 0: A_ : Dict = stack[len(lowercase ) - 1] else: A_ : int = False indirect_parents.append(lowercase ) A_ : List[Any] = s A_ : int = ss # check if se have reached the starting point if len(lowercase ) == 0: return False def _a (self , lowercase=-2 , lowercase=-1 ): A_ : str = time() self.dfs(lowercase , lowercase ) A_ : Any = time() return end - begin def _a (self , lowercase=-2 ): A_ : Union[str, Any] = time() self.bfs(lowercase ) A_ : Optional[Any] = time() return end - begin class _lowerCAmelCase : def __init__(self ): A_ : List[str] = {} def _a (self , lowercase , lowercase , lowercase=1 ): # check if the u exists if self.graph.get(lowercase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A_ : int = [[w, v]] # add the other way if self.graph.get(lowercase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A_ : Any = [[w, u]] def _a (self , lowercase , lowercase ): if self.graph.get(lowercase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase ) # the other way round if self.graph.get(lowercase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase ) def _a (self , lowercase=-2 , lowercase=-1 ): if s == d: return [] A_ : Dict = [] A_ : List[Any] = [] if s == -2: A_ : str = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : List[str] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Union[str, Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase ) != 0: A_ : Dict = stack[len(lowercase ) - 1] else: A_ : List[str] = ss # check if se have reached the starting point if len(lowercase ) == 0: return visited def _a (self , lowercase=-1 ): if c == -1: A_ : Union[str, Any] = floor(random() * 10000 ) + 10 for i in range(lowercase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A_ : Union[str, Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase , lowercase , 1 ) def _a (self , lowercase=-2 ): A_ : int = deque() A_ : Optional[Any] = [] if s == -2: A_ : Optional[int] = list(self.graph )[0] d.append(lowercase ) visited.append(lowercase ) while d: A_ : Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _a (self , lowercase ): return len(self.graph[u] ) def _a (self ): A_ : Optional[int] = [] A_ : Dict = [] A_ : Union[str, Any] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : List[Any] = -2 A_ : List[str] = [] A_ : int = s A_ : Optional[int] = False A_ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : int = len(lowercase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : str = True if len(lowercase ) != 0: A_ : Any = stack[len(lowercase ) - 1] else: A_ : str = False indirect_parents.append(lowercase ) A_ : Dict = s A_ : List[Any] = ss # check if se have reached the starting point if len(lowercase ) == 0: return list(lowercase ) def _a (self ): A_ : Optional[int] = [] A_ : Optional[int] = [] A_ : List[str] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Any = -2 A_ : Any = [] A_ : Tuple = s A_ : str = False A_ : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Any = len(lowercase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : Union[str, Any] = True if len(lowercase ) != 0: A_ : List[Any] = stack[len(lowercase ) - 1] else: A_ : int = False indirect_parents.append(lowercase ) A_ : int = s A_ : int = ss # check if se have reached the starting point if len(lowercase ) == 0: return False def _a (self ): return list(self.graph ) def _a (self , lowercase=-2 , lowercase=-1 ): A_ : Any = time() self.dfs(lowercase , lowercase ) A_ : Optional[Any] = time() return end - begin def _a (self , lowercase=-2 ): A_ : List[Any] = time() self.bfs(lowercase ) A_ : List[Any] = time() return end - begin
206
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase) class A__ ( _lowerCamelCase): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None ): __lowerCAmelCase : Tuple = {} if top_k is not None: __lowerCAmelCase : Any = top_k return {}, {}, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = load_image(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ): if top_k > self.model.config.num_labels: __lowerCAmelCase : List[Any] = self.model.config.num_labels if self.framework == "pt": __lowerCAmelCase : str = model_outputs.logits.softmax(-1 )[0] __lowerCAmelCase : Optional[int] = probs.topk(_SCREAMING_SNAKE_CASE ) elif self.framework == "tf": __lowerCAmelCase : Dict = stable_softmax(model_outputs.logits , axis=-1 )[0] __lowerCAmelCase : str = tf.math.top_k(_SCREAMING_SNAKE_CASE , k=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) __lowerCAmelCase : int = scores.tolist() __lowerCAmelCase : Optional[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
350
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class A__ ( unittest.TestCase): def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __lowerCAmelCase : Optional[Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = 'sshleifer/tiny-gpt2' __lowerCAmelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Tuple = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : int = 'sgugger/tiny-distilbert-classification' __lowerCAmelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) __lowerCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) __lowerCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = 'sshleifer/tiny-gpt2' __lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : Any = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) __lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = 'patrickvonplaten/t5-tiny-random' __lowerCAmelCase : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) __lowerCAmelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'env.csv' ) , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Tuple = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'env.csv' ) ).exists() ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(_SCREAMING_SNAKE_CASE ): self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'sequential' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'cumulative' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'current' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , 'log.txt' ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'log.txt' ) ).exists() )
182
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): debug_launcher(test_script.main ) def __UpperCamelCase ( self ): debug_launcher(test_ops.main )
309
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_0 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=3_7 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_0 , snake_case_=0.02 , snake_case_=None , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Any = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Dict = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Dict = num_patches + 1 def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : List[Any] = ViTMSNModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = self.type_sequence_label_size _lowerCAmelCase : int = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case_ , labels=snake_case_ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[str] = ViTMSNForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = config_and_inputs _lowerCAmelCase : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __lowerCAmelCase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Dict = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = ViTMSNModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case_ ) _lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ViTMSNModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) _lowerCAmelCase : Dict = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(snake_case_ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Any = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Dict = model(**snake_case_ ) # verify the logits _lowerCAmelCase : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _lowerCAmelCase : Tuple = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
309
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class A_ ( snake_case_ ): '''simple docstring''' def UpperCAmelCase_ ( self : str ) -> str: UpperCAmelCase : List[Any] = tempfile.mkdtemp() UpperCAmelCase : Optional[Any] = 5 # Realm tok UpperCAmelCase : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] UpperCAmelCase : Dict = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) UpperCAmelCase : Any = os.path.join(lowercase_ , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) UpperCAmelCase : Dict = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: UpperCAmelCase : str = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: UpperCAmelCase : Optional[int] = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def UpperCAmelCase_ ( self : Dict ) -> Any: UpperCAmelCase : Dict = np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=lowercase_ , ) return block_records def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: UpperCAmelCase : str = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCAmelCase_ ( self : List[str] ) -> Dict: UpperCAmelCase : Dict = self.get_config() UpperCAmelCase : Optional[Any] = self.get_dummy_retriever() UpperCAmelCase : Union[str, Any] = retriever.tokenizer UpperCAmelCase : Tuple = np.array([0, 3] , dtype='long' ) UpperCAmelCase : Optional[int] = tokenizer(['Test question'] ).input_ids UpperCAmelCase : Tuple = tokenizer( ['the fourth'] , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , ).input_ids UpperCAmelCase : Union[str, Any] = config.reader_seq_len UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = retriever( lowercase_ , lowercase_ , answer_ids=lowercase_ , max_length=lowercase_ , return_tensors='np' ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: UpperCAmelCase : Any = self.get_config() UpperCAmelCase : Optional[int] = self.get_dummy_retriever() UpperCAmelCase : List[Any] = retriever.tokenizer UpperCAmelCase : Tuple = np.array([0, 3, 5] , dtype='long' ) UpperCAmelCase : Dict = tokenizer(['Test question'] ).input_ids UpperCAmelCase : Tuple = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , ).input_ids UpperCAmelCase : Tuple = config.reader_seq_len UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = retriever( lowercase_ , lowercase_ , answer_ids=lowercase_ , max_length=lowercase_ , return_tensors='np' ) self.assertEqual([False, True, True] , lowercase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowercase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowercase_ ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : int = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path UpperCAmelCase : str = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , B'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: UpperCAmelCase : Tuple = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCAmelCase : Tuple = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , B'This is the first record' )
353
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if len(UpperCAmelCase_ ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(UpperCAmelCase_ ) or left < -len(UpperCAmelCase_ ) or right >= len(UpperCAmelCase_ ) or right < -len(UpperCAmelCase_ ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] UpperCAmelCase : Optional[int] = (left + right) >> 1 # the middle UpperCAmelCase : Any = find_max(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # find max in range[left, mid] UpperCAmelCase : Union[str, Any] = find_max(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
280
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING snake_case : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class _snake_case ( _snake_case ): def __init__( self , **_lowerCamelCase ): super().__init__(**_lowerCamelCase ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): if "text_queries" in kwargs: a :Tuple = kwargs.pop('''text_queries''' ) if isinstance(_lowerCamelCase , (str, Image.Image) ): a :Any = {'''image''': image, '''candidate_labels''': candidate_labels} else: a :Optional[int] = image a :Optional[Any] = super().__call__(_lowerCamelCase , **_lowerCamelCase ) return results def SCREAMING_SNAKE_CASE__ ( self , **_lowerCamelCase ): a :Any = {} if "threshold" in kwargs: a :List[str] = kwargs['''threshold'''] if "top_k" in kwargs: a :Optional[int] = kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Dict = load_image(inputs['''image'''] ) a :List[Any] = inputs['''candidate_labels'''] if isinstance(_lowerCamelCase , _lowerCamelCase ): a :Tuple = candidate_labels.split(''',''' ) a :Optional[int] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_lowerCamelCase ): a :Optional[Any] = self.tokenizer(_lowerCamelCase , return_tensors=self.framework ) a :Optional[int] = self.image_processor(_lowerCamelCase , return_tensors=self.framework ) yield { "is_last": i == len(_lowerCamelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :int = model_inputs.pop('''target_size''' ) a :int = model_inputs.pop('''candidate_label''' ) a :Optional[Any] = model_inputs.pop('''is_last''' ) a :Dict = self.model(**_lowerCamelCase ) a :str = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0.1 , _lowerCamelCase=None ): a :int = [] for model_output in model_outputs: a :List[Any] = model_output['''candidate_label'''] a :Union[str, Any] = BaseModelOutput(_lowerCamelCase ) a :Union[str, Any] = self.image_processor.post_process_object_detection( outputs=_lowerCamelCase , threshold=_lowerCamelCase , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): a :str = outputs['''scores'''][index].item() a :Dict = self._get_bounding_box(outputs['''boxes'''][index][0] ) a :Tuple = {'''score''': score, '''label''': label, '''box''': box} results.append(_lowerCamelCase ) a :Optional[int] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x["score"] , reverse=_lowerCamelCase ) if top_k: a :Optional[int] = results[:top_k] return results def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) a , a , a , a :int = box.int().tolist() a :List[Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
94
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel __UpperCamelCase = HfApi() __UpperCamelCase = {} # fmt: off __UpperCamelCase = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) __UpperCamelCase = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) __UpperCamelCase = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) __UpperCamelCase = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) __UpperCamelCase = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) __UpperCamelCase = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) __UpperCamelCase = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) __UpperCamelCase = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) __UpperCamelCase = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) __UpperCamelCase = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) __UpperCamelCase = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) __UpperCamelCase = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) __UpperCamelCase = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) __UpperCamelCase = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) __UpperCamelCase = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on __UpperCamelCase = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": __UpperCamelCase = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(f'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('''CompVis'''): __UpperCamelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: __UpperCamelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) __UpperCamelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) __UpperCamelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): __UpperCamelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(f'''{mod.modelId} has passed successfully!!!''')
113
0
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase__ ( lowercase ): lowercase__ = (DPMSolverSDEScheduler,) lowercase__ = 10 def UpperCamelCase_ ( self : Dict ,**lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : Any = { 'num_train_timesteps': 1100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**lowerCamelCase_ ) return config def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] ,[0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowerCamelCase_ ,beta_end=lowerCamelCase_ ) def UpperCamelCase_ ( self : str ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.scheduler_classes[0] _UpperCamelCase : Optional[Any] = self.get_scheduler_config() _UpperCamelCase : Optional[Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase : Optional[int] = self.dummy_model() _UpperCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase : str = sample.to(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : Union[str, Any] = model(lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : Union[str, Any] = scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : Dict = output.prev_sample _UpperCamelCase : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase_ ) ) _UpperCamelCase : Optional[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.scheduler_classes[0] _UpperCamelCase : Any = self.get_scheduler_config(prediction_type='v_prediction' ) _UpperCamelCase : int = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase : Optional[Any] = self.dummy_model() _UpperCamelCase : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase : int = sample.to(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase : List[Any] = scheduler.scale_model_input(lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : Tuple = model(lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : Union[str, Any] = scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : Tuple = output.prev_sample _UpperCamelCase : Optional[Any] = torch.sum(torch.abs(lowerCamelCase_ ) ) _UpperCamelCase : int = torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : Tuple = self.scheduler_classes[0] _UpperCamelCase : List[str] = self.get_scheduler_config() _UpperCamelCase : Tuple = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ,device=lowerCamelCase_ ) _UpperCamelCase : Optional[Any] = self.dummy_model() _UpperCamelCase : Optional[Any] = self.dummy_sample_deter.to(lowerCamelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase : Any = scheduler.scale_model_input(lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : str = model(lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : List[Any] = scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : Tuple = output.prev_sample _UpperCamelCase : List[str] = torch.sum(torch.abs(lowerCamelCase_ ) ) _UpperCamelCase : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = self.scheduler_classes[0] _UpperCamelCase : Dict = self.get_scheduler_config() _UpperCamelCase : Any = scheduler_class(**lowerCamelCase_ ,use_karras_sigmas=lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ,device=lowerCamelCase_ ) _UpperCamelCase : str = self.dummy_model() _UpperCamelCase : Tuple = self.dummy_sample_deter.to(lowerCamelCase_ ) * scheduler.init_noise_sigma _UpperCamelCase : int = sample.to(lowerCamelCase_ ) for t in scheduler.timesteps: _UpperCamelCase : Tuple = scheduler.scale_model_input(lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : Tuple = model(lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : List[Any] = scheduler.step(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) _UpperCamelCase : Optional[int] = output.prev_sample _UpperCamelCase : List[Any] = torch.sum(torch.abs(lowerCamelCase_ ) ) _UpperCamelCase : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
355
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness snake_case_ : List[str] = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' snake_case_ : Tuple = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' snake_case_ : str = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' snake_case_ : str = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' snake_case_ : List[Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) ,homepage='https://github.com/openai/human-eval' ,codebase_urls=['https://github.com/openai/human-eval'] ,reference_urls=['https://github.com/openai/human-eval'] ,license=_LICENSE ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any]=[1, 10, 100] ,lowerCamelCase__ : int=4 ,lowerCamelCase__ : List[Any]=3.0 ): '''simple docstring''' if os.getenv('HF_ALLOW_CODE_EVAL' ,0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Optional[int] = Counter() _UpperCamelCase : int = 0 _UpperCamelCase : Dict = defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ ,lowerCamelCase__ ) ): for candidate in candidates: _UpperCamelCase : int = candidate + '\n' + test_case _UpperCamelCase : Optional[Any] = (test_program, timeout, task_id, completion_id[task_id]) _UpperCamelCase : Dict = executor.submit(lowerCamelCase__ ,*lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): _UpperCamelCase : Dict = future.result() results[result["task_id"]].append((result['completion_id'], result) ) _UpperCamelCase , _UpperCamelCase : List[str] = [], [] for result in results.values(): result.sort() _UpperCamelCase : Optional[Any] = [r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) _UpperCamelCase : List[str] = np.array(lowerCamelCase__ ) _UpperCamelCase : List[Any] = np.array(lowerCamelCase__ ) _UpperCamelCase : Tuple = k _UpperCamelCase : Tuple = {F'pass@{k}': estimate_pass_at_k(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def estimator(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = itertools.repeat(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) else: assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = iter(UpperCAmelCase_ ) return np.array([estimator(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , UpperCAmelCase_ ) for n, c in zip(UpperCAmelCase_ , UpperCAmelCase_ )] )
236
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _lowercase : Tuple =logging.get_logger(__name__) _lowercase : Optional[Any] ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _lowercase : List[str] =[ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def lowerCAmelCase_ ( _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Dict , _lowercase : List[str]) -> Dict: """simple docstring""" for attribute in key.split("""."""): a__ : Any = getattr(_lowercase , _lowercase) if weight_type is not None: a__ : Union[str, Any] = getattr(_lowercase , _lowercase).shape else: a__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''') if weight_type == "weight": a__ : Dict = value elif weight_type == "weight_g": a__ : List[str] = value elif weight_type == "weight_v": a__ : List[Any] = value elif weight_type == "bias": a__ : Union[str, Any] = value else: a__ : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def lowerCAmelCase_ ( _lowercase : str , _lowercase : Dict) -> Tuple: """simple docstring""" a__ : Optional[int] = [] a__ : List[str] = fairseq_model.state_dict() a__ : List[str] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a__ : int = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , ) a__ : Tuple = True else: for key, mapped_key in MAPPING.items(): a__ : int = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""")[-1] == name.split(""".""")[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""")[:-1]) != key): # special case since naming is very similar continue a__ : Any = True if "*" in mapped_key: a__ : Dict = name.split(_lowercase)[0].split(""".""")[-2] a__ : Optional[Any] = mapped_key.replace("""*""" , _lowercase) if "weight_g" in name: a__ : Any = """weight_g""" elif "weight_v" in name: a__ : int = """weight_v""" elif "bias" in name: a__ : int = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ : Any = """weight""" else: a__ : Dict = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase) continue if not is_used: unused_weights.append(_lowercase) logger.warning(F'''Unused weights: {unused_weights}''') def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : int , _lowercase : Any , _lowercase : str , _lowercase : Optional[int]) -> Optional[int]: """simple docstring""" a__ : Optional[Any] = full_name.split("""conv_layers.""")[-1] a__ : List[str] = name.split(""".""") a__ : Optional[Any] = int(items[0]) a__ : Optional[int] = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') a__ : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') a__ : Optional[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''') a__ : Any = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''') a__ : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(_lowercase) @torch.no_grad() def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : List[str]=None , _lowercase : Tuple=None , _lowercase : Dict=True) -> Union[str, Any]: """simple docstring""" if config_path is not None: a__ : Optional[int] = UniSpeechSatConfig.from_pretrained(_lowercase) else: a__ : Optional[int] = UniSpeechSatConfig() a__ : Any = """""" if is_finetuned: a__ : Any = UniSpeechSatForCTC(_lowercase) else: a__ : str = UniSpeechSatForPreTraining(_lowercase) a__ , a__ , a__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""")[:-1])}) a__ : Any = model[0].eval() recursively_load_weights(_lowercase , _lowercase) hf_wavavec.save_pretrained(_lowercase) if __name__ == "__main__": _lowercase : Optional[int] =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowercase : List[str] =parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
170
_lowercase : Optional[Any] =[sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def lowerCAmelCase_ ( _lowercase : int) -> int: """simple docstring""" a__ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowercase : list[bool | None] =[None] * 1000_0000 _lowercase : Tuple =True _lowercase : int =False def lowerCAmelCase_ ( _lowercase : int) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore a__ : Optional[Any] = chain(next_number(_lowercase)) a__ : Dict = number_chain while number < 1000_0000: a__ : Any = number_chain number *= 10 return number_chain def lowerCAmelCase_ ( _lowercase : int = 1000_0000) -> int: """simple docstring""" for i in range(1 , _lowercase): if CHAINS[i] is None: chain(i + 1) return CHAINS[:number].count(_lowercase) if __name__ == "__main__": import doctest doctest.testmod() print(f'{solution() = }')
170
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: lowercase__: Tuple = state_dict.pop(__UpperCAmelCase ) lowercase__: Any = val def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[int]: lowercase__: List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__: Optional[int] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) lowercase__: List[Any] = value else: lowercase__: List[str] = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> Tuple: lowercase__: Any = '''''' if is_panoptic: lowercase__: Union[str, Any] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__: Dict = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__: Optional[int] = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__: List[Any] = in_proj_weight[:2_5_6, :] lowercase__: List[str] = in_proj_bias[:2_5_6] lowercase__: Dict = in_proj_weight[2_5_6:5_1_2, :] lowercase__: Union[str, Any] = in_proj_bias[2_5_6:5_1_2] lowercase__: Dict = in_proj_weight[-2_5_6:, :] lowercase__: List[Any] = in_proj_bias[-2_5_6:] def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: lowercase__: Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__: Optional[int] = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: Tuple = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase__: str = '''resnet101''' if "dc5" in model_name: lowercase__: Dict = True lowercase__: Dict = '''panoptic''' in model_name if is_panoptic: lowercase__: Optional[int] = 2_5_0 else: lowercase__: int = 9_1 lowercase__: Union[str, Any] = '''huggingface/label-files''' lowercase__: int = '''coco-detection-id2label.json''' lowercase__: str = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__: Any = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowercase__: List[str] = idalabel lowercase__: Optional[int] = {v: k for k, v in idalabel.items()} # load image processor lowercase__: str = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowercase__: Any = ConditionalDetrImageProcessor(format=__UpperCAmelCase ) # prepare image lowercase__: List[Any] = prepare_img() lowercase__: Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) lowercase__: Tuple = encoding['''pixel_values'''] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub lowercase__: Dict = torch.hub.load('''DeppMeng/ConditionalDETR''' , __UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() lowercase__: Optional[int] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase__: int = '''conditional_detr.''' + src rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[Any] = rename_backbone_keys(__UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCAmelCase , is_panoptic=__UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__: Dict = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowercase__: str = state_dict.pop(__UpperCAmelCase ) lowercase__: Union[str, Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase__: str = state_dict.pop(__UpperCAmelCase ) lowercase__: Optional[int] = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowercase__: Any = state_dict.pop(__UpperCAmelCase ) lowercase__: List[Any] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase__: str = state_dict.pop(__UpperCAmelCase ) lowercase__: Dict = val # finally, create HuggingFace model and load state dict lowercase__: List[str] = ConditionalDetrForSegmentation(__UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=__UpperCAmelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion lowercase__: str = conditional_detr(__UpperCAmelCase ) lowercase__: Tuple = model(__UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __A = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
2
