code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def UpperCAmelCase_ ( __UpperCAmelCase : Namespace ) -> Optional[Any]: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowerCamelCase__ : Union[str, Any] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : ArgumentParser ): SCREAMING_SNAKE_CASE_ = parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=_lowerCAmelCase , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=_lowerCAmelCase , default=_lowerCAmelCase , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , *_lowerCAmelCase : int , ): SCREAMING_SNAKE_CASE_ = logging.get_logger('transformers-cli/converting' ) self._logger.info(F"Loading model {model_type}" ) SCREAMING_SNAKE_CASE_ = model_type SCREAMING_SNAKE_CASE_ = tf_checkpoint SCREAMING_SNAKE_CASE_ = pytorch_dump_output SCREAMING_SNAKE_CASE_ = config SCREAMING_SNAKE_CASE_ = finetuning_task_name def lowerCAmelCase_ ( self : List[Any] ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): SCREAMING_SNAKE_CASE_ = self._tf_checkpoint SCREAMING_SNAKE_CASE_ = '' else: SCREAMING_SNAKE_CASE_ = self._tf_checkpoint SCREAMING_SNAKE_CASE_ = '' convert_transfo_xl_checkpoint_to_pytorch( _lowerCAmelCase , self._config , self._pytorch_dump_output , _lowerCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
225
class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] ): SCREAMING_SNAKE_CASE_ = {} def lowerCAmelCase_ ( self : List[str] ): print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , ' -> ' , ' -> '.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def lowerCAmelCase_ ( self : Dict ): # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : list ): # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(_lowerCAmelCase , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
225
1
import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a : Optional[Any]= 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _a : str= { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names _a : Optional[int]= {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _a : Dict= "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _a : List[Any]= "allenai" def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] ) -> Any: '''simple docstring''' __snake_case : List[str] = dict((re.sub(r'@@$' , '' , _a ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _a ), v) for k, v in d.items() ) __snake_case : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"{k}</w>"] __snake_case : Dict = d[k] # restore return da def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> int: '''simple docstring''' assert os.path.exists(_a ) os.makedirs(_a , exist_ok=_a ) print(F"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models __snake_case : Dict = basename(_a ) __snake_case : Dict = dirname(_a ) __snake_case : List[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel __snake_case : Optional[int] = cls.hub_models() __snake_case : Optional[int] = {'bpe': 'fastbpe', 'tokenizer': 'moses'} __snake_case : List[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F"using checkpoint {checkpoint_file}" ) __snake_case : Optional[int] = hub_utils.from_pretrained( _a , _a , _a , archive_map=_a , **_a ) __snake_case : Optional[int] = vars(chkpt['args']['model'] ) __snake_case : List[Any] = args['source_lang'] __snake_case : List[str] = args['target_lang'] __snake_case : List[str] = dirname(_a ) __snake_case : List[str] = basename(_a ) # dicts __snake_case : Tuple = os.path.join(_a , F"dict.{src_lang}.txt" ) __snake_case : Tuple = os.path.join(_a , F"dict.{tgt_lang}.txt" ) __snake_case : Optional[Any] = Dictionary.load(_a ) __snake_case : List[str] = rewrite_dict_keys(src_dict.indices ) __snake_case : List[str] = len(_a ) __snake_case : Optional[Any] = os.path.join(_a , 'vocab-src.json' ) print(F"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records" ) with open(_a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab __snake_case : List[Any] = True for k in src_vocab.keys(): if not k.islower(): __snake_case : Union[str, Any] = False break __snake_case : Dict = Dictionary.load(_a ) __snake_case : str = rewrite_dict_keys(tgt_dict.indices ) __snake_case : Any = len(_a ) __snake_case : List[str] = os.path.join(_a , 'vocab-tgt.json' ) print(F"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records" ) with open(_a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # merges_file (bpecodes) __snake_case : Optional[Any] = os.path.join(_a , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" __snake_case : Any = os.path.join(_a , _a ) if os.path.exists(_a ): break with open(_a , encoding='utf-8' ) as fin: __snake_case : int = fin.read() __snake_case : str = re.sub(r' \d+$' , '' , _a , 0 , re.M ) # remove frequency number print(F"Generating {merges_file}" ) with open(_a , 'w' , encoding='utf-8' ) as fout: fout.write(_a ) # model config __snake_case : List[Any] = os.path.join(_a , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", F"need to extend tokenizer to support bpe={args['tokenizer']}" __snake_case : str = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with __snake_case : List[str] = 5 __snake_case : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: __snake_case : int = best_score_hparams[model_dir]['length_penalty'] else: __snake_case : List[str] = 1.0 print(F"Generating {fsmt_model_config_file}" ) with open(_a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # tokenizer config __snake_case : Union[str, Any] = os.path.join(_a , _a ) __snake_case : List[str] = { 'langs': [src_lang, tgt_lang], 'model_max_length': 10_24, 'do_lower_case': do_lower_case, } print(F"Generating {fsmt_tokenizer_config_file}" ) with open(_a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a ) ) # model __snake_case : Optional[int] = chkpt['models'][0] __snake_case : Tuple = model.state_dict() # rename keys to start with 'model.' __snake_case : Tuple = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys __snake_case : Dict = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_a , _a ) __snake_case : Optional[Any] = FSMTConfig.from_pretrained(_a ) __snake_case : str = FSMTForConditionalGeneration(_a ) # check that it loads ok model_new.load_state_dict(_a , strict=_a ) # save __snake_case : List[str] = os.path.join(_a , _a ) print(F"Generating {pytorch_weights_dump_path}" ) torch.save(_a , _a ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(F"cd {data_root}" ) print(F"transformers-cli upload {model_dir}" ) if __name__ == "__main__": _a : List[Any]= argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _a : Union[str, Any]= parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
361
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu _a : List[str]= False class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : List[str]) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase (self : Optional[Any]) -> Union[str, Any]: return 12 @property def _lowercase (self : Dict) -> Union[str, Any]: return 12 @property def _lowercase (self : int) -> Tuple: return 32 @property def _lowercase (self : Optional[int]) -> Dict: torch.manual_seed(0) __snake_case : Any = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _lowercase (self : List[Any]) -> Optional[int]: __snake_case : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def _lowercase (self : Union[str, Any]) -> Optional[int]: torch.manual_seed(0) __snake_case : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_A) @property def _lowercase (self : Union[str, Any]) -> Dict: torch.manual_seed(0) __snake_case : Any = 12 __snake_case : int = 12 __snake_case : List[Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __snake_case : Union[str, Any] = TransformeraDModel(**_A) return model def _lowercase (self : Union[str, Any]) -> Dict: __snake_case : Tuple = 'cpu' __snake_case : List[str] = self.dummy_vqvae __snake_case : str = self.dummy_text_encoder __snake_case : Optional[Any] = self.dummy_tokenizer __snake_case : Dict = self.dummy_transformer __snake_case : Optional[int] = VQDiffusionScheduler(self.num_embed) __snake_case : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=_A) __snake_case : List[Any] = VQDiffusionPipeline( vqvae=_A , text_encoder=_A , tokenizer=_A , transformer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) __snake_case : List[Any] = pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : Optional[Any] = 'teddy bear playing in the pool' __snake_case : str = torch.Generator(device=_A).manual_seed(0) __snake_case : Union[str, Any] = pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='np') __snake_case : Optional[int] = output.images __snake_case : int = torch.Generator(device=_A).manual_seed(0) __snake_case : Tuple = pipe( [prompt] , generator=_A , output_type='np' , return_dict=_A , num_inference_steps=2)[0] __snake_case : str = image[0, -3:, -3:, -1] __snake_case : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __snake_case : str = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def _lowercase (self : Tuple) -> Optional[int]: __snake_case : Optional[Any] = 'cpu' __snake_case : Optional[int] = self.dummy_vqvae __snake_case : List[str] = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : Optional[Any] = self.dummy_transformer __snake_case : Union[str, Any] = VQDiffusionScheduler(self.num_embed) __snake_case : Optional[int] = LearnedClassifierFreeSamplingEmbeddings( learnable=_A , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) __snake_case : Union[str, Any] = VQDiffusionPipeline( vqvae=_A , text_encoder=_A , tokenizer=_A , transformer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) __snake_case : Union[str, Any] = pipe.to(_A) pipe.set_progress_bar_config(disable=_A) __snake_case : Union[str, Any] = 'teddy bear playing in the pool' __snake_case : Optional[int] = torch.Generator(device=_A).manual_seed(0) __snake_case : Tuple = pipe([prompt] , generator=_A , num_inference_steps=2 , output_type='np') __snake_case : Optional[Any] = output.images __snake_case : str = torch.Generator(device=_A).manual_seed(0) __snake_case : Dict = pipe( [prompt] , generator=_A , output_type='np' , return_dict=_A , num_inference_steps=2)[0] __snake_case : int = image[0, -3:, -3:, -1] __snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __snake_case : Optional[Any] = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Any) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Tuple) -> Optional[int]: __snake_case : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') __snake_case : Union[str, Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') __snake_case : Tuple = pipeline.to(_A) pipeline.set_progress_bar_config(disable=_A) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __snake_case : Optional[int] = torch.Generator(device=_A).manual_seed(0) __snake_case : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=_A , output_type='np' , ) __snake_case : int = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image).max() < 2.0
95
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class snake_case__( snake_case_, unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = BarthezTokenizer SCREAMING_SNAKE_CASE__ : Dict = BarthezTokenizerFast SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Tuple = True def lowercase_ ( self ) -> Union[str, Any]: super().setUp() lowerCAmelCase_ : List[str] = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowercase ) lowerCAmelCase_ : Any = tokenizer def lowercase_ ( self ) -> Tuple: lowerCAmelCase_ : Optional[Any] = '''<pad>''' lowerCAmelCase_ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def lowercase_ ( self ) -> str: lowerCAmelCase_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowercase ) , 1_0_1_1_2_2 ) def lowercase_ ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def lowercase_ ( self ) -> Any: lowerCAmelCase_ : Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCAmelCase_ : Optional[Any] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] lowerCAmelCase_ : Any = self.tokenizer( __lowercase , max_length=len(__lowercase ) , padding=__lowercase , truncation=__lowercase , return_tensors='''pt''' ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCAmelCase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(__lowercase , __lowercase ) def lowercase_ ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return lowerCAmelCase_ : Optional[int] = self.get_tokenizer() lowerCAmelCase_ : List[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : Union[str, Any] = '''I was born in 92000, and this is falsé.''' lowerCAmelCase_ : int = tokenizer.tokenize(__lowercase ) lowerCAmelCase_ : List[Any] = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) lowerCAmelCase_ : Union[str, Any] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) lowerCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) lowerCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer() lowerCAmelCase_ : List[Any] = tokenizer.encode(__lowercase ) lowerCAmelCase_ : List[Any] = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) @slow def lowercase_ ( self ) -> Optional[int]: # fmt: off lowerCAmelCase_ : str = {'''input_ids''': [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCAmelCase_ : List[Any] = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__lowercase , )
262
import collections import importlib.util import os import re from pathlib import Path lowercase = "src/transformers" # Matches is_xxx_available() lowercase = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} lowercase = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available lowercase = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") lowercase = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", lowercase = re.compile("^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], lowercase = re.compile("^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo lowercase = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: lowercase = re.compile(r"^\s*try:") # Catches a line with else: lowercase = re.compile(r"^\s*else:") def __UpperCAmelCase ( a_): if _re_test_backend.search(a_) is None: return None snake_case_ = [b[0] for b in _re_backend.findall(a_)] backends.sort() return "_and_".join(a_) def __UpperCAmelCase ( a_): with open(a_ , 'r' , encoding='utf-8' , newline='\n') as f: snake_case_ = f.readlines() snake_case_ = 0 while line_index < len(a_) and not lines[line_index].startswith('_import_structure = {'): line_index += 1 # If this is a traditional init, just return. if line_index >= len(a_): return None # First grab the objects without a specific backend in _import_structure snake_case_ = [] while not lines[line_index].startswith('if TYPE_CHECKING') and find_backend(lines[line_index]) is None: snake_case_ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(a_): snake_case_ = _re_one_line_import_struct.search(a_).groups()[0] snake_case_ = re.findall('\[([^\]]+)\]' , a_) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ')]) line_index += 1 continue snake_case_ = _re_import_struct_key_value.search(a_) if single_line_import_search is not None: snake_case_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ') if len(a_) > 0] objects.extend(a_) elif line.startswith(' ' * 8 + '"'): objects.append(line[9:-3]) line_index += 1 snake_case_ = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING'): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: snake_case_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 snake_case_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(' ' * 4): snake_case_ = lines[line_index] if _re_import_struct_add_one.search(a_) is not None: objects.append(_re_import_struct_add_one.search(a_).groups()[0]) elif _re_import_struct_add_many.search(a_) is not None: snake_case_ = _re_import_struct_add_many.search(a_).groups()[0].split(', ') snake_case_ = [obj[1:-1] for obj in imports if len(a_) > 0] objects.extend(a_) elif _re_between_brackets.search(a_) is not None: snake_case_ = _re_between_brackets.search(a_).groups()[0].split(', ') snake_case_ = [obj[1:-1] for obj in imports if len(a_) > 0] objects.extend(a_) elif _re_quote_object.search(a_) is not None: objects.append(_re_quote_object.search(a_).groups()[0]) elif line.startswith(' ' * 8 + '"'): objects.append(line[9:-3]) elif line.startswith(' ' * 12 + '"'): objects.append(line[13:-3]) line_index += 1 snake_case_ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ = [] while ( line_index < len(a_) and find_backend(lines[line_index]) is None and not lines[line_index].startswith('else') ): snake_case_ = lines[line_index] snake_case_ = _re_import.search(a_) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ')) elif line.startswith(' ' * 8): objects.append(line[8:-2]) line_index += 1 snake_case_ = {'none': objects} # Let's continue with backend-specific objects while line_index < len(a_): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: snake_case_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 snake_case_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(' ' * 8): snake_case_ = lines[line_index] snake_case_ = _re_import.search(a_) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ')) elif line.startswith(' ' * 12): objects.append(line[12:-2]) line_index += 1 snake_case_ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __UpperCAmelCase ( a_ , a_): def find_duplicates(a_): return [k for k, v in collections.Counter(a_).items() if v > 1] if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] snake_case_ = [] for key in import_dict_objects.keys(): snake_case_ = find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''') snake_case_ = find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''') if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): snake_case_ = 'base imports' if key == 'none' else f'''{key} backend''' errors.append(f'''Differences for {name}:''') for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''') for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''') return errors def __UpperCAmelCase ( ): snake_case_ = [] for root, _, files in os.walk(a_): if "__init__.py" in files: snake_case_ = os.path.join(a_ , '__init__.py') snake_case_ = parse_init(a_) if objects is not None: snake_case_ = analyze_results(*a_) if len(a_) > 0: snake_case_ = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('\n'.join(a_)) if len(a_) > 0: raise ValueError('\n\n'.join(a_)) def __UpperCAmelCase ( ): snake_case_ = [] for path, directories, files in os.walk(a_): for folder in directories: # Ignore private modules if folder.startswith('_'): directories.remove(a_) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(a_) / folder).glob('*.py'))) == 0: continue snake_case_ = str((Path(a_) / folder).relative_to(a_)) snake_case_ = short_path.replace(os.path.sep , '.') submodules.append(a_) for fname in files: if fname == "__init__.py": continue snake_case_ = str((Path(a_) / fname).relative_to(a_)) snake_case_ = short_path.replace('.py' , '').replace(os.path.sep , '.') if len(submodule.split('.')) == 1: submodules.append(a_) return submodules lowercase = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", ] def __UpperCAmelCase ( ): # This is to make sure the transformers module imported is the one in the repo. snake_case_ = importlib.util.spec_from_file_location( 'transformers' , os.path.join(a_ , '__init__.py') , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) snake_case_ = spec.loader.load_module() snake_case_ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(a_) > 0: snake_case_ = '\n'.join(f'''- {module}''' for module in module_not_registered) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' f'''{list_of_modules}\n''' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.') if __name__ == "__main__": check_all_inits() check_submodules()
178
0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) a__ = '''pytorch_model.bin''' a__ = '''pytorch_model.bin.index.json''' a__ = '''adapter_config.json''' a__ = '''adapter_model.bin''' a__ = '''adapter_model.safetensors''' a__ = '''tf_model.h5''' a__ = '''tf_model.h5.index.json''' a__ = '''model.ckpt''' a__ = '''flax_model.msgpack''' a__ = '''flax_model.msgpack.index.json''' a__ = '''model.safetensors''' a__ = '''model.safetensors.index.json''' a__ = '''config.json''' a__ = '''preprocessor_config.json''' a__ = FEATURE_EXTRACTOR_NAME a__ = '''generation_config.json''' a__ = '''modelcard.json''' a__ = '''▁''' a__ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility a__ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. a__ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] a__ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __UpperCAmelCase ( __a : int ) -> Tuple: """simple docstring""" if version.parse(__a ) < version.parse(__a ): if "dev" in min_version: _a : Tuple = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: _a : List[str] = F"""This example requires a minimum version of {min_version},""" error_message += F""" but the version found is {__version__}.\n""" raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
15
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( __a : Dict=None ) -> str: """simple docstring""" if subparsers is not None: _a : Union[str, Any] = subparsers.add_parser('''test''' ) else: _a : List[str] = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' ,default=__a ,help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) ,) if subparsers is not None: parser.set_defaults(func=__a ) return parser def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: _a : List[Any] = script_name else: _a : Union[str, Any] = F"""--config_file={args.config_file} {script_name}""" _a : str = ['''accelerate-launch'''] + test_args.split() _a : str = execute_subprocess_async(__a ,env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" _a : Optional[int] = test_command_parser() _a : List[Any] = parser.parse_args() test_command(__a ) if __name__ == "__main__": main()
15
1
def __magic_name__ ( __a : int ): '''simple docstring''' if not isinstance(__a , __a ): raise TypeError("""Input value must be an 'int' type""" ) UpperCamelCase__ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
244
from collections.abc import Generator def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = 0, 1 while True: UpperCamelCase__ , UpperCamelCase__ = b, a + b yield b def __magic_name__ ( __a : int = 1_000 ): '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = fibonacci_generator() while len(str(next(__a ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
244
1
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase :Optional[Any] = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase :Optional[int] = 1_0 lowerCamelCase :Dict = 2_5_6 def a ( lowerCamelCase__ ): '''simple docstring''' if len(a__ ) < MIN_NUM_TOKENS: return None A_ : Optional[int] = MinHash(num_perm=a__ ) for token in set(a__ ): min_hash.update(token.encode() ) return min_hash def a ( lowerCamelCase__ ): '''simple docstring''' return {t for t in NON_ALPHA.split(a__ ) if len(t.strip() ) > 0} class _lowerCAmelCase : def __init__(self , *, lowercase = 0.85 , ): A_ : Dict = duplication_jaccard_threshold A_ : Union[str, Any] = NUM_PERM A_ : Optional[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) A_ : int = defaultdict(_lowerCamelCase ) def _a (self , lowercase , lowercase ): A_ : Dict = self._index.query(_lowerCamelCase ) if code_key in self._index.keys: print(F'Duplicate key {code_key}' ) return self._index.insert(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(_lowerCamelCase ) def _a (self ): A_ : Tuple = [] for base, duplicates in self._duplicate_clusters.items(): A_ : Optional[Any] = [base] + list(_lowerCamelCase ) # reformat the cluster to be a list of dict A_ : Optional[Any] = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_lowerCamelCase ) return duplicate_clusters def _a (self , lowercase ): A_ : List[Any] = self.get_duplicate_clusters() with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = element A_ : Dict = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def a ( lowerCamelCase__ ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(a__ , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = DuplicationIndex(duplication_jaccard_threshold=a__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a__ ) ) , max_queue_size=1_00 ) ): di.add(a__ , a__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Any = get_tokens(a__ ) A_ : Union[str, Any] = get_tokens(a__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase :List[str] = None def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = [] for elementa in cluster: A_ : List[Any] = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: A_ : str = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(a__ , a__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: A_ : Optional[Any] = 1 extremes.append(a__ ) return extremes def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' global _shared_dataset A_ : Any = dataset A_ : List[Any] = [] A_ : str = partial(_find_cluster_extremes_shared , jaccard_threshold=a__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( a__ , a__ , ) , total=len(a__ ) , ): extremes_list.append(a__ ) return extremes_list def a ( lowerCamelCase__ , lowerCamelCase__ = 0.85 ): '''simple docstring''' A_ : str = make_duplicate_clusters(a__ , a__ ) A_ : Optional[Any] = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} A_ : List[Any] = {} A_ : Tuple = find_extremes(a__ , a__ , a__ ) for extremes in extremes_clusters: for element in extremes: A_ : Optional[int] = element A_ : int = duplicate_indices - set(extreme_dict.keys() ) A_ : Dict = dataset.filter(lambda lowerCamelCase__ , lowerCamelCase__ : idx not in remove_indices , with_indices=a__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: A_ : Optional[Any] = element['''base_index'''] in extreme_dict if element["is_extreme"]: A_ : Union[str, Any] = extreme_dict[element['''base_index''']]['''copies'''] print(f'Original dataset size: {len(a__ )}' ) print(f'Number of duplicate clusters: {len(a__ )}' ) print(f'Files in duplicate cluster: {len(a__ )}' ) print(f'Unique files in duplicate cluster: {len(a__ )}' ) print(f'Filtered dataset size: {len(a__ )}' ) return ds_filter, duplicate_clusters
369
'''simple docstring''' def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
135
0
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> bool: '''simple docstring''' _UpperCAmelCase = len(__lowercase ) + 1 _UpperCAmelCase = len(__lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _UpperCAmelCase = [[0 for i in range(__lowercase )] for j in range(__lowercase )] # since string of zero length match pattern of zero length _UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowercase ): _UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowercase ): _UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowercase ): for j in range(1 , __lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _UpperCAmelCase = dp[i - 1][j] else: _UpperCAmelCase = 0 else: _UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __SCREAMING_SNAKE_CASE :str = '''aab''' __SCREAMING_SNAKE_CASE :Optional[Any] = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"{input_string} matches the given pattern {pattern}") else: print(F"{input_string} does not match with the given pattern {pattern}")
22
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ ( __a ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class lowerCamelCase_ : def __init__( self : int , _A : Tuple , _A : Any=13 , _A : Optional[int]=64 , _A : Optional[Any]=3 , _A : List[str]=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Optional[int]=[1, 2, 10] , _A : int=[7, 3, 3] , _A : Union[str, Any]=[4, 2, 2] , _A : Dict=[2, 1, 1] , _A : Optional[Any]=[2, 2, 2] , _A : Optional[Any]=[False, False, True] , _A : List[Any]=[0.0, 0.0, 0.0] , _A : str=0.0_2 , _A : Tuple=1e-12 , _A : Union[str, Any]=True , _A : Optional[Any]=True , _A : Optional[int]=2 , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : List[str] = patch_sizes UpperCAmelCase__ : Any = patch_stride UpperCAmelCase__ : Tuple = patch_padding UpperCAmelCase__ : int = is_training UpperCAmelCase__ : Dict = use_labels UpperCAmelCase__ : List[Any] = num_labels UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Optional[int] = embed_dim UpperCAmelCase__ : int = num_heads UpperCAmelCase__ : Any = stride_kv UpperCAmelCase__ : str = depth UpperCAmelCase__ : List[Any] = cls_token UpperCAmelCase__ : List[Any] = attention_drop_rate UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : Optional[int] = layer_norm_eps def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Any = None if self.use_labels: # create a random int32 tensor of given shape UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Any ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowercase_ ( self : Optional[int] , _A : List[Any] , _A : Tuple , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = TFCvtModel(config=_A ) UpperCAmelCase__ : List[str] = model(_A , training=_A ) UpperCAmelCase__ : int = (self.image_size, self.image_size) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase__ : Union[str, Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase__ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowercase_ ( self : Optional[Any] , _A : Optional[Any] , _A : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Union[str, Any] = TFCvtForImageClassification(_A ) UpperCAmelCase__ : Any = model(_A , labels=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = config_and_inputs UpperCAmelCase__ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCAmelCase__ = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = TFCvtModelTester(self ) UpperCAmelCase__ : Tuple = TFCvtConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def lowercase_ ( self : Any ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def lowercase_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def lowercase_ ( self : str ): '''simple docstring''' pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def lowercase_ ( self : List[str] ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(_A ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(_A ) UpperCAmelCase__ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def lowercase_ ( self : Any ): '''simple docstring''' def check_hidden_states_output(_A : Dict , _A : Optional[Any] , _A : Dict ): UpperCAmelCase__ : str = model_class(_A ) UpperCAmelCase__ : List[str] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase__ : Tuple = outputs.hidden_states UpperCAmelCase__ : int = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Tuple = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : List[str] = True check_hidden_states_output(_A , _A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[int] = TFCvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def a__ ( ) -> Any: UpperCAmelCase__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase__ : Union[str, Any] = self.default_image_processor UpperCAmelCase__ : Optional[Any] = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=_A , return_tensors='''tf''' ) # forward pass UpperCAmelCase__ : Optional[Any] = model(**_A ) # verify the logits UpperCAmelCase__ : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase__ : Union[str, Any] = tf.constant([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _A , atol=1e-4 ) )
181