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self , __A ) -> List[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): lowerCAmelCase_ :Union[str, Any] = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(UpperCamelCase__ ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :List[Any] = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ :List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowerCAmelCase_ :str = TensorFlowBenchmark(UpperCamelCase__ ) lowerCAmelCase_ :List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :str = '''sgugger/tiny-distilbert-classification''' lowerCAmelCase_ :Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , only_pretrain_model=UpperCamelCase__ , ) lowerCAmelCase_ :List[str] = TensorFlowBenchmark(UpperCamelCase__ ) lowerCAmelCase_ :Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Union[str, Any] = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ :int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCAmelCase_ :Union[str, Any] = TensorFlowBenchmark(UpperCamelCase__ ) lowerCAmelCase_ :int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Optional[int] = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ :int = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ :Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowerCAmelCase_ :str = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowerCAmelCase_ :Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Dict = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ :Optional[int] = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ :Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCAmelCase_ :List[str] = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowerCAmelCase_ :int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :str = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ :int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCAmelCase_ :Optional[int] = TensorFlowBenchmark(UpperCamelCase__ ) lowerCAmelCase_ :Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ :int = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ :Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCAmelCase_ :Dict = TensorFlowBenchmark(UpperCamelCase__ , [config] ) lowerCAmelCase_ :str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :List[str] = '''patrickvonplaten/t5-tiny-random''' lowerCAmelCase_ :Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase__ ) lowerCAmelCase_ :Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCamelCase__ , ) lowerCAmelCase_ :Dict = TensorFlowBenchmark(UpperCamelCase__ , configs=[config] ) lowerCAmelCase_ :Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , """Cannot do xla on CPU.""" ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Optional[Any] = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ :Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCamelCase__ , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowerCAmelCase_ :Any = TensorFlowBenchmark(UpperCamelCase__ ) lowerCAmelCase_ :List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Optional[int] = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ :Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , save_to_csv=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCamelCase__ , """inf_time.csv""" ) , inference_memory_csv_file=os.path.join(UpperCamelCase__ , """inf_mem.csv""" ) , env_info_csv_file=os.path.join(UpperCamelCase__ , """env.csv""" ) , multi_process=UpperCamelCase__ , ) lowerCAmelCase_ :Optional[Any] = TensorFlowBenchmark(UpperCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCamelCase__ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """env.csv""" ) ).exists() ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Any = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(__A ): self.assertTrue(hasattr(UpperCamelCase__ , """sequential""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """cumulative""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """current""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ :List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCamelCase__ , """log.txt""" ) , log_print=UpperCamelCase__ , trace_memory_line_by_line=UpperCamelCase__ , eager_mode=UpperCamelCase__ , multi_process=UpperCamelCase__ , ) lowerCAmelCase_ :List[Any] = TensorFlowBenchmark(UpperCamelCase__ ) lowerCAmelCase_ :Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCamelCase__ , """log.txt""" ) ).exists() )
84
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCamelCase : Optional[Any] = ['gpt2'] __UpperCamelCase : str = 'gpt2' if is_tf_available(): class lowercase__ ( tf.Module): def __init__( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Dict = tokenizer SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = TFGPTaLMHeadModel.from_config(UpperCamelCase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def __A ( self : str , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenized['''input_ids'''].to_tensor() SCREAMING_SNAKE_CASE : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) SCREAMING_SNAKE_CASE : List[Any] = self.model(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ )['''logits'''] return outputs @require_tf @require_keras_nlp class lowercase__ ( unittest.TestCase): def __A ( self : int ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[Any] = [GPTaTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] SCREAMING_SNAKE_CASE : List[str] = [TFGPTaTokenizer.from_pretrained(UpperCamelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE : Tuple = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] SCREAMING_SNAKE_CASE : Dict = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __A ( self : str ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE : Dict = tokenizer([test_inputs] , return_tensors='''tf''' ) SCREAMING_SNAKE_CASE : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors SCREAMING_SNAKE_CASE : int = python_outputs[key].numpy() SCREAMING_SNAKE_CASE : int = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase__ , tf.intaa ) == tf_outputs_values ) ) @slow def __A ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : Optional[int] = tf.function(UpperCamelCase__ ) for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE : Optional[int] = tf.constant(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = compiled_tokenizer(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tf_tokenizer(UpperCamelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __A ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : str = ModelToSave(tokenizer=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.serving(UpperCamelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE : List[str] = Path(UpperCamelCase__ ) / '''saved.model''' tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={'''serving_default''': model.serving} ) SCREAMING_SNAKE_CASE : str = tf.saved_model.load(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = loaded_model.signatures['''serving_default'''](UpperCamelCase__ )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __A ( self : List[str] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Tuple = tf_tokenizer(UpperCamelCase__ ) # Build model with some sample inputs SCREAMING_SNAKE_CASE : Union[str, Any] = tf_tokenizer.get_config() SCREAMING_SNAKE_CASE : Optional[Any] = TFGPTaTokenizer.from_config(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = model_from_config(UpperCamelCase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __A ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run SCREAMING_SNAKE_CASE : Tuple = 12_3123 for max_length in [3, 5, 1024]: SCREAMING_SNAKE_CASE : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE : Tuple = tf_tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
182
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''sew''' def __init__( self, lowercase_=32, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_=2, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=0.1, lowercase_=0.0, lowercase_=0.1, lowercase_=0.1, lowercase_=0.02, lowercase_=1E-5, lowercase_="group", lowercase_="gelu", lowercase_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), lowercase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), lowercase_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), lowercase_=False, lowercase_=128, lowercase_=16, lowercase_=True, lowercase_=0.05, lowercase_=10, lowercase_=2, lowercase_=0.0, lowercase_=10, lowercase_=0, lowercase_="mean", lowercase_=False, lowercase_=False, lowercase_=256, lowercase_=0, lowercase_=1, lowercase_=2, **lowercase_, ) -> List[Any]: super().__init__(**lowercase_, pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_ ) snake_case = hidden_size snake_case = feat_extract_norm snake_case = feat_extract_activation snake_case = list(lowercase_ ) snake_case = list(lowercase_ ) snake_case = list(lowercase_ ) snake_case = conv_bias snake_case = num_conv_pos_embeddings snake_case = num_conv_pos_embedding_groups snake_case = len(self.conv_dim ) snake_case = num_hidden_layers snake_case = intermediate_size snake_case = squeeze_factor snake_case = hidden_act snake_case = num_attention_heads snake_case = hidden_dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = feat_proj_dropout snake_case = final_dropout snake_case = layerdrop snake_case = layer_norm_eps snake_case = initializer_range snake_case = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case = apply_spec_augment snake_case = mask_time_prob snake_case = mask_time_length snake_case = mask_time_min_masks snake_case = mask_feature_prob snake_case = mask_feature_length snake_case = mask_feature_min_masks # ctc loss snake_case = ctc_loss_reduction snake_case = ctc_zero_infinity # sequence classification snake_case = use_weighted_layer_sum snake_case = classifier_proj_size @property def _lowerCamelCase ( self ) -> Union[str, Any]: return functools.reduce(operator.mul, self.conv_stride, 1 )
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
"""simple docstring""" def lowercase ( A_ , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' a : List[Any] = [False] * len(A_ ) a : int = [] queue.append(A_ ) a : int = True while queue: a : List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A_ ) a : Dict = True a : Optional[int] = u return visited[t] def lowercase ( A_ , A_ , A_ )-> str: '''simple docstring''' a : int = [-1] * (len(A_ )) a : List[Any] = 0 while bfs(A_ , A_ , A_ , A_ ): a : Tuple = float("Inf" ) a : List[str] = sink while s != source: # Find the minimum value in select path a : List[Any] = min(A_ , graph[parent[s]][s] ) a : str = parent[s] max_flow += path_flow a : Optional[Any] = sink while v != source: a : List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow a : str = parent[v] return max_flow __lowercase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __lowercase , __lowercase = 0, 5 print(ford_fulkerson(graph, source, sink))
40
def _SCREAMING_SNAKE_CASE ( a ) -> str: if number > 0: raise ValueError('input must be a negative integer' ) __A : Optional[int] = len(bin(a )[3:] ) __A : Dict = bin(abs(a ) - (1 << binary_number_length) )[3:] __A : int = ( ( '1' + '0' * (binary_number_length - len(a )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
280
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> int: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> str: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=True ) -> List[Any]: if config_path is not None: snake_case = HubertConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = HubertConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = HubertForCTC(__lowerCAmelCase ) else: snake_case = HubertModel(__lowerCAmelCase ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _SCREAMING_SNAKE_CASE = "sshleifer/student_marian_en_ro_6_1" _SCREAMING_SNAKE_CASE = "sshleifer/tiny-mbart" @require_torch class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : int , __snake_case : List[str]=False , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=True , __snake_case : int=True , __snake_case : Tuple=True , )-> Tuple: snake_case = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__snake_case , num_train_epochs=1 , distributed=__snake_case , extra_args_str=__snake_case , predict_with_generate=__snake_case , do_train=__snake_case , do_eval=__snake_case , do_predict=__snake_case , ) snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history if not do_eval: return snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats snake_case = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def lowerCAmelCase ( self : Tuple )-> int: self.run_seqaseq_quick() @require_torch_multi_gpu def lowerCAmelCase ( self : Union[str, Any] )-> Dict: self.run_seqaseq_quick(distributed=__snake_case ) @require_torch_multi_gpu def lowerCAmelCase ( self : str )-> List[Any]: self.run_seqaseq_quick(distributed=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> Dict: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : int )-> str: self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__snake_case ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def lowerCAmelCase ( self : Any )-> List[Any]: self.run_seqaseq_quick( distributed=__snake_case , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__snake_case ) @require_apex @require_torch_gpu def lowerCAmelCase ( self : Tuple )-> Union[str, Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__snake_case , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def lowerCAmelCase ( self : List[str] , __snake_case : str )-> Optional[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout snake_case = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } snake_case = experiments[experiment_id] snake_case = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} snake_case = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__snake_case , extra_args_str=data["""extra_args_str"""] ) snake_case = len(re.findall(__snake_case , cl.err ) ) self.assertEqual(__snake_case , data["""n_matches"""] ) @slow def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=10 , distributed=__snake_case , ) # Check metrics snake_case = TrainerState.load_from_json(os.path.join(__snake_case , """trainer_state.json""" ) ).log_history snake_case = [log for log in logs if """eval_loss""" in log.keys()] snake_case = eval_metrics[0] snake_case = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __snake_case ) # test if do_predict saves generations and metrics snake_case = os.listdir(__snake_case ) snake_case = {os.path.basename(__snake_case ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def lowerCAmelCase ( self : str )-> Any: from transformers.training_args import OptimizerNames def train_and_return_metrics(__snake_case : str ) -> Tuple[int, float]: snake_case = """--skip_memory_metrics 0""" snake_case = self.run_trainer( max_len=1_28 , model_name=__snake_case , learning_rate=3e-4 , num_train_epochs=1 , optim=__snake_case , distributed=__snake_case , extra_args_str=__snake_case , do_eval=__snake_case , do_predict=__snake_case , n_gpus_to_use=1 , ) # Check metrics snake_case = TrainerState.load_from_json(Path(__snake_case , """trainer_state.json""" ) ).log_history snake_case = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) snake_case = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) snake_case = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) snake_case , snake_case , snake_case = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) snake_case = gpu_alloc_mem_orig - gpu_alloc_mem_bnb snake_case = gpu_peak_mem_orig + gpu_alloc_mem_orig snake_case = gpu_peak_mem_bnb + gpu_alloc_mem_bnb snake_case = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings snake_case = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __snake_case , __snake_case , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( __snake_case , __snake_case , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( __snake_case , __snake_case , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def lowerCAmelCase ( self : int , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : float = 3e-3 , __snake_case : str = "adafactor" , __snake_case : bool = False , __snake_case : str = None , __snake_case : int = 0 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : bool = True , __snake_case : int = None , )-> Dict: snake_case = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" snake_case = self.get_auto_remove_tmp_dir() snake_case = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(__snake_case )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(__snake_case )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() snake_case = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(__snake_case )} '''.split() snake_case = """ --do_predict """.split() snake_case = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: snake_case = get_gpu_count() snake_case = get_torch_dist_unique_port() snake_case = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() snake_case = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__snake_case , env=self.get_env() ) else: snake_case = ["""run_translation.py"""] + args with patch.object(__snake_case , """argv""" , __snake_case ): main() return output_dir
3
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[Any] = '' __UpperCAmelCase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __UpperCAmelCase : str = None # compression type in fsspec. ex: "gzip" __UpperCAmelCase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__(self : List[str] , __UpperCAmelCase : str = "" , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[dict] = None , **__UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" super().__init__(self , **__UpperCAmelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase__ = fsspec.open( __UpperCAmelCase , mode="rb" , protocol=__UpperCAmelCase , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase__ = os.path.basename(self.file.path.split("::" )[0] ) UpperCAmelCase__ = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) UpperCAmelCase__ = None @classmethod def lowercase_ (cls : int , __UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" return super()._strip_protocol(__UpperCAmelCase ).lstrip("/" ) def lowercase_ (self : Any ) -> Any: """simple docstring""" if self.dir_cache is None: UpperCAmelCase__ = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} UpperCAmelCase__ = {f["name"]: f} def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" return self.file.open().read() def lowercase_ (self : Any , __UpperCAmelCase : str , __UpperCAmelCase : str = "rb" , __UpperCAmelCase : Any=None , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : str , ) -> Dict: """simple docstring""" UpperCAmelCase__ = self._strip_protocol(__UpperCAmelCase ) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[int] = 'bz2' __UpperCAmelCase : Dict = 'bz2' __UpperCAmelCase : Dict = '.bz2' class A ( UpperCAmelCase_ ): __UpperCAmelCase : Optional[int] = 'gzip' __UpperCAmelCase : Optional[Any] = 'gzip' __UpperCAmelCase : Union[str, Any] = '.gz' class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = 'lz4' __UpperCAmelCase : str = 'lz4' __UpperCAmelCase : Any = '.lz4' class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = 'xz' __UpperCAmelCase : int = 'xz' __UpperCAmelCase : Union[str, Any] = '.xz' class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = 'zstd' __UpperCAmelCase : str = 'zstd' __UpperCAmelCase : Optional[Any] = '.zst' def __init__(self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : str = "rb" , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[dict] = None , __UpperCAmelCase : int = DEFAULT_BLOCK_SIZE , **__UpperCAmelCase : List[str] , ) -> List[str]: """simple docstring""" super().__init__( fo=__UpperCAmelCase , mode=__UpperCAmelCase , target_protocol=__UpperCAmelCase , target_options=__UpperCAmelCase , block_size=__UpperCAmelCase , **__UpperCAmelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase__ = self.file.__enter__ class A : def __init__(self : List[Any] , __UpperCAmelCase : Any ) -> List[str]: """simple docstring""" UpperCAmelCase__ = file_ def __enter__(self : List[str] ) -> Tuple: """simple docstring""" self._file.__enter__() return self def __exit__(self : int , *__UpperCAmelCase : Any , **__UpperCAmelCase : Tuple ) -> str: """simple docstring""" self._file.__exit__(*__UpperCAmelCase , **__UpperCAmelCase ) def __iter__(self : str ) -> List[Any]: """simple docstring""" return iter(self._file ) def lowercase_ (self : int ) -> Any: """simple docstring""" return next(self._file ) def __getattr__(self : Optional[int] , __UpperCAmelCase : Any ) -> Dict: """simple docstring""" return getattr(self._file , __UpperCAmelCase ) def fixed_enter(*__UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): return WrappedFile(_enter(*__UpperCAmelCase , **__UpperCAmelCase ) ) UpperCAmelCase__ = fixed_enter
65
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Dict = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _UpperCAmelCase : Union[str, Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] _UpperCAmelCase : List[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class __lowerCAmelCase ( lowerCAmelCase): _a = '''whisper''' _a = ['''past_key_values'''] _a = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self: int , _lowerCAmelCase: str=5_18_65 , _lowerCAmelCase: str=80 , _lowerCAmelCase: int=6 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=6 , _lowerCAmelCase: List[Any]=4 , _lowerCAmelCase: Any=15_36 , _lowerCAmelCase: Union[str, Any]=15_36 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: str=0.0 , _lowerCAmelCase: List[Any]=5_02_57 , _lowerCAmelCase: Optional[Any]=True , _lowerCAmelCase: Tuple=True , _lowerCAmelCase: str="gelu" , _lowerCAmelCase: Dict=2_56 , _lowerCAmelCase: Union[str, Any]=0.0 , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: Dict=0.0 , _lowerCAmelCase: Union[str, Any]=0.02 , _lowerCAmelCase: Any=False , _lowerCAmelCase: List[str]=15_00 , _lowerCAmelCase: Tuple=4_48 , _lowerCAmelCase: Optional[Any]=5_02_56 , _lowerCAmelCase: Dict=5_02_56 , _lowerCAmelCase: List[Any]=5_02_56 , _lowerCAmelCase: Union[str, Any]=None , _lowerCAmelCase: str=[2_20, 5_02_56] , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: Optional[int]=2_56 , _lowerCAmelCase: int=False , _lowerCAmelCase: Dict=0.05 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: List[str]=2 , _lowerCAmelCase: Tuple=0.0 , _lowerCAmelCase: str=10 , _lowerCAmelCase: Union[str, Any]=0 , _lowerCAmelCase: List[Any]=7 , **_lowerCAmelCase: Union[str, Any] , ): lowercase :Optional[Any] = vocab_size lowercase :Optional[int] = num_mel_bins lowercase :Union[str, Any] = d_model lowercase :List[Any] = encoder_layers lowercase :Optional[Any] = encoder_attention_heads lowercase :Union[str, Any] = decoder_layers lowercase :List[str] = decoder_attention_heads lowercase :Optional[int] = decoder_ffn_dim lowercase :List[Any] = encoder_ffn_dim lowercase :Optional[Any] = dropout lowercase :Tuple = attention_dropout lowercase :Tuple = activation_dropout lowercase :Optional[Any] = activation_function lowercase :Any = init_std lowercase :Optional[int] = encoder_layerdrop lowercase :Optional[int] = decoder_layerdrop lowercase :str = use_cache lowercase :Optional[Any] = encoder_layers lowercase :List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase :Any = max_source_positions lowercase :Optional[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase :int = classifier_proj_size lowercase :List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase :Tuple = apply_spec_augment lowercase :int = mask_time_prob lowercase :Union[str, Any] = mask_time_length lowercase :Dict = mask_time_min_masks lowercase :Tuple = mask_feature_prob lowercase :List[Any] = mask_feature_length lowercase :List[Any] = mask_feature_min_masks lowercase :Any = median_filter_width super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , suppress_tokens=_lowerCAmelCase , begin_suppress_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) class __lowerCAmelCase ( lowerCAmelCase): @property def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Tuple = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: lowercase :List[Any] = {0: "batch"} else: lowercase :str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) return common_inputs def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _lowerCAmelCase: int = -1 , _lowerCAmelCase: int = -1 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional["TensorType"] = None , _lowerCAmelCase: int = 2_20_50 , _lowerCAmelCase: float = 5.0 , _lowerCAmelCase: int = 2_20 , ): lowercase :List[str] = OrderedDict() lowercase :str = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_lowerCAmelCase , framework=_lowerCAmelCase , sampling_rate=_lowerCAmelCase , time_duration=_lowerCAmelCase , frequency=_lowerCAmelCase , ) lowercase :Optional[Any] = encoder_inputs["input_features"].shape[2] lowercase :List[str] = encoder_sequence_length // 2 if self.use_past else seq_length lowercase :Dict = super().generate_dummy_inputs( preprocessor.tokenizer , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase :str = encoder_inputs.pop("input_features" ) lowercase :Optional[int] = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: lowercase :List[str] = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def SCREAMING_SNAKE_CASE ( self: str ): return 1e-3
236
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED _lowerCamelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } _lowerCamelCase : List[str] = { "allenai/led-base-16384": 1_6_3_8_4, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : str = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) _lowerCAmelCase : Any = bs[:] _lowerCAmelCase : str = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase : int = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def _UpperCAmelCase (UpperCamelCase_ : Any ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = set() _lowerCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Dict = char return pairs class __snake_case (_a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any]="replace" , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Any="<s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : Tuple="<mask>" , _UpperCAmelCase : int=False , **_UpperCAmelCase : Optional[Any] , ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Any = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token _lowerCAmelCase : List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token _lowerCAmelCase : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token _lowerCAmelCase : Union[str, Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token _lowerCAmelCase : Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token _lowerCAmelCase : Any = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Tuple = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle: _lowerCAmelCase : Dict = json.load(_UpperCAmelCase ) _lowerCAmelCase : Any = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Optional[Any] = errors # how to handle errors in decoding _lowerCAmelCase : Dict = bytes_to_unicode() _lowerCAmelCase : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding="""utf-8""" ) as merges_handle: _lowerCAmelCase : Tuple = merges_handle.read().split("""\n""" )[1:-1] _lowerCAmelCase : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase : Union[str, Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _lowerCAmelCase : Dict = {} _lowerCAmelCase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: '''simple docstring''' return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : List[str] ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : Any = tuple(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: _lowerCAmelCase : Optional[int] = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase , _lowerCAmelCase : Optional[int] = bigram _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : int = 0 while i < len(_UpperCAmelCase ): try: _lowerCAmelCase : Optional[int] = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : List[str] = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : Tuple = tuple(_UpperCAmelCase ) _lowerCAmelCase : Dict = new_word if len(_UpperCAmelCase ) == 1: break else: _lowerCAmelCase : Union[str, Any] = get_pairs(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = """ """.join(_UpperCAmelCase ) _lowerCAmelCase : Any = word return word def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : int ) -> str: '''simple docstring''' _lowerCAmelCase : List[Any] = [] for token in re.findall(self.pat , _UpperCAmelCase ): _lowerCAmelCase : Union[str, Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(""" """ ) ) return bpe_tokens def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = """""".join(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + """\n""" ) _lowerCAmelCase : Dict = 0 with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) _lowerCAmelCase : str = token_index writer.write(""" """.join(_UpperCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Tuple = [self.cls_token_id] _lowerCAmelCase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=False , **_UpperCAmelCase : Any ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): _lowerCAmelCase : Optional[Any] = """ """ + text return (text, kwargs) def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' _lowerCAmelCase : List[Any] = super()._pad( encoded_inputs=_UpperCAmelCase , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: _lowerCAmelCase : List[Any] = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCAmelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCAmelCase : str = len(encoded_inputs["""global_attention_mask"""] ) != len(_UpperCAmelCase ) if needs_to_be_padded: _lowerCAmelCase : Optional[Any] = len(_UpperCAmelCase ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCAmelCase : Union[str, Any] = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": _lowerCAmelCase : List[Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
159
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Optional[Any] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ["ConditionalDetrFeatureExtractor"] _lowerCamelCase : Optional[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
159
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase : Union[str, Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[int]: """simple docstring""" lowercase__ = state_dict.pop(A ) lowercase__ = val def _SCREAMING_SNAKE_CASE (A ) -> str: """simple docstring""" lowercase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) lowercase__ = value else: lowercase__ = value return new_state_dict def _SCREAMING_SNAKE_CASE (A , A=False ) -> Any: """simple docstring""" lowercase__ = '''''' if is_panoptic: lowercase__ = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) lowercase__ = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] def _SCREAMING_SNAKE_CASE () -> Any: """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" lowercase__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowercase__ = '''resnet101''' if "dc5" in model_name: lowercase__ = True lowercase__ = '''panoptic''' in model_name if is_panoptic: lowercase__ = 250 else: lowercase__ = 91 lowercase__ = '''huggingface/label-files''' lowercase__ = '''coco-detection-id2label.json''' lowercase__ = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(A ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # load image processor lowercase__ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowercase__ = ConditionalDetrImageProcessor(format=A ) # prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=A , return_tensors='''pt''' ) lowercase__ = encoding['''pixel_values'''] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub lowercase__ = torch.hub.load('''DeppMeng/ConditionalDETR''' , A , pretrained=A ).eval() lowercase__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowercase__ = '''conditional_detr.''' + src rename_key(A , A , A ) lowercase__ = rename_backbone_keys(A ) # query, key and value matrices need special treatment read_in_q_k_v(A , is_panoptic=A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowercase__ = state_dict.pop(A ) lowercase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase__ = state_dict.pop(A ) lowercase__ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowercase__ = state_dict.pop(A ) lowercase__ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase__ = state_dict.pop(A ) lowercase__ = val # finally, create HuggingFace model and load state dict lowercase__ = ConditionalDetrForSegmentation(A ) if is_panoptic else ConditionalDetrForObjectDetection(A ) model.load_state_dict(A ) model.eval() model.push_to_hub(repo_id=A , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion lowercase__ = conditional_detr(A ) lowercase__ = model(A ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCamelCase : List[str] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
2
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] ='T5Config' def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : int = jnp.zeros_like(A__ ) SCREAMING_SNAKE_CASE_ : str = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) SCREAMING_SNAKE_CASE_ : List[str] = shifted_input_ids.at[:, 0].set(A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.where(shifted_input_ids == -1_0_0, A__, A__ ) return shifted_input_ids class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """mt5""" _UpperCAmelCase = MTaConfig class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """mt5""" _UpperCAmelCase = MTaConfig class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """mt5""" _UpperCAmelCase = MTaConfig
354
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = 42 class __lowercase (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = True @register_to_config def __init__( self , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = ("DownEncoderBlock2D",) , lowerCAmelCase__ = ("UpDecoderBlock2D",) , lowerCAmelCase__ = (6_4,) , lowerCAmelCase__ = 1 , lowerCAmelCase__ = "silu" , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 0.18_215 , ): """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE_ : Dict = Encoder( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , down_block_types=lowerCAmelCase__ , block_out_channels=lowerCAmelCase__ , layers_per_block=lowerCAmelCase__ , act_fn=lowerCAmelCase__ , norm_num_groups=lowerCAmelCase__ , double_z=lowerCAmelCase__ , ) # pass init params to Decoder SCREAMING_SNAKE_CASE_ : List[str] = Decoder( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , up_block_types=lowerCAmelCase__ , block_out_channels=lowerCAmelCase__ , layers_per_block=lowerCAmelCase__ , norm_num_groups=lowerCAmelCase__ , act_fn=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : List[str] = False # only relevant if vae tiling is enabled SCREAMING_SNAKE_CASE_ : Any = self.config.sample_size SCREAMING_SNAKE_CASE_ : Tuple = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) SCREAMING_SNAKE_CASE_ : Any = 0.25 def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ): """simple docstring""" if isinstance(lowerCAmelCase__ , (Encoder, Decoder) ): SCREAMING_SNAKE_CASE_ : List[Any] = value def UpperCamelCase__ ( self , lowerCAmelCase__ = True ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_tiling def UpperCamelCase__ ( self ): """simple docstring""" self.enable_tiling(lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = True def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = {} def fn_recursive_add_processors(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , 'set_processor' ): SCREAMING_SNAKE_CASE_ : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , lowerCAmelCase__ , lowerCAmelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return processors def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase__ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , 'set_processor' ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): module.set_processor(lowerCAmelCase__ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , lowerCAmelCase__ , lowerCAmelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = True ): """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) if self.use_slicing and x.shape[0] > 1: SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.encoder(lowerCAmelCase__ ) for x_slice in x.split(1 )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE_ : Any = self.encoder(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.quant_conv(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = DiagonalGaussianDistribution(lowerCAmelCase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = True ): """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.post_quant_conv(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = self.decoder(lowerCAmelCase__ ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase__ ) @apply_forward_hook def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = True ): """simple docstring""" if self.use_slicing and z.shape[0] > 1: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self._decode(lowerCAmelCase__ ).sample for z_slice in z.split(1 )] SCREAMING_SNAKE_CASE_ : Optional[int] = torch.cat(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE_ : Dict = self._decode(lowerCAmelCase__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = min(a.shape[2] , b.shape[2] , lowerCAmelCase__ ) for y in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : int = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = min(a.shape[3] , b.shape[3] , lowerCAmelCase__ ) for x in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = True ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = int(self.tile_latent_min_size * self.tile_overlap_factor ) SCREAMING_SNAKE_CASE_ : Dict = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. SCREAMING_SNAKE_CASE_ : Dict = [] for i in range(0 , x.shape[2] , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : str = [] for j in range(0 , x.shape[3] , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] SCREAMING_SNAKE_CASE_ : str = self.encoder(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = self.quant_conv(lowerCAmelCase__ ) row.append(lowerCAmelCase__ ) rows.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for i, row in enumerate(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for j, tile in enumerate(lowerCAmelCase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: SCREAMING_SNAKE_CASE_ : Any = self.blend_v(rows[i - 1][j] , lowerCAmelCase__ , lowerCAmelCase__ ) if j > 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.blend_h(row[j - 1] , lowerCAmelCase__ , lowerCAmelCase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCAmelCase__ , dim=3 ) ) SCREAMING_SNAKE_CASE_ : str = torch.cat(lowerCAmelCase__ , dim=2 ) SCREAMING_SNAKE_CASE_ : int = DiagonalGaussianDistribution(lowerCAmelCase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = True ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = int(self.tile_sample_min_size * self.tile_overlap_factor ) SCREAMING_SNAKE_CASE_ : List[str] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for i in range(0 , z.shape[2] , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for j in range(0 , z.shape[3] , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : str = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] SCREAMING_SNAKE_CASE_ : Any = self.post_quant_conv(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.decoder(lowerCAmelCase__ ) row.append(lowerCAmelCase__ ) rows.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = [] for i, row in enumerate(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for j, tile in enumerate(lowerCAmelCase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: SCREAMING_SNAKE_CASE_ : str = self.blend_v(rows[i - 1][j] , lowerCAmelCase__ , lowerCAmelCase__ ) if j > 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.blend_h(row[j - 1] , lowerCAmelCase__ , lowerCAmelCase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCAmelCase__ , dim=3 ) ) SCREAMING_SNAKE_CASE_ : Dict = torch.cat(lowerCAmelCase__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = sample SCREAMING_SNAKE_CASE_ : Optional[Any] = self.encode(lowerCAmelCase__ ).latent_dist if sample_posterior: SCREAMING_SNAKE_CASE_ : Dict = posterior.sample(generator=lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE_ : Tuple = posterior.mode() SCREAMING_SNAKE_CASE_ : str = self.decode(lowerCAmelCase__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase__ )
162
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__ ( _lowerCAmelCase): '''simple docstring''' def __init__( self :int , a :TransformeraDModel , a :AutoencoderKL , a :KarrasDiffusionSchedulers , a :Optional[Dict[int, str]] = None , ) -> str: super().__init__() self.register_modules(transformer=_lowercase , vae=_lowercase , scheduler=_lowercase ) # create a imagenet -> id dictionary for easier use __UpperCamelCase : Any = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): __UpperCamelCase : Optional[int] = int(_lowercase ) __UpperCamelCase : Dict = dict(sorted(self.labels.items() ) ) def _lowerCamelCase ( self :str , a :Union[str, List[str]] ) -> Optional[Any]: if not isinstance(_lowercase , _lowercase ): __UpperCamelCase : Optional[int] = list(_lowercase ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self :List[str] , a :List[int] , a :float = 4.0 , a :Optional[Union[torch.Generator, List[torch.Generator]]] = None , a :int = 5_0 , a :Optional[str] = "pil" , a :bool = True , ) -> str: __UpperCamelCase : Dict = len(_lowercase ) __UpperCamelCase : List[str] = self.transformer.config.sample_size __UpperCamelCase : List[str] = self.transformer.config.in_channels __UpperCamelCase : Union[str, Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_lowercase , device=self.device , dtype=self.transformer.dtype , ) __UpperCamelCase : List[Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __UpperCamelCase : Tuple = torch.tensor(_lowercase , device=self.device ).reshape(-1 ) __UpperCamelCase : Dict = torch.tensor([1_0_0_0] * batch_size , device=self.device ) __UpperCamelCase : Tuple = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_lowercase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __UpperCamelCase : Dict = latent_model_input[: len(_lowercase ) // 2] __UpperCamelCase : Optional[Any] = torch.cat([half, half] , dim=0 ) __UpperCamelCase : str = self.scheduler.scale_model_input(_lowercase , _lowercase ) __UpperCamelCase : Any = t if not torch.is_tensor(_lowercase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCamelCase : Optional[int] = latent_model_input.device.type == "mps" if isinstance(_lowercase , _lowercase ): __UpperCamelCase : List[Any] = torch.floataa if is_mps else torch.floataa else: __UpperCamelCase : Dict = torch.intaa if is_mps else torch.intaa __UpperCamelCase : Tuple = torch.tensor([timesteps] , dtype=_lowercase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __UpperCamelCase : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase : Tuple = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __UpperCamelCase : Optional[Any] = self.transformer( _lowercase , timestep=_lowercase , class_labels=_lowercase ).sample # perform guidance if guidance_scale > 1: __UpperCamelCase , __UpperCamelCase : str = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCamelCase , __UpperCamelCase : Dict = torch.split(_lowercase , len(_lowercase ) // 2 , dim=0 ) __UpperCamelCase : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCamelCase : List[str] = torch.cat([half_eps, half_eps] , dim=0 ) __UpperCamelCase : int = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCamelCase , __UpperCamelCase : List[Any] = torch.split(_lowercase , _lowercase , dim=1 ) else: __UpperCamelCase : List[Any] = noise_pred # compute previous image: x_t -> x_t-1 __UpperCamelCase : Optional[Any] = self.scheduler.step(_lowercase , _lowercase , _lowercase ).prev_sample if guidance_scale > 1: __UpperCamelCase , __UpperCamelCase : List[str] = latent_model_input.chunk(2 , dim=0 ) else: __UpperCamelCase : Any = latent_model_input __UpperCamelCase : Any = 1 / self.vae.config.scaling_factor * latents __UpperCamelCase : Tuple = self.vae.decode(_lowercase ).sample __UpperCamelCase : str = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCamelCase : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCamelCase : List[str] = self.numpy_to_pil(_lowercase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_lowercase )
232
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : def __init__( self : Tuple , _lowercase : str , _lowercase : str ): __UpperCAmelCase , __UpperCAmelCase = text, pattern __UpperCAmelCase , __UpperCAmelCase = len(_lowercase ), len(_lowercase ) def a ( self : Optional[int] , _lowercase : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def a ( self : int , _lowercase : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def a ( self : Optional[Any] ): # searches pattern in text and returns index positions __UpperCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCAmelCase = self.mismatch_in_text(_lowercase ) if mismatch_index == -1: positions.append(_lowercase ) else: __UpperCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase : str = 'ABAABA' _lowercase : Tuple = 'AB' _lowercase : Dict = BoyerMooreSearch(text, pattern) _lowercase : Any = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
332
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """rwkv""" lowerCAmelCase__ = {"""max_position_embeddings""": """context_length"""} def __init__( self : Union[str, Any] , _lowerCAmelCase : Any=5_0_2_7_7 , _lowerCAmelCase : Tuple=1_0_2_4 , _lowerCAmelCase : str=4_0_9_6 , _lowerCAmelCase : Dict=3_2 , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any=1e-5 , _lowerCAmelCase : Union[str, Any]=0 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : List[Any]=6 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Any=True , **_lowerCAmelCase : Optional[int] , ): '''simple docstring''' __lowercase =vocab_size __lowercase =context_length __lowercase =hidden_size __lowercase =num_hidden_layers __lowercase =attention_hidden_size if attention_hidden_size is not None else hidden_size __lowercase =intermediate_size if intermediate_size is not None else 4 * hidden_size __lowercase =layer_norm_epsilon __lowercase =rescale_every __lowercase =use_cache __lowercase =bos_token_id __lowercase =eos_token_id super().__init__( tie_word_embeddings=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase)
48
'''simple docstring''' from sklearn.metrics import fa_score import datasets lowerCamelCase = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ lowerCamelCase = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ lowerCamelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCamelCase ( self : Any): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32')), 'references': datasets.Sequence(datasets.Value('int32')), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def __lowerCamelCase ( self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : List[Any]="binary" , _lowerCAmelCase : Tuple=None): '''simple docstring''' __lowercase =fa_score( _lowerCAmelCase , _lowerCAmelCase , labels=_lowerCAmelCase , pos_label=_lowerCAmelCase , average=_lowerCAmelCase , sample_weight=_lowerCAmelCase) return {"f1": float(_lowerCAmelCase) if score.size == 1 else score}
48
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase : str = logging.get_logger(__name__) lowercase : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' for attribute in key.split('''.''' ): A : Dict = getattr(snake_case__ , snake_case__ ) if weight_type is not None: A : Dict = getattr(snake_case__ , snake_case__ ).shape else: A : str = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": A : List[str] = value elif weight_type == "weight_g": A : str = value elif weight_type == "weight_v": A : Optional[Any] = value elif weight_type == "bias": A : List[str] = value else: A : Tuple = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Union[str, Any] = [] A : Tuple = fairseq_model.state_dict() A : Union[str, Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A : Any = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == '''group''' , ) A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): A : List[str] = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0] and not is_finetuned): A : str = True if "*" in mapped_key: A : str = name.split(snake_case__ )[0].split('''.''' )[-2] A : int = mapped_key.replace('''*''' , snake_case__ ) if "weight_g" in name: A : List[str] = '''weight_g''' elif "weight_v" in name: A : str = '''weight_v''' elif "weight" in name: A : List[str] = '''weight''' elif "bias" in name: A : Optional[Any] = '''bias''' else: A : Optional[Any] = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) continue if not is_used: unused_weights.append(snake_case__ ) logger.warning(F'Unused weights: {unused_weights}' ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[int] = full_name.split('''conv_layers.''' )[-1] A : Dict = name.split('''.''' ) A : Union[str, Any] = int(items[0] ) A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A : int = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A : Any = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A : Union[str, Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A : Tuple = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case__ ) @torch.no_grad() def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=True ): '''simple docstring''' if config_path is not None: A : Tuple = HubertConfig.from_pretrained(snake_case__ ) else: A : Dict = HubertConfig() if is_finetuned: if dict_path: A : Any = Dictionary.load(snake_case__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A : str = target_dict.pad_index A : Optional[int] = target_dict.bos_index A : Optional[int] = target_dict.eos_index A : Optional[int] = len(target_dict.symbols ) A : Union[str, Any] = os.path.join(snake_case__ , '''vocab.json''' ) if not os.path.isdir(snake_case__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case__ ) ) return os.makedirs(snake_case__ , exist_ok=snake_case__ ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , snake_case__ ) A : Optional[int] = WavaVecaCTCTokenizer( snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case__ , ) A : Optional[Any] = True if config.feat_extract_norm == '''layer''' else False A : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , ) A : Dict = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ ) processor.save_pretrained(snake_case__ ) A : Union[str, Any] = HubertForCTC(snake_case__ ) else: A : List[str] = HubertModel(snake_case__ ) if is_finetuned: A, A, A : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: A, A, A : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A : int = model[0].eval() recursively_load_weights(snake_case__ , snake_case__ , snake_case__ ) hf_wavavec.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowercase : Dict = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowercase : str = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class A ( __snake_case ): def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) self.check_model_type(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A, A : Dict = {}, {} if padding is not None: A : List[str] = padding if truncation is not None: A : Dict = truncation if top_k is not None: A : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , (Image.Image, str) ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : int = {'''image''': image, '''question''': question} else: A : Any = image A : Any = super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return results def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" A : Union[str, Any] = load_image(inputs['''image'''] ) A : Optional[Any] = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE ) A : Dict = self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(SCREAMING_SNAKE_CASE ) return model_inputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : List[Any] = self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> int: """simple docstring""" if top_k > self.model.config.num_labels: A : Dict = self.model.config.num_labels if self.framework == "pt": A : Optional[int] = model_outputs.logits.sigmoid()[0] A, A : int = probs.topk(SCREAMING_SNAKE_CASE ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) A : int = scores.tolist() A : List[str] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
3
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class __lowerCamelCase ( lowerCamelCase__ ): '''simple docstring''' a_ : List[Any] = ['pixel_values'] def __init__( self : Optional[int] , a_ : Dict = True , a_ : Tuple = None , a_ : int = PILImageResampling.BILINEAR , a_ : int = True , a_ : int = None , a_ : int = True , a_ : str = 1 / 2_55 , a_ : List[str] = True , a_ : Optional[int] = None , a_ : Any = None , **a_ : Tuple , ): super().__init__(**a_ ) lowerCAmelCase_ : List[Any] = size if size is not None else {"shortest_edge": 2_56} lowerCAmelCase_ : Dict = get_size_dict(a_ , default_to_square=a_ ) lowerCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} lowerCAmelCase_ : Optional[int] = get_size_dict(a_ ) lowerCAmelCase_ : Tuple = do_resize lowerCAmelCase_ : int = size lowerCAmelCase_ : Optional[int] = resample lowerCAmelCase_ : Dict = do_center_crop lowerCAmelCase_ : List[Any] = crop_size lowerCAmelCase_ : str = do_rescale lowerCAmelCase_ : int = rescale_factor lowerCAmelCase_ : Optional[Any] = do_normalize lowerCAmelCase_ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase ( self : Tuple , a_ : List[Any] , a_ : Any , a_ : Tuple = PILImageResampling.BICUBIC , a_ : List[str] = None , **a_ : List[Any] , ): lowerCAmelCase_ : Dict = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCAmelCase_ : Union[str, Any] = get_resize_output_image_size(a_ , size=size["shortest_edge"] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def lowerCamelCase ( self : int , a_ : Optional[int] , a_ : List[str] , a_ : Any = None , **a_ : Optional[Any] , ): lowerCAmelCase_ : Union[str, Any] = get_size_dict(a_ ) return center_crop(a_ , size=(size["height"], size["width"]) , data_format=a_ , **a_ ) def lowerCamelCase ( self : Tuple , a_ : Optional[Any] , a_ : List[Any] , a_ : str = None , **a_ : str ): return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def lowerCamelCase ( self : str , a_ : Any , a_ : List[Any] , a_ : List[str] , a_ : Dict = None , **a_ : List[Any] , ): return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def lowerCamelCase ( self : Any , a_ : List[Any] , a_ : int = None , a_ : List[Any] = None , a_ : Tuple = None , a_ : Any = None , a_ : List[Any] = None , a_ : Any = None , a_ : Optional[int] = None , a_ : Union[str, Any] = None , a_ : List[Any] = None , a_ : List[str] = None , a_ : Optional[Any] = None , a_ : Optional[int] = ChannelDimension.FIRST , **a_ : int , ): lowerCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : Any = size if size is not None else self.size lowerCAmelCase_ : Dict = get_size_dict(a_ , default_to_square=a_ ) lowerCAmelCase_ : List[Any] = resample if resample is not None else self.resample lowerCAmelCase_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : int = get_size_dict(a_ ) lowerCAmelCase_ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : str = image_std if image_std is not None else self.image_std lowerCAmelCase_ : int = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase_ : Optional[int] = [to_numpy_array(a_ ) for image in images] if do_resize: lowerCAmelCase_ : Optional[Any] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: lowerCAmelCase_ : Tuple = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: lowerCAmelCase_ : List[str] = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: lowerCAmelCase_ : Optional[int] = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] lowerCAmelCase_ : str = [to_channel_dimension_format(a_ , a_ ) for image in images] lowerCAmelCase_ : Any = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ )
356
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") lowercase__ = int(input("""Enter number: """).strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
161
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) class __lowerCAmelCase ( a ): """simple docstring""" def __init__( self : Union[str, Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ) -> None: """simple docstring""" warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
159
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] )->int: '''simple docstring''' print("Loading config file..." ) def flatten_yaml_as_dict(lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :Optional[int]="" , lowerCAmelCase_ :int="." ): snake_case_ = [] for k, v in d.items(): snake_case_ = parent_key + sep + k if parent_key else k if isinstance(lowerCAmelCase_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowerCAmelCase_ , lowerCAmelCase_ , sep=lowerCAmelCase_ ).items() ) else: items.append((new_key, v) ) return dict(lowerCAmelCase_ ) snake_case_ = argparse.Namespace() with open(lowerCAmelCase_ , "r" ) as yaml_file: try: snake_case_ = yaml.load(lowerCAmelCase_ , Loader=yaml.FullLoader ) snake_case_ = flatten_yaml_as_dict(lowerCAmelCase_ ) for k, v in flat_cfg.items(): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(lowerCAmelCase_ , str(lowerCAmelCase_ ) ) ) return config def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Tuple )->Union[str, Any]: '''simple docstring''' snake_case_ = MobileViTVaConfig() snake_case_ = False # dataset if task_name.startswith("imagenet1k_" ): snake_case_ = 1_000 if int(task_name.strip().split("_" )[-1] ) == 384: snake_case_ = 384 else: snake_case_ = 256 snake_case_ = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_" ): snake_case_ = 21_000 if int(task_name.strip().split("_" )[-1] ) == 384: snake_case_ = 384 else: snake_case_ = 256 snake_case_ = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_" ): snake_case_ = 151 snake_case_ = 512 snake_case_ = "ade20k-id2label.json" snake_case_ = True elif task_name.startswith("voc_" ): snake_case_ = 21 snake_case_ = 512 snake_case_ = "pascal-voc-id2label.json" snake_case_ = True # orig_config snake_case_ = load_orig_config_file(lowerCAmelCase_ ) assert getattr(lowerCAmelCase_ , "model.classification.name" , -1 ) == "mobilevit_v2", "Invalid model" snake_case_ = getattr(lowerCAmelCase_ , "model.classification.mitv2.width_multiplier" , 1.0 ) assert ( getattr(lowerCAmelCase_ , "model.classification.mitv2.attn_norm_layer" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" snake_case_ = getattr(lowerCAmelCase_ , "model.classification.activation.name" , "swish" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.output_stride" , 16 ) if "_deeplabv3" in task_name: snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36] ) snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.deeplabv3.aspp_out_channels" , 512 ) snake_case_ = getattr(lowerCAmelCase_ , "model.segmentation.deeplabv3.aspp_dropout" , 0.1 ) # id2label snake_case_ = "huggingface/label-files" snake_case_ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) snake_case_ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowerCAmelCase_ :Any , lowerCAmelCase_ :Optional[Any] , lowerCAmelCase_ :Optional[Any] )->Optional[Any]: '''simple docstring''' snake_case_ = dct.pop(lowerCAmelCase_ ) snake_case_ = val def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :int=False )->Dict: '''simple docstring''' if base_model: snake_case_ = "" else: snake_case_ = "mobilevitv2." snake_case_ = [] for k in state_dict.keys(): if k[:8] == "encoder.": snake_case_ = k[8:] else: snake_case_ = k if ".block." in k: snake_case_ = k_new.replace(".block." , "." ) if ".conv." in k: snake_case_ = k_new.replace(".conv." , ".convolution." ) if ".norm." in k: snake_case_ = k_new.replace(".norm." , ".normalization." ) if "conv_1." in k: snake_case_ = k_new.replace("conv_1." , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: snake_case_ = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: snake_case_ = k_new.replace(".exp_1x1." , ".expand_1x1." ) if ".red_1x1." in k: snake_case_ = k_new.replace(".red_1x1." , ".reduce_1x1." ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: snake_case_ = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: snake_case_ = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: snake_case_ = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: snake_case_ = [0, 1] elif i == 4: snake_case_ = [0, 1, 2, 3] elif i == 5: snake_case_ = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: snake_case_ = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: snake_case_ = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: snake_case_ = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: snake_case_ = k_new.replace("pre_norm_attn.0." , "layernorm_before." ) if "pre_norm_attn.1." in k: snake_case_ = k_new.replace("pre_norm_attn.1." , "attention." ) if "pre_norm_ffn.0." in k: snake_case_ = k_new.replace("pre_norm_ffn.0." , "layernorm_after." ) if "pre_norm_ffn.1." in k: snake_case_ = k_new.replace("pre_norm_ffn.1." , "ffn.conv1." ) if "pre_norm_ffn.3." in k: snake_case_ = k_new.replace("pre_norm_ffn.3." , "ffn.conv2." ) if "classifier.1." in k: snake_case_ = k_new.replace("classifier.1." , "classifier." ) if "seg_head." in k: snake_case_ = k_new.replace("seg_head." , "segmentation_head." ) if ".aspp_layer." in k: snake_case_ = k_new.replace(".aspp_layer." , "." ) if ".aspp_pool." in k: snake_case_ = k_new.replace(".aspp_pool." , "." ) rename_keys.append((k, k_new) ) return rename_keys def _lowerCAmelCase ( lowerCAmelCase_ :Optional[Any] )->Optional[int]: '''simple docstring''' snake_case_ = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head." ): keys_to_ignore.append(lowerCAmelCase_ ) for k in keys_to_ignore: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( )->List[Any]: '''simple docstring''' snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" snake_case_ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Dict , lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Dict )->Dict: '''simple docstring''' snake_case_ = get_mobilevitva_config(lowerCAmelCase_ , lowerCAmelCase_ ) # load original state_dict snake_case_ = torch.load(lowerCAmelCase_ , map_location="cpu" ) # load huggingface model if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ): snake_case_ = MobileViTVaForSemanticSegmentation(lowerCAmelCase_ ).eval() snake_case_ = False else: snake_case_ = MobileViTVaForImageClassification(lowerCAmelCase_ ).eval() snake_case_ = False # remove and rename some keys of load the original model snake_case_ = checkpoint remove_unused_keys(lowerCAmelCase_ ) snake_case_ = create_rename_keys(lowerCAmelCase_ , base_model=lowerCAmelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load modified state_dict model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor snake_case_ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) snake_case_ = image_processor(images=prepare_img() , return_tensors="pt" ) snake_case_ = model(**lowerCAmelCase_ ) # verify classification model if task_name.startswith("imagenet" ): snake_case_ = outputs.logits snake_case_ = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0: # expected_logits for base variant snake_case_ = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE :int = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
159
1