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A__ ( __snake_case , unittest.TestCase ): # TODO: is there an appropriate internal test set? _UpperCAmelCase :int = 'ssube/stable-diffusion-x4-upscaler-onnx' def __UpperCamelCase( self , A_=0 ): '''simple docstring''' UpperCamelCase : Tuple = floats_tensor((1, 3, 128, 128) , rng=random.Random(A_ ) ) UpperCamelCase : int = torch.manual_seed(A_ ) UpperCamelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : int = self.get_dummy_inputs() UpperCamelCase : Dict = pipe(**A_ ).images UpperCamelCase : List[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) UpperCamelCase : int = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCamelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Union[str, Any] = self.get_dummy_inputs() UpperCamelCase : List[str] = pipe(**A_ ).images UpperCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Union[str, Any] = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCamelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Optional[Any] = self.get_dummy_inputs() UpperCamelCase : Optional[Any] = pipe(**A_ ).images UpperCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCamelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Tuple = self.get_dummy_inputs() UpperCamelCase : List[str] = pipe(**A_ ).images UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : List[str] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCamelCase : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : int = self.get_dummy_inputs() UpperCamelCase : int = pipe(**A_ ).images UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): @property def __UpperCamelCase( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = ort.SessionOptions() UpperCamelCase : List[str] = False return options def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCamelCase : Tuple = init_image.resize((128, 128) ) # using the PNDM scheduler by default UpperCamelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : List[str] = "A fantasy landscape, trending on artstation" UpperCamelCase : int = torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = pipe( prompt=A_ , image=A_ , guidance_scale=7.5 , num_inference_steps=10 , generator=A_ , output_type="np" , ) UpperCamelCase : List[str] = output.images UpperCamelCase : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCamelCase : Union[str, Any] = init_image.resize((128, 128) ) UpperCamelCase : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) UpperCamelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : List[str] = "A fantasy landscape, trending on artstation" UpperCamelCase : Tuple = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( prompt=A_ , image=A_ , guidance_scale=7.5 , num_inference_steps=20 , generator=A_ , output_type="np" , ) UpperCamelCase : str = output.images UpperCamelCase : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase : Any = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
140
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> list[float]: UpperCamelCase , UpperCamelCase : List[Any] = coefficient_matrix.shape UpperCamelCase , UpperCamelCase : Optional[int] = constant_matrix.shape if rowsa != colsa: UpperCamelCase : List[Any] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if colsa != 1: UpperCamelCase : Any = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if rowsa != rowsa: UpperCamelCase : Tuple = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowerCAmelCase ) if len(_lowerCAmelCase ) != rowsa: UpperCamelCase : Any = ( "Number of initial values must be equal to number of rows in coefficient " F"""matrix but received {len(_lowerCAmelCase )} and {rowsa}""" ) raise ValueError(_lowerCAmelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) UpperCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) UpperCamelCase , UpperCamelCase : str = table.shape strictly_diagonally_dominant(_lowerCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_lowerCAmelCase ): UpperCamelCase : Optional[Any] = [] for row in range(_lowerCAmelCase ): UpperCamelCase : Optional[int] = 0 for col in range(_lowerCAmelCase ): if col == row: UpperCamelCase : Union[str, Any] = table[row][col] elif col == cols - 1: UpperCamelCase : List[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCamelCase : Dict = (temp + val) / denom new_val.append(_lowerCAmelCase ) UpperCamelCase : List[str] = new_val return [float(_lowerCAmelCase ) for i in new_val] def A_ ( _lowerCAmelCase ) -> bool: UpperCamelCase , UpperCamelCase : Dict = table.shape UpperCamelCase : List[Any] = True for i in range(0 , _lowerCAmelCase ): UpperCamelCase : Union[str, Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
140
1
'''simple docstring''' def a_ ( __snake_case : Any , __snake_case : List[str] ) -> str: """simple docstring""" lowerCamelCase_ ='''''' for i in table: res += inp[i - 1] return res def a_ ( __snake_case : List[str] ) -> Optional[int]: """simple docstring""" return data[1:] + data[0] def a_ ( __snake_case : str , __snake_case : Tuple ) -> int: """simple docstring""" lowerCamelCase_ ='''''' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def a_ ( __snake_case : Optional[Any] , __snake_case : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ =int('''0b''' + data[0] + data[-1] , 2 ) lowerCamelCase_ =int('''0b''' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def a_ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : int , __snake_case : Tuple , __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =message[:4] lowerCamelCase_ =message[4:] lowerCamelCase_ =apply_table(__snake_case , __snake_case ) lowerCamelCase_ =xor(__snake_case , __snake_case ) lowerCamelCase_ =apply_sbox(__snake_case , temp[:4] ) # noqa: E741 lowerCamelCase_ =apply_sbox(__snake_case , temp[4:] ) lowerCamelCase_ ='''0''' * (2 - len(__snake_case )) + l # noqa: E741 lowerCamelCase_ ='''0''' * (2 - len(__snake_case )) + r lowerCamelCase_ =apply_table(l + r , __snake_case ) lowerCamelCase_ =xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": a_ : Any = input("""Enter 10 bit key: """) a_ : Any = input("""Enter 8 bit message: """) a_ : str = [6, 3, 7, 4, 8, 5, 10, 9] a_ : str = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] a_ : str = [2, 4, 3, 1] a_ : Optional[int] = [2, 6, 3, 1, 4, 8, 5, 7] a_ : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] a_ : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1] a_ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] a_ : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation a_ : List[Any] = apply_table(key, paa_table) a_ : str = temp[:5] a_ : Optional[Any] = temp[5:] a_ : Tuple = left_shift(left) a_ : Optional[Any] = left_shift(right) a_ : str = apply_table(left + right, pa_table) a_ : Optional[Any] = left_shift(left) a_ : Tuple = left_shift(right) a_ : Union[str, Any] = left_shift(left) a_ : List[str] = left_shift(right) a_ : Optional[int] = apply_table(left + right, pa_table) # encryption a_ : Optional[int] = apply_table(message, IP) a_ : List[Any] = function(expansion, sa, sa, keya, temp) a_ : str = temp[4:] + temp[:4] a_ : List[str] = function(expansion, sa, sa, keya, temp) a_ : Union[str, Any] = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption a_ : Optional[int] = apply_table(CT, IP) a_ : List[Any] = function(expansion, sa, sa, keya, temp) a_ : int = temp[4:] + temp[:4] a_ : int = function(expansion, sa, sa, keya, temp) a_ : Optional[int] = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
75
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __lowerCAmelCase : pass
95
0
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE = 1_0 , __SCREAMING_SNAKE_CASE = 1_0_0_0 , __SCREAMING_SNAKE_CASE = True ) -> int: assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return int((number_a + number_a) / 2 ) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: assert ( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(__SCREAMING_SNAKE_CASE ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) __lowerCAmelCase: Optional[Any] = lower __lowerCAmelCase: Optional[int] = higher __lowerCAmelCase: Dict = [] while True: __lowerCAmelCase: Dict = get_avg(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) last_numbers.append(__SCREAMING_SNAKE_CASE ) if answer(__SCREAMING_SNAKE_CASE ) == "low": __lowerCAmelCase: Optional[Any] = number elif answer(__SCREAMING_SNAKE_CASE ) == "high": __lowerCAmelCase: int = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def a__ ( ) -> None: __lowerCAmelCase: Optional[int] = int(input("Enter lower value : " ).strip() ) __lowerCAmelCase: List[str] = int(input("Enter high value : " ).strip() ) __lowerCAmelCase: str = int(input("Enter value to guess : " ).strip() ) guess_the_number(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
370
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class snake_case ( pl.LightningModule ): def __init__( self : str , UpperCamelCase__ : List[str])-> str: '''simple docstring''' super().__init__() __lowerCAmelCase: Optional[int] = model __lowerCAmelCase: Tuple = 2 __lowerCAmelCase: List[Any] = nn.Linear(self.model.config.hidden_size , self.num_labels) def lowercase_ ( self : Optional[int])-> str: '''simple docstring''' pass def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # load longformer model from model identifier __lowerCAmelCase: List[str] = LongformerModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = LightningModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = torch.load(__SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model __lowerCAmelCase: Optional[Any] = LongformerForQuestionAnswering.from_pretrained(__SCREAMING_SNAKE_CASE ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
108
0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE :List[str] = 'pytorch_model.bin' SCREAMING_SNAKE_CASE :str = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE :Optional[int] = 'adapter_config.json' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.bin' SCREAMING_SNAKE_CASE :Dict = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE :str = 'tf_model.h5' SCREAMING_SNAKE_CASE :List[Any] = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE :str = 'model.ckpt' SCREAMING_SNAKE_CASE :List[Any] = 'flax_model.msgpack' SCREAMING_SNAKE_CASE :Optional[int] = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE :Tuple = 'model.safetensors' SCREAMING_SNAKE_CASE :List[Any] = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE :str = 'config.json' SCREAMING_SNAKE_CASE :int = 'preprocessor_config.json' SCREAMING_SNAKE_CASE :Optional[Any] = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE :Optional[int] = 'generation_config.json' SCREAMING_SNAKE_CASE :List[str] = 'modelcard.json' SCREAMING_SNAKE_CASE :Optional[int] = '▁' SCREAMING_SNAKE_CASE :Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE :str = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE :Optional[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE :List[Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" if version.parse(a_ ) < version.parse(a_ ): if "dev" in min_version: __A = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __A = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
15
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" __A = args.pruning_method __A = args.threshold __A = args.model_name_or_path.rstrip("/" ) __A = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) __A = torch.load(os.path.join(a_ , "pytorch_model.bin" ) ) __A = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: __A = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: __A = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": __A = MagnitudeBinarizer.apply(inputs=a_ , threshold=a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = TopKBinarizer.apply(a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A = ThresholdBinarizer.apply(a_ , a_ , a_ ) __A = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue __A = name[:-6] __A = model[F'''{prefix_}mask_scores'''] __A , __A = -0.1, 1.1 __A = torch.sigmoid(a_ ) __A = s * (r - l) + l __A = s_bar.clamp(min=0.0 , max=1.0 ) __A = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: __A = os.path.join( os.path.dirname(a_ ) , F'''bertarized_{os.path.basename(a_ )}''' ) if not os.path.isdir(a_ ): shutil.copytree(a_ , a_ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(a_ , os.path.join(a_ , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) SCREAMING_SNAKE_CASE :str = parser.parse_args() main(args)
15
1
def _A ( snake_case ) -> int: _lowercase : Dict = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _A ( snake_case = 1_00 ) -> int: _lowercase : Tuple = 1 _lowercase : str = 2 for i in range(2 , max_n + 1 ): _lowercase : Dict = pre_numerator _lowercase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 _lowercase : int = cur_numerator _lowercase : str = e_cont * pre_numerator + temp return sum_digits(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'''{solution() = }''')
351
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[Any] = ['image_processor', 'tokenizer'] _SCREAMING_SNAKE_CASE : str = 'OwlViTImageProcessor' _SCREAMING_SNAKE_CASE : List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase ): """simple docstring""" _lowercase : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCamelCase , ) _lowercase : Optional[int] = kwargs.pop("feature_extractor" ) _lowercase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase="max_length" , _UpperCamelCase="np" , **_UpperCamelCase ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(_UpperCamelCase , _UpperCamelCase ) or (isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(text[0] , _UpperCamelCase )): _lowercase : int = [self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase )] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(text[0] , _UpperCamelCase ): _lowercase : str = [] # Maximum number of queries across batch _lowercase : str = max([len(_UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCamelCase ) != max_num_queries: _lowercase : List[Any] = t + [" "] * (max_num_queries - len(_UpperCamelCase )) _lowercase : Tuple = self.tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) encodings.append(_UpperCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _lowercase : List[Any] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _lowercase : Union[str, Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : int = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _lowercase : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _lowercase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _lowercase : Optional[int] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _lowercase : List[str] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _lowercase : Optional[int] = BatchEncoding() _lowercase : List[Any] = input_ids _lowercase : Dict = attention_mask if query_images is not None: _lowercase : int = BatchEncoding() _lowercase : Any = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ).pixel_values _lowercase : Any = query_pixel_values if images is not None: _lowercase : str = self.image_processor(_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) if text is not None and images is not None: _lowercase : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _lowercase : Optional[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCamelCase ) , tensor_type=_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_object_detection(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def _lowerCamelCase ( self , *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCamelCase , ) return self.image_processor
199
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Optional[Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def __UpperCAmelCase ( __lowerCamelCase ) -> int: lowercase__ : Optional[int] = 0 while number > 0: lowercase__ : List[Any] = number % 10 sum_of_digits += last_digit lowercase__ : List[str] = number // 10 # Removing the last_digit from the given number return sum_of_digits def __UpperCAmelCase ( __lowerCamelCase = 1_00 ) -> int: lowercase__ : Any = factorial(__lowerCamelCase ) lowercase__ : Dict = split_and_add(__lowerCamelCase ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
16
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A = logging.get_logger(__name__) class _snake_case ( a__ ): snake_case__ = ["input_features", "attention_mask"] def __init__( self : Union[str, Any] , UpperCAmelCase : Tuple=80 , UpperCAmelCase : Tuple=16000 , UpperCAmelCase : Any=80 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=True , **UpperCAmelCase : Optional[int] , ): super().__init__(feature_size=UpperCAmelCase , sampling_rate=UpperCAmelCase , padding_value=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase : str = num_mel_bins __lowerCamelCase : Tuple = do_ceptral_normalize __lowerCamelCase : Dict = normalize_means __lowerCamelCase : str = normalize_vars __lowerCamelCase : Optional[int] = True def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : np.ndarray , ): __lowerCamelCase : Any = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __lowerCamelCase : Optional[int] = torch.from_numpy(UpperCAmelCase ).unsqueeze(0 ) __lowerCamelCase : str = ta_kaldi.fbank(UpperCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowerCamelCase__ ( UpperCAmelCase : np.ndarray , UpperCAmelCase : int , UpperCAmelCase : Optional[bool] = True , UpperCAmelCase : Optional[bool] = True , UpperCAmelCase : float = 0.0 , ): # make sure we normalize float32 arrays if normalize_means: __lowerCamelCase : Any = x[:input_length].mean(axis=0 ) __lowerCamelCase : Optional[int] = np.subtract(UpperCAmelCase , UpperCAmelCase ) if normalize_vars: __lowerCamelCase : int = x[:input_length].std(axis=0 ) __lowerCamelCase : Union[str, Any] = np.divide(UpperCAmelCase , UpperCAmelCase ) if input_length < x.shape[0]: __lowerCamelCase : Any = padding_value # make sure array is in float32 __lowerCamelCase : List[str] = x.astype(np.floataa ) return x def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : List[np.ndarray] , UpperCAmelCase : Optional[np.ndarray] = None ): __lowerCamelCase : Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(UpperCAmelCase , UpperCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(UpperCAmelCase , UpperCAmelCase ) ] def __call__( self : Optional[Any] , UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , **UpperCAmelCase : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __lowerCamelCase : Optional[int] = isinstance(UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) __lowerCamelCase : Tuple = is_batched_numpy or ( isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase : Dict = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase , np.ndarray ): __lowerCamelCase : Optional[int] = np.asarray(UpperCAmelCase , dtype=np.floataa ) elif isinstance(UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCamelCase : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase : Optional[int] = [raw_speech] # extract fbank features __lowerCamelCase : Optional[Any] = [self._extract_fbank_features(UpperCAmelCase ) for waveform in raw_speech] # convert into correct format for padding __lowerCamelCase : Dict = BatchFeature({"input_features": features} ) __lowerCamelCase : Optional[Any] = self.pad( UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , ) # make sure list is in array format __lowerCamelCase : Tuple = padded_inputs.get("input_features" ) if isinstance(input_features[0] , UpperCAmelCase ): __lowerCamelCase : List[str] = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for feature in input_features] __lowerCamelCase : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: __lowerCamelCase : Union[str, Any] = [np.asarray(UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __lowerCamelCase : Optional[int] = ( np.array(UpperCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(UpperCAmelCase , max_length=UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __lowerCamelCase : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=UpperCAmelCase ) if return_tensors is not None: __lowerCamelCase : Optional[Any] = padded_inputs.convert_to_tensors(UpperCAmelCase ) return padded_inputs
135
0
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> bool: SCREAMING_SNAKE_CASE = [int(SCREAMING_SNAKE_CASE_ ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(SCREAMING_SNAKE_CASE_ ) == 4 and all(0 <= int(SCREAMING_SNAKE_CASE_ ) <= 2_54 for octet in octets ) if __name__ == "__main__": __UpperCamelCase = input().strip() __UpperCamelCase = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
356
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = XGLMConfig SCREAMING_SNAKE_CASE_ : List[str] = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=14 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=0.02 , ) -> str: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = ffn_dim SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 1 def __A ( self ) -> Optional[int]: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = self.get_config() SCREAMING_SNAKE_CASE = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __A ( self ) -> int: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : int = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = TFXGLMModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @slow def __A ( self ) -> Tuple: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __A ( self ) -> Tuple: super().test_resize_token_embeddings() @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self , lowerCAmelCase__=True ) -> Optional[Any]: SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off SCREAMING_SNAKE_CASE = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE = tokenizer('Today is a nice day and' , return_tensors='tf' ) SCREAMING_SNAKE_CASE = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = 'left' # use different length sentences to test batching SCREAMING_SNAKE_CASE = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors='tf' , padding=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inputs['input_ids'] SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
38
0
def UpperCamelCase ( __lowercase : List[Any] ,__lowercase : Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = [0 for i in range(r + 1 )] # nc0 = 1 A_ : Tuple = 1 for i in range(1 ,n + 1 ): # to compute current row from previous row. A_ : Any = min(__lowercase ,__lowercase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
140
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , *lowercase , **lowercase ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
140
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A__ : int =StableDiffusionInpaintPipeline A__ : Dict =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A__ : Tuple =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A__ : Dict =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A__ : Optional[int] =frozenset([] ) def A_ ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def A_ ( self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert('RGB' ).resize((64, 64) ) SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(UpperCAmelCase_ ).startswith('mps' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = StableDiffusionInpaintPipeline(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = sd_pipe(**UpperCAmelCase_ ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def A_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) SCREAMING_SNAKE_CASE__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) SCREAMING_SNAKE_CASE__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) SCREAMING_SNAKE_CASE__ = 'stabilityai/stable-diffusion-2-inpainting' SCREAMING_SNAKE_CASE__ = StableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase_ , safety_checker=UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = 'Face of a yellow cat, high resolution, sitting on a park bench' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='np' , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) SCREAMING_SNAKE_CASE__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) SCREAMING_SNAKE_CASE__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) SCREAMING_SNAKE_CASE__ = 'stabilityai/stable-diffusion-2-inpainting' SCREAMING_SNAKE_CASE__ = StableDiffusionInpaintPipeline.from_pretrained( UpperCAmelCase_ , torch_dtype=torch.floataa , safety_checker=UpperCAmelCase_ , ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = 'Face of a yellow cat, high resolution, sitting on a park bench' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , generator=UpperCAmelCase_ , output_type='np' , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A_ ( self : Any ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) SCREAMING_SNAKE_CASE__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) SCREAMING_SNAKE_CASE__ = 'stabilityai/stable-diffusion-2-inpainting' SCREAMING_SNAKE_CASE__ = PNDMScheduler.from_pretrained(UpperCAmelCase_ , subfolder='scheduler' ) SCREAMING_SNAKE_CASE__ = StableDiffusionInpaintPipeline.from_pretrained( UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = 'Face of a yellow cat, high resolution, sitting on a park bench' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np' , ) SCREAMING_SNAKE_CASE__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
169
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __snake_case = logging.getLogger(__name__) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) SCREAMING_SNAKE_CASE__ = [] # custom device map if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE__ = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE__ = get_keys_to_not_convert(UpperCamelCase_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(UpperCamelCase_ ) # compatibility with peft SCREAMING_SNAKE_CASE__ = load_in_abit SCREAMING_SNAKE_CASE__ = load_in_abit SCREAMING_SNAKE_CASE__ = get_parameter_device(UpperCamelCase_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) SCREAMING_SNAKE_CASE__ = replace_with_bnb_layers(UpperCamelCase_ , UpperCamelCase_ , modules_to_not_convert=UpperCamelCase_ ) # convert param to the right dtype SCREAMING_SNAKE_CASE__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE__ = name.replace('.weight' , '' ).replace('.bias' , '' ) SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(UpperCamelCase_ ): param.to(UpperCamelCase_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'The model device type is {model_device.type}. However, cuda is needed for quantization.' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE__ = replace_with_bnb_layers( UpperCamelCase_ , UpperCamelCase_ , modules_to_not_convert=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = get_quantized_model_device_map( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , max_memory=UpperCamelCase_ , no_split_module_classes=UpperCamelCase_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=UpperCamelCase_ , offload_state_dict=UpperCamelCase_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(UpperCamelCase_ , device_map=UpperCamelCase_ , offload_dir=UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None ) -> Optional[Any]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) SCREAMING_SNAKE_CASE__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = special_dtypes SCREAMING_SNAKE_CASE__ = no_split_module_classes SCREAMING_SNAKE_CASE__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE__ = get_balanced_memory( UpperCamelCase_ , low_zero=(device_map == 'balanced_low_0') , max_memory=UpperCamelCase_ , **UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = max_memory SCREAMING_SNAKE_CASE__ = infer_auto_device_map(UpperCamelCase_ , **UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ) -> Optional[Any]: '''simple docstring''' if modules_to_not_convert is None: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _replace_with_bnb_layers( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ = [] current_key_name.append(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE__ = '.'.join(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=UpperCamelCase_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) SCREAMING_SNAKE_CASE__ = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE__ = module.bias.data bnb_module.requires_grad_(UpperCamelCase_ ) setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _replace_with_bnb_layers( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowercase ( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' with init_empty_weights(): SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE__ = find_tied_parameters(UpperCamelCase_ ) # For compatibility with Accelerate < 0.18 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase_ , [] ) SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ = False if hasattr(UpperCamelCase_ , 'base_model_prefix' ): SCREAMING_SNAKE_CASE__ = not hasattr(UpperCamelCase_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ = list(model.named_children() ) SCREAMING_SNAKE_CASE__ = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ = set(UpperCamelCase_ ) - set(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = list(set(UpperCamelCase_ ) ) + list(UpperCamelCase_ ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ = ['.weight', '.bias'] SCREAMING_SNAKE_CASE__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ = name.replace(UpperCamelCase_ , '' ) filtered_module_names.append(UpperCamelCase_ ) return filtered_module_names def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' for m in model.modules(): if isinstance(UpperCamelCase_ , bnb.nn.Linearabit ): return True return False def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' return next(parameter.parameters() ).device def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(UpperCamelCase_ , UpperCamelCase_ , 0 , dtype=UpperCamelCase_ , value=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = param_name SCREAMING_SNAKE_CASE__ = model if "." in tensor_name: SCREAMING_SNAKE_CASE__ = tensor_name.split('.' ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) SCREAMING_SNAKE_CASE__ = new_module SCREAMING_SNAKE_CASE__ = splits[-1] # offload weights SCREAMING_SNAKE_CASE__ = False offload_weight(module._parameters[tensor_name] , UpperCamelCase_ , UpperCamelCase_ , index=UpperCamelCase_ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , UpperCamelCase_ , index=UpperCamelCase_ , ) else: offload_weight(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index=UpperCamelCase_ ) offload_weight(UpperCamelCase_ , param_name.replace('weight' , 'SCB' ) , UpperCamelCase_ , index=UpperCamelCase_ ) set_module_tensor_to_device(UpperCamelCase_ , UpperCamelCase_ , 'meta' , dtype=UpperCamelCase_ , value=torch.empty(*param.size() ) )
169
1
class _A : def __init__( self : List[Any] , _A : Optional[int] , _A : Tuple , _A : str ) -> Dict: """simple docstring""" lowercase : Optional[Any] = name lowercase : str = value lowercase : Any = weight def __repr__( self : Optional[Any] ) -> Any: """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __a ( self : Dict ) -> List[str]: """simple docstring""" return self.value def __a ( self : Optional[Any] ) -> List[str]: """simple docstring""" return self.name def __a ( self : str ) -> str: """simple docstring""" return self.weight def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.value / self.weight def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : int = [] for i in range(len(__magic_name__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Tuple = sorted(__magic_name__ , key=__magic_name__ , reverse=__magic_name__ ) lowercase : Optional[Any] = [] lowercase : List[Any] = 0.0, 0.0 for i in range(len(__magic_name__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def snake_case( ) -> Optional[Any]: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