'''simple docstring''' import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy a_ = logging.getLogger(__name__) a_ = 'pytorch_model.bin' @dataclasses.dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) snake_case_ = dataclasses.field( default=lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) snake_case_ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) snake_case_ = dataclasses.field( default=lowerCamelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) snake_case_ = dataclasses.field( default=lowerCamelCase , metadata={"""help""": """The name of the task to train on."""} , ) snake_case_ = dataclasses.field( default=lowerCamelCase , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) snake_case_ = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) snake_case_ = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) snake_case_ = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) snake_case_ = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) snake_case_ = dataclasses.field( default=lowerCamelCase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) snake_case_ = dataclasses.field( default=lowerCamelCase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) snake_case_ = dataclasses.field( default=lowerCamelCase , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) snake_case_ = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) snake_case_ = dataclasses.field( default=100 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) snake_case_ = dataclasses.field( default=lowerCamelCase , metadata={"""help""": """Random seed for initialization."""} , ) def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : List[str], UpperCamelCase__ : int, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =datasets.concatenate_datasets([infer_input, infer_output], axis=1 ) if args.do_filter_by_confidence: SCREAMING_SNAKE_CASE__ : Union[str, Any] =dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =dataset.sort('''probability''', reverse=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[str] =dataset.select(range(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ : int =dataset.remove_columns(['''label''', '''probability'''] ) SCREAMING_SNAKE_CASE__ : List[Any] =dataset.rename_column('''prediction''', '''label''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) SCREAMING_SNAKE_CASE__ : Optional[int] =dataset.shuffle(seed=args.seed ) SCREAMING_SNAKE_CASE__ : Dict =os.path.join(UpperCamelCase__, f"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__, index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def _a( UpperCamelCase__ : int, UpperCamelCase__ : Any, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Dict, **UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE__ : Optional[int] =STModelArguments(model_name_or_path=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =STDataArguments(train_file=UpperCamelCase__, infer_file=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =STTrainingArguments(output_dir=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__, UpperCamelCase__ ): setattr(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Sanity checks SCREAMING_SNAKE_CASE__ : int ={} SCREAMING_SNAKE_CASE__ : Union[str, Any] =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None SCREAMING_SNAKE_CASE__ : Tuple =args.train_file SCREAMING_SNAKE_CASE__ : List[Any] =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None SCREAMING_SNAKE_CASE__ : Optional[int] =args.eval_file for key in data_files: SCREAMING_SNAKE_CASE__ : List[Any] =data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: SCREAMING_SNAKE_CASE__ : str =extension else: assert extension == args.data_file_extension, f"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), f"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) SCREAMING_SNAKE_CASE__ : List[Any] =f"{args.output_dir}/self-train_iter-{{}}".format SCREAMING_SNAKE_CASE__ : List[str] =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__, exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE__ : int =None SCREAMING_SNAKE_CASE__ : Tuple =None SCREAMING_SNAKE_CASE__ : str =0 SCREAMING_SNAKE_CASE__ : Any =False # Show the progress bar SCREAMING_SNAKE_CASE__ : int =tqdm(range(args.max_selftrain_iterations ), disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0, int(args.max_selftrain_iterations ) ): SCREAMING_SNAKE_CASE__ : Optional[Any] =data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 SCREAMING_SNAKE_CASE__ : str =os.path.join(UpperCamelCase__, '''stage-1''' ) SCREAMING_SNAKE_CASE__ : Dict ={ '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__, UpperCamelCase__ ): arguments_dict.update({key: value} ) SCREAMING_SNAKE_CASE__ : List[str] =os.path.join(UpperCamelCase__, '''best-checkpoint''', UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''', UpperCamelCase__, UpperCamelCase__, ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''', UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''', UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data SCREAMING_SNAKE_CASE__ : Dict =os.path.join(UpperCamelCase__, '''best-checkpoint''' ) SCREAMING_SNAKE_CASE__ : str =os.path.join(UpperCamelCase__, '''stage-2''' ) # Update arguments_dict SCREAMING_SNAKE_CASE__ : int =model_path SCREAMING_SNAKE_CASE__ : Any =data_files['''train'''] SCREAMING_SNAKE_CASE__ : List[Any] =current_output_dir SCREAMING_SNAKE_CASE__ : int =os.path.join(UpperCamelCase__, '''best-checkpoint''', UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''', UpperCamelCase__, UpperCamelCase__, ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''', UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''', UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =iteration SCREAMING_SNAKE_CASE__ : List[str] =data_dir_format(iteration + 1 ) SCREAMING_SNAKE_CASE__ : List[str] =AutoConfig.from_pretrained(os.path.join(UpperCamelCase__, '''best-checkpoint''' ) ) SCREAMING_SNAKE_CASE__ : Any =config.idalabel SCREAMING_SNAKE_CASE__ : int =os.path.join(UpperCamelCase__, '''eval_results_best-checkpoint.json''' ) SCREAMING_SNAKE_CASE__ : str =os.path.join(UpperCamelCase__, '''test_results_best-checkpoint.json''' ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__, '''r''' ) as f: SCREAMING_SNAKE_CASE__ : int =float(json.load(UpperCamelCase__ )[args.eval_metric] ) SCREAMING_SNAKE_CASE__ : Any =os.path.join(UpperCamelCase__, '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. SCREAMING_SNAKE_CASE__ : Optional[Any] =load_dataset(args.data_file_extension, data_files={'''data''': data_files['''infer''']} )['''data'''] SCREAMING_SNAKE_CASE__ : Optional[int] =load_dataset('''csv''', data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(UpperCamelCase__, exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__, os.path.join(UpperCamelCase__, f"eval_results_iter-{iteration}.json" ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__, os.path.join(UpperCamelCase__, f"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE__ : Union[str, Any] =os.path.join(UpperCamelCase__, f"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: SCREAMING_SNAKE_CASE__ : Dict =eval_result if best_iteration is None: SCREAMING_SNAKE_CASE__ : Dict =new_iteration SCREAMING_SNAKE_CASE__ : int =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: SCREAMING_SNAKE_CASE__ : Tuple =new_iteration SCREAMING_SNAKE_CASE__ : Optional[int] =new_eval_result SCREAMING_SNAKE_CASE__ : Optional[int] =0 else: if new_eval_result == best_eval_result: SCREAMING_SNAKE_CASE__ : List[str] =new_iteration SCREAMING_SNAKE_CASE__ : str =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: SCREAMING_SNAKE_CASE__ : int =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''', UpperCamelCase__ ) logger.info('''Best evaluation result: %s = %f''', args.eval_metric, UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__, f"eval_results_iter-{iteration}.json" ), os.path.join(UpperCamelCase__, '''eval_results_best-iteration.json''' ), ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''', args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''', args.eval_metric, UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__, f"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ), os.path.join(UpperCamelCase__, '''eval_results_best-iteration.json''' ), )
222
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """biogpt""" def __init__( self : str , __lowercase : Union[str, Any]=4_23_84 , __lowercase : Union[str, Any]=10_24 , __lowercase : Any=24 , __lowercase : Any=16 , __lowercase : Optional[Any]=40_96 , __lowercase : Any="gelu" , __lowercase : Optional[Any]=0.1 , __lowercase : List[Any]=0.1 , __lowercase : Union[str, Any]=10_24 , __lowercase : List[Any]=0.02 , __lowercase : Tuple=1e-12 , __lowercase : Optional[Any]=True , __lowercase : Optional[Any]=True , __lowercase : Any=0.0 , __lowercase : int=0.0 , __lowercase : str=1 , __lowercase : int=0 , __lowercase : Optional[int]=2 , **__lowercase : Dict , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : str =hidden_size SCREAMING_SNAKE_CASE__ : int =num_hidden_layers SCREAMING_SNAKE_CASE__ : Tuple =num_attention_heads SCREAMING_SNAKE_CASE__ : Any =intermediate_size SCREAMING_SNAKE_CASE__ : int =hidden_act SCREAMING_SNAKE_CASE__ : List[Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Dict =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] =initializer_range SCREAMING_SNAKE_CASE__ : Union[str, Any] =layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[Any] =scale_embedding SCREAMING_SNAKE_CASE__ : str =use_cache SCREAMING_SNAKE_CASE__ : str =layerdrop SCREAMING_SNAKE_CASE__ : Dict =activation_dropout super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
222
1
lowercase_ = {} def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on A__ = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one A__ = _calculate(days - 1 , UpperCAmelCase__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 A__ = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter A__ = _calculate(days - 1 , UpperCAmelCase__ , 0 ) A__ = state_late + state_absent + state_ontime A__ = prizestrings return prizestrings def _snake_case( SCREAMING_SNAKE_CASE__ : Any = 30 ) -> int: '''simple docstring''' return _calculate(UpperCAmelCase__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
7
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: A_ = {} A_ = job["""started_at"""] A_ = job["""completed_at"""] A_ = date_parser.parse(UpperCAmelCase__ ) A_ = date_parser.parse(UpperCAmelCase__ ) A_ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) A_ = start A_ = end A_ = duration_in_min return job_info def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=None ) -> Union[str, Any]: A_ = None if token is not None: A_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} A_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' A_ = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__ ).json() A_ = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase__ ) for job in result["""jobs"""]} ) A_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(UpperCAmelCase__ ): A_ = requests.get(url + F'''&page={i + 2}''', headers=UpperCAmelCase__ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase__ ) for job in result["""jobs"""]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') __lowerCamelCase = parser.parse_args() __lowerCamelCase = get_job_time(args.workflow_run_id) __lowerCamelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
162
0
'''simple docstring''' import functools def __A ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = len(_A ) _UpperCAmelCase : List[str] = len(_A ) @functools.cache def min_distance(lowerCAmelCase_ , lowerCAmelCase_ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _UpperCAmelCase : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _A ) , 1 + min_distance(_A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' from __future__ import annotations def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
170
0
SCREAMING_SNAKE_CASE__ : Optional[int] = 65521 def A ( _SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : List[str] = 1 lowerCamelCase : str = 0 for plain_chr in plain_text: lowerCamelCase : Dict = (a + ord(_SCREAMING_SNAKE_CASE )) % MOD_ADLER lowerCamelCase : Any = (b + a) % MOD_ADLER return (b << 16) | a
48
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: return x if y == 0 else greatest_common_divisor(_SCREAMING_SNAKE_CASE ,x % y ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: return (x * y) // greatest_common_divisor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def A ( _SCREAMING_SNAKE_CASE = 20 ) -> int: lowerCamelCase : List[Any] = 1 for i in range(1 ,n + 1 ): lowerCamelCase : List[str] = lcm(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return g if __name__ == "__main__": print(f'''{solution() = }''')
48
1
'''simple docstring''' import pprint import requests a : int = """https://zenquotes.io/api""" def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a : int = random_quotes() pprint.pprint(response)
338
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Any = logging.get_logger(__name__) lowercase : int = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class A ( __snake_case ): __magic_name__ = '''falcon''' __magic_name__ = ['''past_key_values'''] def __init__( self , SCREAMING_SNAKE_CASE=65024 , SCREAMING_SNAKE_CASE=4544 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=71 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=11 , SCREAMING_SNAKE_CASE=11 , **SCREAMING_SNAKE_CASE , ) -> Tuple: """simple docstring""" A : Tuple = vocab_size # Backward compatibility with n_embed kwarg A : Dict = kwargs.pop('''n_embed''' , SCREAMING_SNAKE_CASE ) A : int = hidden_size if n_embed is None else n_embed A : Dict = num_hidden_layers A : List[Any] = num_attention_heads A : Optional[Any] = layer_norm_epsilon A : List[Any] = initializer_range A : str = use_cache A : Optional[int] = hidden_dropout A : Union[str, Any] = attention_dropout A : Dict = bos_token_id A : List[Any] = eos_token_id A : List[str] = num_attention_heads if num_kv_heads is None else num_kv_heads A : int = alibi A : List[str] = new_decoder_architecture A : Union[str, Any] = multi_query # Ignored when new_decoder_architecture is True A : int = parallel_attn A : Union[str, Any] = bias super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return not self.alibi
3
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )-> np.ndarray: """simple docstring""" __A = cva.getAffineTransform(UpperCAmelCase , UpperCAmelCase ) return cva.warpAffine(UpperCAmelCase , UpperCAmelCase , (rows, cols) ) if __name__ == "__main__": # read original image a__ : str = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value a__ : str = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape a__ , a__ : Optional[int] = gray_img.shape # set different points to rotate image a__ : List[str] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) a__ : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) a__ : int = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) a__ : str = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list a__ : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations a__ : List[str] = plt.figure(1) a__ : Optional[Any] = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
161
0
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _lowercase = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ _lowercase = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ _lowercase = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def A (__lowerCamelCase :int , __lowerCamelCase :List[Any] ): return float((preds == labels).mean() ) def A (__lowerCamelCase :str , __lowerCamelCase :List[Any] , __lowerCamelCase :Any="binary" ): _lowerCAmelCase = simple_accuracy(__lowerCamelCase , __lowerCamelCase ) _lowerCAmelCase = float(fa_score(y_true=__lowerCamelCase , y_pred=__lowerCamelCase , average=__lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def A (__lowerCamelCase :str , __lowerCamelCase :Optional[Any] ): _lowerCAmelCase = {} for id_pred, label in zip(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' _lowerCAmelCase = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _lowerCAmelCase = [(pred, label)] _lowerCAmelCase , _lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): _lowerCAmelCase , _lowerCAmelCase = zip(*__lowerCamelCase ) _lowerCAmelCase = fa_score(y_true=__lowerCamelCase , y_pred=__lowerCamelCase , average="""macro""" ) fas.append(__lowerCamelCase ) _lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(__lowerCamelCase ) ) ems.append(__lowerCamelCase ) _lowerCAmelCase = float(sum(__lowerCamelCase ) / len(__lowerCamelCase ) ) _lowerCAmelCase = sum(__lowerCamelCase ) / len(__lowerCamelCase ) _lowerCAmelCase = float(fa_score(y_true=__lowerCamelCase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def _lowercase ( self ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_lowercase , _lowercase )} elif self.config_name == "cb": return acc_and_fa(_lowercase , _lowercase , fa_avg="""macro""" ) elif self.config_name == "record": _lowerCAmelCase = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] _lowerCAmelCase = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(_lowercase , _lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(_lowercase , _lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
363
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[Any] = '''convbert''' def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=768 , _lowercase=2 , _lowercase=9 , _lowercase=1 , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = embedding_size _lowerCAmelCase = head_ratio _lowerCAmelCase = conv_kernel_size _lowerCAmelCase = num_groups _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
229
0
from random import randint from tempfile import TemporaryFile import numpy as np def A ( lowercase , lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = 0 if start < end: UpperCamelCase = randint(lowercase , lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(lowercase , lowercase , lowercase ) count += _in_place_quick_sort(lowercase , lowercase , p - 1 ) count += _in_place_quick_sort(lowercase , p + 1 , lowercase ) return count def A ( lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = randint(lowercase , lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(lowercase , lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count _UpperCAmelCase : Union[str, Any] = TemporaryFile() _UpperCAmelCase : List[Any] = 100 # 1000 elements are to be sorted _UpperCAmelCase ,_UpperCAmelCase : Any = 0, 1 # mean and standard deviation _UpperCAmelCase : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _UpperCAmelCase : Any = np.load(outfile) _UpperCAmelCase : str = len(M) - 1 _UpperCAmelCase : List[str] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
222
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _UpperCAmelCase : Optional[int] = HUGGINGFACE_HUB_CACHE _UpperCAmelCase : List[str] = "config.json" _UpperCAmelCase : Union[str, Any] = "diffusion_pytorch_model.bin" _UpperCAmelCase : List[Any] = "diffusion_flax_model.msgpack" _UpperCAmelCase : Optional[Any] = "model.onnx" _UpperCAmelCase : int = "diffusion_pytorch_model.safetensors" _UpperCAmelCase : Optional[Any] = "weights.pb" _UpperCAmelCase : Tuple = "https://huggingface.co" _UpperCAmelCase : Union[str, Any] = default_cache_path _UpperCAmelCase : Optional[Any] = "diffusers_modules" _UpperCAmelCase : List[Any] = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) _UpperCAmelCase : Tuple = ["fp16", "non-ema"] _UpperCAmelCase : Any = ".self_attn"
222
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( lowercase ) -> list[int]: return [ord(lowercase ) - 96 for elem in plain] def _lowerCAmelCase ( lowercase ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def _lowerCAmelCase ( ) -> None: __lowerCAmelCase = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , lowercase ) print("""Decoded:""" , decode(lowercase ) ) if __name__ == "__main__": main()
46
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "geglu",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = "layer_norm",__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__() __lowerCAmelCase = only_cross_attention __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __lowerCAmelCase = AdaLayerNorm(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase = AdaLayerNormZero(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.LayerNorm(__SCREAMING_SNAKE_CASE,elementwise_affine=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = Attention( query_dim=__SCREAMING_SNAKE_CASE,heads=__SCREAMING_SNAKE_CASE,dim_head=__SCREAMING_SNAKE_CASE,dropout=__SCREAMING_SNAKE_CASE,bias=__SCREAMING_SNAKE_CASE,cross_attention_dim=cross_attention_dim if only_cross_attention else None,upcast_attention=__SCREAMING_SNAKE_CASE,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __lowerCAmelCase = ( AdaLayerNorm(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else nn.LayerNorm(__SCREAMING_SNAKE_CASE,elementwise_affine=__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = Attention( query_dim=__SCREAMING_SNAKE_CASE,cross_attention_dim=cross_attention_dim if not double_self_attention else None,heads=__SCREAMING_SNAKE_CASE,dim_head=__SCREAMING_SNAKE_CASE,dropout=__SCREAMING_SNAKE_CASE,bias=__SCREAMING_SNAKE_CASE,upcast_attention=__SCREAMING_SNAKE_CASE,) # is self-attn if encoder_hidden_states is none else: __lowerCAmelCase = None __lowerCAmelCase = None # 3. Feed-forward __lowerCAmelCase = nn.LayerNorm(__SCREAMING_SNAKE_CASE,elementwise_affine=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FeedForward(__SCREAMING_SNAKE_CASE,dropout=__SCREAMING_SNAKE_CASE,activation_fn=__SCREAMING_SNAKE_CASE,final_dropout=__SCREAMING_SNAKE_CASE ) # let chunk size default to None __lowerCAmelCase = None __lowerCAmelCase = 0 def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = chunk_size __lowerCAmelCase = dim def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' if self.use_ada_layer_norm: __lowerCAmelCase = self.norma(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.norma( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,hidden_dtype=hidden_states.dtype ) else: __lowerCAmelCase = self.norma(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __lowerCAmelCase = self.attna( __SCREAMING_SNAKE_CASE,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,attention_mask=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_msa.unsqueeze(1 ) * attn_output __lowerCAmelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __lowerCAmelCase = ( self.norma(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else self.norma(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = self.attna( __SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = attn_output + hidden_states # 3. Feed-forward __lowerCAmelCase = self.norma(__SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) __lowerCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __lowerCAmelCase = torch.cat( [self.ff(__SCREAMING_SNAKE_CASE ) for hid_slice in norm_hidden_states.chunk(__SCREAMING_SNAKE_CASE,dim=self._chunk_dim )],dim=self._chunk_dim,) else: __lowerCAmelCase = self.ff(__SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output __lowerCAmelCase = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = 4,__SCREAMING_SNAKE_CASE = 0.0,__SCREAMING_SNAKE_CASE = "geglu",__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__() __lowerCAmelCase = int(dim * mult ) __lowerCAmelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __lowerCAmelCase = GELU(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if activation_fn == "gelu-approximate": __lowerCAmelCase = GELU(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,approximate="""tanh""" ) elif activation_fn == "geglu": __lowerCAmelCase = GEGLU(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) elif activation_fn == "geglu-approximate": __lowerCAmelCase = ApproximateGELU(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.ModuleList([] ) # project in self.net.append(__SCREAMING_SNAKE_CASE ) # project dropout self.net.append(nn.Dropout(__SCREAMING_SNAKE_CASE ) ) # project out self.net.append(nn.Linear(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' for module in self.net: __lowerCAmelCase = module(__SCREAMING_SNAKE_CASE ) return hidden_states class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "none" ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = approximate def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__SCREAMING_SNAKE_CASE,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ),approximate=self.approximate ).to(dtype=gate.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.proj(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.gelu(__SCREAMING_SNAKE_CASE ) return hidden_states class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,dim_out * 2 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__SCREAMING_SNAKE_CASE ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.proj(__SCREAMING_SNAKE_CASE ).chunk(2,dim=-1 ) return hidden_states * self.gelu(__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.proj(__SCREAMING_SNAKE_CASE ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Embedding(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,embedding_dim * 2 ) __lowerCAmelCase = nn.LayerNorm(__SCREAMING_SNAKE_CASE,elementwise_affine=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.linear(self.silu(self.emb(__SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2 ) __lowerCAmelCase = self.norm(__SCREAMING_SNAKE_CASE ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = CombinedTimestepLabelEmbeddings(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,6 * embedding_dim,bias=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.LayerNorm(__SCREAMING_SNAKE_CASE,elementwise_affine=__SCREAMING_SNAKE_CASE,eps=1e-6 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = self.linear(self.silu(self.emb(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,hidden_dtype=__SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = emb.chunk(6,dim=1 ) __lowerCAmelCase = self.norm(__SCREAMING_SNAKE_CASE ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = 1e-5 ): '''simple docstring''' super().__init__() __lowerCAmelCase = num_groups __lowerCAmelCase = eps if act_fn is None: __lowerCAmelCase = None else: __lowerCAmelCase = get_activation(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,out_dim * 2 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.act: __lowerCAmelCase = self.act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.linear(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = emb[:, :, None, None] __lowerCAmelCase , __lowerCAmelCase = emb.chunk(2,dim=1 ) __lowerCAmelCase = F.group_norm(__SCREAMING_SNAKE_CASE,self.num_groups,eps=self.eps ) __lowerCAmelCase = x * (1 + scale) + shift return x
46
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) _lowercase : Union[str, Any] = eval_examples _lowercase : Dict = post_process_function def UpperCamelCase ( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase = "eval") -> Any: """simple docstring""" _lowercase : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset _lowercase : str = self.get_eval_dataloader(lowerCamelCase) _lowercase : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _lowercase : List[str] = self.compute_metrics _lowercase : Dict = None _lowercase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _lowercase : Optional[Any] = time.time() try: _lowercase : Any = eval_loop( lowerCamelCase, description='Evaluation', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: _lowercase : List[str] = compute_metrics _lowercase : Any = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _lowercase : Any = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions) _lowercase : Optional[Any] = self.compute_metrics(lowerCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'''{metric_key_prefix}_'''): _lowercase : List[str] = metrics.pop(lowerCamelCase) metrics.update(output.metrics) else: _lowercase : Tuple = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _lowercase : List[Any] = self.callback_handler.on_evaluate(self.args, self.state, self.control, lowerCamelCase) return metrics def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase = "test") -> str: """simple docstring""" _lowercase : str = self.get_test_dataloader(lowerCamelCase) # Temporarily disable metric computation, we will do it in the loop here. _lowercase : str = self.compute_metrics _lowercase : Tuple = None _lowercase : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _lowercase : Optional[int] = time.time() try: _lowercase : Optional[Any] = eval_loop( lowerCamelCase, description='Prediction', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: _lowercase : str = compute_metrics _lowercase : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), )) if self.post_process_function is None or self.compute_metrics is None: return output _lowercase : Optional[int] = self.post_process_function(lowerCamelCase, lowerCamelCase, output.predictions, 'predict') _lowercase : Optional[int] = self.compute_metrics(lowerCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'''{metric_key_prefix}_'''): _lowercase : str = metrics.pop(lowerCamelCase) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowerCamelCase)
21
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : Tuple ={ "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :List[Any] = "swinv2" __lowerCAmelCase :List[str] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , __lowercase=2_2_4 , __lowercase=4 , __lowercase=3 , __lowercase=9_6 , __lowercase=[2, 2, 6, 2] , __lowercase=[3, 6, 1_2, 2_4] , __lowercase=7 , __lowercase=4.0 , __lowercase=True , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase="gelu" , __lowercase=False , __lowercase=0.0_2 , __lowercase=1E-5 , __lowercase=3_2 , **__lowercase , ) -> Any: """simple docstring""" super().__init__(**__lowercase ) a__ : Optional[Any] = image_size a__ : Union[str, Any] = patch_size a__ : List[Any] = num_channels a__ : Union[str, Any] = embed_dim a__ : Any = depths a__ : List[str] = len(__lowercase ) a__ : Optional[Any] = num_heads a__ : Union[str, Any] = window_size a__ : Optional[int] = mlp_ratio a__ : List[str] = qkv_bias a__ : Dict = hidden_dropout_prob a__ : str = attention_probs_dropout_prob a__ : List[Any] = drop_path_rate a__ : Tuple = hidden_act a__ : Dict = use_absolute_embeddings a__ : Tuple = layer_norm_eps a__ : Tuple = initializer_range a__ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a__ : int = int(embed_dim * 2 ** (len(__lowercase ) - 1) ) a__ : Dict = (0, 0, 0, 0)
170
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _snake_case = 16 _snake_case = 32 def _A ( __magic_name__ , __magic_name__ = 16 , __magic_name__ = "bert-base-cased" ): lowercase__ = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(__magic_name__ ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=UpperCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__magic_name__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase_ , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(UpperCAmelCase_ , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) return train_dataloader, eval_dataloader def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): model.eval() lowercase__ = 0 for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**UpperCAmelCase_ ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase_ ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) lowercase__ = metric.compute() return eval_metric["accuracy"] def _A ( __magic_name__ , __magic_name__ ): # Initialize accelerator lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(UpperCAmelCase_ ) lowercase__ , lowercase__ = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=0 , num_training_steps=UpperCAmelCase_ , ) else: lowercase__ = DummyScheduler(UpperCAmelCase_ , total_num_steps=UpperCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = num_epochs if args.partial_train_epoch is not None: lowercase__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowercase__ = args.resume_from_checkpoint.split("epoch_" )[1] lowercase__ = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowercase__ = int(UpperCAmelCase_ ) + 1 lowercase__ = evaluation_loop(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) accelerator.print("resumed checkpoint performance:" , UpperCAmelCase_ ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , "r" ) as f: lowercase__ = json.load(UpperCAmelCase_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowercase__ = {} for epoch in range(UpperCAmelCase_ , UpperCAmelCase_ ): model.train() for step, batch in enumerate(UpperCAmelCase_ ): lowercase__ = model(**UpperCAmelCase_ ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowercase__ = f'''epoch_{epoch}''' lowercase__ = os.path.join(args.output_dir , UpperCAmelCase_ ) accelerator.save_state(UpperCAmelCase_ ) lowercase__ = evaluation_loop(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowercase__ = accuracy lowercase__ = lr_scheduler.get_lr()[0] lowercase__ = optimizer.param_groups[0]["lr"] lowercase__ = epoch lowercase__ = overall_step accelerator.print(f'''epoch {epoch}:''' , UpperCAmelCase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , "w" ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( ): lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=UpperCAmelCase_ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=UpperCAmelCase_ , ) parser.add_argument( "--output_dir" , type=UpperCAmelCase_ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=UpperCAmelCase_ , default=2 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
353
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _A ( ): lowercase__ = HfArgumentParser(__magic_name__ ) lowercase__ = parser.parse_args_into_dataclasses()[0] lowercase__ = TensorFlowBenchmark(args=__magic_name__ ) try: lowercase__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase__ = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowercase__ = " ".join(str(__magic_name__ ).split(" " )[:-1] ) lowercase__ = "" lowercase__ = eval(str(__magic_name__ ).split(" " )[-1] ) lowercase__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase__ = full_error_msg + begin_error_msg + str(__magic_name__ ) raise ValueError(__magic_name__ ) benchmark.run() if __name__ == "__main__": main()
201
0
import pprint import requests lowercase__ : Tuple = '''https://zenquotes.io/api''' def SCREAMING_SNAKE_CASE_ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def SCREAMING_SNAKE_CASE_ ( ) -> list: return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": lowercase__ : Tuple = random_quotes() pprint.pprint(response)
338
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowercase__ : Dict = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase_ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class lowercase_ ( UpperCamelCase_ ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray: if self.framework == "tf": lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ) else: raise ValueError('''Unsupported framework''' ) return masked_index def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->np.ndarray: lowerCAmelCase = self.get_masked_index(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ) ->Dict[str, GenericTensor]: if return_tensors is None: lowerCAmelCase = self.framework lowerCAmelCase = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) self.ensure_exactly_one_mask_token(__SCREAMING_SNAKE_CASE ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Tuple: lowerCAmelCase = self.model(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = model_inputs['''input_ids'''] return model_outputs def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=None ) ->str: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowerCAmelCase = target_ids.shape[0] lowerCAmelCase = model_outputs['''input_ids'''][0] lowerCAmelCase = model_outputs['''logits'''] if self.framework == "tf": lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowerCAmelCase = outputs.numpy() lowerCAmelCase = outputs[0, masked_index, :] lowerCAmelCase = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) if target_ids is not None: lowerCAmelCase = tf.gather_nd(tf.squeeze(__SCREAMING_SNAKE_CASE , 0 ) , target_ids.reshape(-1 , 1 ) ) lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE , 0 ) lowerCAmelCase = tf.math.top_k(__SCREAMING_SNAKE_CASE , k=__SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__SCREAMING_SNAKE_CASE ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowerCAmelCase = outputs[0, masked_index, :] lowerCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: lowerCAmelCase = probs[..., target_ids] lowerCAmelCase , lowerCAmelCase = probs.topk(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [] lowerCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowerCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowerCAmelCase = input_ids.numpy().copy() if target_ids is not None: lowerCAmelCase = target_ids[p].tolist() lowerCAmelCase = p # Filter padding out: lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowerCAmelCase = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(__SCREAMING_SNAKE_CASE ) result.append(__SCREAMING_SNAKE_CASE ) if single_mask: return result[0] return result def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Optional[Any]: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = [targets] try: lowerCAmelCase = self.tokenizer.get_vocab() except Exception: lowerCAmelCase = {} lowerCAmelCase = [] for target in targets: lowerCAmelCase = vocab.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if id_ is None: lowerCAmelCase = self.tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , max_length=1 , truncation=__SCREAMING_SNAKE_CASE , )['''input_ids'''] if len(__SCREAMING_SNAKE_CASE ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " '''We cannot replace it with anything meaningful, ignoring it''' ) continue lowerCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowerCAmelCase = list(set(__SCREAMING_SNAKE_CASE ) ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) return target_ids def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) ->Dict: lowerCAmelCase = {} if targets is not None: lowerCAmelCase = self.get_target_ids(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = target_ids if top_k is not None: lowerCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ->List[Any]: lowerCAmelCase = super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs
338
1
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''MCTCTFeatureExtractor''' snake_case_ = '''AutoTokenizer''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = self.feature_extractor __lowerCamelCase = False def __call__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __lowerCamelCase = kwargs.pop('raw_speech' ) else: __lowerCamelCase = kwargs.pop('audio' , lowerCamelCase__ ) __lowerCamelCase = kwargs.pop('sampling_rate' , lowerCamelCase__ ) __lowerCamelCase = kwargs.pop('text' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __lowerCamelCase = args[0] __lowerCamelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __lowerCamelCase = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: __lowerCamelCase = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: __lowerCamelCase = encodings['input_ids'] return inputs def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = kwargs.pop('input_features' , lowerCamelCase__ ) __lowerCamelCase = kwargs.pop('labels' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __lowerCamelCase = args[0] __lowerCamelCase = args[1:] if input_features is not None: __lowerCamelCase = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if labels is not None: __lowerCamelCase = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: __lowerCamelCase = labels['input_ids'] return input_features def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @contextmanager def lowercase_ ( self ) -> int: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __lowerCamelCase = True __lowerCamelCase = self.tokenizer yield __lowerCamelCase = self.feature_extractor __lowerCamelCase = False
361
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
0
'''simple docstring''' from __future__ import annotations import time import numpy as np A =[8, 5, 9, 7] A =[ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A =[ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _a : def __init__( self : str , lowercase : list[int] , lowercase : list[list[int]] , lowercase : list[list[int]] , ): '''simple docstring''' UpperCAmelCase = claim_vector UpperCAmelCase = allocated_resources_table UpperCAmelCase = maximum_claim_table def A ( self : List[str] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def A ( self : int ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def A ( self : int ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(SCREAMING_SNAKE_CASE__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def A ( self : Optional[Any] ): '''simple docstring''' return {self.__need().index(SCREAMING_SNAKE_CASE__ ): i for i in self.__need()} def A ( self : Dict , **lowercase : str ): '''simple docstring''' UpperCAmelCase = self.__need() UpperCAmelCase = self.__allocated_resources_table UpperCAmelCase = self.__available_resources() UpperCAmelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: UpperCAmelCase = False for each_need in need_list: UpperCAmelCase = True for index, need in enumerate(SCREAMING_SNAKE_CASE__ ): if need > available_resources[index]: UpperCAmelCase = False break if execution: UpperCAmelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCAmelCase = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(SCREAMING_SNAKE_CASE__ ) # update available/freed resources stack UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE__ ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(SCREAMING_SNAKE_CASE__ ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def A ( self : Optional[Any] ): '''simple docstring''' print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(SCREAMING_SNAKE_CASE__ ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(SCREAMING_SNAKE_CASE__ ) + 1}" + ''' '''.join(f"{it:>8}" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(SCREAMING_SNAKE_CASE__ ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(SCREAMING_SNAKE_CASE__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
34
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def UpperCamelCase_ ( snake_case_ : Any ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) def UpperCamelCase_ ( snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) __lowerCAmelCase = emb.weight.data return lin_layer def UpperCamelCase_ ( snake_case_ : Any ) -> Any: '''simple docstring''' __lowerCAmelCase = torch.load(snake_case_ , map_location="""cpu""" ) __lowerCAmelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] __lowerCAmelCase = mam_aaa["""model"""] remove_ignore_keys_(snake_case_ ) __lowerCAmelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] __lowerCAmelCase = MaMaaaConfig( vocab_size=snake_case_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) __lowerCAmelCase = state_dict["""decoder.embed_tokens.weight"""] __lowerCAmelCase = MaMaaaForConditionalGeneration(snake_case_ ) model.model.load_state_dict(snake_case_ , strict=snake_case_ ) __lowerCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : str = parser.parse_args() _A : Optional[int] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
229
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase : str = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : Any ): """simple docstring""" __a =b.T __a =np.sum(np.square(_snake_case ) , axis=1 ) __a =np.sum(np.square(_snake_case ) , axis=0 ) __a =np.matmul(_snake_case , _snake_case ) __a =aa[:, None] - 2 * ab + ba[None, :] return d def UpperCamelCase_( _snake_case : str , _snake_case : Union[str, Any] ): """simple docstring""" __a =x.reshape(-1 , 3 ) __a =squared_euclidean_distance(_snake_case , _snake_case ) return np.argmin(_snake_case , axis=1 ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self , __snake_case = None , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BILINEAR , __snake_case = True , __snake_case = True , **__snake_case , ) -> None: '''simple docstring''' super().__init__(**__snake_case ) __a =size if size is not None else {'height': 256, 'width': 256} __a =get_size_dict(__snake_case ) __a =np.array(__snake_case ) if clusters is not None else None __a =do_resize __a =size __a =resample __a =do_normalize __a =do_color_quantize def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BILINEAR , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( __snake_case , size=(size['height'], size['width']) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case = None , ) -> np.ndarray: '''simple docstring''' __a =rescale(image=__snake_case , scale=1 / 127.5 , data_format=__snake_case ) __a =image - 1 return image def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> PIL.Image.Image: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =size if size is not None else self.size __a =get_size_dict(__snake_case ) __a =resample if resample is not None else self.resample __a =do_normalize if do_normalize is not None else self.do_normalize __a =do_color_quantize if do_color_quantize is not None else self.do_color_quantize __a =clusters if clusters is not None else self.clusters __a =np.array(__snake_case ) __a =make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. __a =[to_numpy_array(__snake_case ) for image in images] if do_resize: __a =[self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_normalize: __a =[self.normalize(image=__snake_case ) for image in images] if do_color_quantize: __a =[to_channel_dimension_format(__snake_case , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __a =np.array(__snake_case ) __a =color_quantize(__snake_case , __snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __a =images.shape[0] __a =images.reshape(__snake_case , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __a =list(__snake_case ) else: __a =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __a ={'input_ids': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
360
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=False , lowercase=True , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , ) -> Any: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size if size is not None else {"""height""": 18, """width""": 20} lowerCAmelCase = do_thumbnail lowerCAmelCase = do_align_axis lowerCAmelCase = do_pad lowerCAmelCase = do_normalize lowerCAmelCase = image_mean lowerCAmelCase = image_std def _snake_case ( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = DonutImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = DonutImageProcessingTester(self ) @property def _snake_case ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , """do_resize""" ) ) self.assertTrue(hasattr(lowercase , """size""" ) ) self.assertTrue(hasattr(lowercase , """do_thumbnail""" ) ) self.assertTrue(hasattr(lowercase , """do_align_long_axis""" ) ) self.assertTrue(hasattr(lowercase , """do_pad""" ) ) self.assertTrue(hasattr(lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase , """image_mean""" ) ) self.assertTrue(hasattr(lowercase , """image_std""" ) ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def _snake_case ( self ) -> Tuple: pass @is_flaky() def _snake_case ( self ) -> Any: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def _snake_case ( self ) -> Any: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
46
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , lowercase=2 , lowercase=99 , lowercase=0 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=12 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase="last" , lowercase=None , lowercase=None , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_lengths lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = gelu_activation lowerCAmelCase = sinusoidal_embeddings lowerCAmelCase = causal lowerCAmelCase = asm lowerCAmelCase = n_langs lowerCAmelCase = vocab_size lowerCAmelCase = n_special lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = summary_type lowerCAmelCase = use_proj lowerCAmelCase = scope def _snake_case ( self ) -> int: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_input_lengths: lowerCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self ) -> List[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Any: lowerCAmelCase = FlaubertModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , lengths=lowercase , langs=lowercase ) lowerCAmelCase = model(lowercase , langs=lowercase ) lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = FlaubertWithLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> str: lowerCAmelCase = FlaubertForQuestionAnsweringSimple(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model(lowercase , start_positions=lowercase , end_positions=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Dict: lowerCAmelCase = FlaubertForQuestionAnswering(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model( lowercase , start_positions=lowercase , end_positions=lowercase , cls_index=lowercase , is_impossible=lowercase , p_mask=lowercase , ) lowerCAmelCase = model( lowercase , start_positions=lowercase , end_positions=lowercase , cls_index=lowercase , is_impossible=lowercase , ) ((lowerCAmelCase) , ) = result_with_labels.to_tuple() lowerCAmelCase = model(lowercase , start_positions=lowercase , end_positions=lowercase ) ((lowerCAmelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = FlaubertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = self.num_labels lowerCAmelCase = FlaubertForTokenClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = self.num_choices lowerCAmelCase = FlaubertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , lowercase , lowercase , lowercase=False ) -> Optional[Any]: lowerCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def _snake_case ( self ) -> List[str]: lowerCAmelCase = FlaubertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , emb_dim=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase ) @slow def _snake_case ( self ) -> Tuple: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = FlaubertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @slow @require_torch_gpu def _snake_case ( self ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase = True lowerCAmelCase = model_class(config=lowercase ) lowerCAmelCase = self._prepare_for_class(lowercase , lowercase ) lowerCAmelCase = torch.jit.trace( lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase , os.path.join(lowercase , """traced_model.pt""" ) ) lowerCAmelCase = torch.jit.load(os.path.join(lowercase , """traced_model.pt""" ) , map_location=lowercase ) loaded(inputs_dict["""input_ids"""].to(lowercase ) , inputs_dict["""attention_mask"""].to(lowercase ) ) @require_torch class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowerCAmelCase = model(lowercase )[0] lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) lowerCAmelCase = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) )
46
1
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCAmelCase__ = 2 class a : def __init__( self : List[Any] , *, # begin keyword-only arguments __lowerCAmelCase : Dict="<s>" , __lowerCAmelCase : Optional[int]="<pad>" , __lowerCAmelCase : Any="</s>" , __lowerCAmelCase : List[str]="<unk>" , __lowerCAmelCase : Any=None , ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = bos, unk, pad, eos _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = self.add_symbol(__lowerCAmelCase ) _UpperCAmelCase = self.add_symbol(__lowerCAmelCase ) _UpperCAmelCase = self.add_symbol(__lowerCAmelCase ) _UpperCAmelCase = self.add_symbol(__lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__lowerCAmelCase ) _UpperCAmelCase = len(self.symbols ) def __eq__( self : str , __lowerCAmelCase : Optional[Any] ): return self.indices == other.indices def __getitem__( self : Dict , __lowerCAmelCase : Optional[Any] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : int ): return len(self.symbols ) def __contains__( self : Optional[int] , __lowerCAmelCase : List[Any] ): return sym in self.indices @classmethod def lowerCAmelCase_ ( cls : Dict , __lowerCAmelCase : str ): _UpperCAmelCase = cls() d.add_from_file(__lowerCAmelCase ) return d def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple=1 , __lowerCAmelCase : Tuple=False ): if word in self.indices and not overwrite: _UpperCAmelCase = self.indices[word] _UpperCAmelCase = self.count[idx] + n return idx else: _UpperCAmelCase = len(self.symbols ) _UpperCAmelCase = idx self.symbols.append(__lowerCAmelCase ) self.count.append(__lowerCAmelCase ) return idx def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Optional[int] ): return 0 def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Optional[int] ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): try: with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(__lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(__lowerCAmelCase ) ) return _UpperCAmelCase = f.readlines() _UpperCAmelCase = self._load_meta(__lowerCAmelCase ) for line in lines[indices_start_line:]: try: _UpperCAmelCase , _UpperCAmelCase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = line.rsplit(""" """ , 1 ) else: _UpperCAmelCase = False _UpperCAmelCase = int(__lowerCAmelCase ) _UpperCAmelCase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(__lowerCAmelCase ) ) self.add_symbol(__lowerCAmelCase , n=__lowerCAmelCase , overwrite=__lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def __UpperCAmelCase ( lowercase ): """simple docstring""" # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _UpperCAmelCase = dict((re.sub(R"""@@$""" ,"""""" ,lowercase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" ,"""</w>""" ,lowercase ), v) for k, v in d.items() ) _UpperCAmelCase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] _UpperCAmelCase = d[k] # restore return da def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" # prep if not os.path.exists(lowercase ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(lowercase ,exist_ok=lowercase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _UpperCAmelCase = os.path.join(lowercase ,"""checkpoint.pt""" ) if not os.path.isfile(lowercase ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) _UpperCAmelCase = torch.load(lowercase ,map_location="""cpu""" ) _UpperCAmelCase = chkpt["""cfg"""]["""model"""] # dicts _UpperCAmelCase = os.path.join(lowercase ,"""dict.txt""" ) if not os.path.isfile(lowercase ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) _UpperCAmelCase = Dictionary.load(lowercase ) _UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase = len(lowercase ) _UpperCAmelCase = os.path.join(lowercase ,VOCAB_FILES_NAMES["""vocab_file"""] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase ,ensure_ascii=lowercase ,indent=lowercase ) ) # merges_file (bpecodes) _UpperCAmelCase = os.path.join(lowercase ,"""bpecodes""" ) if not os.path.isfile(lowercase ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) _UpperCAmelCase = os.path.join(lowercase ,VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowercase ,lowercase ) # model config _UpperCAmelCase = os.path.join(lowercase ,"""config.json""" ) _UpperCAmelCase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1E-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase ,ensure_ascii=lowercase ,indent=lowercase ) ) # tokenizer config _UpperCAmelCase = os.path.join(lowercase ,lowercase ) _UpperCAmelCase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 10_24, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(lowercase ,ensure_ascii=lowercase ,indent=lowercase ) ) # model _UpperCAmelCase = chkpt["""model"""] # remove unneeded keys _UpperCAmelCase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowercase ,lowercase ) _UpperCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): _UpperCAmelCase = model_state_dict.pop(lowercase ) else: _UpperCAmelCase = model_state_dict.pop(lowercase ) _UpperCAmelCase = BioGptConfig.from_pretrained(lowercase ) _UpperCAmelCase = BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save _UpperCAmelCase = os.path.join(lowercase ,lowercase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(lowercase ,lowercase ) print("""Conversion is done!""" ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
30
"""simple docstring""" def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
30
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class A : def __init__(self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Any=1_3 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Tuple=2_4 , __UpperCAmelCase : List[str]=1_6 , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Dict=3_2 , __UpperCAmelCase : str=5 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Tuple=3_7 , __UpperCAmelCase : int="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[int]=1_0 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Tuple=2 , ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = max_length UpperCAmelCase__ = num_mel_bins UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = scope UpperCAmelCase__ = frequency_stride UpperCAmelCase__ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase__ = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase__ = frequency_out_dimension * time_out_dimension UpperCAmelCase__ = num_patches + 2 def lowercase_ (self : str ) -> str: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, input_values, labels def lowercase_ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = ASTModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"input_values": input_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __UpperCAmelCase : List[str] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Tuple = False __UpperCAmelCase : Any = False __UpperCAmelCase : Any = False def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple ) -> Any: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowercase_ (self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = ASTModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def lowercase_ (self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" pass def lowercase_ (self : int ) -> Any: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowercase_ (self : str ) -> str: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__UpperCAmelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["input_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowercase_ (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @slow def lowercase_ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = ASTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase__ = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint", filename="sample_audio.flac", repo_type="dataset" ) UpperCAmelCase__ , UpperCAmelCase__ = torchaudio.load(__A ) return audio, sampling_rate @require_torch @require_torchaudio class A ( unittest.TestCase ): @cached_property def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def lowercase_ (self : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase__ = self.default_feature_extractor UpperCAmelCase__ = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(__UpperCAmelCase ) UpperCAmelCase__ = self.default_feature_extractor UpperCAmelCase__ , UpperCAmelCase__ = prepare_audio() UpperCAmelCase__ = audio.squeeze().numpy() UpperCAmelCase__ = feature_extractor(__UpperCAmelCase , sampling_rate=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__UpperCAmelCase ) # verify the logits UpperCAmelCase__ = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) UpperCAmelCase__ = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
65
from __future__ import annotations def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int ) -> list[list[int]]: UpperCamelCase__ : list[list[int]] = [] create_all_state(1 , __UpperCAmelCase , __UpperCAmelCase , [] , __UpperCAmelCase ) return result def lowerCAmelCase_ ( __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: list[int] , __UpperCAmelCase: list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(__UpperCAmelCase , total_number - level + 2 ): current_list.append(__UpperCAmelCase ) create_all_state(i + 1 , __UpperCAmelCase , level - 1 , __UpperCAmelCase , __UpperCAmelCase ) current_list.pop() def lowerCAmelCase_ ( __UpperCAmelCase: list[list[int]] ) -> None: for i in total_list: print(*__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = 4 UpperCAmelCase_ = 2 UpperCAmelCase_ = generate_all_combinations(n, k) print_all_state(total_list)
201
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase : Tuple = torch.permute(lowerCAmelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase_ ): # linear layer _UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase : List[Any] = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if "metadata" in layer: _UpperCAmelCase : List[str] = layer.split("""metadata""" ) _UpperCAmelCase : int = """""".join(split_layer[0] )[:-1] _UpperCAmelCase : Any = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: _UpperCAmelCase : Tuple = layer.split("""kvstore""" ) _UpperCAmelCase : List[str] = """""".join(split_layer[0] )[:-1] _UpperCAmelCase : Dict = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: _UpperCAmelCase : str = layer.split("""/""" ) _UpperCAmelCase : Optional[int] = """/""".join(split_layer[:-1] ) _UpperCAmelCase : int = (split_layer[-1],) if "kvstore/path" in layer: _UpperCAmelCase : Union[str, Any] = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _UpperCAmelCase : Any = """file""" else: _UpperCAmelCase : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = rename_keys(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = {} for k, v in current_block.items(): _UpperCAmelCase : List[str] = v _UpperCAmelCase : Optional[int] = new_current_block torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = WEIGHTS_NAME )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = convert_file_size_to_int(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : str = {} _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : List[Any] = 0 os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: _UpperCAmelCase : List[str] = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] _UpperCAmelCase : Dict = flatten_dict(lowerCAmelCase_ , sep="""/""" ) _UpperCAmelCase : List[str] = {} for layer in checkpoint_info.keys(): _UpperCAmelCase : int = get_key_and_tensorstore_dict( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if curr_real_layer_name in all_layers: _UpperCAmelCase : str = content else: _UpperCAmelCase : Any = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _UpperCAmelCase : str = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _UpperCAmelCase : List[Any] = rename_base_flax_keys(tuple(key.split("""/""" ) ) , lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = """/""".join(lowerCAmelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _UpperCAmelCase : List[str] = os.path.join( lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{len(lowerCAmelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Tuple = raw_weights.to(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block _UpperCAmelCase : Tuple = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{len(lowerCAmelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _UpperCAmelCase : List[str] = {} _UpperCAmelCase : str = {} for idx, shard in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = weights_name.replace( """.bin""" , F'''-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} _UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = shard for key in shard: _UpperCAmelCase : List[Any] = shard_file # Add the metadata _UpperCAmelCase : str = {"""total_size""": total_size} _UpperCAmelCase : Tuple = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , """w""" , encoding="""utf-8""" ) as f: _UpperCAmelCase : Tuple = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + """\n""" f.write(lowerCAmelCase_ ) return metadata, index if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) A_ : str = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def snake_case_ ( )-> Tuple: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _UpperCAmelCase : Tuple = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) _UpperCAmelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) _UpperCAmelCase : Dict = TaTokenizer.from_pretrained("""t5-small""" ) _UpperCAmelCase : int = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" _UpperCAmelCase : List[str] = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" ).input_ids _UpperCAmelCase : Any = model.generate(lowerCAmelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