308
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__=0.01 , snake_case__=1_000 ): """simple docstring""" lowerCAmelCase : List[Any] = p_stop lowerCAmelCase : Optional[Any] = max_length def __iter__( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Tuple = False while not stop and count < self.max_length: yield count count += 1 lowerCAmelCase : Dict = random.random() < self.p_stop class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False , snake_case__=True ): """simple docstring""" lowerCAmelCase : Dict = [ BatchSamplerShard(snake_case__ , 2 , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) for i in range(2 ) ] lowerCAmelCase : Any = [list(snake_case__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(snake_case__ ) for shard in batch_sampler_shards] , [len(snake_case__ ) for e in expected] ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) lowerCAmelCase : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) # Check the shards when the dataset is very small. lowerCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Any = [[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) lowerCAmelCase : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) lowerCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) lowerCAmelCase : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) # Check the shards when the dataset is very small. lowerCAmelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) lowerCAmelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Optional[int] = [[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : List[str] = BatchSampler(range(22 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is very small. lowerCAmelCase : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=snake_case__ ) lowerCAmelCase : Optional[Any] = [[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , even_batches=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=snake_case__ ) # Expected shouldn't change self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) # Check the shards when the dataset is very small. lowerCAmelCase : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : int = [[[0, 1]], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) lowerCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : List[str] = [[], []] self.check_batch_sampler_shards(snake_case__ , snake_case__ , split_batches=snake_case__ , even_batches=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowerCAmelCase : Tuple = [BatchSamplerShard(snake_case__ , 2 , snake_case__ , even_batches=snake_case__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , snake_case__=2 , snake_case__=False ): """simple docstring""" random.seed(snake_case__ ) lowerCAmelCase : List[str] = list(snake_case__ ) lowerCAmelCase : Optional[int] = [ IterableDatasetShard( snake_case__ , batch_size=snake_case__ , drop_last=snake_case__ , num_processes=snake_case__ , process_index=snake_case__ , split_batches=snake_case__ , ) for i in range(snake_case__ ) ] lowerCAmelCase : str = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(snake_case__ ) iterable_dataset_lists.append(list(snake_case__ ) ) lowerCAmelCase : List[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowerCAmelCase : Tuple = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) self.assertTrue(len(snake_case__ ) % shard_batch_size == 0 ) lowerCAmelCase : List[Any] = [] for idx in range(0 , len(snake_case__ ) , snake_case__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(snake_case__ ) < len(snake_case__ ): reference += reference self.assertListEqual(snake_case__ , reference[: len(snake_case__ )] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = 42 lowerCAmelCase : Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) # Edge case with a very small dataset lowerCAmelCase : List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) self.check_iterable_dataset_shards(snake_case__ , snake_case__ , batch_size=4 , drop_last=snake_case__ , split_batches=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = BatchSampler(range(16 ) , batch_size=4 , drop_last=snake_case__ ) lowerCAmelCase : List[Any] = SkipBatchSampler(snake_case__ , 2 ) self.assertListEqual(list(snake_case__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = DataLoader(list(range(16 ) ) , batch_size=4 ) lowerCAmelCase : Optional[int] = skip_first_batches(snake_case__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase__ ( self ): """simple docstring""" Accelerator() lowerCAmelCase : Dict = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(snake_case__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
108
0
def UpperCAmelCase ( a_ ): '''simple docstring''' return str(a_ ) == str(a_ )[::-1] def UpperCAmelCase ( a_ ): '''simple docstring''' return int(a_ ) + int(str(a_ )[::-1] ) def UpperCAmelCase ( a_ = 1_0000 ): '''simple docstring''' lowerCamelCase : Optional[Any] = [] for num in range(1, a_ ): lowerCamelCase : List[str] = 0 lowerCamelCase : Union[str, Any] = num while iterations < 50: lowerCamelCase : Optional[int] = sum_reverse(a_ ) iterations += 1 if is_palindrome(a_ ): break else: lychrel_nums.append(a_ ) return len(a_ ) if __name__ == "__main__": print(F"""{solution() = }""")
366
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _A = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _A = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') _A = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') _A = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') _A = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') _A = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
205
0
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ("foo.json",)] ) def UpperCamelCase__ ( self : Tuple , __a : Optional[Any] ): _a = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , config_name=__a ) _a = GenerationConfig.from_pretrained(__a , config_name=__a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = AutoConfig.from_pretrained("gpt2" ) _a = GenerationConfig.from_model_config(__a ) _a = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__a , __a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCamelCase__ ( self : int ): _a = GenerationConfig() _a = { "max_new_tokens": 10_24, "foo": "bar", } _a = copy.deepcopy(__a ) _a = generation_config.update(**__a ) # update_kwargs was not modified (no side effects) self.assertEqual(__a , __a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__a , {"foo": "bar"} ) def UpperCamelCase__ ( self : Dict ): _a = GenerationConfig() _a = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(__a ) _a = GenerationConfig.from_pretrained(__a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) _a = GenerationConfig.from_model_config(__a ) assert not hasattr(__a , "foo" ) # no new kwargs should be initialized if from config def UpperCamelCase__ ( self : Dict ): _a = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __a ) self.assertEqual(default_config.num_beams , 1 ) _a = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a ) _a = GenerationConfig.from_pretrained(__a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @classmethod def UpperCamelCase__ ( cls : Union[str, Any] ): _a = TOKEN HfFolder.save_token(__a ) @classmethod def UpperCamelCase__ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def UpperCamelCase__ ( self : Optional[Any] ): _a = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="test-generation-config" , push_to_hub=__a , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def UpperCamelCase__ ( self : int ): _a = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="valid_org/test-generation-config-org" , push_to_hub=__a , use_auth_token=self._token ) _a = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) )
63
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCamelCase : str =[] _lowerCamelCase : Dict =[] for i in range(self.num_layers ): _lowerCamelCase : Union[str, Any] =self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Any =FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Dict =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : Optional[int] =resnets _lowerCamelCase : Dict =attentions if self.add_downsample: _lowerCamelCase : Union[str, Any] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=True ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple =() for resnet, attn in zip(self.resnets , self.attentions ): _lowerCamelCase : Union[str, Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : Union[str, Any] =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : Optional[int] =self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _lowerCamelCase : str =[] for i in range(self.num_layers ): _lowerCamelCase : Tuple =self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Any =FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Union[str, Any] =resnets if self.add_downsample: _lowerCamelCase : List[str] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=True ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[int] =() for resnet in self.resnets: _lowerCamelCase : Tuple =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : Tuple =self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _lowerCamelCase : str =[] _lowerCamelCase : List[str] =[] for i in range(self.num_layers ): _lowerCamelCase : List[str] =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : Tuple =self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : List[str] =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Tuple =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : int =resnets _lowerCamelCase : Dict =attentions if self.add_upsample: _lowerCamelCase : str =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any]=True ) -> Optional[int]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _lowerCamelCase : Optional[int] =res_hidden_states_tuple[-1] _lowerCamelCase : Union[str, Any] =res_hidden_states_tuple[:-1] _lowerCamelCase : Any =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCamelCase : Optional[Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : List[Any] =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: _lowerCamelCase : Optional[Any] =self.upsamplers_a(lowercase_ ) return hidden_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : List[str] =[] for i in range(self.num_layers ): _lowerCamelCase : Tuple =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : int =self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : str =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : str =resnets if self.add_upsample: _lowerCamelCase : List[str] =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , lowercase_ : str , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Any=True ) -> int: """simple docstring""" for resnet in self.resnets: # pop res hidden states _lowerCamelCase : List[str] =res_hidden_states_tuple[-1] _lowerCamelCase : str =res_hidden_states_tuple[:-1] _lowerCamelCase : List[str] =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCamelCase : Optional[Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: _lowerCamelCase : Union[str, Any] =self.upsamplers_a(lowercase_ ) return hidden_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowerCamelCase : Any =[] for _ in range(self.num_layers ): _lowerCamelCase : Optional[int] =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : Tuple =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : List[Any] =resnets _lowerCamelCase : List[str] =attentions def __call__( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : List[str]=True ) -> int: """simple docstring""" _lowerCamelCase : Dict =self.resnets[0](lowercase_ , lowercase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _lowerCamelCase : Tuple =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : List[str] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) return hidden_states
199
0
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def UpperCAmelCase ( UpperCAmelCase = True , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) snake_case_ = False if main_process_only: snake_case_ = PartialState().local_process_index == 0 return _tqdm(*UpperCAmelCase , **UpperCAmelCase , disable=UpperCAmelCase )
312
"""simple docstring""" import os import numpy import onnx def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[str]: snake_case_ = a.name snake_case_ = b.name snake_case_ = '' snake_case_ = '' snake_case_ = a == b snake_case_ = name_a snake_case_ = name_b return res def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: snake_case_ = list(model.graph.initializer ) snake_case_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case_ = inits[i].name snake_case_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase ) -> Optional[Any]: snake_case_ = os.path.dirname(UpperCAmelCase ) snake_case_ = os.path.basename(UpperCAmelCase ) snake_case_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) snake_case_ = list(model.graph.initializer ) snake_case_ = set() snake_case_ = {} snake_case_ = [] snake_case_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) snake_case_ = inits[j].data_type snake_case_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCAmelCase ) total_reduced_size += mem_size snake_case_ = inits[i].name snake_case_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: snake_case_ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) snake_case_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) snake_case_ = 'optimized_' + model_file_name snake_case_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
312
1
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __UpperCAmelCase ( __UpperCamelCase = 3 ): if isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(__UpperCamelCase ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) __lowercase : int = QuantumRegister(__UpperCamelCase , '''qr''' ) __lowercase : str = ClassicalRegister(__UpperCamelCase , '''cr''' ) __lowercase : str = QuantumCircuit(__UpperCamelCase , __UpperCamelCase ) __lowercase : List[Any] = number_of_qubits for i in range(__UpperCamelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__UpperCamelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , __UpperCamelCase , __UpperCamelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__UpperCamelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__UpperCamelCase , __UpperCamelCase ) # simulate with 10000 shots __lowercase : str = Aer.get_backend('''qasm_simulator''' ) __lowercase : Dict = execute(__UpperCamelCase , __UpperCamelCase , shots=1_00_00 ) return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \\n {quantum_fourier_transform(3)}" )
249
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Any = """openai/whisper-base""" snake_case__ : Optional[int] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) snake_case__ : Any = """transcriber""" snake_case__ : Optional[int] = WhisperProcessor snake_case__ : str = WhisperForConditionalGeneration snake_case__ : Optional[Any] = ["""audio"""] snake_case__ : Any = ["""text"""] def _A ( self : str , __lowerCamelCase : Dict ): return self.pre_processor(__lowerCamelCase , return_tensors="""pt""" ).input_features def _A ( self : Dict , __lowerCamelCase : List[Any] ): return self.model.generate(inputs=__lowerCamelCase ) def _A ( self : Any , __lowerCamelCase : Optional[Any] ): return self.pre_processor.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )[0]
38
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : Tuple , lowercase_ : Dict=13 , lowercase_ : Tuple=7 , lowercase_ : Tuple=True , lowercase_ : List[str]=True , lowercase_ : List[str]=True , lowercase_ : List[str]=True , lowercase_ : str=99 , lowercase_ : Tuple=16 , lowercase_ : List[Any]=36 , lowercase_ : Optional[Any]=6 , lowercase_ : Union[str, Any]=6 , lowercase_ : List[str]=6 , lowercase_ : int=37 , lowercase_ : Dict="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : str=0.1 , lowercase_ : Optional[Any]=512 , lowercase_ : Union[str, Any]=16 , lowercase_ : int=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Tuple=3 , lowercase_ : Optional[Any]=4 , lowercase_ : List[str]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = seq_length SCREAMING_SNAKE_CASE_ : int = is_training SCREAMING_SNAKE_CASE_ : Tuple = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = embedding_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_groups SCREAMING_SNAKE_CASE_ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : int = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = type_vocab_size SCREAMING_SNAKE_CASE_ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE_ : str = num_choices SCREAMING_SNAKE_CASE_ : int = scope def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = AlbertModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_) SCREAMING_SNAKE_CASE_ : Any = model(lowercase_ , token_type_ids=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = AlbertForPreTraining(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , sentence_order_label=lowercase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : str , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = AlbertForMaskedLM(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = AlbertForQuestionAnswering(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlbertForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Dict , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : str = AlbertForTokenClassification(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : Optional[Any] = AlbertForMultipleChoice(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_ : Dict = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_ : int = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_ : str = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = True def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int]=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if return_labels: if model_class in get_values(lowercase_): SCREAMING_SNAKE_CASE_ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_) SCREAMING_SNAKE_CASE_ : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = AlbertModelTester(self) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Dict = type self.model_tester.create_and_check_model(*lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Dict = AlbertModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = AlbertModel.from_pretrained('''albert-base-v2''') SCREAMING_SNAKE_CASE_ : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , attention_mask=lowercase_)[0] SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((1, 11, 768)) self.assertEqual(output.shape , lowercase_) SCREAMING_SNAKE_CASE_ : Any = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase_ , atol=1e-4))
318
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : Optional[int] = False return options def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
318
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : List[Any] = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = AlbertTokenizer UpperCAmelCase_ = AlbertTokenizerFast UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = True def UpperCAmelCase_ ( self :int ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = AlbertTokenizer(lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self :List[Any] , lowerCamelCase :Optional[Any] ) -> int: UpperCAmelCase__ = "this is a test" UpperCAmelCase__ = "this is a test" return input_text, output_text def UpperCAmelCase_ ( self :Dict ) -> Dict: UpperCAmelCase__ = "<pad>" UpperCAmelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def UpperCAmelCase_ ( self :Dict ) -> Dict: UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(lowerCamelCase ) , 3_0000 ) def UpperCAmelCase_ ( self :str ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCAmelCase_ ( self :int ) -> Optional[Any]: if not self.test_rust_tokenizer: return UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = "I was born in 92000, and this is falsé." UpperCAmelCase__ = tokenizer.tokenize(lowerCamelCase ) UpperCAmelCase__ = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) UpperCAmelCase__ = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(lowerCamelCase ) UpperCAmelCase__ = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :Optional[int] ) -> List[str]: UpperCAmelCase__ = AlbertTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) UpperCAmelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [48, 25, 21, 1289] ) UpperCAmelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual(lowerCamelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def UpperCAmelCase_ ( self :Any ) -> List[str]: UpperCAmelCase__ = AlbertTokenizer(lowerCamelCase ) UpperCAmelCase__ = tokenizer.encode("sequence builders" ) UpperCAmelCase__ = tokenizer.encode("multi-sequence build" ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCAmelCase_ ( self :List[Any] ) -> List[str]: # fmt: off UpperCAmelCase__ = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
169
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _UpperCamelCase ( lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ = FlaxAutoencoderKL @property def UpperCAmelCase_ ( self :int ) -> Optional[int]: UpperCAmelCase__ = 4 UpperCAmelCase__ = 3 UpperCAmelCase__ = (32, 32) UpperCAmelCase__ = jax.random.PRNGKey(0 ) UpperCAmelCase__ = jax.random.uniform(lowerCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCAmelCase_ ( self :Optional[Any] ) -> Any: UpperCAmelCase__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict
169
1
def lowerCamelCase__ ( snake_case_ : list ) -> list: if any(not isinstance(snake_case_ , snake_case_ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(snake_case_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(snake_case_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
238
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __lowerCAmelCase ( A , A ): UpperCamelCase = '''bit''' UpperCamelCase = ['''preactivation''', '''bottleneck'''] UpperCamelCase = ['''SAME''', '''VALID'''] def __init__( self : Any , A : Union[str, Any]=3 , A : List[Any]=64 , A : Optional[Any]=[2_56, 5_12, 10_24, 20_48] , A : Tuple=[3, 4, 6, 3] , A : Optional[Any]="preactivation" , A : Any="relu" , A : Optional[int]=None , A : Dict=32 , A : Dict=0.0 , A : str=False , A : int=32 , A : str=1 , A : List[Any]=None , A : Tuple=None , **A : Any , ) -> Dict: """simple docstring""" super().__init__(**A) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types)}") if global_padding is not None: if global_padding.upper() in self.supported_padding: _UpperCAmelCase = global_padding.upper() else: raise ValueError(F"Padding strategy {global_padding} not supported") _UpperCAmelCase = num_channels _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = layer_type _UpperCAmelCase = hidden_act _UpperCAmelCase = global_padding _UpperCAmelCase = num_groups _UpperCAmelCase = drop_path_rate _UpperCAmelCase = embedding_dynamic_padding _UpperCAmelCase = output_stride _UpperCAmelCase = width_factor _UpperCAmelCase = ['stem'] + [F"stage{idx}" for idx in range(1 , len(A) + 1)] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names)
339
import os def a ( A__ : str = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as input_file: _lowercase =[ [int(A__ ) for element in line.split(',' )] for line in input_file.readlines() ] _lowercase =len(A__ ) _lowercase =len(matrix[0] ) _lowercase =[[-1 for _ in range(A__ )] for _ in range(A__ )] for i in range(A__ ): _lowercase =matrix[i][0] for j in range(1 , A__ ): for i in range(A__ ): _lowercase =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , A__ ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"{solution() = }")
205
0
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): UpperCAmelCase : Union[str, Any] = [] for part_id in partition_order: UpperCAmelCase : Union[str, Any] = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(UpperCamelCase ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): UpperCAmelCase : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Optional[int] = spark.range(100 ).repartition(1 ) UpperCAmelCase : List[Any] = Spark(UpperCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): UpperCAmelCase : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Any = spark.range(10 ).repartition(2 ) UpperCAmelCase : str = [1, 0] UpperCAmelCase : List[str] = _generate_iterable_examples(UpperCamelCase , UpperCamelCase ) # Reverse the partitions. UpperCAmelCase : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , UpperCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase , UpperCAmelCase : str = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): UpperCAmelCase : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Any = spark.range(10 ).repartition(1 ) UpperCAmelCase : Union[str, Any] = SparkExamplesIterable(UpperCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(UpperCamelCase ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): UpperCAmelCase : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Optional[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: UpperCAmelCase : str = lambda UpperCamelCase : x.reverse() UpperCAmelCase : int = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , [2, 1, 0] ) UpperCAmelCase : int = SparkExamplesIterable(UpperCamelCase ).shuffle_data_sources(UpperCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(UpperCamelCase ): UpperCAmelCase , UpperCAmelCase : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): UpperCAmelCase : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Optional[int] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase : List[str] = SparkExamplesIterable(UpperCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(UpperCamelCase ): UpperCAmelCase , UpperCAmelCase : int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase : Dict = SparkExamplesIterable(UpperCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(UpperCamelCase ): UpperCAmelCase , UpperCAmelCase : str = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): UpperCAmelCase : int = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCAmelCase : Dict = spark.range(100 ).repartition(1 ) UpperCAmelCase : int = Spark(UpperCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
76
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType A: Optional[Any] = logging.get_logger(__name__) A: Optional[int] = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : int = 'layoutlmv3' def __init__( self , _SCREAMING_SNAKE_CASE=50265 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__( vocab_size=_SCREAMING_SNAKE_CASE , hidden_size=_SCREAMING_SNAKE_CASE , num_hidden_layers=_SCREAMING_SNAKE_CASE , num_attention_heads=_SCREAMING_SNAKE_CASE , intermediate_size=_SCREAMING_SNAKE_CASE , hidden_act=_SCREAMING_SNAKE_CASE , hidden_dropout_prob=_SCREAMING_SNAKE_CASE , attention_probs_dropout_prob=_SCREAMING_SNAKE_CASE , max_position_embeddings=_SCREAMING_SNAKE_CASE , type_vocab_size=_SCREAMING_SNAKE_CASE , initializer_range=_SCREAMING_SNAKE_CASE , layer_norm_eps=_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : List[str] = max_ad_position_embeddings UpperCAmelCase : List[Any] = coordinate_size UpperCAmelCase : List[Any] = shape_size UpperCAmelCase : Any = has_relative_attention_bias UpperCAmelCase : Optional[Any] = rel_pos_bins UpperCAmelCase : int = max_rel_pos UpperCAmelCase : int = has_spatial_attention_bias UpperCAmelCase : Optional[int] = rel_ad_pos_bins UpperCAmelCase : str = max_rel_ad_pos UpperCAmelCase : List[Any] = text_embed UpperCAmelCase : Tuple = visual_embed UpperCAmelCase : List[Any] = input_size UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : Dict = patch_size UpperCAmelCase : Dict = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = version.parse('1.12' ) @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> float: '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return 12 def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 40 , _SCREAMING_SNAKE_CASE = 40 , ) -> Mapping[str, Any]: '''simple docstring''' setattr(processor.image_processor , """apply_ocr""" , _SCREAMING_SNAKE_CASE ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase : str = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase : Any = processor.tokenizer.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase : Union[str, Any] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase : Optional[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase : Tuple = self._generate_dummy_images(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = dict( processor( _SCREAMING_SNAKE_CASE , text=_SCREAMING_SNAKE_CASE , boxes=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , ) ) return inputs
76
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def __snake_case ( __UpperCamelCase : bool = True ,*__UpperCamelCase : Tuple ,**__UpperCamelCase : int ): """simple docstring""" if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) A_ = False if main_process_only: A_ = PartialState().local_process_index == 0 return _tqdm(*__UpperCamelCase ,**__UpperCamelCase ,disable=__UpperCamelCase )
312
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __a :Dict = get_logger(__name__) __a :Union[str, Any] = Path(__file__).parent / 'model_card_template.md' __a :Tuple = uuida().hex __a :List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __a :Union[str, Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __a :Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __snake_case ( __UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A_ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent return ua def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A_ = HfFolder.get_token() if organization is None: A_ = whoami(__UpperCamelCase )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase ,"local_rank" ) and args.local_rank not in [-1, 0]: return A_ = args.hub_token if hasattr(__UpperCamelCase ,"hub_token" ) else None A_ = get_full_repo_name(__UpperCamelCase ,token=__UpperCamelCase ) A_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__UpperCamelCase ,model_name=__UpperCamelCase ,repo_name=__UpperCamelCase ,dataset_name=args.dataset_name if hasattr(__UpperCamelCase ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__UpperCamelCase ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) A_ = os.path.join(args.output_dir ,"README.md" ) model_card.save(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A_ = str(Path(__UpperCamelCase ).as_posix() ) A_ = re.search(R"snapshots/([^/]+)/" ,__UpperCamelCase ) if search is None: return None A_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __a :str = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __a :List[Any] = os.path.join(hf_cache_home, 'diffusers') def __snake_case ( __UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A_ = DIFFUSERS_CACHE if old_cache_dir is None: A_ = old_diffusers_cache A_ = Path(__UpperCamelCase ).expanduser() A_ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A_ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase ,__UpperCamelCase ) try: os.symlink(__UpperCamelCase ,__UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __a :Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __a :Optional[int] = 0 else: with open(cache_version_file) as f: try: __a :Dict = int(f.read()) except ValueError: __a :str = 0 if cache_version < 1: __a :Optional[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __a :Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A_ = weights_name.split("." ) A_ = splits[:-1] + [variant] + splits[-1:] A_ = ".".join(__UpperCamelCase ) return weights_name def __snake_case ( __UpperCamelCase : Optional[Any] ,*, __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int]=None ,): """simple docstring""" A_ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ): # Load from a PyTorch checkpoint A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ): A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A_ = hf_hub_download( __UpperCamelCase ,filename=_add_variant(__UpperCamelCase ,__UpperCamelCase ) ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__UpperCamelCase ,) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase ,__UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase ,__UpperCamelCase )}\' so that the correct variant file can be added.''' ,__UpperCamelCase ,) try: # 2. Load model file as usual A_ = hf_hub_download( __UpperCamelCase ,filename=__UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