363
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
0
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class lowercase ( lowerCamelCase__ ): _SCREAMING_SNAKE_CASE = """encodec""" def __init__( self , lowercase=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase=24_000 , lowercase=1 , lowercase=False , lowercase=None , lowercase=None , lowercase=128 , lowercase=32 , lowercase=1 , lowercase=[8, 5, 4, 2] , lowercase="weight_norm" , lowercase=7 , lowercase=7 , lowercase=3 , lowercase=2 , lowercase=True , lowercase="reflect" , lowercase=2 , lowercase=2 , lowercase=1.0 , lowercase=1_024 , lowercase=None , lowercase=True , **lowercase , ) -> List[str]: lowerCAmelCase = target_bandwidths lowerCAmelCase = sampling_rate lowerCAmelCase = audio_channels lowerCAmelCase = normalize lowerCAmelCase = chunk_length_s lowerCAmelCase = overlap lowerCAmelCase = hidden_size lowerCAmelCase = num_filters lowerCAmelCase = num_residual_layers lowerCAmelCase = upsampling_ratios lowerCAmelCase = norm_type lowerCAmelCase = kernel_size lowerCAmelCase = last_kernel_size lowerCAmelCase = residual_kernel_size lowerCAmelCase = dilation_growth_rate lowerCAmelCase = use_causal_conv lowerCAmelCase = pad_mode lowerCAmelCase = compress lowerCAmelCase = num_lstm_layers lowerCAmelCase = trim_right_ratio lowerCAmelCase = codebook_size lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size lowerCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**snake_case__ ) @property def _snake_case ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _snake_case ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _snake_case ( self ) -> int: lowerCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _snake_case ( self ) -> int: return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
46
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } __snake_case = '''▁''' class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = BigBirdTokenizer __lowerCamelCase : Any = ["""input_ids""", """attention_mask"""] __lowerCamelCase : List[int] = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token UpperCAmelCase : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase : Tuple =vocab_file UpperCAmelCase : Optional[int] =False if not self.vocab_file else True def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : int =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Optional[int] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
348
0
def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int]) -> int: '''simple docstring''' if not numbers: return 0 if not isinstance(_lowerCamelCase , (list, tuple)) or not all( isinstance(_lowerCamelCase , _lowerCamelCase) for number in numbers): raise ValueError("numbers must be an iterable of integers") __UpperCamelCase : List[str] = numbers[0] for i in range(1 , len(_lowerCamelCase)): # update the maximum and minimum subarray products __UpperCamelCase : Union[str, Any] = numbers[i] if number < 0: __UpperCamelCase : Union[str, Any] = min_till_now, max_till_now __UpperCamelCase : Optional[Any] = max(_lowerCamelCase , max_till_now * number) __UpperCamelCase : Any = min(_lowerCamelCase , min_till_now * number) # update the maximum product found till now __UpperCamelCase : Any = max(_lowerCamelCase , _lowerCamelCase) return max_prod
361
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int]) -> Dict: '''simple docstring''' return EnvironmentCommand() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict) -> Dict: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file) class lowerCamelCase__ ( __lowercase): '''simple docstring''' @staticmethod def _lowerCamelCase ( a :ArgumentParser ) -> str: __UpperCamelCase : List[Any] = parser.add_parser("env" ) download_parser.set_defaults(func=a ) download_parser.add_argument( "--accelerate-config_file" , default=a , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=a ) def __init__( self :Tuple , a :Dict , *a :List[str] ) -> None: __UpperCamelCase : List[str] = accelerate_config_file def _lowerCamelCase ( self :int ) -> Dict: __UpperCamelCase : int = "not installed" if is_safetensors_available(): import safetensors __UpperCamelCase : List[str] = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors __UpperCamelCase : Optional[Any] = f'{safetensors.__version__} but is ignored because of PyTorch version too old.' __UpperCamelCase : List[str] = "not installed" __UpperCamelCase : List[str] = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __UpperCamelCase : Tuple = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a ): __UpperCamelCase : Dict = load_config_from_file(self._accelerate_config_file ).to_dict() __UpperCamelCase : int = ( "\n".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(a , a ) else f'\t{accelerate_config}' ) __UpperCamelCase : List[Any] = "not installed" __UpperCamelCase : Dict = "NA" if is_torch_available(): import torch __UpperCamelCase : Optional[int] = torch.__version__ __UpperCamelCase : Optional[Any] = torch.cuda.is_available() __UpperCamelCase : Dict = "not installed" __UpperCamelCase : str = "NA" if is_tf_available(): import tensorflow as tf __UpperCamelCase : Optional[Any] = tf.__version__ try: # deprecated in v2.1 __UpperCamelCase : Dict = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __UpperCamelCase : Optional[Any] = bool(tf.config.list_physical_devices("GPU" ) ) __UpperCamelCase : List[Any] = "not installed" __UpperCamelCase : Any = "not installed" __UpperCamelCase : Tuple = "not installed" __UpperCamelCase : Optional[int] = "NA" if is_flax_available(): import flax import jax import jaxlib __UpperCamelCase : int = flax.__version__ __UpperCamelCase : Any = jax.__version__ __UpperCamelCase : Optional[int] = jaxlib.__version__ __UpperCamelCase : List[Any] = jax.lib.xla_bridge.get_backend().platform __UpperCamelCase : Optional[Any] = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f'{safetensors_version}', "Accelerate version": f'{accelerate_version}', "Accelerate config": f'{accelerate_config_str}', "PyTorch version (GPU?)": f'{pt_version} ({pt_cuda_available})', "Tensorflow version (GPU?)": f'{tf_version} ({tf_cuda_available})', "Flax version (CPU?/GPU?/TPU?)": f'{flax_version} ({jax_backend})', "Jax version": f'{jax_version}', "JaxLib version": f'{jaxlib_version}', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a ) ) return info @staticmethod def _lowerCamelCase ( a :str ) -> int: return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
151
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Any = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class __magic_name__ ( _lowerCamelCase ): """simple docstring""" __UpperCamelCase = '''mgp-str''' def __init__( self :Optional[int] , snake_case :Optional[Any]=[32, 128] , snake_case :Dict=4 , snake_case :Tuple=3 , snake_case :int=27 , snake_case :List[Any]=38 , snake_case :Any=50_257 , snake_case :Dict=30_522 , snake_case :str=768 , snake_case :Union[str, Any]=12 , snake_case :Dict=12 , snake_case :str=4.0 , snake_case :str=True , snake_case :Optional[int]=False , snake_case :Optional[int]=1e-5 , snake_case :Union[str, Any]=0.0 , snake_case :Any=0.0 , snake_case :Dict=0.0 , snake_case :List[Any]=False , snake_case :str=0.02 , **snake_case :Optional[Any] , ): '''simple docstring''' super().__init__(**_A ) A_ : Optional[Any] = image_size A_ : List[Any] = patch_size A_ : Optional[int] = num_channels A_ : Dict = max_token_length A_ : str = num_character_labels A_ : int = num_bpe_labels A_ : str = num_wordpiece_labels A_ : List[Any] = hidden_size A_ : List[Any] = num_hidden_layers A_ : str = num_attention_heads A_ : List[str] = mlp_ratio A_ : Optional[Any] = distilled A_ : Tuple = layer_norm_eps A_ : int = drop_rate A_ : List[Any] = qkv_bias A_ : Any = attn_drop_rate A_ : Optional[int] = drop_path_rate A_ : List[Any] = output_aa_attentions A_ : int = initializer_range
300
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase : Any = 250004 lowercase : Any = 250020 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : Dict = MBartaaTokenizer lowercase : Optional[int] = MBartaaTokenizerFast lowercase : Any = True lowercase : Optional[Any] = True def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase : str = MBartaaTokenizer(__UpperCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' __UpperCamelCase : Dict = "<s>" __UpperCamelCase : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__UpperCamelCase ) , 10_54 ) def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : List[Any] = MBartaaTokenizer(__UpperCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__UpperCamelCase ) __UpperCamelCase : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCamelCase : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) __UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : int = {"input_ids": [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def __lowerCamelCase ( self ) -> Any: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCamelCase : List[Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : List[str] = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : Any = tempfile.mkdtemp() __UpperCamelCase : Optional[Any] = tokenizer_r.save_pretrained(__UpperCamelCase ) __UpperCamelCase : Any = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __UpperCamelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__UpperCamelCase , __UpperCamelCase ) # Checks everything loads correctly in the same way __UpperCamelCase : Dict = tokenizer_r.from_pretrained(__UpperCamelCase ) __UpperCamelCase : int = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__UpperCamelCase ) # Save tokenizer rust, legacy_format=True __UpperCamelCase : Optional[Any] = tempfile.mkdtemp() __UpperCamelCase : str = tokenizer_r.save_pretrained(__UpperCamelCase , legacy_format=__UpperCamelCase ) __UpperCamelCase : int = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__UpperCamelCase , __UpperCamelCase ) # Checks everything loads correctly in the same way __UpperCamelCase : Optional[int] = tokenizer_r.from_pretrained(__UpperCamelCase ) __UpperCamelCase : Optional[Any] = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) shutil.rmtree(__UpperCamelCase ) # Save tokenizer rust, legacy_format=False __UpperCamelCase : List[Any] = tempfile.mkdtemp() __UpperCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(__UpperCamelCase , legacy_format=__UpperCamelCase ) __UpperCamelCase : List[Any] = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCamelCase : Tuple = tokenizer_r.from_pretrained(__UpperCamelCase ) __UpperCamelCase : Dict = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) shutil.rmtree(__UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" lowercase : Optional[Any] = 'facebook/mbart-large-50-one-to-many-mmt' lowercase : Union[str, Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase : Union[str, Any] = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def __lowerCamelCase ( cls ) -> int: '''simple docstring''' __UpperCamelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) __UpperCamelCase : Union[str, Any] = 1 return cls def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 25_00_38 ) def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' self.assertIn(__UpperCamelCase , self.tokenizer.all_special_ids ) __UpperCamelCase : Tuple = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __UpperCamelCase : Optional[int] = self.tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) __UpperCamelCase : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCamelCase ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Tuple = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __UpperCamelCase ) __UpperCamelCase : int = 10 __UpperCamelCase : List[Any] = self.tokenizer(__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase ).input_ids[0] self.assertEqual(ids[0] , __UpperCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_00_53, 25_00_01] ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : List[Any] = tempfile.mkdtemp() __UpperCamelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCamelCase ) __UpperCamelCase : str = MBartaaTokenizer.from_pretrained(__UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCamelCase ) @require_torch def __lowerCamelCase ( self ) -> Any: '''simple docstring''' __UpperCamelCase : List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , return_tensors="pt" ) __UpperCamelCase : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __UpperCamelCase : Any = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCamelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=3 , return_tensors="pt" ) __UpperCamelCase : Dict = self.tokenizer( text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=10 , return_tensors="pt" ) __UpperCamelCase : int = targets["input_ids"] __UpperCamelCase : Dict = shift_tokens_right(__UpperCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { # en_XX, A, test, EOS "input_ids": [[25_00_04, 62, 30_34, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_00_01, } , )
171
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase : ClassVar[Features] = Features({'text': Value('string' )} ) lowercase : ClassVar[Features] = Features({'labels': ClassLabel} ) lowercase : str = "text" lowercase : str = "labels" def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , __UpperCamelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __UpperCamelCase : int = copy.deepcopy(self ) __UpperCamelCase : List[Any] = self.label_schema.copy() __UpperCamelCase : Union[str, Any] = features[self.label_column] __UpperCamelCase : Optional[Any] = label_schema return task_template @property def __lowerCamelCase ( self ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
171
1
def a ( snake_case__: float , snake_case__: int ): '''simple docstring''' if digit_amount > 0: return round(number - int(snake_case__ ) , snake_case__ ) return number - int(snake_case__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
30
def a ( snake_case__: int = 100 ): '''simple docstring''' lowercase_ = (n * (n + 1) // 2) ** 2 lowercase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"{solution() = }")
30
1
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def snake_case_ ( A_ : Accelerator, A_ : int = 16 ): '''simple docstring''' _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowerCamelCase : int = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(A_ : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Dict = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=A_, max_length=A_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase : str = datasets.map( A_, batched=A_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(A_ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase : Dict = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase : List[Any] = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase : Optional[Any] = 8 else: _lowerCamelCase : Tuple = None return tokenizer.pad( A_, padding='''longest''', max_length=A_, pad_to_multiple_of=A_, return_tensors='''pt''', ) # Instantiate dataloaders. _lowerCamelCase : Union[str, Any] = DataLoader( tokenized_datasets['''train'''], shuffle=A_, collate_fn=A_, batch_size=A_ ) _lowerCamelCase : List[str] = DataLoader( tokenized_datasets['''validation'''], shuffle=A_, collate_fn=A_, batch_size=A_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def snake_case_ ( A_ : str, A_ : int ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''', A_ ) == "1": _lowerCamelCase : Optional[Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _lowerCamelCase : Optional[Any] = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with='''all''', project_dir=args.project_dir ) else: _lowerCamelCase : Union[str, Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase : Tuple = config['''lr'''] _lowerCamelCase : List[Any] = int(config['''num_epochs'''] ) _lowerCamelCase : Tuple = int(config['''seed'''] ) _lowerCamelCase : List[Any] = int(config['''batch_size'''] ) set_seed(A_ ) _lowerCamelCase , _lowerCamelCase : Tuple = get_dataloaders(A_, A_ ) _lowerCamelCase : Optional[int] = evaluate.load('''glue''', '''mrpc''' ) # If the batch size is too big we use gradient accumulation _lowerCamelCase : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCamelCase : List[Any] = batch_size // MAX_GPU_BATCH_SIZE _lowerCamelCase : Union[str, Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=A_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase : Optional[int] = AdamW(params=model.parameters(), lr=A_ ) # Instantiate scheduler _lowerCamelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=A_, num_warmup_steps=1_00, num_training_steps=(len(A_ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = accelerator.prepare( A_, A_, A_, A_, A_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _lowerCamelCase : List[str] = os.path.split(A_ )[-1].split('''.''' )[0] accelerator.init_trackers(A_, A_ ) # Now we train the model for epoch in range(A_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _lowerCamelCase : int = 0 for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCamelCase : List[str] = model(**A_ ) _lowerCamelCase : Optional[int] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _lowerCamelCase : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(A_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : Union[str, Any] = model(**A_ ) _lowerCamelCase : str = outputs.logits.argmax(dim=-1 ) _lowerCamelCase , _lowerCamelCase : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A_, references=A_, ) _lowerCamelCase : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', A_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A_ ), '''epoch''': epoch, }, step=A_, ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Any = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=A_, default=A_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''', action='''store_true''', help='''Whether to load in all available experiment trackers from the environment and use them for logging.''', ) parser.add_argument( '''--project_dir''', type=A_, default='''logs''', help='''Location on where to store experiment tracking logs` and relevent project information''', ) _lowerCamelCase : Dict = parser.parse_args() _lowerCamelCase : Optional[int] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A_, A_ ) if __name__ == "__main__": main()
175
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase__ = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def snake_case_ ( A_ : Any ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def snake_case_ ( A_ : Dict, A_ : Any ): '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : List[str] = False elif args.student_type == "gpt2": _lowerCamelCase : Any = False def snake_case_ ( A_ : Optional[Any], A_ : List[Any] ): '''simple docstring''' if args.student_type == "roberta": _lowerCamelCase : Optional[int] = False def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''', action='''store_true''', help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''', type=A_, required=A_, help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''', type=A_, required=A_, help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''', ) parser.add_argument( '''--student_type''', type=A_, choices=['''distilbert''', '''roberta''', '''gpt2'''], required=A_, help='''The student type (DistilBERT, RoBERTa).''', ) parser.add_argument('''--student_config''', type=A_, required=A_, help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''', default=A_, type=A_, help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''', choices=['''bert''', '''roberta''', '''gpt2'''], required=A_, help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''', type=A_, required=A_, help='''The teacher model.''' ) parser.add_argument('''--temperature''', default=2.0, type=A_, help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''', default=0.5, type=A_, help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''', default=0.0, type=A_, help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''', ) parser.add_argument('''--alpha_clm''', default=0.5, type=A_, help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''', default=0.0, type=A_, help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''', default=0.0, type=A_, help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''', action='''store_true''', help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''', default=0.15, type=A_, help='''Proportion of tokens for which we need to make a prediction.''', ) parser.add_argument('''--word_mask''', default=0.8, type=A_, help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''', default=0.1, type=A_, help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''', default=0.1, type=A_, help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''', default=0.7, type=A_, help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''', ) parser.add_argument('''--token_counts''', type=A_, help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''', action='''store_true''', help='''If true, compute the distillation loss only the [MLM] prediction distribution.''', ) parser.add_argument( '''--freeze_pos_embs''', action='''store_true''', help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''', ) parser.add_argument( '''--freeze_token_type_embds''', action='''store_true''', help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''', ) parser.add_argument('''--n_epoch''', type=A_, default=3, help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''', type=A_, default=5, help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''', action='''store_false''', help='''If true, group sequences that have similar length into the same batch. Default is true.''', ) parser.add_argument( '''--gradient_accumulation_steps''', type=A_, default=50, help='''Gradient accumulation for larger training batches.''', ) parser.add_argument('''--warmup_prop''', default=0.05, type=A_, help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''', default=0.0, type=A_, help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''', default=5E-4, type=A_, help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''', default=1E-6, type=A_, help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''', default=5.0, type=A_, help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''', default=0.02, type=A_, help='''Random initialization range.''' ) parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''', ) parser.add_argument( '''--fp16_opt_level''', type=A_, default='''O1''', help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ), ) parser.add_argument('''--n_gpu''', type=A_, default=1, help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''', type=A_, default=-1, help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''', type=A_, default=56, help='''Random seed''' ) parser.add_argument('''--log_interval''', type=A_, default=5_00, help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''', type=A_, default=40_00, help='''Checkpoint interval.''' ) _lowerCamelCase : List[Any] = parser.parse_args() sanity_checks(A_ ) # ARGS # init_gpu_params(A_ ) set_seed(A_ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path, '''parameters.json''' ), '''w''' ) as f: json.dump(vars(A_ ), A_, indent=4 ) git_log(args.dump_path ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = MODEL_CLASSES[args.student_type] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _lowerCamelCase : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _lowerCamelCase : List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _lowerCamelCase : Optional[int] = tokenizer.all_special_tokens.index(A_ ) _lowerCamelCase : Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _lowerCamelCase : Optional[Any] = special_tok_ids _lowerCamelCase : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file, '''rb''' ) as fp: _lowerCamelCase : Any = pickle.load(A_ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts, '''rb''' ) as fp: _lowerCamelCase : str = pickle.load(A_ ) _lowerCamelCase : List[Any] = np.maximum(A_, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _lowerCamelCase : List[Any] = 0.0 # do not predict special tokens _lowerCamelCase : str = torch.from_numpy(A_ ) else: _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Any = LmSeqsDataset(params=A_, data=A_ ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _lowerCamelCase : str = student_config_class.from_pretrained(args.student_config ) _lowerCamelCase : Union[str, Any] = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _lowerCamelCase : Dict = student_model_class.from_pretrained(args.student_pretrained_weights, config=A_ ) else: _lowerCamelCase : Optional[Any] = student_model_class(A_ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # _lowerCamelCase : int = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=A_ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A_, A_ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A_, A_ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _lowerCamelCase : Optional[int] = Distiller( params=A_, dataset=A_, token_probs=A_, student=A_, teacher=A_ ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
175
1
from __future__ import annotations def lowerCAmelCase__( lowercase : Dict , lowercase : Union[str, Any] , lowercase : Optional[int] ) -> Dict: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
326
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder() __UpperCamelCase = inputs_dict["""input_ids"""] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict["""attention_mask"""][:1, :] __UpperCamelCase = inputs_dict["""head_mask"""] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(lowercase , attention_mask=lowercase )[0] __UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase): __SCREAMING_SNAKE_CASE = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __SCREAMING_SNAKE_CASE = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __SCREAMING_SNAKE_CASE = '''google/pegasus-xsum''' @cached_property def __lowerCamelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCamelCase ( self , **lowercase ) -> Optional[int]: __UpperCamelCase = self.translate_src_text(**lowercase ) assert self.expected_text == generated_words def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]: __UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase ) return generated_words @slow def __lowerCamelCase ( self ) -> Dict: self._assert_generated_batch_equal_expected()
349
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowercase : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=30 , UpperCAmelCase_=2 , UpperCAmelCase_=3 , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=32 , UpperCAmelCase_=2 , UpperCAmelCase_=4 , UpperCAmelCase_=37 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=10 , UpperCAmelCase_=0.02 , UpperCAmelCase_=3 , UpperCAmelCase_=None , UpperCAmelCase_=2 , ) -> Union[str, Any]: lowerCamelCase : Tuple = parent lowerCamelCase : int = batch_size lowerCamelCase : Any = image_size lowerCamelCase : List[Any] = patch_size lowerCamelCase : Any = num_channels lowerCamelCase : List[Any] = is_training lowerCamelCase : List[str] = use_labels lowerCamelCase : Union[str, Any] = hidden_size lowerCamelCase : List[Any] = num_hidden_layers lowerCamelCase : Dict = num_attention_heads lowerCamelCase : Dict = intermediate_size lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : Tuple = hidden_dropout_prob lowerCamelCase : List[Any] = attention_probs_dropout_prob lowerCamelCase : List[str] = type_sequence_label_size lowerCamelCase : List[Any] = initializer_range lowerCamelCase : Dict = scope lowerCamelCase : Any = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase : Union[str, Any] = (image_size // patch_size) ** 2 lowerCamelCase : Dict = num_patches + 2 def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : str = None if self.use_labels: lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ) -> Optional[Any]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Any: lowerCamelCase : Optional[Any] = TFDeiTModel(config=UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> List[Any]: lowerCamelCase : List[Any] = TFDeiTForMaskedImageModeling(config=UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = model(UpperCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase : Union[str, Any] = 1 lowerCamelCase : str = TFDeiTForMaskedImageModeling(UpperCAmelCase_ ) lowerCamelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[int]: lowerCamelCase : Optional[Any] = self.type_sequence_label_size lowerCamelCase : Tuple = TFDeiTForImageClassification(UpperCAmelCase_ ) lowerCamelCase : Optional[Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase : List[str] = 1 lowerCamelCase : List[str] = TFDeiTForImageClassification(UpperCAmelCase_ ) lowerCamelCase : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase : Union[str, Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = config_and_inputs lowerCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowercase_ = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : Dict = TFDeiTModelTester(self ) lowerCamelCase : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def _UpperCamelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def _UpperCamelCase ( self ) -> Tuple: pass def _UpperCamelCase ( self ) -> int: lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Any = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , tf.keras.layers.Dense ) ) def _UpperCamelCase ( self ) -> int: lowerCamelCase , lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Optional[int] = model_class(UpperCAmelCase_ ) lowerCamelCase : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Dict = [*signature.parameters.keys()] lowerCamelCase : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False ) -> List[Any]: lowerCamelCase : Union[str, Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _UpperCamelCase ( self ) -> List[Any]: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Dict = TFDeiTModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _lowercase ( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> Optional[Any]: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : Any = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) lowerCamelCase : List[str] = self.default_image_processor lowerCamelCase : Dict = prepare_img() lowerCamelCase : Any = image_processor(images=UpperCAmelCase_ , return_tensors='tf' ) # forward pass lowerCamelCase : List[str] = model(**UpperCAmelCase_ ) # verify the logits lowerCamelCase : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowerCamelCase : str = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