312
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _lowerCamelCase : str = logging.getLogger() def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _lowerCAmelCase : Any = parser.parse_args() return args.f def _UpperCAmelCase (UpperCamelCase_ : Dict ): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : Tuple = os.path.join(UpperCamelCase_ , """all_results.json""" ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , """r""" ) as f: _lowerCAmelCase : Dict = json.load(UpperCamelCase_ ) else: raise ValueError(F"can't find {path}" ) return results def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() _lowerCamelCase : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __snake_case (_a ): @classmethod def SCREAMING_SNAKE_CASE ( cls : str ) -> int: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Optional[Any] = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) _lowerCAmelCase : int = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[Any] ) -> Tuple: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[str] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : List[str] = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _lowerCAmelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _lowerCAmelCase : List[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _lowerCAmelCase : Tuple = get_results(_UpperCAmelCase ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : str = self.get_auto_remove_tmp_dir() _lowerCAmelCase : str = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _lowerCAmelCase : str = get_results(_UpperCAmelCase ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : List[Any] = 7 if get_gpu_count() > 1 else 2 _lowerCAmelCase : Optional[Any] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _lowerCAmelCase : Optional[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Tuple = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _lowerCAmelCase : Tuple = get_results(_UpperCAmelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: '''simple docstring''' _lowerCAmelCase : str = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Tuple = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _lowerCAmelCase : Dict = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : Any = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[Any] = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _lowerCAmelCase : Optional[int] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : List[Any] = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _lowerCAmelCase : str = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """translation_no_trainer""" ) ) ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) _lowerCAmelCase : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.10 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _lowerCAmelCase : Optional[int] = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _lowerCAmelCase : Optional[int] = get_results(_UpperCAmelCase ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_UpperCAmelCase , """image_classification_no_trainer""" ) ) )
159
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : Tuple=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = None if token is not None: _lowerCAmelCase : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _lowerCAmelCase : Tuple = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _lowerCAmelCase : str = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ ).json() _lowerCAmelCase : Optional[Any] = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _lowerCAmelCase : List[str] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(UpperCamelCase_ ): _lowerCAmelCase : int = requests.get(url + F"&page={i + 2}" , headers=UpperCamelCase_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _UpperCAmelCase (UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any]=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = None if token is not None: _lowerCAmelCase : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _lowerCAmelCase : Optional[int] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" _lowerCAmelCase : Optional[int] = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ ).json() _lowerCAmelCase : List[str] = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _lowerCAmelCase : List[str] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(UpperCamelCase_ ): _lowerCAmelCase : List[str] = requests.get(url + F"&page={i + 2}" , headers=UpperCamelCase_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any ): '''simple docstring''' _lowerCAmelCase : str = None if token is not None: _lowerCAmelCase : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} _lowerCAmelCase : List[str] = requests.get(UpperCamelCase_ , headers=UpperCamelCase_ , allow_redirects=UpperCamelCase_ ) _lowerCAmelCase : List[str] = result.headers["""Location"""] _lowerCAmelCase : List[Any] = requests.get(UpperCamelCase_ , allow_redirects=UpperCamelCase_ ) _lowerCAmelCase : int = os.path.join(UpperCamelCase_ , F"{artifact_name}.zip" ) with open(UpperCamelCase_ , """wb""" ) as fp: fp.write(response.content ) def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : Optional[int]=None ): '''simple docstring''' _lowerCAmelCase : Dict = [] _lowerCAmelCase : Any = [] _lowerCAmelCase : Union[str, Any] = None with zipfile.ZipFile(UpperCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCamelCase_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(UpperCamelCase_ ) as f: for line in f: _lowerCAmelCase : List[str] = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _lowerCAmelCase : Union[str, Any] = line[: line.index(""": """ )] _lowerCAmelCase : Union[str, Any] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _lowerCAmelCase : Tuple = line[len("""FAILED """ ) :] failed_tests.append(UpperCamelCase_ ) elif filename == "job_name.txt": _lowerCAmelCase : str = line if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCamelCase_ )} for `errors` " F"and {len(UpperCamelCase_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) _lowerCAmelCase : int = None if job_name and job_links: _lowerCAmelCase : Optional[int] = job_links.get(UpperCamelCase_ , UpperCamelCase_ ) # A list with elements of the form (line of error, error, failed test) _lowerCAmelCase : Tuple = [x + [y] + [job_link] for x, y in zip(UpperCamelCase_ , UpperCamelCase_ )] return result def _UpperCAmelCase (UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[Any] = [os.path.join(UpperCamelCase_ , UpperCamelCase_ ) for p in os.listdir(UpperCamelCase_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(UpperCamelCase_ , job_links=UpperCamelCase_ ) ) return errors def _UpperCAmelCase (UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=None ): '''simple docstring''' _lowerCAmelCase : List[Any] = Counter() counter.update([x[1] for x in logs] ) _lowerCAmelCase : Dict = counter.most_common() _lowerCAmelCase : Dict = {} for error, count in counts: if error_filter is None or error not in error_filter: _lowerCAmelCase : Union[str, Any] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _lowerCAmelCase : int = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=UpperCamelCase_ ) ) return r def _UpperCAmelCase (UpperCamelCase_ : Tuple ): '''simple docstring''' _lowerCAmelCase : List[str] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _lowerCAmelCase : Optional[Any] = test.split("""/""" )[2] else: _lowerCAmelCase : Union[str, Any] = None return test def _UpperCAmelCase (UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict=None ): '''simple docstring''' _lowerCAmelCase : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] _lowerCAmelCase : List[str] = [x for x in logs if x[2] is not None] _lowerCAmelCase : int = {x[2] for x in logs} _lowerCAmelCase : str = {} for test in tests: _lowerCAmelCase : Union[str, Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _lowerCAmelCase : List[Any] = counter.most_common() _lowerCAmelCase : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _lowerCAmelCase : List[str] = sum(error_counts.values() ) if n_errors > 0: _lowerCAmelCase : int = {"""count""": n_errors, """errors""": error_counts} _lowerCAmelCase : Dict = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=UpperCamelCase_ ) ) return r def _UpperCAmelCase (UpperCamelCase_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : Optional[int] = """| no. | error | status |""" _lowerCAmelCase : List[Any] = """|-:|:-|:-|""" _lowerCAmelCase : str = [header, sep] for error in reduced_by_error: _lowerCAmelCase : Optional[Any] = reduced_by_error[error]["""count"""] _lowerCAmelCase : int = F"| {count} | {error[:100]} | |" lines.append(UpperCamelCase_ ) return "\n".join(UpperCamelCase_ ) def _UpperCAmelCase (UpperCamelCase_ : List[str] ): '''simple docstring''' _lowerCAmelCase : str = """| model | no. of errors | major error | count |""" _lowerCAmelCase : Any = """|-:|-:|-:|-:|""" _lowerCAmelCase : str = [header, sep] for model in reduced_by_model: _lowerCAmelCase : Union[str, Any] = reduced_by_model[model]["""count"""] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = list(reduced_by_model[model]["""errors"""].items() )[0] _lowerCAmelCase : str = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(UpperCamelCase_ ) return "\n".join(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _lowerCamelCase : Tuple = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _lowerCamelCase : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) _lowerCamelCase : int = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _lowerCamelCase : Optional[Any] = k.find(" / ") _lowerCamelCase : Tuple = k[index + len(" / ") :] _lowerCamelCase : List[Any] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _lowerCamelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _lowerCamelCase : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _lowerCamelCase : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _lowerCamelCase : Union[str, Any] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _lowerCamelCase : str = reduce_by_error(errors) _lowerCamelCase : Tuple = reduce_by_model(errors) _lowerCamelCase : List[str] = make_github_table(reduced_by_error) _lowerCamelCase : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
159
1
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : def __init__(self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=1_6 , A=3_6 , A=6 , A=6 , A=6 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ): lowerCamelCase_ : Optional[Any] = parent lowerCamelCase_ : str = batch_size lowerCamelCase_ : Union[str, Any] = seq_length lowerCamelCase_ : Union[str, Any] = is_training lowerCamelCase_ : str = use_input_mask lowerCamelCase_ : Any = use_token_type_ids lowerCamelCase_ : Union[str, Any] = use_labels lowerCamelCase_ : Optional[int] = vocab_size lowerCamelCase_ : Optional[int] = embedding_size lowerCamelCase_ : Any = hidden_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : Optional[int] = num_hidden_groups lowerCamelCase_ : Tuple = num_attention_heads lowerCamelCase_ : Optional[Any] = intermediate_size lowerCamelCase_ : Tuple = hidden_act lowerCamelCase_ : Dict = hidden_dropout_prob lowerCamelCase_ : List[str] = attention_probs_dropout_prob lowerCamelCase_ : Optional[int] = max_position_embeddings lowerCamelCase_ : Tuple = type_vocab_size lowerCamelCase_ : Tuple = type_sequence_label_size lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : str = num_labels lowerCamelCase_ : Union[str, Any] = num_choices lowerCamelCase_ : List[str] = scope def UpperCAmelCase__ (self ): lowerCamelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Tuple = None if self.use_input_mask: lowerCamelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Union[str, Any] = None if self.use_token_type_ids: lowerCamelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Optional[Any] = None lowerCamelCase_ : Union[str, Any] = None lowerCamelCase_ : Any = None if self.use_labels: lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ (self ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : Tuple = AlbertModel(config=A ) model.to(A ) model.eval() lowerCamelCase_ : int = model(A , attention_mask=A , token_type_ids=A ) lowerCamelCase_ : int = model(A , token_type_ids=A ) lowerCamelCase_ : Optional[Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : Optional[Any] = AlbertForPreTraining(config=A ) model.to(A ) model.eval() lowerCamelCase_ : Optional[int] = model( A , attention_mask=A , token_type_ids=A , labels=A , sentence_order_label=A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : List[str] = AlbertForMaskedLM(config=A ) model.to(A ) model.eval() lowerCamelCase_ : Union[str, Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : Dict = AlbertForQuestionAnswering(config=A ) model.to(A ) model.eval() lowerCamelCase_ : str = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : List[str] = self.num_labels lowerCamelCase_ : Any = AlbertForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase_ : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : Optional[Any] = self.num_labels lowerCamelCase_ : Dict = AlbertForTokenClassification(config=A ) model.to(A ) model.eval() lowerCamelCase_ : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : Any = self.num_choices lowerCamelCase_ : Union[str, Any] = AlbertForMultipleChoice(config=A ) model.to(A ) model.eval() lowerCamelCase_ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : int = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) : Dict = config_and_inputs lowerCamelCase_ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : int = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Dict = True def UpperCAmelCase__ (self , A , A , A=False ): lowerCamelCase_ : Optional[int] = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class in get_values(A ): lowerCamelCase_ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=A ) lowerCamelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = AlbertModelTester(self ) lowerCamelCase_ : List[str] = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase__ (self ): self.config_tester.run_common_tests() def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ : Tuple = type self.model_tester.create_and_check_model(*A ) @slow def UpperCAmelCase__ (self ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : str = AlbertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase ( unittest.TestCase ): @slow def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = AlbertModel.from_pretrained('''albert-base-v2''' ) lowerCamelCase_ : Optional[int] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowerCamelCase_ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ : Optional[Any] = model(A , attention_mask=A )[0] lowerCamelCase_ : Optional[Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , A ) lowerCamelCase_ : Union[str, Any] = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A , atol=1E-4 ) )
318
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __lowercase : Dict = logging.get_logger(__name__) class __lowercase ( _lowercase ): def __init__(self , *A , **A ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , A , ) super().__init__(*A , **A )
318
1
def SCREAMING_SNAKE_CASE ( snake_case_ : Any ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") __lowerCamelCase : str = int(input("""Enter number: """).strip()) print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
353
from __future__ import annotations def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def SCREAMING_SNAKE_CASE ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( snake_case_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
286
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class a : def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=13 , lowerCAmelCase : List[Any]=7 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Any=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : int=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Any=1 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : List[Any]=8 , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : Any=512 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : List[str]=0.0_2 , lowerCAmelCase : Tuple=3 , lowerCAmelCase : str=4 , lowerCAmelCase : Any=None , lowerCAmelCase : List[str]=False , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =parent SCREAMING_SNAKE_CASE_: Optional[Any] =batch_size SCREAMING_SNAKE_CASE_: Dict =seq_length SCREAMING_SNAKE_CASE_: List[str] =is_training SCREAMING_SNAKE_CASE_: Union[str, Any] =use_input_mask SCREAMING_SNAKE_CASE_: Optional[Any] =use_token_type_ids SCREAMING_SNAKE_CASE_: Dict =use_labels SCREAMING_SNAKE_CASE_: Dict =vocab_size SCREAMING_SNAKE_CASE_: Any =block_sizes SCREAMING_SNAKE_CASE_: Optional[int] =num_decoder_layers SCREAMING_SNAKE_CASE_: Optional[int] =d_model SCREAMING_SNAKE_CASE_: Any =n_head SCREAMING_SNAKE_CASE_: Optional[int] =d_head SCREAMING_SNAKE_CASE_: str =d_inner SCREAMING_SNAKE_CASE_: Any =hidden_act SCREAMING_SNAKE_CASE_: Any =hidden_dropout SCREAMING_SNAKE_CASE_: Tuple =attention_dropout SCREAMING_SNAKE_CASE_: List[Any] =activation_dropout SCREAMING_SNAKE_CASE_: Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE_: List[Any] =type_vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] =2 SCREAMING_SNAKE_CASE_: Optional[Any] =num_labels SCREAMING_SNAKE_CASE_: List[Any] =num_choices SCREAMING_SNAKE_CASE_: int =scope SCREAMING_SNAKE_CASE_: Optional[int] =initializer_std # Used in the tests to check the size of the first attention layer SCREAMING_SNAKE_CASE_: Optional[Any] =n_head # Used in the tests to check the size of the first hidden state SCREAMING_SNAKE_CASE_: List[Any] =self.d_model # Used in the tests to check the number of output hidden states/attentions SCREAMING_SNAKE_CASE_: Optional[Any] =sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: SCREAMING_SNAKE_CASE_: Dict =self.num_hidden_layers + 2 def lowerCamelCase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_: List[Any] =None if self.use_input_mask: SCREAMING_SNAKE_CASE_: Dict =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_: List[str] =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_: Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_: List[str] =None SCREAMING_SNAKE_CASE_: List[Any] =None SCREAMING_SNAKE_CASE_: str =None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_: Tuple =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_: str =FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase__ ( self : int , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =TFFunnelModel(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE_: str =model(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[input_ids, input_mask] SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE_: Union[str, Any] =False SCREAMING_SNAKE_CASE_: Optional[int] =TFFunnelModel(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE_: List[str] =False SCREAMING_SNAKE_CASE_: Union[str, Any] =TFFunnelModel(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =TFFunnelBaseModel(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE_: Tuple =model(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =[input_ids, input_mask] SCREAMING_SNAKE_CASE_: List[str] =model(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) SCREAMING_SNAKE_CASE_: Union[str, Any] =False SCREAMING_SNAKE_CASE_: int =TFFunnelBaseModel(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) SCREAMING_SNAKE_CASE_: str =False SCREAMING_SNAKE_CASE_: Dict =TFFunnelBaseModel(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : str , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =TFFunnelForPreTraining(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE_: Optional[Any] =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =TFFunnelForMaskedLM(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.num_labels SCREAMING_SNAKE_CASE_: Tuple =TFFunnelForSequenceClassification(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE_: List[str] =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.num_choices SCREAMING_SNAKE_CASE_: List[str] =TFFunnelForMultipleChoice(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =tf.tile(tf.expand_dims(lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_: int =tf.tile(tf.expand_dims(lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_: Union[str, Any] =tf.tile(tf.expand_dims(lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_: Dict ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_: Tuple =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.num_labels SCREAMING_SNAKE_CASE_: Any =TFFunnelForTokenClassification(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE_: str =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =TFFunnelForQuestionAnswering(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE_: int =model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ): List[str] =config_and_inputs SCREAMING_SNAKE_CASE_: Dict ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): UpperCamelCase : Optional[Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase : Optional[int] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase : Optional[int] = False UpperCamelCase : Union[str, Any] = False def lowerCamelCase__ ( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =TFFunnelModelTester(self ) SCREAMING_SNAKE_CASE_: str =ConfigTester(self , config_class=lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) @require_tf class a ( lowerCAmelCase_ , unittest.TestCase ): UpperCamelCase : str = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCamelCase : List[str] = False UpperCamelCase : str = False def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =TFFunnelModelTester(self , base=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =ConfigTester(self , config_class=lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase )
173
"""simple docstring""" from __future__ import annotations _lowercase : Dict = 1.6_021E-19 # units = C def snake_case__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ): """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
238
0
def A ( _lowerCamelCase ): '''simple docstring''' if collection == []: return [] # get some information about the collection _lowerCAmelCase : List[str] = len(__snake_case ) _lowerCAmelCase : str = max(__snake_case ) _lowerCAmelCase : Dict = min(__snake_case ) # create the counting array _lowerCAmelCase : str = coll_max + 1 - coll_min _lowerCAmelCase : List[str] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __snake_case ): _lowerCAmelCase : Any = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCAmelCase : List[str] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __snake_case ) ): _lowerCAmelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def A ( _lowerCamelCase ): '''simple docstring''' return "".join([chr(__snake_case ) for i in counting_sort([ord(__snake_case ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["ConvNextFeatureExtractor"] _snake_case = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
300
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowerCamelCase__ ( _a , _a=10): SCREAMING_SNAKE_CASE : int = [] for _ in range(_a): lrs.append(scheduler.get_lr()[0]) scheduler.step() return lrs def lowerCamelCase__ ( _a , _a=10): SCREAMING_SNAKE_CASE : Dict = [] for step in range(_a): lrs.append(scheduler.get_lr()[0]) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(_a , "schedule.bin") torch.save(scheduler.state_dict() , _a) SCREAMING_SNAKE_CASE : int = torch.load(_a) scheduler.load_state_dict(_a) return lrs @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Any , a : Any , a : int , a : List[Any] ) -> Optional[int]: """simple docstring""" self.assertEqual(len(a ) , len(a ) ) for a, b in zip(a , a ): self.assertAlmostEqual(a , a , delta=a ) def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE : Optional[int] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): SCREAMING_SNAKE_CASE : int = criterion(a , a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=a ) SCREAMING_SNAKE_CASE : Any = torch.tensor([0.4, 0.2, -0.5] ) SCREAMING_SNAKE_CASE : Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE : str = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=a , weight_decay=0.0 , relative_step=a , scale_parameter=a , warmup_init=a , ) for _ in range(1000 ): SCREAMING_SNAKE_CASE : str = criterion(a , a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =nn.Linear(50 , 50 ) if is_torch_available() else None lowerCamelCase__ =AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowerCamelCase__ =10 def __UpperCamelCase ( self : str , a : int , a : Optional[Any] , a : Optional[Any] , a : Optional[Any]=None ) -> Dict: """simple docstring""" self.assertEqual(len(a ) , len(a ) ) for a, b in zip(a , a ): self.assertAlmostEqual(a , a , delta=a , msg=a ) def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE : str = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = data SCREAMING_SNAKE_CASE : Dict = scheduler_func(self.optimizer , **a ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) SCREAMING_SNAKE_CASE : int = unwrap_schedule(a , self.num_steps ) self.assertListAlmostEqual( a , a , tol=1e-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_func(self.optimizer , **a ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(a ) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE : Union[str, Any] = unwrap_and_save_reload_schedule(a , self.num_steps ) self.assertListEqual(a , a , msg=F"failed for {scheduler_func} in save and reload" ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Any , a : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = fn def __call__( self : Any , *a : List[Any] , **a : Union[str, Any] ) -> Dict: """simple docstring""" return self.fn(*a , **a ) @classmethod def __UpperCamelCase ( self : int , a : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = list(map(self , scheduler.lr_lambdas ) )
76
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt'} a_ = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a_ = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } a_ = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =ConvBertTokenizer def __init__( self : List[str] , a : Union[str, Any]=None , a : Optional[int]=None , a : int=True , a : Tuple="[UNK]" , a : Dict="[SEP]" , a : Dict="[PAD]" , a : List[Any]="[CLS]" , a : Tuple="[MASK]" , a : Dict=True , a : Optional[Any]=None , **a : str , ) -> Dict: """simple docstring""" super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a ) != do_lower_case or normalizer_state.get("strip_accents" , a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : List[str] = getattr(a , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE : Any = strip_accents SCREAMING_SNAKE_CASE : Optional[int] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**a ) SCREAMING_SNAKE_CASE : str = do_lower_case def __UpperCamelCase ( self : Union[str, Any] , a : List[Any] , a : int=None ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : Tuple , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self._tokenizer.model.save(a , name=a ) return tuple(a )
76
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch lowercase__ : List[Any] = logging.get_logger(__name__) class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : int , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = size if size is not None else {"shortest_edge": 2_2_4} lowerCAmelCase_ : int = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = crop_size if crop_size is not None else {"height": 2_5_6, "width": 2_5_6} lowerCAmelCase_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) lowerCAmelCase_ : Dict = do_resize lowerCAmelCase_ : List[Any] = size lowerCAmelCase_ : List[Any] = resample lowerCAmelCase_ : List[str] = do_rescale lowerCAmelCase_ : Union[str, Any] = rescale_factor lowerCAmelCase_ : List[Any] = do_center_crop lowerCAmelCase_ : Optional[int] = crop_size lowerCAmelCase_ : Any = do_flip_channel_order def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PIL.Image.BILINEAR , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ): lowerCAmelCase_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCAmelCase_ : List[Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Dict , ): lowerCAmelCase_ : Tuple = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[int, float] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : List[str] , ): return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None ): return flip_channel_order(SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : float = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : Optional[int] , ): lowerCAmelCase_ : Any = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : List[Any] = resample if resample is not None else self.resample lowerCAmelCase_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : Any = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowerCAmelCase_ : Union[str, Any] = size if size is not None else self.size lowerCAmelCase_ : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) lowerCAmelCase_ : Optional[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ : int = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: lowerCAmelCase_ : List[str] = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: lowerCAmelCase_ : int = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: lowerCAmelCase_ : Tuple = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowerCAmelCase_ : int = [self.flip_channel_order(image=SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : Optional[int] = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Tuple] = None ): lowerCAmelCase_ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : List[Any] = target_sizes.numpy() lowerCAmelCase_ : int = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase_ : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase_ : str = logits.argmax(dim=1 ) lowerCAmelCase_ : Union[str, Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
354
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ : Tuple = logging.get_logger(__name__) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Any , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE_ : int , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Dict = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} lowerCAmelCase_ : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ , param_name='crop_size' ) lowerCAmelCase_ : List[Any] = do_resize lowerCAmelCase_ : Any = do_rescale lowerCAmelCase_ : int = do_normalize lowerCAmelCase_ : List[str] = do_center_crop lowerCAmelCase_ : Dict = crop_size lowerCAmelCase_ : Optional[Any] = size lowerCAmelCase_ : Tuple = resample lowerCAmelCase_ : Optional[int] = rescale_factor lowerCAmelCase_ : Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase_ : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : str , ): lowerCAmelCase_ : str = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "shortest_edge" in size: lowerCAmelCase_ : Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: lowerCAmelCase_ : Union[str, Any] = (size['height'], size['width']) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : int , ): lowerCAmelCase_ : Any = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : Optional[int] ): return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Union[float, List[float]] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE_ : str , ): return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : ImageInput , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Dict[str, int] = None , SCREAMING_SNAKE_CASE_ : PILImageResampling = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : int = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[float] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : Optional[int] , ): lowerCAmelCase_ : Optional[int] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : Dict = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : Optional[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='crop_size' , default_to_square=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : str = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : List[str] = image_std if image_std is not None else self.image_std lowerCAmelCase_ : Tuple = size if size is not None else self.size lowerCAmelCase_ : str = get_size_dict(SCREAMING_SNAKE_CASE_ ) if not is_batched(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : List[Any] = [images] if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. lowerCAmelCase_ : str = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: lowerCAmelCase_ : Any = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: lowerCAmelCase_ : Optional[int] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: lowerCAmelCase_ : Tuple = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: lowerCAmelCase_ : str = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] lowerCAmelCase_ : Optional[Any] = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
289
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE :int = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') SCREAMING_SNAKE_CASE :List[Any] = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode('''utf-8''').split() SCREAMING_SNAKE_CASE :Optional[int] = '''|'''.join(sys.argv[1:]) SCREAMING_SNAKE_CASE :List[Any] = re.compile(RF'''^({joined_dirs}).*?\.py$''') SCREAMING_SNAKE_CASE :List[str] = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
159
def _lowerCAmelCase ( lowerCAmelCase_ :int = 1_000 )->int: '''simple docstring''' snake_case_ , snake_case_ = 1, 1 snake_case_ = 2 while True: snake_case_ = 0 snake_case_ = fa + fa snake_case_ , snake_case_ = fa, f index += 1 for _ in str(lowerCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
159
1
import logging from transformers.configuration_utils import PretrainedConfig _snake_case : Optional[Any] = logging.getLogger(__name__) class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = "masked_bert" def __init__( self : Optional[int] , lowerCamelCase : Any=30522 , lowerCamelCase : Tuple=768 , lowerCamelCase : str=12 , lowerCamelCase : Dict=12 , lowerCamelCase : List[str]=3072 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : Any=0.1 , lowerCamelCase : Any=0.1 , lowerCamelCase : List[Any]=512 , lowerCamelCase : int=2 , lowerCamelCase : str=0.02 , lowerCamelCase : List[str]=1E-12 , lowerCamelCase : Any=0 , lowerCamelCase : Dict="topK" , lowerCamelCase : List[Any]="constant" , lowerCamelCase : Dict=0.0 , **lowerCamelCase : List[Any] , ) -> Dict: super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) __snake_case : Optional[Any] = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : str = intermediate_size __snake_case : Tuple = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[str] = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : Any = initializer_range __snake_case : str = layer_norm_eps __snake_case : str = pruning_method __snake_case : int = mask_init __snake_case : Any = mask_scale
351
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _snake_case : Optional[Any] = "Create a default config file for Accelerate with only a few flags set." def lowerCAmelCase_ ( __lowerCamelCase="no" , __lowerCamelCase = default_json_config_file , __lowerCamelCase = False ): __snake_case : int = Path(__lowerCamelCase ) path.parent.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __snake_case : Any = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __snake_case : Optional[int] = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): __snake_case : Dict = torch.cuda.device_count() __snake_case : Tuple = num_gpus __snake_case : List[str] = False if num_gpus > 1: __snake_case : Optional[int] = "MULTI_GPU" else: __snake_case : Dict = "NO" elif is_xpu_available() and use_xpu: __snake_case : List[str] = torch.xpu.device_count() __snake_case : str = num_xpus __snake_case : int = False if num_xpus > 1: __snake_case : Optional[int] = "MULTI_XPU" else: __snake_case : str = "NO" elif is_npu_available(): __snake_case : Any = torch.npu.device_count() __snake_case : str = num_npus __snake_case : str = False if num_npus > 1: __snake_case : Optional[int] = "MULTI_NPU" else: __snake_case : int = "NO" else: __snake_case : List[Any] = 0 __snake_case : Dict = True __snake_case : Tuple = 1 __snake_case : Tuple = "NO" __snake_case : str = ClusterConfig(**__lowerCamelCase ) config.to_json_file(__lowerCamelCase ) return path def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[Any] = parser.add_parser("default" , parents=__lowerCamelCase , help=__lowerCamelCase , formatter_class=__lowerCamelCase ) parser.add_argument( "--config_file" , default=__lowerCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=__lowerCamelCase , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=__lowerCamelCase ) return parser def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
134
0
"""simple docstring""" import unittest from knapsack import knapsack as k class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : List[Any]): a : str = 0 a : Optional[int] = [0] a : Union[str, Any] = [0] a : Any = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0) a : List[str] = [60] a : str = [10] a : Optional[int] = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 0) def __snake_case ( self : Optional[int]): a : Any = 3 a : str = [1, 2, 3] a : Tuple = [3, 2, 1] a : Any = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 5) def __snake_case ( self : Tuple): a : int = 50 a : List[Any] = [60, 100, 120] a : Optional[int] = [10, 20, 30] a : str = len(__UpperCAmelCase) self.assertEqual(k.knapsack(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) , 220) if __name__ == "__main__": unittest.main()
40
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" A_ : Optional[Any] = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A_ : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A_ : List[str] = '' else: A_ : Dict = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ : str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) A_ : List[Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A_ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A_ : Tuple = in_proj_bias[: config.hidden_size] A_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A_ : Tuple = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[str] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Any = dct.pop(_UpperCAmelCase ) A_ : Optional[int] = val def UpperCAmelCase__ ( ): """simple docstring""" A_ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' A_ : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" A_ : List[Any] = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=_UpperCAmelCase , ) A_ : Optional[int] = ViTHybridConfig(backbone_config=_UpperCAmelCase , image_size=384 , num_labels=1000 ) A_ : Union[str, Any] = False # load original model from timm A_ : List[Any] = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ : Tuple = timm_model.state_dict() if base_model: remove_classification_head_(_UpperCAmelCase ) A_ : Any = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ : Union[str, Any] = 'huggingface/label-files' A_ : Dict = 'imagenet-1k-id2label.json' A_ : List[str] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) A_ : str = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A_ : List[Any] = ViTHybridModel(_UpperCAmelCase ).eval() else: A_ : str = ViTHybridForImageClassification(_UpperCAmelCase ).eval() model.load_state_dict(_UpperCAmelCase ) # create image processor A_ : Dict = create_transform(**resolve_data_config({} , model=_UpperCAmelCase ) ) A_ : List[str] = transform.transforms A_ : List[str] = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } A_ : Tuple = ViTHybridImageProcessor( do_resize=_UpperCAmelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_UpperCAmelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A_ : Optional[Any] = prepare_img() A_ : Any = transform(_UpperCAmelCase ).unsqueeze(0 ) A_ : Dict = processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) # verify logits with torch.no_grad(): A_ : List[Any] = model(_UpperCAmelCase ) A_ : List[str] = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: A_ : Union[str, Any] = timm_model.forward_features(_UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_UpperCAmelCase , outputs.pooler_output , atol=1E-3 ) else: A_ : Tuple = timm_model(_UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) lowerCamelCase_ : List[str] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
286
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _lowercase ( unittest.TestCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=512 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ): """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def UpperCamelCase_ (self ): """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ (self ): """simple docstring""" a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ (self ): """simple docstring""" a = FlaxAlbertModelTester(self ) @slow def UpperCamelCase_ (self ): """simple docstring""" for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("albert-base-v2" ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ ) @require_flax class _lowercase ( unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase_ (self ): """simple docstring""" a = FlaxAlbertModel.from_pretrained("albert-base-v2" ) a = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] a = (1, 11, 768) self.assertEqual(output.shape , lowerCamelCase_ ) a = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1E-4 ) )
353
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
71
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[Any] = tempfile.mkdtemp() # fmt: off A_ : str = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on A_ : List[Any] = dict(zip(snake_case , range(len(snake_case ) ) ) ) A_ : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] A_ : Dict = {"unk_token": "<unk>"} A_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case ) ) A_ : Any = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } A_ : Optional[Any] = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(snake_case , snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , **snake_case :Tuple ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict , **snake_case :str ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] , **snake_case :List[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Optional[Any] = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Optional[Any] = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : str = self.get_image_processor() A_ : Optional[Any] = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case ) A_ : Optional[Any] = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case ) self.assertIsInstance(processor_fast.tokenizer , snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case ) self.assertIsInstance(processor_fast.image_processor , snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ : Union[str, Any] = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) A_ : Optional[int] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Union[str, Any] = self.get_image_processor() A_ : Union[str, Any] = self.get_tokenizer() A_ : Optional[Any] = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) A_ : List[str] = self.prepare_image_inputs() A_ : str = image_processor(snake_case , return_tensors="np" ) A_ : Optional[int] = processor(images=snake_case , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Optional[Any] = self.get_image_processor() A_ : str = self.get_tokenizer() A_ : List[str] = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) A_ : Optional[int] = "lower newer" A_ : List[Any] = processor(text=snake_case ) A_ : int = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[Any] = self.get_image_processor() A_ : Dict = self.get_tokenizer() A_ : int = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) A_ : str = "lower newer" A_ : Optional[Any] = self.prepare_image_inputs() A_ : List[str] = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Any = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : Dict = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) A_ : List[str] = self.prepare_image_inputs() A_ : Dict = self.prepare_image_inputs() A_ : int = processor(images=snake_case , visual_prompt=snake_case ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Tuple = self.get_image_processor() A_ : int = self.get_tokenizer() A_ : Dict = CLIPSegProcessor(tokenizer=snake_case , image_processor=snake_case ) A_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : Union[str, Any] = processor.batch_decode(snake_case ) A_ : List[str] = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case )
300
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: A_ : Tuple = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Dict: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ : str = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight" ) A_ : List[Any] = in_proj_weight[ : encoder_config.hidden_size, : ] A_ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ : Optional[Any] = in_proj_weight[ -encoder_config.hidden_size :, : ] def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict ) -> Any: A_ : Dict = dct.pop(_lowerCAmelCase ) A_ : List[Any] = val def __snake_case ( _lowerCAmelCase : List[str] ) -> int: if "handwritten" in checkpoint_url: A_ : Any = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Any = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" A_ : List[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ).convert("RGB" ) return im @torch.no_grad() def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: A_ : Optional[Any] = ViTConfig(image_size=384 , qkv_bias=_lowerCAmelCase ) A_ : Tuple = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ : Tuple = 768 elif "large" in checkpoint_url: # use ViT-large encoder A_ : Optional[Any] = 1024 A_ : Union[str, Any] = 4096 A_ : Union[str, Any] = 24 A_ : List[Any] = 16 A_ : List[str] = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ : Dict = False A_ : int = "relu" A_ : Optional[int] = 1024 A_ : Any = True A_ : List[Any] = False A_ : Optional[int] = False # load HuggingFace model A_ : Union[str, Any] = ViTModel(_lowerCAmelCase , add_pooling_layer=_lowerCAmelCase ) A_ : str = TrOCRForCausalLM(_lowerCAmelCase ) A_ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) model.eval() # load state_dict of original model, rename some keys A_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="cpu" , check_hash=_lowerCAmelCase )["model"] A_ : Dict = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ : Dict = state_dict.pop(_lowerCAmelCase ) if key.startswith("decoder" ) and "output_projection" not in key: A_ : List[str] = val else: A_ : Optional[Any] = val # load state dict model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A_ : List[Any] = ViTImageProcessor(size=encoder_config.image_size ) A_ : Any = RobertaTokenizer.from_pretrained("roberta-large" ) A_ : Union[str, Any] = TrOCRProcessor(_lowerCAmelCase , _lowerCAmelCase ) A_ : List[str] = processor(images=prepare_img(_lowerCAmelCase ) , return_tensors="pt" ).pixel_values # verify logits A_ : Union[str, Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ : Optional[int] = model(pixel_values=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) A_ : Tuple = outputs.logits A_ : Union[str, Any] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: A_ : Union[str, Any] = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: A_ : str = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: A_ : Optional[Any] = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: A_ : Optional[int] = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , _lowerCAmelCase , atol=1e-3 ), "First elements of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
300
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : int = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class SCREAMING_SNAKE_CASE__ ( __a ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Dict = BartphoTokenizer _UpperCAmelCase : Any = False _UpperCAmelCase : List[Any] = True def A ( self : Tuple ): '''simple docstring''' super().setUp() _snake_case = ['▁This', '▁is', '▁a', '▁t', 'est'] _snake_case = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) _snake_case = BartphoTokenizer(UpperCamelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : List[str] , **lowercase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def A ( self : Tuple , lowercase : Any ): '''simple docstring''' _snake_case = 'This is a là test' _snake_case = 'This is a<unk><unk> test' return input_text, output_text def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = BartphoTokenizer(UpperCamelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) _snake_case = 'This is a là test' _snake_case = '▁This ▁is ▁a ▁l à ▁t est'.split() _snake_case = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ )
369
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "canine" def __init__( self : int , lowercase : Optional[int]=768 , lowercase : Tuple=12 , lowercase : Union[str, Any]=12 , lowercase : Optional[int]=3_072 , lowercase : Tuple="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=16_384 , lowercase : Optional[int]=16 , lowercase : Optional[int]=0.02 , lowercase : Optional[Any]=1E-12 , lowercase : Optional[Any]=0 , lowercase : Dict=0xE000 , lowercase : Optional[Any]=0xE001 , lowercase : Union[str, Any]=4 , lowercase : str=4 , lowercase : Optional[int]=8 , lowercase : List[str]=16_384 , lowercase : Union[str, Any]=128 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps # Character config: _snake_case = downsampling_rate _snake_case = upsampling_kernel_size _snake_case = num_hash_functions _snake_case = num_hash_buckets _snake_case = local_transformer_stride
130
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : Optional[int] ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__a ): _a = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _a = FlaxAutoModel.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def UpperCamelCase__ ( self : int ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__a ): _a = AutoConfig.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) _a = FlaxAutoModel.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , __a ) @slow def UpperCamelCase__ ( self : Optional[int] ): for model_name in ["bert-base-cased", "bert-large-uncased"]: _a = AutoTokenizer.from_pretrained(__a ) _a = FlaxBertModel.from_pretrained(__a ) _a = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__a : Optional[Any] ): return model(**__a ) eval(**__a ).block_until_ready() @slow def UpperCamelCase__ ( self : Dict ): for model_name in ["roberta-base", "roberta-large"]: _a = AutoTokenizer.from_pretrained(__a ) _a = FlaxRobertaModel.from_pretrained(__a ) _a = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__a : str ): return model(**__a ) eval(**__a ).block_until_ready() def UpperCamelCase__ ( self : Any ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): _a = FlaxAutoModel.from_pretrained("bert-base" ) def UpperCamelCase__ ( self : int ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _a = FlaxAutoModel.from_pretrained(__a , revision="aaaaaa" ) def UpperCamelCase__ ( self : Dict ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): _a = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase__ ( self : str ): with self.assertRaisesRegex(__a , "Use `from_pt=True` to load this model" ): _a = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
63
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class a : def __init__( self : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str]=13 , __lowerCAmelCase : List[Any]=7 , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[Any]=99 , __lowerCAmelCase : int=64 , __lowerCAmelCase : Optional[int]=5 , __lowerCAmelCase : Union[str, Any]=4 , __lowerCAmelCase : Union[str, Any]=64 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : str=512 , __lowerCAmelCase : Any=16 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : int=4 , __lowerCAmelCase : str=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowerCAmelCase_ ( self : Union[str, Any] ): return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Optional[int] ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str ): _UpperCAmelCase = MPNetModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ): _UpperCAmelCase = MPNetForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MPNetForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = MPNetForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MPNetForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _UpperCAmelCase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _snake_case : List[Any] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _snake_case : Union[str, Any] = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) _snake_case : int = False _snake_case : List[Any] = True def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = MPNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*__lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*__lowerCAmelCase ) @require_torch class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) _UpperCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCAmelCase = model(__lowerCAmelCase )[0] _UpperCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCAmelCase ) _UpperCAmelCase = torch.tensor( [[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) )
289
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __snake_case = '''base_with_context''' def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: '''simple docstring''' UpperCAmelCase : Any =nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) UpperCAmelCase : Union[str, Any] =nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=__lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase : Any =weights[f'''layers_{lyr_num}'''] UpperCAmelCase : Dict =nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) UpperCAmelCase : List[str] =ly_weight['''attention'''] UpperCAmelCase : Optional[int] =nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCAmelCase : Union[str, Any] =nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCAmelCase : Tuple =nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCAmelCase : Dict =nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCAmelCase : Optional[int] =nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) UpperCAmelCase : Optional[Any] =nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) UpperCAmelCase : Union[str, Any] =nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) UpperCAmelCase : List[str] =nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) UpperCAmelCase : Optional[int] =nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) UpperCAmelCase : List[Any] =nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=__lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase : Optional[int] =weights[f'''layers_{lyr_num}'''] UpperCAmelCase : Tuple =ly_weight['''attention'''] UpperCAmelCase : str =nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCAmelCase : Any =nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCAmelCase : Union[str, Any] =nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCAmelCase : Dict =nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCAmelCase : List[Any] =nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) UpperCAmelCase : Union[str, Any] =nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) UpperCAmelCase : Union[str, Any] =nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) UpperCAmelCase : Optional[int] =nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) UpperCAmelCase : str =nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) UpperCAmelCase : Tuple =nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) UpperCAmelCase : str =nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) UpperCAmelCase : List[Any] =nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=__lowerCAmelCase ) UpperCAmelCase : Any =nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): UpperCAmelCase : Dict =weights[f'''layers_{lyr_num}'''] UpperCAmelCase : Tuple =nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) UpperCAmelCase : Any =nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) UpperCAmelCase : Optional[int] =ly_weight['''self_attention'''] UpperCAmelCase : str =nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCAmelCase : List[Any] =nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCAmelCase : Optional[int] =nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCAmelCase : List[str] =nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCAmelCase : Optional[int] =ly_weight['''MultiHeadDotProductAttention_0'''] UpperCAmelCase : List[Any] =nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) UpperCAmelCase : Any =nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) UpperCAmelCase : Optional[int] =nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) UpperCAmelCase : Union[str, Any] =nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) UpperCAmelCase : Optional[int] =nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) UpperCAmelCase : List[str] =nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) UpperCAmelCase : int =nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) UpperCAmelCase : List[str] =nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) UpperCAmelCase : Dict =nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) UpperCAmelCase : Union[str, Any] =nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) UpperCAmelCase : str =nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) UpperCAmelCase : int =nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def lowerCAmelCase_ ( __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =checkpoints.load_tax_checkpoint(args.checkpoint_path ) UpperCAmelCase : str =jnp.tree_util.tree_map(onp.array , __lowerCAmelCase ) UpperCAmelCase : int =[ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] UpperCAmelCase : List[str] =os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) UpperCAmelCase : Union[str, Any] =inference.parse_training_gin_file(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Tuple =inference.InferenceModel(args.checkpoint_path , __lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) UpperCAmelCase : Dict =SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) UpperCAmelCase : str =SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) UpperCAmelCase : Tuple =TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) UpperCAmelCase : Optional[Any] =load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , __lowerCAmelCase ) UpperCAmelCase : List[str] =load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , __lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =load_decoder(ta_checkpoint['''target''']['''decoder'''] , __lowerCAmelCase ) UpperCAmelCase : str =OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) UpperCAmelCase : Optional[Any] =SpectrogramDiffusionPipeline( notes_encoder=__lowerCAmelCase , continuous_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase , scheduler=__lowerCAmelCase , melgan=__lowerCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=f'{MODEL}/checkpoint_500000', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) __snake_case = parser.parse_args() main(args)
78
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : List[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : Any ='''rougeLsum''' UpperCAmelCase : Optional[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] UpperCAmelCase : List[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def lowerCAmelCase_ ( )-> Any: '''simple docstring''' UpperCAmelCase : str =['''rouge1''', '''rouge2''', '''rougeL'''] UpperCAmelCase : int =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) UpperCAmelCase : Tuple =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) assert score_sep == score_no_sep def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : int =[ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] UpperCAmelCase : Any =[ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) == calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] UpperCAmelCase : Optional[Any] =[ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] UpperCAmelCase : Optional[int] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=['''rougeLsum'''] , newline_sep=__lowerCAmelCase )['''rougeLsum'''] UpperCAmelCase : int =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] =Path('''examples/seq2seq/test_data/wmt_en_ro''' ) UpperCAmelCase : Tuple =calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
78