205
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _A = pytest.mark.integration @require_faiss class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Any = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def _UpperCamelCase ( self ) -> List[Any]: import faiss lowerCamelCase : Dataset = self._create_dummy_dataset() lowerCamelCase : Optional[int] = dset.map( lambda UpperCAmelCase_ , UpperCAmelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ) lowerCamelCase : Dict = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase , lowerCamelCase : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def _UpperCamelCase ( self ) -> Tuple: import faiss lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase , lowerCamelCase : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def _UpperCamelCase ( self ) -> int: import faiss lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase , lowerCamelCase : List[str] = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def _UpperCamelCase ( self ) -> Union[str, Any]: from elasticsearch import Elasticsearch lowerCamelCase : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase : Tuple = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase : Optional[Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase_ ) lowerCamelCase , lowerCamelCase : str = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self ) -> Union[str, Any]: import faiss lowerCamelCase : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase : List[str] = 1 lowerCamelCase , lowerCamelCase : int = index.search(UpperCAmelCase_ ) self.assertRaises(UpperCAmelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase : Tuple = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase , lowerCamelCase : List[str] = index.search_batch(UpperCAmelCase_ ) self.assertRaises(UpperCAmelCase_ , index.search_batch , queries[0] ) lowerCamelCase : List[str] = [scores[0] for scores in total_scores] lowerCamelCase : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: import faiss lowerCamelCase : List[Any] = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase : int = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase_ ): lowerCamelCase : str = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def _UpperCamelCase ( self ) -> Any: import faiss lowerCamelCase : Any = faiss.IndexFlat(5 ) lowerCamelCase : Any = FaissIndex(custom_index=UpperCAmelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _UpperCamelCase ( self ) -> Any: import faiss lowerCamelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase_ ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase : Dict = np.zeros(5 , dtype=np.floataa ) lowerCamelCase : Optional[Any] = 1 lowerCamelCase , lowerCamelCase : str = index.search(UpperCAmelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def UpperCAmelCase ( a_ ): '''simple docstring''' import faiss lowerCamelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) lowerCamelCase : Union[str, Any] = 'index.faiss' lowerCamelCase : List[Any] = F"""mock://{index_name}""" index.save(a_, storage_options=mockfs.storage_options ) lowerCamelCase : Optional[int] = FaissIndex.load(a_, storage_options=mockfs.storage_options ) lowerCamelCase : str = np.zeros(5, dtype=np.floataa ) lowerCamelCase : str = 1 lowerCamelCase , lowerCamelCase : int = index.search(a_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowercase ( __UpperCAmelCase ): def _UpperCamelCase ( self ) -> int: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase : Union[str, Any] = Elasticsearch() lowerCamelCase : Optional[Any] = {'acknowledged': True} lowerCamelCase : str = ElasticSearchIndex(es_client=UpperCAmelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase : Tuple = 'foo' lowerCamelCase : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase , lowerCamelCase : Any = index.search(UpperCAmelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase : Dict = 'foo' lowerCamelCase : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase , lowerCamelCase : Optional[Any] = index.search(UpperCAmelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase : str = ['foo', 'bar', 'foobar'] lowerCamelCase : Union[str, Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase , lowerCamelCase : Optional[int] = index.search_batch(UpperCAmelCase_ ) lowerCamelCase : Dict = [scores[0] for scores in total_scores] lowerCamelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase_ ) # batched queries with timeout lowerCamelCase : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase , lowerCamelCase : Dict = index.search_batch(UpperCAmelCase_ , request_timeout=30 ) lowerCamelCase : Dict = [scores[0] for scores in total_scores] lowerCamelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase_ )
205
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"], "processing_mgp_str": ["MgpstrProcessor"], "tokenization_mgp_str": ["MgpstrTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST", "MgpstrModel", "MgpstrPreTrainedModel", "MgpstrForSceneTextRecognition", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : Optional[Union[str, Path]] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : Optional[Dict] = None UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : int = 1 UpperCAmelCase_ : Optional[Union[str, bool]] = None UpperCAmelCase_ : bool = False UpperCAmelCase_ : Optional[Dict] = None UpperCAmelCase_ : Optional[str] = None def UpperCAmelCase_ ( self : Tuple ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(lowercase_ ) for k, v in self.__dict__.items()} )
151
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva A : Any = "" A : Union[str, Any] = "" A : List[str] = "" A : List[str] = 1 # (0 is vertical, 1 is horizontal) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = get_dataset(_UpperCamelCase , _UpperCamelCase ) print("Processing..." ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = update_image_and_anno(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for index, image in enumerate(_UpperCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCAmelCase = random_chars(32 ) __lowerCAmelCase = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] __lowerCAmelCase = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg" , _UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Success {index+1}/{len(_UpperCamelCase )} with {file_name}" ) __lowerCAmelCase = [] for anno in new_annos[index]: __lowerCAmelCase = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(_UpperCamelCase ) with open(f"/{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = [] for label_file in glob.glob(os.path.join(_UpperCamelCase , "*.txt" ) ): __lowerCAmelCase = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_UpperCamelCase ) as in_file: __lowerCAmelCase = in_file.readlines() __lowerCAmelCase = os.path.join(_UpperCamelCase , f"{label_name}.jpg" ) __lowerCAmelCase = [] for obj_list in obj_lists: __lowerCAmelCase = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_UpperCamelCase ) labels.append(_UpperCamelCase ) return img_paths, labels def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = [] for idx in range(len(_UpperCamelCase ) ): __lowerCAmelCase = [] __lowerCAmelCase = img_list[idx] path_list.append(_UpperCamelCase ) __lowerCAmelCase = anno_list[idx] __lowerCAmelCase = cva.imread(_UpperCamelCase ) if flip_type == 1: __lowerCAmelCase = cva.flip(_UpperCamelCase , _UpperCamelCase ) for bbox in img_annos: __lowerCAmelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __lowerCAmelCase = cva.flip(_UpperCamelCase , _UpperCamelCase ) for bbox in img_annos: __lowerCAmelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_UpperCamelCase ) new_imgs_list.append(_UpperCamelCase ) return new_imgs_list, new_annos_lists, path_list def _lowerCamelCase ( _UpperCamelCase = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) if __name__ == "__main__": main() print("DONE ✅")
259
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = "cpu" , _UpperCamelCase = None ): '''simple docstring''' __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=_UpperCamelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_UpperCamelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) __lowerCAmelCase = v.half() if save_path is None: # overwrite src_path __lowerCAmelCase = src_path torch.save(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": fire.Fire(convert)
259
1
"""simple docstring""" import json import sys def a__ ( lowerCAmelCase , lowerCAmelCase ) -> str: with open(lowerCAmelCase , encoding="""utf-8""" ) as f: UpperCAmelCase__ : Any = json.load(lowerCAmelCase ) UpperCAmelCase__ : Tuple = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(lowerCAmelCase ): UpperCAmelCase__ : List[str] = results[benchmark_name] UpperCAmelCase__ : Dict = benchmark_name.split("""/""" )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) UpperCAmelCase__ : Tuple = """| metric |""" UpperCAmelCase__ : Tuple = """|--------|""" UpperCAmelCase__ : List[Any] = """| new / old (diff) |""" for metric_name in sorted(lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = benchmark_res[metric_name] UpperCAmelCase__ : Optional[Any] = metric_vals["""new"""] UpperCAmelCase__ : Dict = metric_vals.get("""old""" , lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = metric_vals.get("""diff""" , lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = F""" {new_val:f}""" if isinstance(lowerCAmelCase , (int, float) ) else """None""" if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(lowerCAmelCase , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(lowerCAmelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(lowerCAmelCase ) ) if __name__ == "__main__": _A = sys.argv[1] _A = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
171
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule _A = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
171
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def _lowerCAmelCase ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
358
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __a : """simple docstring""" def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Any=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : int=True , lowercase_ : List[str]=True , lowercase_ : int=True , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=99 , lowercase_ : int=32 , lowercase_ : List[Any]=2 , lowercase_ : Optional[int]=4 , lowercase_ : Dict=37 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Dict=16 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]=0.0_2 , lowercase_ : Dict=3 , lowercase_ : Optional[int]=4 , lowercase_ : Any=None , ): UpperCamelCase__ : Any =parent UpperCamelCase__ : Any =13 UpperCamelCase__ : int =7 UpperCamelCase__ : Tuple =True UpperCamelCase__ : Dict =True UpperCamelCase__ : int =True UpperCamelCase__ : Tuple =True UpperCamelCase__ : Any =99 UpperCamelCase__ : Any =32 UpperCamelCase__ : Union[str, Any] =2 UpperCamelCase__ : List[Any] =4 UpperCamelCase__ : Any =37 UpperCamelCase__ : Union[str, Any] ='''gelu''' UpperCamelCase__ : Dict =0.1 UpperCamelCase__ : int =0.1 UpperCamelCase__ : Union[str, Any] =512 UpperCamelCase__ : Dict =16 UpperCamelCase__ : List[Any] =2 UpperCamelCase__ : str =0.0_2 UpperCamelCase__ : Optional[Any] =3 UpperCamelCase__ : List[str] =4 UpperCamelCase__ : Optional[int] =None def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ : Any =None if self.use_input_mask: UpperCamelCase__ : List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ : List[Any] =None if self.use_token_type_ids: UpperCamelCase__ : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ : str =None UpperCamelCase__ : Union[str, Any] =None UpperCamelCase__ : str =None if self.use_labels: UpperCamelCase__ : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ : int =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowercase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Any , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : int ): UpperCamelCase__ : str =TFRoFormerModel(config=lowercase_ ) UpperCamelCase__ : List[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase__ : Dict =[input_ids, input_mask] UpperCamelCase__ : Tuple =model(lowercase_ ) UpperCamelCase__ : str =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : int ): UpperCamelCase__ : Optional[Any] =True UpperCamelCase__ : List[Any] =TFRoFormerForCausalLM(config=lowercase_ ) UpperCamelCase__ : Optional[Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : Any =model(lowercase_ )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _lowerCAmelCase ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[Any] ): UpperCamelCase__ : str =TFRoFormerForMaskedLM(config=lowercase_ ) UpperCamelCase__ : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : Optional[int] =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : int ): UpperCamelCase__ : Tuple =self.num_labels UpperCamelCase__ : List[str] =TFRoFormerForSequenceClassification(config=lowercase_ ) UpperCamelCase__ : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : Optional[Any] =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : List[Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : List[str] ): UpperCamelCase__ : Tuple =self.num_choices UpperCamelCase__ : Tuple =TFRoFormerForMultipleChoice(config=lowercase_ ) UpperCamelCase__ : Optional[int] =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : int =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : List[str] =tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__ : int ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase__ : Tuple =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Dict , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Tuple ): UpperCamelCase__ : Optional[int] =self.num_labels UpperCamelCase__ : List[str] =TFRoFormerForTokenClassification(config=lowercase_ ) UpperCamelCase__ : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : int =model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : str , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str ): UpperCamelCase__ : Dict =TFRoFormerForQuestionAnswering(config=lowercase_ ) UpperCamelCase__ : Optional[Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase__ : List[str] =model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : List[str] =self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) : Tuple =config_and_inputs UpperCamelCase__ : Any ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __a ( snake_case__, snake_case__, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def _lowerCAmelCase ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Tuple , lowercase_ : int ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : List[Any] =TFRoFormerModelTester(self ) UpperCamelCase__ : Any =ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def _lowerCAmelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : int ): UpperCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ ) def _lowerCAmelCase ( self : str ): UpperCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) def _lowerCAmelCase ( self : Optional[Any] ): UpperCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def _lowerCAmelCase ( self : List[Any] ): UpperCamelCase__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def _lowerCAmelCase ( self : str ): UpperCamelCase__ : Optional[Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(lowercase_ ) @require_tf class __a ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : List[str] =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCamelCase__ : List[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__ : Any =model(lowercase_ )[0] # TODO Replace vocab size UpperCamelCase__ : Union[str, Any] =5_0000 UpperCamelCase__ : Optional[Any] =[1, 6, vocab_size] self.assertEqual(output.shape , lowercase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCamelCase__ : Optional[Any] =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-4 ) @require_tf class __a ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1e-4 def _lowerCAmelCase ( self : Any ): UpperCamelCase__ : str =tf.constant([[4, 10]] ) UpperCamelCase__ : Dict =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCamelCase__ : Any =emba(input_ids.shape ) UpperCamelCase__ : Union[str, Any] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : Dict =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) UpperCamelCase__ : int =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCamelCase__ : Optional[int] =emba.weight[:3, :5] tf.debugging.assert_near(lowercase_ , lowercase_ , atol=self.tolerance ) @require_tf class __a ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1e-4 def _lowerCAmelCase ( self : str ): # 2,12,16,64 UpperCamelCase__ : Optional[int] =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase__ : Optional[int] =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase__ : Optional[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCamelCase__ : Union[str, Any] =embed_positions([2, 16, 768] )[None, None, :, :] UpperCamelCase__ , UpperCamelCase__ : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowercase_ , lowercase_ , lowercase_ ) UpperCamelCase__ : Optional[int] =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) UpperCamelCase__ : List[str] =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowercase_ , atol=self.tolerance )
157
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
175
from __future__ import annotations def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): # noqa: E741 while r - l > 1: UpperCamelCase_ : Union[str, Any] = (l + r) // 2 if v[m] >= key: UpperCamelCase_ : str = m else: UpperCamelCase_ : List[Any] = m # noqa: E741 return r def __lowercase ( lowerCamelCase : list[int] ): if len(lowerCamelCase ) == 0: return 0 UpperCamelCase_ : Tuple = [0] * len(lowerCamelCase ) UpperCamelCase_ : int = 1 UpperCamelCase_ : Dict = v[0] for i in range(1 , len(lowerCamelCase ) ): if v[i] < tail[0]: UpperCamelCase_ : Any = v[i] elif v[i] > tail[length - 1]: UpperCamelCase_ : Dict = v[i] length += 1 else: UpperCamelCase_ : List[str] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
175
1
"""simple docstring""" from __future__ import annotations def __lowercase ( _a ): # This function is recursive snake_case_ : Optional[int] = len(_a ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else snake_case_ : Union[str, Any] = array[0] snake_case_ : Optional[Any] = False snake_case_ : Optional[Any] = 1 snake_case_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: snake_case_ : Optional[int] = True snake_case_ : Dict = [element for element in array[i:] if element >= array[i]] snake_case_ : Optional[int] = longest_subsequence(_a ) if len(_a ) > len(_a ): snake_case_ : Optional[int] = temp_array else: i += 1 snake_case_ : Optional[int] = [element for element in array[1:] if element >= pivot] snake_case_ : str = [pivot, *longest_subsequence(_a )] if len(_a ) > len(_a ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
155
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() def _snake_case ( self : List[str] ): snake_case_, snake_case_ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) snake_case_ : Union[str, Any] = '''A painting of a squirrel eating a burger''' snake_case_ : Tuple = jax.device_count() snake_case_ : Dict = num_samples * [prompt] snake_case_ : Tuple = sd_pipe.prepare_inputs(lowercase_ ) snake_case_ : str = replicate(lowercase_ ) snake_case_ : Any = shard(lowercase_ ) snake_case_ : Optional[int] = jax.random.PRNGKey(0 ) snake_case_ : Union[str, Any] = jax.random.split(lowercase_ , jax.device_count() ) snake_case_ : Optional[Any] = sd_pipe(lowercase_ , lowercase_ , lowercase_ , num_inference_steps=25 , jit=lowercase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) snake_case_ : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ : str = images[0, 253:256, 253:256, -1] snake_case_ : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ : int = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _snake_case ( self : str ): snake_case_ : Optional[Any] = '''stabilityai/stable-diffusion-2''' snake_case_, snake_case_ : Union[str, Any] = FlaxDPMSolverMultistepScheduler.from_pretrained(lowercase_ , subfolder='''scheduler''' ) snake_case_, snake_case_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( lowercase_ , scheduler=lowercase_ , revision='''bf16''' , dtype=jnp.bfloataa , ) snake_case_ : List[Any] = scheduler_params snake_case_ : int = '''A painting of a squirrel eating a burger''' snake_case_ : str = jax.device_count() snake_case_ : Union[str, Any] = num_samples * [prompt] snake_case_ : int = sd_pipe.prepare_inputs(lowercase_ ) snake_case_ : List[str] = replicate(lowercase_ ) snake_case_ : List[Any] = shard(lowercase_ ) snake_case_ : int = jax.random.PRNGKey(0 ) snake_case_ : Tuple = jax.random.split(lowercase_ , jax.device_count() ) snake_case_ : int = sd_pipe(lowercase_ , lowercase_ , lowercase_ , num_inference_steps=25 , jit=lowercase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) snake_case_ : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case_ : List[str] = images[0, 253:256, 253:256, -1] snake_case_ : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case_ : Optional[int] = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
155
1
from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """trajectory_transformer""" _a = ["""past_key_values"""] _a = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase=100 , lowerCAmelCase=5 , lowerCAmelCase=1 , lowerCAmelCase=1 , lowerCAmelCase=249 , lowerCAmelCase=6 , lowerCAmelCase=17 , lowerCAmelCase=25 , lowerCAmelCase=4 , lowerCAmelCase=4 , lowerCAmelCase=128 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0006 , lowerCAmelCase=512 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-12 , lowerCAmelCase=1 , lowerCAmelCase=True , lowerCAmelCase=1 , lowerCAmelCase=50_256 , lowerCAmelCase=50_256 , **lowerCAmelCase , ) -> List[str]: '''simple docstring''' _lowercase =vocab_size _lowercase =action_weight _lowercase =reward_weight _lowercase =value_weight _lowercase =max_position_embeddings _lowercase =block_size _lowercase =action_dim _lowercase =observation_dim _lowercase =transition_dim _lowercase =learning_rate _lowercase =n_layer _lowercase =n_head _lowercase =n_embd _lowercase =embd_pdrop _lowercase =attn_pdrop _lowercase =resid_pdrop _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =kaiming_initializer_range _lowercase =use_cache super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase )
205
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def a ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ) -> Optional[int]: """simple docstring""" _lowercase =AutoTokenizer.from_pretrained(A__ ) _lowercase =load_dataset('glue' , 'mrpc' ) def tokenize_function(A__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _lowercase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase =datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(A__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowercase =DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) _lowercase =DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def a ( A__ : Optional[Any] , A__ : Optional[int] , A__ : List[str] , A__ : Dict ) -> Dict: """simple docstring""" model.eval() _lowercase =0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase =model(**A__ ) _lowercase =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowercase , _lowercase =accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: _lowercase =predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowercase =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) _lowercase =metric.compute() return eval_metric["accuracy"] def a ( A__ : str , A__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _lowercase =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase =config['lr'] _lowercase =int(config['num_epochs'] ) _lowercase =int(config['seed'] ) _lowercase =int(config['batch_size'] ) _lowercase =args.model_name_or_path set_seed(A__ ) _lowercase , _lowercase =get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase =AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer _lowercase =( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowercase =optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: _lowercase =accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _lowercase =1 _lowercase =(len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowercase =get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: _lowercase =DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over _lowercase =0 # We also need to keep track of the stating epoch so files are named properly _lowercase =0 _lowercase =evaluate.load('glue' , 'mrpc' ) _lowercase =num_epochs if args.partial_train_epoch is not None: _lowercase =args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) _lowercase =args.resume_from_checkpoint.split('epoch_' )[1] _lowercase ='' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break _lowercase =int(A__ ) + 1 _lowercase =evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print('resumed checkpoint performance:' , A__ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: _lowercase =json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model _lowercase ={} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): _lowercase =model(**A__ ) _lowercase =outputs.loss _lowercase =loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 _lowercase =F'''epoch_{epoch}''' _lowercase =os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) _lowercase =evaluation_loop(A__ , A__ , A__ , A__ ) _lowercase =accuracy _lowercase =lr_scheduler.get_lr()[0] _lowercase =optimizer.param_groups[0]['lr'] _lowercase =epoch _lowercase =overall_step accelerator.print(F'''epoch {epoch}:''' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(A__ , A__ ) def a ( ) -> Tuple: """simple docstring""" _lowercase =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=A__ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A__ , ) parser.add_argument( '--output_dir' , type=A__ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=A__ , default=A__ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=A__ , default=A__ , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=A__ , default=2 , help='Number of train epochs.' , ) _lowercase =parser.parse_args() _lowercase ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
205
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Union[str, Any] = IFImgaImgSuperResolutionPipeline __A : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} __A : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) __A : int = PipelineTesterMixin.required_optional_params - {'''latents'''} def __lowercase ( self) -> List[str]: '''simple docstring''' return self._get_superresolution_dummy_components() def __lowercase ( self , lowercase , lowercase=0) -> Dict: '''simple docstring''' if str(lowercase).startswith('mps'): a__ : str = torch.manual_seed(lowercase) else: a__ : Optional[int] = torch.Generator(device=lowercase).manual_seed(lowercase) a__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase)).to(lowercase) a__ : str = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase)).to(lowercase) a__ : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowercase ( self) -> str: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def __lowercase ( self) -> int: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA') def __lowercase ( self) -> Dict: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1) def __lowercase ( self) -> Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def __lowercase ( self) -> str: '''simple docstring''' self._test_save_load_local() def __lowercase ( self) -> int: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
225
import enum import shutil import sys lowercase , lowercase : List[Any] = shutil.get_terminal_size() lowercase : Union[str, Any] = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class A__ ( enum.Enum ): """simple docstring""" __A : List[str] = 0 __A : str = 1 def A_ ( A__ , A__="" ) -> int: sys.stdout.write(str(A__ ) + end ) sys.stdout.flush() def A_ ( A__ , A__ , A__="" ) -> int: forceWrite(F'\u001b[{color}m{content}\u001b[0m' , A__ ) def A_ ( ) -> Any: forceWrite('\r' ) def A_ ( A__ , A__ ) -> List[str]: forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def A_ ( ) -> Any: forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def A_ ( ) -> Any: reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
225