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase__ = pytest.mark.integration @require_faiss class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(snake_case__ ) for x in np.arange(30 ).tolist()]} ) return dset def lowercase__ ( self ): """simple docstring""" import faiss lowerCAmelCase : Dataset = self._create_dummy_dataset() lowerCAmelCase : Union[str, Any] = dset.map( lambda snake_case__ , snake_case__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=snake_case__ , keep_in_memory=snake_case__ ) lowerCAmelCase : Union[str, Any] = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase , lowerCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def lowercase__ ( self ): """simple docstring""" import faiss lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def lowercase__ ( self ): """simple docstring""" import faiss lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=snake_case__ ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase , lowerCAmelCase : int = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(snake_case__ , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def lowercase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCAmelCase : List[str] = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase : List[str] = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCAmelCase : str = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=snake_case__ ) lowerCAmelCase , lowerCAmelCase : int = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" import faiss lowerCAmelCase : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase : int = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase : Optional[int] = 1 lowerCAmelCase , lowerCAmelCase : Optional[Any] = index.search(snake_case__ ) self.assertRaises(snake_case__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase : Union[str, Any] = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase , lowerCAmelCase : str = index.search_batch(snake_case__ ) self.assertRaises(snake_case__ , index.search_batch , queries[0] ) lowerCAmelCase : Optional[int] = [scores[0] for scores in total_scores] lowerCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(snake_case__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" import faiss lowerCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase : Union[str, Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(snake_case__ ): lowerCAmelCase : List[Any] = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def lowercase__ ( self ): """simple docstring""" import faiss lowerCAmelCase : Any = faiss.IndexFlat(5 ) lowerCAmelCase : Union[str, Any] = FaissIndex(custom_index=snake_case__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def lowercase__ ( self ): """simple docstring""" import faiss lowerCAmelCase : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=snake_case__ ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase : int = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase : List[str] = 1 lowerCAmelCase , lowerCAmelCase : Tuple = index.search(snake_case__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import faiss lowerCAmelCase : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase : Union[str, Any] = "index.faiss" lowerCAmelCase : List[str] = f"""mock://{index_name}""" index.save(SCREAMING_SNAKE_CASE , storage_options=mockfs.storage_options ) lowerCAmelCase : Optional[Any] = FaissIndex.load(SCREAMING_SNAKE_CASE , storage_options=mockfs.storage_options ) lowerCAmelCase : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase : Any = 1 lowerCAmelCase , lowerCAmelCase : Optional[int] = index.search(SCREAMING_SNAKE_CASE ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCAmelCase : List[str] = Elasticsearch() lowerCAmelCase : Dict = {"acknowledged": True} lowerCAmelCase : Optional[int] = ElasticSearchIndex(es_client=snake_case__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCAmelCase : List[str] = "foo" lowerCAmelCase : List[str] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCAmelCase , lowerCAmelCase : Optional[int] = index.search(snake_case__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase : int = "foo" lowerCAmelCase : Any = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCAmelCase , lowerCAmelCase : str = index.search(snake_case__ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase : Any = ["foo", "bar", "foobar"] lowerCAmelCase : Optional[int] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCAmelCase , lowerCAmelCase : Any = index.search_batch(snake_case__ ) lowerCAmelCase : Tuple = [scores[0] for scores in total_scores] lowerCAmelCase : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(snake_case__ ) , 0 ) self.assertListEqual([1, 1, 1] , snake_case__ ) # batched queries with timeout lowerCAmelCase : Optional[Any] = ["foo", "bar", "foobar"] lowerCAmelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCAmelCase , lowerCAmelCase : Any = index.search_batch(snake_case__ , request_timeout=30 ) lowerCAmelCase : Dict = [scores[0] for scores in total_scores] lowerCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(snake_case__ ) , 0 ) self.assertListEqual([1, 1, 1] , snake_case__ )
108
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCamelCase ( unittest.TestCase , lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Any: '''simple docstring''' A__ : int =load_tool("""text-to-speech""" ) self.tool.setup() def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) A__ : List[str] =self.tool("""hey""" ) A__ : Dict =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) A__ : Optional[int] =self.tool("""hey""" ) A__ : Tuple =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
134
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase = logging.get_logger(__name__) # General docstring lowerCAmelCase = 'RegNetConfig' # Base docstring lowerCAmelCase = 'facebook/regnet-y-040' lowerCAmelCase = [1, 1088, 7, 7] # Image classification docstring lowerCAmelCase = 'facebook/regnet-y-040' lowerCAmelCase = 'tabby, tabby cat' lowerCAmelCase = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _a ( nn.Module ): def __init__( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() lowercase__ = nn.Convad( UpperCamelCase_ , UpperCamelCase_ , kernel_size=UpperCamelCase_ , stride=UpperCamelCase_ , padding=kernel_size // 2 , groups=UpperCamelCase_ , bias=UpperCamelCase_ , ) lowercase__ = nn.BatchNormad(UpperCamelCase_ ) lowercase__ = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[str] ) -> Tuple: """simple docstring""" lowercase__ = self.convolution(UpperCamelCase_ ) lowercase__ = self.normalization(UpperCamelCase_ ) lowercase__ = self.activation(UpperCamelCase_ ) return hidden_state class _a ( nn.Module ): def __init__( self: Union[str, Any] , UpperCamelCase_: RegNetConfig ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase__ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowercase__ = config.num_channels def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: str ) -> Union[str, Any]: """simple docstring""" lowercase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ = self.embedder(UpperCamelCase_ ) return hidden_state class _a ( nn.Module ): def __init__( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 2 ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , kernel_size=1 , stride=UpperCamelCase_ , bias=UpperCamelCase_ ) lowercase__ = nn.BatchNormad(UpperCamelCase_ ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Tensor ) -> Tensor: """simple docstring""" lowercase__ = self.convolution(UpperCamelCase_ ) lowercase__ = self.normalization(UpperCamelCase_ ) return hidden_state class _a ( nn.Module ): def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: int ) -> List[Any]: """simple docstring""" super().__init__() lowercase__ = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ = nn.Sequential( nn.Convad(UpperCamelCase_ , UpperCamelCase_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(UpperCamelCase_ , UpperCamelCase_ , kernel_size=1 ) , nn.Sigmoid() , ) def lowerCamelCase_ ( self: int , UpperCamelCase_: int ) -> Any: """simple docstring""" lowercase__ = self.pooler(UpperCamelCase_ ) lowercase__ = self.attention(UpperCamelCase_ ) lowercase__ = hidden_state * attention return hidden_state class _a ( nn.Module ): def __init__( self: Tuple , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 1 ) -> str: """simple docstring""" super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1 , out_channels // config.groups_width ) lowercase__ = ( RegNetShortCut(UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( RegNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ , groups=UpperCamelCase_ , activation=config.hidden_act ) , RegNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , kernel_size=1 , activation=UpperCamelCase_ ) , ) lowercase__ = ACTaFN[config.hidden_act] def lowerCamelCase_ ( self: Any , UpperCamelCase_: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = hidden_state lowercase__ = self.layer(UpperCamelCase_ ) lowercase__ = self.shortcut(UpperCamelCase_ ) hidden_state += residual lowercase__ = self.activation(UpperCamelCase_ ) return hidden_state class _a ( nn.Module ): def __init__( self: Optional[Any] , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 1 ) -> Tuple: """simple docstring""" super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1 , out_channels // config.groups_width ) lowercase__ = ( RegNetShortCut(UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( RegNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ , groups=UpperCamelCase_ , activation=config.hidden_act ) , RegNetSELayer(UpperCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(UpperCamelCase_ , UpperCamelCase_ , kernel_size=1 , activation=UpperCamelCase_ ) , ) lowercase__ = ACTaFN[config.hidden_act] def lowerCamelCase_ ( self: str , UpperCamelCase_: List[str] ) -> int: """simple docstring""" lowercase__ = hidden_state lowercase__ = self.layer(UpperCamelCase_ ) lowercase__ = self.shortcut(UpperCamelCase_ ) hidden_state += residual lowercase__ = self.activation(UpperCamelCase_ ) return hidden_state class _a ( nn.Module ): def __init__( self: Union[str, Any] , UpperCamelCase_: RegNetConfig , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 2 , ) -> Dict: """simple docstring""" super().__init__() lowercase__ = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , stride=UpperCamelCase_ , ) , *[layer(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for _ in range(depth - 1 )] , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.layers(UpperCamelCase_ ) return hidden_state class _a ( nn.Module ): def __init__( self: Dict , UpperCamelCase_: RegNetConfig ) -> str: """simple docstring""" super().__init__() lowercase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( UpperCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowercase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCamelCase_ , config.depths[1:] ): self.stages.append(RegNetStage(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , depth=UpperCamelCase_ ) ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Tensor , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) lowercase__ = stage_module(UpperCamelCase_ ) if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=UpperCamelCase_ , hidden_states=UpperCamelCase_ ) class _a ( UpperCamelCase__ ): _lowercase : Tuple = RegNetConfig _lowercase : str = '''regnet''' _lowercase : Tuple = '''pixel_values''' _lowercase : Dict = True def lowerCamelCase_ ( self: int , UpperCamelCase_: Optional[Any] ) -> str: """simple docstring""" if isinstance(UpperCamelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(UpperCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple=False ) -> Optional[int]: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = value lowerCAmelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , UpperCamelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _a ( UpperCamelCase__ ): def __init__( self: List[str] , UpperCamelCase_: List[Any] ) -> Any: """simple docstring""" super().__init__(UpperCamelCase_ ) lowercase__ = config lowercase__ = RegNetEmbeddings(UpperCamelCase_ ) lowercase__ = RegNetEncoder(UpperCamelCase_ ) lowercase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Tensor , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.embedder(UpperCamelCase_ ) lowercase__ = self.encoder( UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ ) lowercase__ = encoder_outputs[0] lowercase__ = self.pooler(UpperCamelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCamelCase_ , pooler_output=UpperCamelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCamelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _a ( UpperCamelCase__ ): def __init__( self: Union[str, Any] , UpperCamelCase_: List[str] ) -> Optional[Any]: """simple docstring""" super().__init__(UpperCamelCase_ ) lowercase__ = config.num_labels lowercase__ = RegNetModel(UpperCamelCase_ ) # classification head lowercase__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[torch.LongTensor] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.regnet(UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , return_dict=UpperCamelCase_ ) lowercase__ = outputs.pooler_output if return_dict else outputs[1] lowercase__ = self.classifier(UpperCamelCase_ ) lowercase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ = '''single_label_classification''' else: lowercase__ = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ = MSELoss() if self.num_labels == 1: lowercase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__ = loss_fct(UpperCamelCase_ , UpperCamelCase_ ) elif self.config.problem_type == "single_label_classification": lowercase__ = CrossEntropyLoss() lowercase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ = BCEWithLogitsLoss() lowercase__ = loss_fct(UpperCamelCase_ , UpperCamelCase_ ) if not return_dict: lowercase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCamelCase_ , logits=UpperCamelCase_ , hidden_states=outputs.hidden_states )
93
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize lowerCAmelCase = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'''] , reference_urls=[ '''https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score''', '''https://en.wikipedia.org/wiki/METEOR''', ] , ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: List[str] ) -> Union[str, Any]: """simple docstring""" import nltk nltk.download('''wordnet''' ) if NLTK_VERSION >= version.Version('''3.6.5''' ): nltk.download('''punkt''' ) if NLTK_VERSION >= version.Version('''3.6.6''' ): nltk.download('''omw-1.4''' ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Dict=0.9 , UpperCamelCase_: Union[str, Any]=3 , UpperCamelCase_: Optional[int]=0.5 ) -> Dict: """simple docstring""" if NLTK_VERSION >= version.Version('''3.6.5''' ): lowercase__ = [ meteor_score.single_meteor_score( word_tokenize(UpperCamelCase_ ) , word_tokenize(UpperCamelCase_ ) , alpha=UpperCamelCase_ , beta=UpperCamelCase_ , gamma=UpperCamelCase_ ) for ref, pred in zip(UpperCamelCase_ , UpperCamelCase_ ) ] else: lowercase__ = [ meteor_score.single_meteor_score(UpperCamelCase_ , UpperCamelCase_ , alpha=UpperCamelCase_ , beta=UpperCamelCase_ , gamma=UpperCamelCase_ ) for ref, pred in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return {"meteor": np.mean(UpperCamelCase_ )}
93
1
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Tuple = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , a__="</s>" , a__="<unk>" , a__="<pad>" , a__=125 , a__=None , **a__ , ): if extra_ids > 0 and additional_special_tokens is None: _lowerCAmelCase : Optional[int] = [F"<extra_id_{i}>" for i in range(lowerCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _lowerCAmelCase : int = len(set(filter(lambda a__ : bool("""extra_id""" in str(lowerCamelCase__ ) ) , lowerCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) _lowerCAmelCase : List[str] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token _lowerCAmelCase : int = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token _lowerCAmelCase : str = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token super().__init__( eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , extra_ids=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) _lowerCAmelCase : List[str] = extra_ids _lowerCAmelCase : List[Any] = 2**8 # utf is 8 bits # define special tokens dict _lowerCAmelCase : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _lowerCAmelCase : Tuple = len(self.special_tokens_encoder ) _lowerCAmelCase : List[str] = len(lowerCamelCase__ ) for i, token in enumerate(lowerCamelCase__ ): _lowerCAmelCase : Optional[int] = self.vocab_size + i - n _lowerCAmelCase : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def __A ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCamelCase__ )) + [1] return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def __A ( self , a__ ): if len(lowerCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Union[str, Any] = self._add_eos_if_not_present(lowerCamelCase__ ) if token_ids_a is None: return token_ids_a else: _lowerCAmelCase : List[Any] = self._add_eos_if_not_present(lowerCamelCase__ ) return token_ids_a + token_ids_a def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = [chr(lowerCamelCase__ ) for i in text.encode("""utf-8""" )] return tokens def __A ( self , a__ ): if token in self.special_tokens_encoder: _lowerCAmelCase : Any = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _lowerCAmelCase : List[str] = self.added_tokens_encoder[token] elif len(lowerCamelCase__ ) != 1: _lowerCAmelCase : List[Any] = self.unk_token_id else: _lowerCAmelCase : List[str] = ord(lowerCamelCase__ ) + self._num_special_tokens return token_id def __A ( self , a__ ): if index in self.special_tokens_decoder: _lowerCAmelCase : str = self.special_tokens_decoder[index] else: _lowerCAmelCase : int = chr(index - self._num_special_tokens ) return token def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = b'' for token in tokens: if token in self.special_tokens_decoder: _lowerCAmelCase : List[str] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: _lowerCAmelCase : List[Any] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: _lowerCAmelCase : str = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: _lowerCAmelCase : List[Any] = token.encode("""utf-8""" ) else: _lowerCAmelCase : Union[str, Any] = bytes([ord(lowerCamelCase__ )] ) bstring += tok_string _lowerCAmelCase : str = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def __A ( self , a__ , a__ = None ): return ()
44
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __A : """simple docstring""" UpperCamelCase__ : int =XGLMConfig UpperCamelCase__ : Optional[Any] ={} UpperCamelCase__ : List[str] ="""gelu""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ): """simple docstring""" __UpperCamelCase : Tuple =parent __UpperCamelCase : List[str] =batch_size __UpperCamelCase : str =seq_length __UpperCamelCase : Dict =is_training __UpperCamelCase : Tuple =use_input_mask __UpperCamelCase : List[Any] =use_labels __UpperCamelCase : Any =vocab_size __UpperCamelCase : List[Any] =d_model __UpperCamelCase : Optional[int] =num_hidden_layers __UpperCamelCase : List[str] =num_attention_heads __UpperCamelCase : Optional[int] =ffn_dim __UpperCamelCase : str =activation_function __UpperCamelCase : Any =activation_dropout __UpperCamelCase : Optional[int] =attention_dropout __UpperCamelCase : Optional[int] =max_position_embeddings __UpperCamelCase : Any =initializer_range __UpperCamelCase : Dict =None __UpperCamelCase : Optional[int] =0 __UpperCamelCase : Optional[Any] =2 __UpperCamelCase : str =1 def __lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __UpperCamelCase : Union[str, Any] =None if self.use_input_mask: __UpperCamelCase : Dict =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Any =self.get_config() __UpperCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase__ , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : int =config_and_inputs __UpperCamelCase : Optional[Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ : str =(TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ : Optional[Any] =( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ : Tuple =False UpperCamelCase__ : Tuple =False UpperCamelCase__ : Optional[Any] =False def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMModelTester(self ) __UpperCamelCase : Dict =ConfigTester(self , config_class=lowerCamelCase__ , n_embd=37 ) def __lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[Any] =TFXGLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self , lowerCamelCase__=True ): """simple docstring""" __UpperCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : List[str] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase : str =[2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase : Optional[Any] =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Union[str, Any] =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase : str =tokenizer('Today is a nice day and' , return_tensors='tf' ) __UpperCamelCase : Union[str, Any] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase : Any =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , seed=[7, 0] ) __UpperCamelCase : Tuple =tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : List[Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] ='left' # use different length sentences to test batching __UpperCamelCase : Optional[int] =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase : List[Any] =tokenizer(lowerCamelCase__ , return_tensors='tf' , padding=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =inputs['input_ids'] __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __UpperCamelCase : List[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Any =tokenizer(sentences[1] , return_tensors='tf' ).input_ids __UpperCamelCase : Optional[Any] =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Optional[int] =tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Any =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , [non_padded_sentence, padded_sentence] )
71
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = ["image_processor", "tokenizer"] A_ = "BridgeTowerImageProcessor" A_ = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self: Any , __A: Optional[int] , __A: str ) -> Tuple: super().__init__(__A , __A ) def __call__( self: Union[str, Any] , __A: Any , __A: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A: bool = True , __A: Union[bool, str, PaddingStrategy] = False , __A: Union[bool, str, TruncationStrategy] = None , __A: Optional[int] = None , __A: int = 0 , __A: Optional[int] = None , __A: Optional[bool] = None , __A: Optional[bool] = None , __A: bool = False , __A: bool = False , __A: bool = False , __A: bool = False , __A: bool = True , __A: Optional[Union[str, TensorType]] = None , **__A: List[Any] , ) -> BatchEncoding: _A = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel_values + pixel_mask _A = self.image_processor( __A , return_tensors=__A , do_normalize=__A , do_center_crop=__A , **__A ) encoding.update(__A ) return encoding def __A ( self: List[Any] , *__A: Any , **__A: Tuple ) -> Optional[int]: return self.tokenizer.batch_decode(*__A , **__A ) def __A ( self: Tuple , *__A: List[str] , **__A: str ) -> int: return self.tokenizer.decode(*__A , **__A ) @property def __A ( self: int ) -> int: _A = self.tokenizer.model_input_names _A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
365
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __A = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) __A = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __A = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) __A = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) __A = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' __A = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' __A = '' __A = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' __A = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __A = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' assert ReadMe.from_string(_lowercase , _lowercase ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with pytest.raises(_lowercase , match=re.escape(expected_error.format(path='''root''' ) ) ): _A = ReadMe.from_string(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with pytest.raises(_lowercase , match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(_lowercase , _lowercase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase ): '''simple docstring''' ReadMe.from_string(_lowercase , _lowercase , suppress_parsing_errors=_lowercase ) @pytest.mark.parametrize( '''readme_md, expected_dict''' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = ReadMe.from_readme(_lowercase , _lowercase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): _A = ReadMe.from_readme(_lowercase , _lowercase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase , _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) _A = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase , match=re.escape(_lowercase ) ): ReadMe.from_readme(_lowercase , _lowercase ) @pytest.mark.parametrize( '''readme_md,''' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def __A ( _lowercase ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _A = Path(_lowercase ) / '''README.md''' with open(_lowercase , '''w+''' ) as readme_file: readme_file.write(_lowercase ) ReadMe.from_readme(_lowercase , _lowercase , suppress_parsing_errors=_lowercase )
75
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __lowerCAmelCase ( datasets.BeamBasedBuilder ): def snake_case ( self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=_snake_case , ) def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_snake_case ) class __lowerCAmelCase ( datasets.BeamBasedBuilder ): def snake_case ( self ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=_snake_case , ) def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_snake_case ) def _UpperCAmelCase ( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def _UpperCAmelCase ( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class __lowerCAmelCase ( lowerCamelCase__ ): @require_beam def snake_case ( self ): """simple docstring""" _lowerCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCAmelCase = DummyBeamDataset(cache_dir=_snake_case , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_snake_case , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) _lowerCAmelCase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _snake_case ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _snake_case ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_snake_case , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def snake_case ( self ): """simple docstring""" import apache_beam as beam _lowerCAmelCase = beam.io.parquetio.WriteToParquet _lowerCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCAmelCase = DummyBeamDataset(cache_dir=_snake_case , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: _lowerCAmelCase = partial(_snake_case , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _snake_case , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( _snake_case , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) _lowerCAmelCase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _snake_case ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _snake_case ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(_snake_case , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def snake_case ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCAmelCase = DummyBeamDataset(cache_dir=_snake_case ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def snake_case ( self ): """simple docstring""" _lowerCAmelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCAmelCase = NestedBeamDataset(cache_dir=_snake_case , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_snake_case , builder.name , """default""" , """0.0.0""" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) _lowerCAmelCase = builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _snake_case ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _snake_case ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_snake_case , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
82
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case__(_UpperCamelCase ): """simple docstring""" def snake_case ( self : Optional[Any] ): lowercase__ : str = tempfile.mkdtemp() lowercase__ : Optional[Any] = 8 # DPR tok lowercase__ : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase__ : List[Any] = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowercase__ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : List[str] = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowercase__ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : List[Any] = {"unk_token": "<unk>"} lowercase__ : Any = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : str = os.path.join(SCREAMING_SNAKE_CASE , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Any ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def snake_case ( self : Any ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def snake_case ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def snake_case ( self : Optional[int] ): lowercase__ : int = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def snake_case ( self : List[str] ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Union[str, Any] = dataset lowercase__ : List[str] = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : bool ): lowercase__ : Union[str, Any] = self.get_dummy_dataset() lowercase__ : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: lowercase__ : Any = os.path.join(self.tmpdirname , "dataset" ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset lowercase__ : Tuple = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowercase__ : Dict = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE ) , ) return retriever def snake_case ( self : Tuple ): lowercase__ : Optional[int] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) lowercase__ : Optional[int] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) lowercase__ : List[str] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE , open(SCREAMING_SNAKE_CASE , "wb" ) ) lowercase__ : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) lowercase__ : Any = RagRetriever( SCREAMING_SNAKE_CASE , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def snake_case ( self : int ): lowercase__ : Any = 1 lowercase__ : str = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : str ): lowercase__ : Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: lowercase__ : Tuple = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[str] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : str ): lowercase__ : Union[str, Any] = 1 lowercase__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Optional[Any] = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Union[str, Any] ): lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : Optional[Any] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : List[str] ): lowercase__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : int = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : Dict = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) def snake_case ( self : Union[str, Any] ): lowercase__ : List[Any] = 1 lowercase__ : List[str] = self.get_dummy_legacy_index_retriever() lowercase__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ , lowercase__ , lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , SCREAMING_SNAKE_CASE ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def snake_case ( self : Dict ): lowercase__ : Optional[int] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : str = retriever.retrieve(SCREAMING_SNAKE_CASE , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : Any ): import torch lowercase__ : List[Any] = 1 lowercase__ : Union[str, Any] = self.get_dummy_canonical_hf_index_retriever() lowercase__ : Tuple = [[5, 7], [10, 11]] lowercase__ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : int = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ , lowercase__ : List[str] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) lowercase__ : List[str] = retriever( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE , return_tensors="pt" , ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def snake_case ( self : int ): lowercase__ : List[Any] = self.get_dpr_ctx_encoder_tokenizer() lowercase__ : Optional[int] = 1 lowercase__ : str = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = [[5, 7], [10, 11]] lowercase__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowercase__ : List[Any] = retriever(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE ) self.assertEqual( len(SCREAMING_SNAKE_CASE ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , SCREAMING_SNAKE_CASE ) # check for doc token related keys in dictionary.
130
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __lowercase ( lowerCAmelCase__ ): '''simple docstring''' a : str = "glpn" def __init__(self ,_lowerCamelCase=3 ,_lowerCamelCase=4 ,_lowerCamelCase=[2, 2, 2, 2] ,_lowerCamelCase=[8, 4, 2, 1] ,_lowerCamelCase=[32, 64, 160, 256] ,_lowerCamelCase=[7, 3, 3, 3] ,_lowerCamelCase=[4, 2, 2, 2] ,_lowerCamelCase=[1, 2, 5, 8] ,_lowerCamelCase=[4, 4, 4, 4] ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=0.1 ,_lowerCamelCase=1E-6 ,_lowerCamelCase=64 ,_lowerCamelCase=10 ,_lowerCamelCase=-1 ,**_lowerCamelCase ,) -> Any: '''simple docstring''' super().__init__(**_lowerCamelCase ) __lowercase = num_channels __lowercase = num_encoder_blocks __lowercase = depths __lowercase = sr_ratios __lowercase = hidden_sizes __lowercase = patch_sizes __lowercase = strides __lowercase = mlp_ratios __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = drop_path_rate __lowercase = layer_norm_eps __lowercase = decoder_hidden_size __lowercase = max_depth __lowercase = head_in_index
217
'''simple docstring''' def _lowerCAmelCase ( lowerCamelCase_ : int = 6_0_0_8_5_1_4_7_5_1_4_3 ): try: __lowercase = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __lowercase = 1 __lowercase = 2 while i * i <= n: while n % i == 0: __lowercase = i n //= i i += 1 if n > 1: __lowercase = n return int(lowerCamelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
217
1
"""simple docstring""" from collections.abc import Callable import numpy as np def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase = np.zeros((n + 1,) ) UpperCAmelCase = ya UpperCAmelCase = xa for k in range(lowercase_ ): UpperCAmelCase = y[k] + step_size * ode_func(lowercase_ , y[k] ) UpperCAmelCase = y[k] + ( (step_size / 2) * (ode_func(lowercase_ , y[k] ) + ode_func(x + step_size , lowercase_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
78
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = list(range(len(lowercase_ ) ) ) UpperCAmelCase = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) UpperCAmelCase = 0 UpperCAmelCase = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: UpperCAmelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
78
1
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
204
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __snake_case ( unittest.TestCase ): def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) SCREAMING_SNAKE_CASE__ = Vector() def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_lowercase ) , """(0,0,0,0,0,1)""" ) def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3, 4] ) self.assertEqual(len(_lowercase ) , 4 ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2] ) SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3, 4, 5] ) SCREAMING_SNAKE_CASE__ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE__ = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([2, -1, 4] ) # for test of dot product SCREAMING_SNAKE_CASE__ = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def __a ( self : Union[str, Any] ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def __a ( self : str ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE__ = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _lowercase , _lowercase ) ) , """(3,4,7)""" ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE__ = x.copy() self.assertEqual(str(_lowercase ) , str(_lowercase ) ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_lowercase ) , """(0,1,0)""" ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(_lowercase ) ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_lowercase , _lowercase ) ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_lowercase , _lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(_lowercase ) ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def __a ( self : Any ): """simple docstring""" self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
204
1
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Union[str, Any] = int(__SCREAMING_SNAKE_CASE ) if n_element < 1: lowercase_ : str = ValueError('''a should be a positive number''' ) raise my_error lowercase_ : str = [1] lowercase_ , lowercase_ , lowercase_ : Any = (0, 0, 0) lowercase_ : Any = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _lowercase : str = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") _lowercase : List[Any] = hamming(int(n)) print("-----------------------------------------------------") print(f"""The list with nth numbers is: {hamming_numbers}""") print("-----------------------------------------------------")
93
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : List[Any] = "▁" _lowercase : Tuple = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } _lowercase : List[str] = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } _lowercase : List[str] = { "facebook/m2m100_418M": 1_0_2_4, } # fmt: off _lowercase : Tuple = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="m2m100" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=8 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ : List[Any] = language_codes lowercase_ : Optional[int] = FAIRSEQ_LANGUAGE_CODES[language_codes] lowercase_ : List[Any] = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} lowercase_ : Union[str, Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__SCREAMING_SNAKE_CASE ) for lang_code in fairseq_language_code if self.get_lang_token(__SCREAMING_SNAKE_CASE ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , language_codes=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowercase_ : int = vocab_file lowercase_ : Any = load_json(__SCREAMING_SNAKE_CASE ) lowercase_ : str = {v: k for k, v in self.encoder.items()} lowercase_ : Optional[int] = spm_file lowercase_ : Any = load_spm(__SCREAMING_SNAKE_CASE , self.sp_model_kwargs ) lowercase_ : List[Any] = len(self.encoder ) lowercase_ : Dict = { self.get_lang_token(__SCREAMING_SNAKE_CASE ): self.encoder_size + i for i, lang_code in enumerate(__SCREAMING_SNAKE_CASE ) } lowercase_ : Optional[int] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__SCREAMING_SNAKE_CASE )} lowercase_ : Union[str, Any] = {v: k for k, v in self.lang_token_to_id.items()} lowercase_ : Tuple = src_lang if src_lang is not None else '''en''' lowercase_ : Optional[int] = tgt_lang lowercase_ : Any = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowercase_ : Dict = num_madeup_words @property def _snake_case ( self ): """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def _snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder[self.unk_token] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = [] lowercase_ : List[str] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token lowercase_ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = [1] * len(self.prefix_tokens ) lowercase_ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowercase_ : List[Any] = self.__dict__.copy() lowercase_ : List[Any] = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : List[Any] = {} lowercase_ : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Tuple = Path(__SCREAMING_SNAKE_CASE ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) lowercase_ : Dict = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowercase_ : Dict = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __SCREAMING_SNAKE_CASE ) if os.path.abspath(self.spm_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.spm_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : int = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (str(__SCREAMING_SNAKE_CASE ), str(__SCREAMING_SNAKE_CASE )) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[Any] = src_lang lowercase_ : List[str] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase_ : Tuple = src_lang lowercase_ : Any = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = self.get_lang_id(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = tgt_lang_id return inputs def _snake_case ( self ): """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = self.get_lang_token(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = self.lang_token_to_id[lang_token] lowercase_ : Optional[Any] = [self.cur_lang_id] lowercase_ : Union[str, Any] = [self.eos_token_id] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = self.get_lang_token(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = self.lang_token_to_id[lang_token] lowercase_ : str = [self.cur_lang_id] lowercase_ : List[str] = [self.eos_token_id] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.lang_code_to_token[lang] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = self.get_lang_token(__SCREAMING_SNAKE_CASE ) return self.lang_token_to_id[lang_token] def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict[str, Any] ): """simple docstring""" lowercase_ : Optional[int] = sentencepiece.SentencePieceProcessor(**__SCREAMING_SNAKE_CASE ) spm.Load(str(__SCREAMING_SNAKE_CASE ) ) return spm def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: return json.load(__SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , indent=2 )
93
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): while a != 0: UpperCAmelCase , UpperCAmelCase : Tuple = b % a, a return b def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: UpperCAmelCase : List[str] = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(UpperCAmelCase_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = 1, 0, a UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = 0, 1, m while va != 0: UpperCAmelCase : Tuple = ua // va UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
280
'''simple docstring''' from __future__ import annotations def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if len(UpperCAmelCase_ ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(UpperCAmelCase_ ) or left < -len(UpperCAmelCase_ ) or right >= len(UpperCAmelCase_ ) or right < -len(UpperCAmelCase_ ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] UpperCAmelCase : Optional[int] = (left + right) >> 1 # the middle UpperCAmelCase : Any = find_max(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # find max in range[left, mid] UpperCAmelCase : Union[str, Any] = find_max(UpperCAmelCase_ , mid + 1 , UpperCAmelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
280
1
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowercase__ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = True , ): _lowerCamelCase : str = [file for file in os.listdir(lowercase ) if os.path.isfile(os.path.join(lowercase , lowercase ) )] if identifier is not None: _lowerCamelCase : Any = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase , lowercase ): for n_ in n_identifier: _lowerCamelCase : Optional[int] = [file for file in files if n_ not in file] else: _lowerCamelCase : List[Any] = [file for file in files if n_identifier not in file] _lowerCamelCase : str = ignore_files or [] ignore_files.append('__init__.py' ) _lowerCamelCase : Union[str, Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , lowercase ) if only_modules: _lowerCamelCase : Any = file.split('.' )[0] try: _lowerCamelCase : Dict = getattr(lowercase , lowercase ) _lowerCamelCase : Optional[Any] = doctest.DocTestSuite(lowercase ) _lowerCamelCase : Union[str, Any] = unittest.TextTestRunner().run(lowercase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: _lowerCamelCase : Any = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def A_ ( self ): _lowerCamelCase : str = Path('src/transformers' ) _lowerCamelCase : Any = 'modeling' _lowerCamelCase : str = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(lowercase , identifier=lowercase , ignore_files=lowercase ) def A_ ( self ): _lowerCamelCase : str = Path('src/transformers' ) _lowerCamelCase : int = 'tokenization' self.analyze_directory(lowercase , identifier=lowercase ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = Path('src/transformers' ) _lowerCamelCase : Union[str, Any] = 'configuration' self.analyze_directory(lowercase , identifier=lowercase ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = Path('src/transformers' ) _lowerCamelCase : Dict = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(lowercase , n_identifier=lowercase ) def A_ ( self ): _lowerCamelCase : List[str] = Path('docs/source' ) _lowerCamelCase : Optional[Any] = ['favicon.ico'] self.analyze_directory(lowercase , ignore_files=lowercase , only_modules=lowercase )
96
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __UpperCamelCase : lowercase : Union[str, Any] =XGLMConfig lowercase : Optional[Any] ={} lowercase : Optional[int] ='gelu' def __init__( self, lowerCAmelCase, lowerCAmelCase=14, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=2, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=0.0_2, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =batch_size lowerCamelCase_ =seq_length lowerCamelCase_ =is_training lowerCamelCase_ =use_input_mask lowerCamelCase_ =use_labels lowerCamelCase_ =vocab_size lowerCamelCase_ =d_model lowerCamelCase_ =num_hidden_layers lowerCamelCase_ =num_attention_heads lowerCamelCase_ =ffn_dim lowerCamelCase_ =activation_function lowerCamelCase_ =activation_dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =initializer_range lowerCamelCase_ =None lowerCamelCase_ =0 lowerCamelCase_ =2 lowerCamelCase_ =1 def lowercase__ ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length], self.vocab_size ), clip_value_min=0, clip_value_max=3 ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =self.get_config() lowerCamelCase_ =floats_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase__ ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, num_layers=self.num_hidden_layers, attention_heads=self.num_attention_heads, ffn_dim=self.ffn_dim, activation_function=self.activation_function, activation_dropout=self.activation_dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, use_cache=lowerCAmelCase, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, return_dict=lowerCAmelCase, ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={ '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : int =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowercase : Optional[Any] =(TFXGLMForCausalLM,) if is_tf_available() else () lowercase : Tuple =( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowercase : Optional[Any] =False lowercase : Optional[Any] =False lowercase : Optional[int] =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFXGLMModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, n_embd=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ =TFXGLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def lowercase__ ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self, lowerCAmelCase=True ): """simple docstring""" lowerCamelCase_ =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ =tf.convert_to_tensor([[2, 268, 9_865]], dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCamelCase_ =[2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on lowerCamelCase_ =model.generate(lowerCAmelCase, do_sample=lowerCAmelCase, num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist(), lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) lowerCamelCase_ =tokenizer('''Today is a nice day and''', return_tensors='''tf''' ) lowerCamelCase_ =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): lowerCamelCase_ =model.generate(lowerCAmelCase, do_sample=lowerCAmelCase, seed=[7, 0] ) lowerCamelCase_ =tokenizer.decode(output_ids[0], skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(lowerCAmelCase, lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ =XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) lowerCamelCase_ ='''left''' # use different length sentences to test batching lowerCamelCase_ =[ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] lowerCamelCase_ =tokenizer(lowerCAmelCase, return_tensors='''tf''', padding=lowerCAmelCase ) lowerCamelCase_ =inputs['''input_ids'''] lowerCamelCase_ =model.generate(input_ids=lowerCAmelCase, attention_mask=inputs['''attention_mask'''], max_new_tokens=12 ) lowerCamelCase_ =tokenizer(sentences[0], return_tensors='''tf''' ).input_ids lowerCamelCase_ =model.generate(input_ids=lowerCAmelCase, max_new_tokens=12 ) lowerCamelCase_ =tokenizer(sentences[1], return_tensors='''tf''' ).input_ids lowerCamelCase_ =model.generate(input_ids=lowerCAmelCase, max_new_tokens=12 ) lowerCamelCase_ =tokenizer.batch_decode(lowerCAmelCase, skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.decode(output_non_padded[0], skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =tokenizer.decode(output_padded[0], skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =[ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, [non_padded_sentence, padded_sentence] )
75
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __lowercase ( _a , _a , _a = 10**-10 ): snake_case_ : Union[str, Any] = a while True: snake_case_ : Any = Decimal(_a ) - ( Decimal(eval(_a ) ) / Decimal(eval(str(diff(_a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_a ) ) < precision: # noqa: S307 return float(_a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
361
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : List[Any] = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Optional[Any] = """table-transformer""" _lowerCAmelCase : Any = ["""past_key_values"""] _lowerCAmelCase : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Any , lowercase_ : Any=True , lowercase_ : Dict=None , lowercase_ : Optional[int]=3 , lowercase_ : Any=100 , lowercase_ : List[str]=6 , lowercase_ : Any=2048 , lowercase_ : Any=8 , lowercase_ : Tuple=6 , lowercase_ : List[Any]=2048 , lowercase_ : List[str]=8 , lowercase_ : List[Any]=0.0 , lowercase_ : str=0.0 , lowercase_ : Dict=True , lowercase_ : Optional[int]="relu" , lowercase_ : Dict=256 , lowercase_ : Optional[int]=0.1 , lowercase_ : List[Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1.0 , lowercase_ : Tuple=False , lowercase_ : Optional[Any]="sine" , lowercase_ : Union[str, Any]="resnet50" , lowercase_ : List[Any]=True , lowercase_ : List[Any]=False , lowercase_ : Optional[Any]=1 , lowercase_ : Dict=5 , lowercase_ : List[Any]=2 , lowercase_ : Tuple=1 , lowercase_ : List[Any]=1 , lowercase_ : Dict=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=0.1 , **lowercase_ : int , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) snake_case_ : Dict = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowercase_ , lowercase_ ): snake_case_ : List[Any] = backbone_config.get('''model_type''' ) snake_case_ : int = CONFIG_MAPPING[backbone_model_type] snake_case_ : List[str] = config_class.from_dict(lowercase_ ) # set timm attributes to None snake_case_, snake_case_, snake_case_ : List[str] = None, None, None snake_case_ : Tuple = use_timm_backbone snake_case_ : int = backbone_config snake_case_ : str = num_channels snake_case_ : List[str] = num_queries snake_case_ : int = d_model snake_case_ : List[str] = encoder_ffn_dim snake_case_ : Any = encoder_layers snake_case_ : List[Any] = encoder_attention_heads snake_case_ : Optional[int] = decoder_ffn_dim snake_case_ : Tuple = decoder_layers snake_case_ : List[str] = decoder_attention_heads snake_case_ : Tuple = dropout snake_case_ : Union[str, Any] = attention_dropout snake_case_ : Dict = activation_dropout snake_case_ : Optional[Any] = activation_function snake_case_ : Optional[Any] = init_std snake_case_ : str = init_xavier_std snake_case_ : Any = encoder_layerdrop snake_case_ : Optional[Any] = decoder_layerdrop snake_case_ : List[str] = encoder_layers snake_case_ : Optional[int] = auxiliary_loss snake_case_ : List[Any] = position_embedding_type snake_case_ : List[Any] = backbone snake_case_ : Union[str, Any] = use_pretrained_backbone snake_case_ : Optional[Any] = dilation # Hungarian matcher snake_case_ : Tuple = class_cost snake_case_ : Any = bbox_cost snake_case_ : Dict = giou_cost # Loss coefficients snake_case_ : Optional[Any] = mask_loss_coefficient snake_case_ : str = dice_loss_coefficient snake_case_ : List[str] = bbox_loss_coefficient snake_case_ : int = giou_loss_coefficient snake_case_ : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def _snake_case ( self : Optional[int] ): return self.encoder_attention_heads @property def _snake_case ( self : Any ): return self.d_model class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : List[Any] = version.parse("""1.11""") @property def _snake_case ( self : List[Any] ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _snake_case ( self : int ): return 1E-5 @property def _snake_case ( self : Optional[int] ): return 12
155
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } __A = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : Any = RobertaTokenizer def __init__( self : Optional[int] , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int="replace" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : List[Any]="</s>" , UpperCamelCase__ : Any="</s>" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : int="<mask>" , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Optional[Any]=True , **UpperCamelCase__ : Tuple , )-> Optional[int]: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: str = getattr(UpperCamelCase__ , pre_tok_state.pop("type")) __lowerCAmelCase: Optional[int] = add_prefix_space __lowerCAmelCase: Dict = pre_tok_class(**UpperCamelCase__) __lowerCAmelCase: Any = add_prefix_space __lowerCAmelCase: int = "post_processor" __lowerCAmelCase: Optional[Any] = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) if tokenizer_component_instance: __lowerCAmelCase: Dict = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase: List[Any] = tuple(state["sep"]) if "cls" in state: __lowerCAmelCase: str = tuple(state["cls"]) __lowerCAmelCase: str = False if state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: Optional[Any] = add_prefix_space __lowerCAmelCase: List[str] = True if state.get("trim_offsets" , UpperCamelCase__) != trim_offsets: __lowerCAmelCase: Any = trim_offsets __lowerCAmelCase: List[str] = True if changes_to_apply: __lowerCAmelCase: str = getattr(UpperCamelCase__ , state.pop("type")) __lowerCAmelCase: List[str] = component_class(**UpperCamelCase__) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) @property def lowercase_ ( self : List[str])-> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def lowercase_ ( self : Tuple , UpperCamelCase__ : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else value __lowerCAmelCase: int = value def lowercase_ ( self : Any , *UpperCamelCase__ : str , **UpperCamelCase__ : List[Any])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: List[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : int , *UpperCamelCase__ : Dict , **UpperCamelCase__ : List[str])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' __lowerCAmelCase: str = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__) return tuple(UpperCamelCase__) def lowercase_ ( self : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=None)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = [self.sep_token_id] __lowerCAmelCase: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
217
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case ( unittest.TestCase ): def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self : int)-> str: '''simple docstring''' __lowerCAmelCase: str = 1 __lowerCAmelCase: Union[str, Any] = 3 __lowerCAmelCase: Union[str, Any] = (3_2, 3_2) __lowerCAmelCase: Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCamelCase__) return image @property def lowercase_ ( self : Tuple)-> str: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=UpperCamelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: Tuple = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(UpperCamelCase__) def lowercase_ ( self : List[str])-> Dict: '''simple docstring''' __lowerCAmelCase: Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: int = self.dummy_cond_unet_upscale __lowerCAmelCase: int = DDPMScheduler() __lowerCAmelCase: List[str] = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Tuple = self.dummy_vae __lowerCAmelCase: Optional[Any] = self.dummy_text_encoder __lowerCAmelCase: Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: List[Any] = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # make sure here that pndm scheduler skips prk __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: Tuple = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: Any = "A painting of a squirrel eating a burger" __lowerCAmelCase: str = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: Optional[int] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[str] = output.images __lowerCAmelCase: Union[str, Any] = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: List[str] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=UpperCamelCase__ , )[0] __lowerCAmelCase: int = image[0, -3:, -3:, -1] __lowerCAmelCase: Dict = image_from_tuple[0, -3:, -3:, -1] __lowerCAmelCase: Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __lowerCAmelCase: List[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def lowercase_ ( self : List[str])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: Dict = self.dummy_cond_unet_upscale __lowerCAmelCase: List[str] = DDPMScheduler() __lowerCAmelCase: Union[str, Any] = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Optional[int] = self.dummy_vae __lowerCAmelCase: List[Any] = self.dummy_text_encoder __lowerCAmelCase: Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: str = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # make sure here that pndm scheduler skips prk __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: Optional[int] = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: List[str] = "A painting of a squirrel eating a burger" __lowerCAmelCase: List[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[Any] = output.images assert image.shape[0] == 2 __lowerCAmelCase: Dict = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: Optional[Any] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU") def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.dummy_cond_unet_upscale __lowerCAmelCase: int = DDPMScheduler() __lowerCAmelCase: int = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Dict = self.dummy_vae __lowerCAmelCase: int = self.dummy_text_encoder __lowerCAmelCase: List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: Optional[int] = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # put models in fp16, except vae as it overflows in fp16 __lowerCAmelCase: List[Any] = unet.half() __lowerCAmelCase: List[str] = text_encoder.half() # make sure here that pndm scheduler skips prk __lowerCAmelCase: List[Any] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: str = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = "A painting of a squirrel eating a burger" __lowerCAmelCase: str = torch.manual_seed(0) __lowerCAmelCase: Dict = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" , ).images __lowerCAmelCase: Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def lowercase_ ( self : Tuple)-> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : List[Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy") __lowerCAmelCase: str = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(UpperCamelCase__) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing() __lowerCAmelCase: Tuple = "a cat sitting on a park bench" __lowerCAmelCase: int = torch.manual_seed(0) __lowerCAmelCase: List[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="np" , ) __lowerCAmelCase: Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 1e-3 def lowercase_ ( self : Optional[int])-> Any: '''simple docstring''' __lowerCAmelCase: Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy") __lowerCAmelCase: Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Tuple = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing() __lowerCAmelCase: str = "a cat sitting on a park bench" __lowerCAmelCase: List[str] = torch.manual_seed(0) __lowerCAmelCase: Optional[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="np" , ) __lowerCAmelCase: Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def lowercase_ ( self : Optional[int])-> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCAmelCase: Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Union[str, Any] = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Any = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() __lowerCAmelCase: int = "a cat sitting on a park bench" __lowerCAmelCase: Dict = torch.manual_seed(0) __lowerCAmelCase: Dict = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , output_type="np" , ) __lowerCAmelCase: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
217