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Any: super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> Union[str, Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase :str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Any = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) # get prompt text embeddings UpperCamelCase :Any = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCamelCase :Optional[int] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase :Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase :Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCamelCase :List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase :Dict = text_embeddings.shape UpperCamelCase :Optional[Any] = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase :Optional[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase :Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase :List[str] if negative_prompt is None: UpperCamelCase :Optional[Any] = [''''''] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=''' F''' {type(SCREAMING_SNAKE_CASE_ )}.''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase :int = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: UpperCamelCase :Any = negative_prompt UpperCamelCase :Dict = text_input_ids.shape[-1] UpperCamelCase :Tuple = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) UpperCamelCase :List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase :Tuple = uncond_embeddings.shape[1] UpperCamelCase :Dict = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) UpperCamelCase :Tuple = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase :Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase :Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase :Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCamelCase :List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase :Tuple = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='''cpu''' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) UpperCamelCase :Optional[Any] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='''cpu''' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: UpperCamelCase :int = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCamelCase :List[str] = latents_reference.to(self.device ) UpperCamelCase :Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCamelCase :Union[str, Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCamelCase :Optional[Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCamelCase :Any = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCamelCase :List[str] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCamelCase :List[str] = 0 if dx < 0 else dx UpperCamelCase :Union[str, Any] = 0 if dy < 0 else dy UpperCamelCase :Union[str, Any] = max(-dx , 0 ) UpperCamelCase :Any = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCamelCase :List[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase :str = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase :int = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase :List[Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase :Dict = {} if accepts_eta: UpperCamelCase :List[Any] = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase :int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase :Any = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase :Optional[Any] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase :Dict = noise_pred.chunk(2 ) UpperCamelCase :Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase :Tuple = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = 1 / 0.1_8215 * latents UpperCamelCase :Any = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase :Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase :str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCamelCase :List[str] = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='''pt''' ).to( self.device ) UpperCamelCase , UpperCamelCase :Optional[int] = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCamelCase :Tuple = None if output_type == "pil": UpperCamelCase :List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
259
def _A ( ): for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def _A ( SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :Optional[int] = 1 UpperCamelCase :List[Any] = 2 while i * i <= n: UpperCamelCase :str = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _A ( ): return next(i for i in triangle_number_generator() if count_divisors(SCREAMING_SNAKE_CASE__ ) > 500 ) if __name__ == "__main__": print(solution())
259
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def __magic_name__ ( __a : str ): '''simple docstring''' UpperCamelCase__ = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) UpperCamelCase__ = DetaConfig( backbone_config=__a , num_queries=900 , encoder_ffn_dim=2_048 , decoder_ffn_dim=2_048 , num_feature_levels=5 , assign_first_stage=__a , with_box_refine=__a , two_stage=__a , ) # set labels UpperCamelCase__ = """huggingface/label-files""" if "o365" in model_name: UpperCamelCase__ = 366 UpperCamelCase__ = """object365-id2label.json""" else: UpperCamelCase__ = 91 UpperCamelCase__ = """coco-detection-id2label.json""" UpperCamelCase__ = num_labels UpperCamelCase__ = json.load(open(cached_download(hf_hub_url(__a , __a , repo_type="""dataset""" ) ) , """r""" ) ) UpperCamelCase__ = {int(__a ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( __a : Any ): '''simple docstring''' UpperCamelCase__ = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def __magic_name__ ( __a : Any , __a : Tuple , __a : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ = dct.pop(__a ) UpperCamelCase__ = val def __magic_name__ ( __a : Optional[int] , __a : List[str] ): '''simple docstring''' UpperCamelCase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) UpperCamelCase__ = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[:dim, :] UpperCamelCase__ = in_proj_bias[: dim] UpperCamelCase__ = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase__ = in_proj_bias[ dim : dim * 2 ] UpperCamelCase__ = in_proj_weight[ -dim :, : ] UpperCamelCase__ = in_proj_bias[-dim :] # fmt: on def __magic_name__ ( __a : Optional[Any] , __a : Any ): '''simple docstring''' UpperCamelCase__ = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCamelCase__ = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) UpperCamelCase__ = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[:hidden_size, :] UpperCamelCase__ = in_proj_bias[:hidden_size] UpperCamelCase__ = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCamelCase__ = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase__ = in_proj_weight[-hidden_size:, :] UpperCamelCase__ = in_proj_bias[-hidden_size:] def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase__ = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def __magic_name__ ( __a : Any , __a : Dict , __a : List[str] ): '''simple docstring''' UpperCamelCase__ = get_deta_config(__a ) # load original state dict if model_name == "deta-swin-large": UpperCamelCase__ = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": UpperCamelCase__ = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(f"Model name {model_name} not supported" ) UpperCamelCase__ = torch.load(__a , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(__a , param.shape ) # rename keys UpperCamelCase__ = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_swin_q_k_v(__a , config.backbone_config ) read_in_decoder_q_k_v(__a , __a ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCamelCase__ = state_dict.pop(__a ) UpperCamelCase__ = val if "input_proj" in key: UpperCamelCase__ = state_dict.pop(__a ) UpperCamelCase__ = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCamelCase__ = state_dict.pop(__a ) UpperCamelCase__ = val # finally, create HuggingFace model and load state dict UpperCamelCase__ = DetaForObjectDetection(__a ) model.load_state_dict(__a ) model.eval() UpperCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(__a ) # load image processor UpperCamelCase__ = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image UpperCamelCase__ = prepare_img() UpperCamelCase__ = processor(images=__a , return_tensors="""pt""" ) UpperCamelCase__ = encoding["""pixel_values"""] UpperCamelCase__ = model(pixel_values.to(__a ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCamelCase__ = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) UpperCamelCase__ = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": UpperCamelCase__ = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) UpperCamelCase__ = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__a ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__a ) , atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) processor.save_pretrained(__a ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(f"jozhang97/{model_name}" ) processor.push_to_hub(f"jozhang97/{model_name}" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase_ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = BlipImageProcessor() UpperCamelCase__ = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCamelCase__ = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) UpperCamelCase__ = InstructBlipProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).tokenizer def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).image_processor def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).qformer_tokenizer def UpperCAmelCase_ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ (self ): UpperCamelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ (self ): UpperCamelCase__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) UpperCamelCase__ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor.qformer_tokenizer , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) UpperCamelCase__ = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = qformer_tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
178
0
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowercase__ = logging.getLogger(__name__) lowercase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowercase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCamelCase : '''simple docstring''' a_ : Optional[str] = field( default=_lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ : Optional[str] = field( default=_lowercase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_lowercase )} , ) a_ : Optional[str] = field( default=_lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : Optional[str] = field( default=_lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ : bool = field( default=_lowercase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ : bool = field( default=_lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowerCamelCase ( self : str ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class __lowerCamelCase : '''simple docstring''' a_ : Optional[str] = field( default=_lowercase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ : Optional[str] = field( default=_lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ : Optional[str] = field(default=_lowercase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ : Optional[str] = field( default=_lowercase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ : Optional[str] = field( default=_lowercase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ : Optional[str] = field( default=_lowercase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ : bool = field( default=_lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ : Optional[int] = field( default=_lowercase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ : Optional[int] = field( default=_lowercase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ : bool = field( default=_lowercase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowerCamelCase ( self : Any ): if self.train_file is not None: lowerCAmelCase_ : Optional[int] = self.train_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCAmelCase_ : str = self.validation_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: """simple docstring""" with open(snake_case__ , "r" , encoding="utf-8" ) as f: lowerCAmelCase_ : List[str] = [json.loads(snake_case__ ) for line in f.read().splitlines() if (len(snake_case__ ) > 0 and not line.isspace())] assert len(snake_case__ ) == len(snake_case__ ) lowerCAmelCase_ : Optional[int] = {c: dataset[c] for c in dataset.column_names} lowerCAmelCase_ : Any = refs return Dataset.from_dict(snake_case__ ) def __lowerCamelCase ( ) -> str: """simple docstring""" lowerCAmelCase_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase_ : Any = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCAmelCase_ : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase_ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , snake_case__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCAmelCase_ : Optional[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCAmelCase_ : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[:{data_args.validation_split_percentage}%]''' , ) lowerCAmelCase_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[{data_args.validation_split_percentage}%:]''' , ) else: lowerCAmelCase_ : List[Any] = {} if data_args.train_file is not None: lowerCAmelCase_ : Optional[int] = data_args.train_file if data_args.validation_file is not None: lowerCAmelCase_ : List[str] = data_args.validation_file lowerCAmelCase_ : Tuple = data_args.train_file.split("." )[-1] if extension == "txt": lowerCAmelCase_ : str = "text" lowerCAmelCase_ : List[Any] = load_dataset(snake_case__ , data_files=snake_case__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ : Tuple = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCAmelCase_ : Any = AutoConfig.from_pretrained(model_args.config_name , **snake_case__ ) elif model_args.model_name_or_path: lowerCAmelCase_ : int = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: lowerCAmelCase_ : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) lowerCAmelCase_ : List[Any] = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **snake_case__ ) elif model_args.model_name_or_path: lowerCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **snake_case__ ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: lowerCAmelCase_ : int = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=snake_case__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) lowerCAmelCase_ : Any = AutoModelForMaskedLM.from_config(snake_case__ ) model.resize_token_embeddings(len(snake_case__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCAmelCase_ : List[str] = datasets["train"].column_names else: lowerCAmelCase_ : Union[str, Any] = datasets["validation"].column_names lowerCAmelCase_ : Union[str, Any] = "text" if "text" in column_names else column_names[0] lowerCAmelCase_ : Any = "max_length" if data_args.pad_to_max_length else False def tokenize_function(__UpperCamelCase ): # Remove empty lines lowerCAmelCase_ : Any = [line for line in examples["text"] if len(snake_case__ ) > 0 and not line.isspace()] return tokenizer(examples["text"] , padding=snake_case__ , truncation=snake_case__ , max_length=data_args.max_seq_length ) lowerCAmelCase_ : List[str] = datasets.map( snake_case__ , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCAmelCase_ : str = add_chinese_references(tokenized_datasets["train"] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCAmelCase_ : List[str] = add_chinese_references( tokenized_datasets["validation"] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCAmelCase_ : List[str] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCAmelCase_ : Tuple = False # Data collator # This one will take care of randomly masking the tokens. lowerCAmelCase_ : Optional[Any] = DataCollatorForWholeWordMask(tokenizer=snake_case__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase_ : str = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=tokenized_datasets["train"] if training_args.do_train else None , eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None , tokenizer=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCAmelCase_ : int = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCAmelCase_ : Any = model_args.model_name_or_path else: lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : str = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCAmelCase_ : str = os.path.join(training_args.output_dir , "train_results.txt" ) if trainer.is_world_process_zero(): with open(snake_case__ , "w" ) as writer: logger.info("***** Train results *****" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # Evaluation lowerCAmelCase_ : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase_ : List[Any] = trainer.evaluate() lowerCAmelCase_ : int = math.exp(eval_output["eval_loss"] ) lowerCAmelCase_ : Union[str, Any] = perplexity lowerCAmelCase_ : List[Any] = os.path.join(training_args.output_dir , "eval_results_mlm_wwm.txt" ) if trainer.is_world_process_zero(): with open(snake_case__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
241
def _UpperCamelCase ( snake_case__ ) -> list: __UpperCAmelCase : Dict = [0] * len(snake_case__ ) for i in range(1, len(snake_case__ ) ): # use last results for better performance - dynamic programming __UpperCAmelCase : Any = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __UpperCAmelCase : Union[str, Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __UpperCAmelCase : Tuple = j return prefix_result def _UpperCamelCase ( snake_case__ ) -> int: return max(prefix_function(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
157
0
"""simple docstring""" import math import os import sys def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = "" try: with open(_SCREAMING_SNAKE_CASE , "rb" ) as binary_file: UpperCamelCase = binary_file.read() for dat in data: UpperCamelCase = F"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" lexicon.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = last_match_id if math.loga(_SCREAMING_SNAKE_CASE ).is_integer(): for curr_key in lexicon: UpperCamelCase = "0" + lexicon[curr_key] UpperCamelCase = bin(_SCREAMING_SNAKE_CASE )[2:] def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = {"0": "0", "1": "1"} UpperCamelCase , UpperCamelCase = "", "" UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) index += 1 UpperCamelCase = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCamelCase = lexicon[curr_string] result += last_match_id return result def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = os.path.getsize(_SCREAMING_SNAKE_CASE ) UpperCamelCase = bin(_SCREAMING_SNAKE_CASE )[2:] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) return "0" * (length_length - 1) + file_length_binary + compressed def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = 8 try: with open(_SCREAMING_SNAKE_CASE , "wb" ) as opened_file: UpperCamelCase = [ to_write[i : i + byte_length] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = read_file_binary(_SCREAMING_SNAKE_CASE ) UpperCamelCase = compress_data(_SCREAMING_SNAKE_CASE ) UpperCamelCase = add_file_length(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) write_file_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
244
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCAmelCase__ = NewType('''DataClass''', Any) lowerCAmelCase__ = NewType('''DataClassType''', Any) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = {str(_SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda _SCREAMING_SNAKE_CASE : str_to_choice.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( *, _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = dataclasses.MISSING , _SCREAMING_SNAKE_CASE = dataclasses.MISSING , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls UpperCamelCase = {} if aliases is not None: UpperCamelCase = aliases if help is not None: UpperCamelCase = help return dataclasses.field(metadata=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , default_factory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = 42 def __init__(self , __a , **__a ) -> Any: # To make the default appear when using --help if "formatter_class" not in kwargs: UpperCamelCase = ArgumentDefaultsHelpFormatter super().__init__(**__a ) if dataclasses.is_dataclass(__a ): UpperCamelCase = [dataclass_types] UpperCamelCase = list(__a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__a ) @staticmethod def snake_case_ (__a , __a ) -> Optional[Any]: UpperCamelCase = F"--{field.name}" UpperCamelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __a ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) UpperCamelCase = kwargs.pop("aliases" , [] ) if isinstance(__a , __a ): UpperCamelCase = [aliases] UpperCamelCase = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(__a , "UnionType" ) and isinstance(__a , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__a ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F" Problem encountered in field '{field.name}'." ) if type(__a ) not in field.type.__args__: # filter `str` in Union UpperCamelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] UpperCamelCase = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) UpperCamelCase = ( field.type.__args__[0] if isinstance(__a , field.type.__args__[1] ) else field.type.__args__[1] ) UpperCamelCase = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) UpperCamelCase = {} if origin_type is Literal or (isinstance(field.type , __a ) and issubclass(field.type , __a )): if origin_type is Literal: UpperCamelCase = field.type.__args__ else: UpperCamelCase = [x.value for x in field.type] UpperCamelCase = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: UpperCamelCase = field.default else: UpperCamelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument UpperCamelCase = copy(__a ) # Hack because type=bool in argparse does not behave as we want. UpperCamelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. UpperCamelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way UpperCamelCase = default # This tells argparse we accept 0 or 1 value after --field_name UpperCamelCase = "?" # This is the value that will get picked if we do --field_name (without value) UpperCamelCase = True elif isclass(__a ) and issubclass(__a , __a ): UpperCamelCase = field.type.__args__[0] UpperCamelCase = "+" if field.default_factory is not dataclasses.MISSING: UpperCamelCase = field.default_factory() elif field.default is dataclasses.MISSING: UpperCamelCase = True else: UpperCamelCase = field.type if field.default is not dataclasses.MISSING: UpperCamelCase = field.default elif field.default_factory is not dataclasses.MISSING: UpperCamelCase = field.default_factory() else: UpperCamelCase = True parser.add_argument(__a , *__a , **__a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): UpperCamelCase = False parser.add_argument(F"--no_{field.name}" , action="store_false" , dest=field.name , **__a ) def snake_case_ (self , __a ) -> List[Any]: if hasattr(__a , "_argument_group_name" ): UpperCamelCase = self.add_argument_group(dtype._argument_group_name ) else: UpperCamelCase = self try: UpperCamelCase = get_type_hints(__a ) except NameError: raise RuntimeError( F"Type resolution failed for {dtype}. Try declaring the class in global scope or " "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__a ): UpperCamelCase = ".".join(map(__a , sys.version_info[:3] ) ) raise RuntimeError( F"Type resolution failed for {dtype} on Python {python_version}. Try removing " "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(__a ): if not field.init: continue UpperCamelCase = type_hints[field.name] self._parse_dataclass_field(__a , __a ) def snake_case_ (self , __a=None , __a=False , __a=True , __a=None , __a=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): UpperCamelCase = [] if args_filename: args_files.append(Path(__a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values UpperCamelCase = ArgumentParser() args_file_parser.add_argument(__a , type=__a , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) UpperCamelCase , UpperCamelCase = args_file_parser.parse_known_args(args=__a ) UpperCamelCase = vars(__a ).get(args_file_flag.lstrip("-" ) , __a ) if cmd_args_file_paths: args_files.extend([Path(__a ) for p in cmd_args_file_paths] ) UpperCamelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last UpperCamelCase = file_args + args if args is not None else file_args + sys.argv[1:] UpperCamelCase , UpperCamelCase = self.parse_known_args(args=__a ) UpperCamelCase = [] for dtype in self.dataclass_types: UpperCamelCase = {f.name for f in dataclasses.fields(__a ) if f.init} UpperCamelCase = {k: v for k, v in vars(__a ).items() if k in keys} for k in keys: delattr(__a , __a ) UpperCamelCase = dtype(**__a ) outputs.append(__a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def snake_case_ (self , __a , __a = False ) -> Tuple[DataClass, ...]: UpperCamelCase = set(args.keys() ) UpperCamelCase = [] for dtype in self.dataclass_types: UpperCamelCase = {f.name for f in dataclasses.fields(__a ) if f.init} UpperCamelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) UpperCamelCase = dtype(**__a ) outputs.append(__a ) if not allow_extra_keys and unused_keys: raise ValueError(F"Some keys are not used by the HfArgumentParser: {sorted(__a )}" ) return tuple(__a ) def snake_case_ (self , __a , __a = False ) -> Tuple[DataClass, ...]: with open(Path(__a ) , encoding="utf-8" ) as open_json_file: UpperCamelCase = json.loads(open_json_file.read() ) UpperCamelCase = self.parse_dict(__a , allow_extra_keys=__a ) return tuple(__a ) def snake_case_ (self , __a , __a = False ) -> Tuple[DataClass, ...]: UpperCamelCase = self.parse_dict(yaml.safe_load(Path(__a ).read_text() ) , allow_extra_keys=__a ) return tuple(__a )
244
1
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _a ): _a = ['input_values', 'attention_mask'] def __init__( self : Optional[Any] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1_6000 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : bool = False , lowerCAmelCase : int = 80 , lowerCAmelCase : int = 16 , lowerCAmelCase : int = 64 , lowerCAmelCase : str = "hann_window" , lowerCAmelCase : float = 1.0 , lowerCAmelCase : float = 80 , lowerCAmelCase : float = 7600 , lowerCAmelCase : float = 1e-10 , lowerCAmelCase : int = 2 , lowerCAmelCase : bool = True , **lowerCAmelCase : List[Any] , ): super().__init__(feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase ) lowerCAmelCase = do_normalize lowerCAmelCase = return_attention_mask lowerCAmelCase = num_mel_bins lowerCAmelCase = hop_length lowerCAmelCase = win_length lowerCAmelCase = win_function lowerCAmelCase = frame_signal_scale lowerCAmelCase = fmin lowerCAmelCase = fmax lowerCAmelCase = mel_floor lowerCAmelCase = reduction_factor lowerCAmelCase = win_length * sampling_rate // 1000 lowerCAmelCase = hop_length * sampling_rate // 1000 lowerCAmelCase = optimal_fft_length(self.sample_size ) lowerCAmelCase = (self.n_fft // 2) + 1 lowerCAmelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase ) lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowerCAmelCase , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowerCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __lowercase ( lowerCAmelCase : List[np.ndarray] , lowerCAmelCase : List[np.ndarray] , lowerCAmelCase : float = 0.0 ): if attention_mask is not None: lowerCAmelCase = np.array(lowerCAmelCase , np.intaa ) lowerCAmelCase = [] for vector, length in zip(lowerCAmelCase , attention_mask.sum(-1 ) ): lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCAmelCase = padding_value normed_input_values.append(lowerCAmelCase ) else: lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __lowercase ( self : int , lowerCAmelCase : np.ndarray , ): lowerCAmelCase = spectrogram( lowerCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self : Tuple , lowerCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , lowerCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : int , ): if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: lowerCAmelCase = self._process_audio( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase , ) else: lowerCAmelCase = None if audio_target is not None: lowerCAmelCase = self._process_audio( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase , ) if inputs is None: return inputs_target else: lowerCAmelCase = inputs_target["""input_values"""] lowerCAmelCase = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCAmelCase = decoder_attention_mask return inputs def __lowercase ( self : Optional[Any] , lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase : bool = False , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , **lowerCAmelCase : Dict , ): lowerCAmelCase = isinstance(lowerCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase = is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): lowerCAmelCase = np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [speech] # needed to make pad() work on spectrogram inputs lowerCAmelCase = self.feature_size # convert into correct format for padding if is_target: lowerCAmelCase = [self._extract_mel_features(lowerCAmelCase ) for waveform in speech] lowerCAmelCase = BatchFeature({"""input_values""": features} ) lowerCAmelCase = self.num_mel_bins else: lowerCAmelCase = BatchFeature({"""input_values""": speech} ) lowerCAmelCase = self.pad( lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) lowerCAmelCase = feature_size_hack # convert input values to correct format lowerCAmelCase = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): lowerCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowerCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowerCAmelCase = [array.astype(np.floataa ) for array in input_values] elif isinstance(lowerCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowerCAmelCase = input_values.astype(np.floataa ) # convert attention_mask to correct format lowerCAmelCase = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowerCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCAmelCase = ( attention_mask if self._get_padding_strategies(lowerCAmelCase , max_length=lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=lowerCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(lowerCAmelCase ) return padded_inputs def __lowercase ( self : List[Any] ): lowerCAmelCase = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCAmelCase = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
155
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a = logging.get_logger(__name__) a = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( _a ): _a = 'deberta-v2' def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any]=12_8100 , lowerCAmelCase : Any=1536 , lowerCAmelCase : str=24 , lowerCAmelCase : str=24 , lowerCAmelCase : Optional[Any]=6144 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : str=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=512 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Optional[int]=1e-7 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Dict=-1 , lowerCAmelCase : int=0 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : int=None , lowerCAmelCase : Any=0 , lowerCAmelCase : Dict="gelu" , **lowerCAmelCase : Any , ): super().__init__(**lowerCAmelCase ) lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = relative_attention lowerCAmelCase = max_relative_positions lowerCAmelCase = pad_token_id lowerCAmelCase = position_biased_input # Backwards compatibility if type(lowerCAmelCase ) == str: lowerCAmelCase = [x.strip() for x in pos_att_type.lower().split("""|""" )] lowerCAmelCase = pos_att_type lowerCAmelCase = vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = kwargs.get("""pooler_hidden_size""" , lowerCAmelCase ) lowerCAmelCase = pooler_dropout lowerCAmelCase = pooler_hidden_act class SCREAMING_SNAKE_CASE__ ( _a ): @property def __lowercase ( self : Optional[int] ): if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def __lowercase ( self : List[str] ): return 12 def __lowercase ( self : int , lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional["TensorType"] = None , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 40 , lowerCAmelCase : int = 40 , lowerCAmelCase : "PreTrainedTokenizerBase" = None , ): lowerCAmelCase = super().generate_dummy_inputs(preprocessor=lowerCAmelCase , framework=lowerCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
155
1
"""simple docstring""" import math def _lowerCAmelCase ( lowercase_ = 100 ): UpperCAmelCase = sum(i * i for i in range(1 , n + 1 ) ) UpperCAmelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
354
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCAmelCase ( ): UpperCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=lowercase_ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=lowercase_ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=lowercase_ ) return parser.parse_args() def _lowerCAmelCase ( ): UpperCAmelCase = parse_args() # Import training_script as a module. UpperCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase = script_fpath.stem UpperCAmelCase = importlib.import_module(lowercase_ ) # Patch sys.argv UpperCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
181
0