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _a = logging.getLogger(__name__) @dataclass(frozen=lowercase__ ) class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : str SCREAMING_SNAKE_CASE__ : str SCREAMING_SNAKE_CASE__ : Optional[str] = None SCREAMING_SNAKE_CASE__ : Optional[str] = None SCREAMING_SNAKE_CASE__ : Optional[str] = None @dataclass(frozen=lowercase__ ) class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[int] SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None SCREAMING_SNAKE_CASE__ : Optional[Union[int, float]] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[InputFeatures] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_=False , lowercase_ = False , ): """simple docstring""" UpperCAmelCase_ : Any = hans_processors[task]() UpperCAmelCase_ : Tuple = os.path.join( _a , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(_a ) , _a , ) , ) UpperCAmelCase_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ : Any = label_list[2], label_list[1] UpperCAmelCase_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ : Optional[int] = cached_features_file + ".lock" with FileLock(_a ): if os.path.exists(_a ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) UpperCAmelCase_ : str = torch.load(_a ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) UpperCAmelCase_ : Optional[Any] = ( processor.get_dev_examples(_a ) if evaluate else processor.get_train_examples(_a ) ) logger.info("Training examples: %s" , len(_a ) ) UpperCAmelCase_ : List[str] = hans_convert_examples_to_features(_a , _a , _a , _a ) logger.info("Saving features into cached file %s" , _a ) torch.save(self.features , _a ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , lowercase_ ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[InputFeatures] def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 128 , lowercase_=False , lowercase_ = False , ): """simple docstring""" UpperCAmelCase_ : Tuple = hans_processors[task]() UpperCAmelCase_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = label_list[2], label_list[1] UpperCAmelCase_ : Optional[int] = label_list UpperCAmelCase_ : int = processor.get_dev_examples(_a ) if evaluate else processor.get_train_examples(_a ) UpperCAmelCase_ : Tuple = hans_convert_examples_to_features(_a , _a , _a , _a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(_a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase_ : Any = tf.data.Dataset.from_generator( _a , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCamelCase__ ( self ): """simple docstring""" return self.dataset def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , lowercase_ ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_a , "heuristics_train_set.txt" ) ) , "train" ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_a , "heuristics_evaluation_set.txt" ) ) , "dev" ) def UpperCamelCase__ ( self ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = [] for i, line in enumerate(_a ): if i == 0: continue UpperCAmelCase_ : Dict = "%s-%s" % (set_type, line[0]) UpperCAmelCase_ : List[Any] = line[5] UpperCAmelCase_ : int = line[6] UpperCAmelCase_ : Optional[Any] = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCAmelCase_ : str = line[0] examples.append(InputExample(guid=_a , text_a=_a , text_b=_a , label=_a , pairID=_a ) ) return examples def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): UpperCAmelCase_ : str = {label: i for i, label in enumerate(UpperCamelCase__ )} UpperCAmelCase_ : Any = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCamelCase__ ), desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCAmelCase_ : Dict = tokenizer( example.text_a, example.text_b, add_special_tokens=UpperCamelCase__, max_length=UpperCamelCase__, padding="max_length", truncation=UpperCamelCase__, return_overflowing_tokens=UpperCamelCase__, ) UpperCAmelCase_ : List[Any] = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase_ : Dict = int(example.pairID ) features.append(InputFeatures(**UpperCamelCase__, label=UpperCamelCase__, pairID=UpperCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features _a = { 'hans': 3, } _a = { 'hans': HansProcessor, }
362
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCamelCase : Tuple = False class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] , A_ : Dict=32 ) -> Optional[int]: """simple docstring""" set_seed(0 ) lowerCamelCase_ = UNetaDModel(sample_size=A_ , in_channels=3 , out_channels=3 ) lowerCamelCase_ = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def a__ ( self : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCamelCase_ = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=A_ , ) lowerCamelCase_ = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=A_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCamelCase_ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(A_ ) for _ in range(4 )] lowerCamelCase_ = [torch.randn((4, 3, 32, 32) ).to(A_ ) for _ in range(4 )] lowerCamelCase_ = [torch.randint(0 , 1000 , (4,) ).long().to(A_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCamelCase_ , lowerCamelCase_ = self.get_model_optimizer(resolution=32 ) model.train().to(A_ ) for i in range(4 ): optimizer.zero_grad() lowerCamelCase_ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCamelCase_ = model(A_ , timesteps[i] ).sample lowerCamelCase_ = torch.nn.functional.mse_loss(A_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCamelCase_ , lowerCamelCase_ = self.get_model_optimizer(resolution=32 ) model.train().to(A_ ) for i in range(4 ): optimizer.zero_grad() lowerCamelCase_ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCamelCase_ = model(A_ , timesteps[i] ).sample lowerCamelCase_ = torch.nn.functional.mse_loss(A_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(A_ , A_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=1E-5 ) )
204
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A( UpperCamelCase ): '''simple docstring''' def __init__( self : str , A_ : TransformeraDModel , A_ : AutoencoderKL , A_ : KarrasDiffusionSchedulers , A_ : Optional[Dict[int, str]] = None , ) -> str: """simple docstring""" super().__init__() self.register_modules(transformer=A_ , vae=A_ , scheduler=A_ ) # create a imagenet -> id dictionary for easier use lowerCamelCase_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): lowerCamelCase_ = int(A_ ) lowerCamelCase_ = dict(sorted(self.labels.items() ) ) def a__ ( self : Optional[int] , A_ : Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(A_ , A_ ): lowerCamelCase_ = list(A_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Any , A_ : List[int] , A_ : float = 4.0 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : int = 50 , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowerCamelCase_ = len(A_ ) lowerCamelCase_ = self.transformer.config.sample_size lowerCamelCase_ = self.transformer.config.in_channels lowerCamelCase_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=A_ , device=self.device , dtype=self.transformer.dtype , ) lowerCamelCase_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowerCamelCase_ = torch.tensor(A_ , device=self.device ).reshape(-1 ) lowerCamelCase_ = torch.tensor([1000] * batch_size , device=self.device ) lowerCamelCase_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowerCamelCase_ = latent_model_input[: len(A_ ) // 2] lowerCamelCase_ = torch.cat([half, half] , dim=0 ) lowerCamelCase_ = self.scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_ = t if not torch.is_tensor(A_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowerCamelCase_ = latent_model_input.device.type == 'mps' if isinstance(A_ , A_ ): lowerCamelCase_ = torch.floataa if is_mps else torch.floataa else: lowerCamelCase_ = torch.intaa if is_mps else torch.intaa lowerCamelCase_ = torch.tensor([timesteps] , dtype=A_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowerCamelCase_ = self.transformer( A_ , timestep=A_ , class_labels=A_ ).sample # perform guidance if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , len(A_ ) // 2 , dim=0 ) lowerCamelCase_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowerCamelCase_ = torch.cat([half_eps, half_eps] , dim=0 ) lowerCamelCase_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , A_ , dim=1 ) else: lowerCamelCase_ = noise_pred # compute previous image: x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = latent_model_input.chunk(2 , dim=0 ) else: lowerCamelCase_ = latent_model_input lowerCamelCase_ = 1 / self.vae.config.scaling_factor * latents lowerCamelCase_ = self.vae.decode(A_ ).sample lowerCamelCase_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=A_ )
204
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Union[str, Any]: """simple docstring""" snake_case_ = original_name.split('''.''' )[0] snake_case_ = key.split('''.''' ) snake_case_ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) snake_case_ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) snake_case_ = orig_block_num - offset snake_case_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Optional[int]: """simple docstring""" snake_case_ = OrderedDict() snake_case_ , snake_case_ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): snake_case_ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 snake_case_ = key[: key.find('''proj''' )] snake_case_ = key.replace(SCREAMING_SNAKE_CASE , f'''patch_embeddings.{total_embed_found}.''' ) snake_case_ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: snake_case_ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: snake_case_ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: snake_case_ = key.replace('''head''' , '''classifier''' ) snake_case_ = value return new_state_dict def __lowerCAmelCase ()-> str: """simple docstring""" snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = PoolFormerConfig() # set attributes based on model_name snake_case_ = '''huggingface/label-files''' snake_case_ = model_name[-3:] snake_case_ = 1000 snake_case_ = '''imagenet-1k-id2label.json''' snake_case_ = (1, 1000) # set config attributes snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} if size == "s12": snake_case_ = [2, 2, 6, 2] snake_case_ = [64, 128, 320, 512] snake_case_ = 4.0 snake_case_ = 0.9 elif size == "s24": snake_case_ = [4, 4, 12, 4] snake_case_ = [64, 128, 320, 512] snake_case_ = 4.0 snake_case_ = 0.9 elif size == "s36": snake_case_ = [6, 6, 18, 6] snake_case_ = [64, 128, 320, 512] snake_case_ = 4.0 snake_case_ = 1E-6 snake_case_ = 0.9 elif size == "m36": snake_case_ = [6, 6, 18, 6] snake_case_ = [96, 192, 384, 768] snake_case_ = 4.0 snake_case_ = 1E-6 snake_case_ = 0.9_5 elif size == "m48": snake_case_ = [8, 8, 24, 8] snake_case_ = [96, 192, 384, 768] snake_case_ = 4.0 snake_case_ = 1E-6 snake_case_ = 0.9_5 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor snake_case_ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image snake_case_ = prepare_img() snake_case_ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict snake_case_ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys snake_case_ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict snake_case_ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor snake_case_ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) snake_case_ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass snake_case_ = model(SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits # define expected logit slices for different models if size == "s12": snake_case_ = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": snake_case_ = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": snake_case_ = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": snake_case_ = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": snake_case_ = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
366
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , '''num_encoder_blocks''' ) ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=64 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=[2, 2, 2, 2] , _UpperCAmelCase=[8, 4, 2, 1] , _UpperCAmelCase=[16, 32, 64, 1_28] , _UpperCAmelCase=[1, 4, 8, 16] , _UpperCAmelCase=[1, 2, 4, 8] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_encoder_blocks snake_case_ = sr_ratios snake_case_ = depths snake_case_ = hidden_sizes snake_case_ = downsampling_rates snake_case_ = num_attention_heads snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope def UpperCamelCase__ ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = SegformerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) snake_case_ = snake_case_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.num_labels snake_case_ = SegformerForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = 1 snake_case_ = SegformerForSemanticSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_UpperCAmelCase ) snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __snake_case = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case = True __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase__ ( self ): snake_case_ = SegformerModelTester(self ) snake_case_ = SegformerConfigTester(self , config_class=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_UpperCAmelCase ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def UpperCamelCase__ ( self ): pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.attentions snake_case_ = sum(self.model_tester.depths ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) snake_case_ = (self.model_tester.image_size // 32) ** 2 snake_case_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) snake_case_ = len(_UpperCAmelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(_UpperCAmelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCamelCase__ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = self.model_tester.num_encoder_blocks self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase__ ( self ): if not self.model_tester.is_training: return snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ): continue snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) snake_case_ = model(**_UpperCAmelCase ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase__ ( self ): pass @slow def UpperCamelCase__ ( self ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SegformerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCAmelCase ()-> List[str]: """simple docstring""" snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_UpperCAmelCase , align=_UpperCAmelCase , do_random_crop=_UpperCAmelCase ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(_UpperCAmelCase ) with torch.no_grad(): snake_case_ = model(_UpperCAmelCase ) snake_case_ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCamelCase__ ( self ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_UpperCAmelCase , align=_UpperCAmelCase , do_random_crop=_UpperCAmelCase ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(_UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(_UpperCAmelCase ) with torch.no_grad(): snake_case_ = model(_UpperCAmelCase ) snake_case_ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-1 ) ) @slow def UpperCamelCase__ ( self ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_UpperCAmelCase , align=_UpperCAmelCase , do_random_crop=_UpperCAmelCase ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( _UpperCAmelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(_UpperCAmelCase ) with torch.no_grad(): snake_case_ = model(_UpperCAmelCase ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(5_00, 3_00)] ) snake_case_ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) snake_case_ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
267
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class UpperCamelCase__ ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''vit_mae''' def __init__( self : str , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Union[str, Any]=12 , lowerCamelCase_ : Optional[int]=12 , lowerCamelCase_ : Any=30_72 , lowerCamelCase_ : List[str]="gelu" , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : Any=0.02 , lowerCamelCase_ : int=1e-12 , lowerCamelCase_ : Optional[Any]=2_24 , lowerCamelCase_ : Union[str, Any]=16 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : List[Any]=16 , lowerCamelCase_ : List[Any]=5_12 , lowerCamelCase_ : Dict=8 , lowerCamelCase_ : Optional[int]=20_48 , lowerCamelCase_ : Optional[Any]=0.75 , lowerCamelCase_ : Union[str, Any]=False , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Tuple = qkv_bias SCREAMING_SNAKE_CASE : List[Any] = decoder_num_attention_heads SCREAMING_SNAKE_CASE : int = decoder_hidden_size SCREAMING_SNAKE_CASE : Dict = decoder_num_hidden_layers SCREAMING_SNAKE_CASE : Any = decoder_intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = mask_ratio SCREAMING_SNAKE_CASE : Optional[Any] = norm_pix_loss
323
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = [[float('''inf''' ) for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): snake_case_ : Dict = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_UpperCamelCase ): # looping through rows of graph array for i in range(_UpperCamelCase ): # looping through columns of graph array for j in range(_UpperCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): snake_case_ : List[Any] = dist[i][k] + dist[k][j] _print_dist(_UpperCamelCase , _UpperCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('''Enter number of vertices: ''')) lowerCAmelCase_ = int(input('''Enter number of edges: ''')) lowerCAmelCase_ = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) lowerCAmelCase_ = int(input('''Enter source:''')) lowerCAmelCase_ = int(input('''Enter destination:''')) lowerCAmelCase_ = float(input('''Enter weight:''')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
279
0
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _UpperCAmelCase( unittest.TestCase ): lowercase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCAmelCase ( self , __a , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''') _UpperCamelCase = VideoClassificationPipeline(model=_lowerCAmelCase , image_processor=_lowerCAmelCase , top_k=2) _UpperCamelCase = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' for example in examples: _UpperCamelCase = video_classifier(_lowerCAmelCase) self.assertEqual( _lowerCAmelCase , [ {'''score''': ANY(_lowerCAmelCase), '''label''': ANY(_lowerCAmelCase)}, {'''score''': ANY(_lowerCAmelCase), '''label''': ANY(_lowerCAmelCase)}, ] , ) @require_torch def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" _UpperCamelCase = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10}) _UpperCamelCase = pipeline( '''video-classification''' , model=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , frame_sampling_rate=4) _UpperCamelCase = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''') _UpperCamelCase = video_classifier(_lowerCAmelCase , top_k=2) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) _UpperCamelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass
370
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) _UpperCamelCase = str(bin(__snake_case ) ) binary_number += "0" * shift_amount return binary_number def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) _UpperCamelCase = str(bin(__snake_case ) )[2:] if shift_amount >= len(__snake_case ): return "0b0" _UpperCamelCase = binary_number[: len(__snake_case ) - shift_amount] return "0b" + shifted_binary_number def lowerCamelCase__ ( __snake_case, __snake_case ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number _UpperCamelCase = '''0''' + str(bin(__snake_case ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number _UpperCamelCase = len(bin(__snake_case )[3:] ) # Find 2's complement of number _UpperCamelCase = bin(abs(__snake_case ) - (1 << binary_number_length) )[3:] _UpperCamelCase = ( '''1''' + '''0''' * (binary_number_length - len(__snake_case )) + binary_number ) if shift_amount >= len(__snake_case ): return "0b" + binary_number[0] * len(__snake_case ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__snake_case ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
100
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig A : List[str] = logging.get_logger(__name__) A : str = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class _UpperCamelCase ( _a ): '''simple docstring''' __UpperCAmelCase : Any ="""dpt""" def __init__( self , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.0_2 , __a=1e-1_2 , __a=3_84 , __a=16 , __a=3 , __a=False , __a=True , __a=[2, 5, 8, 11] , __a="project" , __a=[4, 2, 1, 0.5] , __a=[96, 1_92, 3_84, 7_68] , __a=2_56 , __a=-1 , __a=False , __a=True , __a=0.4 , __a=2_55 , __a=0.1 , __a=[1, 10_24, 24, 24] , __a=[0, 1] , __a=None , **__a , ): super().__init__(**__a ) __lowerCAmelCase = hidden_size __lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) __lowerCAmelCase = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } __lowerCAmelCase = BitConfig(**__a ) elif isinstance(__a , __a ): logger.info("Initializing the config with a `BiT` backbone." ) __lowerCAmelCase = BitConfig(**__a ) elif isinstance(__a , __a ): __lowerCAmelCase = backbone_config else: raise ValueError( f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}." ) __lowerCAmelCase = backbone_featmap_shape __lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = [] __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = qkv_bias __lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) __lowerCAmelCase = readout_type __lowerCAmelCase = reassemble_factors __lowerCAmelCase = neck_hidden_sizes __lowerCAmelCase = fusion_hidden_size __lowerCAmelCase = head_in_index __lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __lowerCAmelCase = use_auxiliary_head __lowerCAmelCase = auxiliary_loss_weight __lowerCAmelCase = semantic_loss_ignore_index __lowerCAmelCase = semantic_classifier_dropout def snake_case ( self ): __lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowerCAmelCase = self.backbone_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
57
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
155
0
'''simple docstring''' import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list: A_ = [True] * n A_ = False A_ = False A_ = True for i in range(3, int(n**0.5 + 1 ), 2 ): A_ = i * 2 while index < n: A_ = False A_ = index + i A_ = [2] for i in range(3, __A, 2 ): if is_prime[i]: primes.append(__A ) return primes def UpperCAmelCase__ ( UpperCAmelCase__ = 99_99_66_66_33_33 ) -> int: A_ = math.floor(math.sqrt(__A ) ) + 1_00 A_ = prime_sieve(__A ) A_ = 0 A_ = 0 A_ = primes[prime_index] while (last_prime**2) <= limit: A_ = primes[prime_index + 1] A_ = last_prime**2 A_ = next_prime**2 # Get numbers divisible by lps(current) A_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
357
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class A__ ( _snake_case ): def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = SMALL_MODEL_IDENTIFIER A_ = """pt""" A_ = """tf""" def snake_case_ ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase__ ) model_tf.save_pretrained(UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = """mock_framework""" # Framework provided - return whatever the user provides A_ = FeaturesManager.determine_framework(self.test_model , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase__ ) A_ = FeaturesManager.determine_framework(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase__ ) A_ = FeaturesManager.determine_framework(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase__ ) A_ = FeaturesManager.determine_framework(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase__ ) A_ = FeaturesManager.determine_framework(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase__ ): A_ = FeaturesManager.determine_framework(UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = MagicMock(return_value=UpperCamelCase__ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase__ ): A_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow A_ = MagicMock(return_value=UpperCamelCase__ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase__ ): A_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase__ , self.framework_tf ) # Both in environment -> use PyTorch A_ = MagicMock(return_value=UpperCamelCase__ ) A_ = MagicMock(return_value=UpperCamelCase__ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase__ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase__ ): A_ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase__ , self.framework_pt ) # Both not in environment -> raise error A_ = MagicMock(return_value=UpperCamelCase__ ) A_ = MagicMock(return_value=UpperCamelCase__ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase__ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase__ ): with self.assertRaises(UpperCamelCase__ ): A_ = FeaturesManager.determine_framework(self.test_model )
101
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _a ( __a , unittest.TestCase ): __a : int = XGLMTokenizer __a : Any = XGLMTokenizerFast __a : Any = True __a : Tuple = True def A ( self : Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(lowercase , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(lowercase ) , 1_008 ) def A ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = XGLMTokenizer(lowercase , keep_accents=lowercase ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : Any ): '''simple docstring''' return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def A ( self : str ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=lowercase ) UpperCAmelCase = pickle.dumps(lowercase ) pickle.loads(lowercase ) def A ( self : List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(lowercase ) UpperCAmelCase = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) UpperCAmelCase = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(lowercase ) UpperCAmelCase = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) @slow def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31_227, 4_447, 35] self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @slow def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = { '''input_ids''': [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name='''facebook/xglm-564M''' , padding=lowercase , )
34
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase__: Tuple = numpy.array([0, 0]) UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254]) UpperCamelCase__: Dict = numpy.array([1, 0]) UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]: UpperCAmelCase : Union[str, Any] = initial_vectors for _ in range(_lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase ) return vectors def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]: UpperCAmelCase : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase : List[str] = vectors[i + 1] new_vectors.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray: UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None: UpperCAmelCase : List[Any] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase ) plt.plot(_lowerCAmelCase , _lowerCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
23
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any],lowercase_ : pyspark.sql.DataFrame,lowercase_ : Optional[NamedSplit] = None,lowercase_ : Optional[Features] = None,lowercase_ : bool = True,lowercase_ : str = None,lowercase_ : bool = False,lowercase_ : str = None,lowercase_ : bool = True,lowercase_ : str = "arrow",**lowercase_ : List[str],)-> str: '''simple docstring''' super().__init__( split=lowercase_,features=lowercase_,cache_dir=lowercase_,keep_in_memory=lowercase_,streaming=lowercase_,**lowercase_,) A__ = load_from_cache_file A__ = file_format A__ = Spark( df=lowercase_,features=lowercase_,cache_dir=lowercase_,working_dir=lowercase_,**lowercase_,) def snake_case__ ( self : Optional[int] )-> Optional[Any]: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) A__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase_,file_format=self._file_format,) return self.builder.as_dataset(split=self.split )
282
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]="attention" ) -> Union[str, Any]: '''simple docstring''' A__ = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict=False ) -> str: '''simple docstring''' if split_mlp_wi: A__ = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] A__ = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] A__ = (wi_a, wi_a) else: A__ = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] A__ = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def _snake_case( SCREAMING_SNAKE_CASE__ : dict , *, SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool ) -> int: '''simple docstring''' A__ = traverse_util.flatten_dict(variables['target'] ) A__ = {'/'.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE__ ) A__ = collections.OrderedDict() # Shared embeddings. A__ = old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (MLP). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_mlp_layer_norm' ) A__ , A__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , SCREAMING_SNAKE_CASE__ ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old[ 'encoder/relpos_bias/rel_embedding' ].T A__ = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_self_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'self_attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (Cross Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_cross_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'encoder_decoder_attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 2 (MLP). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_mlp_layer_norm' ) A__ , A__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , SCREAMING_SNAKE_CASE__ ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old['decoder/decoder_norm/scale'] A__ = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ = old['decoder/logits_dense/kernel'].T return new def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : bool ) -> Dict: '''simple docstring''' A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) A__ = state_dict['shared.weight'] return state_dict def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: '''simple docstring''' A__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) A__ = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ ) A__ = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : bool = False ) -> Any: '''simple docstring''' A__ = TaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ = TaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: A__ = TaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('Done' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) lowercase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
282
1
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=[] ) -> List[Any]: lowercase__ : Any = size[0] - overlap_pixels * 2 lowercase__ : Union[str, Any] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels lowercase__ : List[str] = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 lowercase__ : str = np.pad(a__ , mode='''linear_ramp''' , pad_width=a__ , end_values=0 ) if "l" in remove_borders: lowercase__ : Any = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: lowercase__ : Tuple = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: lowercase__ : Optional[int] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: lowercase__ : int = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: return max(a__ , min(a__ , a__ ) ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : int = list(a__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap lowercase__ : Optional[int] = clamp_rect(a__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : Optional[Any] = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(a__ , (original_slice, 0) ) return result def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Optional[int] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) lowercase__ : Dict = tile.crop(a__ ) return tile def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[str]: lowercase__ : Optional[Any] = n % d return n - divisor class __A ( A_ ): '''simple docstring''' def __init__( self : List[Any] ,_snake_case : AutoencoderKL ,_snake_case : CLIPTextModel ,_snake_case : CLIPTokenizer ,_snake_case : UNetaDConditionModel ,_snake_case : DDPMScheduler ,_snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,_snake_case : int = 350 ,) -> int: """simple docstring""" super().__init__( vae=__SCREAMING_SNAKE_CASE ,text_encoder=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE ,unet=__SCREAMING_SNAKE_CASE ,low_res_scheduler=__SCREAMING_SNAKE_CASE ,scheduler=__SCREAMING_SNAKE_CASE ,max_noise_level=__SCREAMING_SNAKE_CASE ,) def UpperCAmelCase ( self : List[Any] ,_snake_case : str ,_snake_case : Tuple ,_snake_case : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : Tuple ,_snake_case : List[Any] ,_snake_case : int ,**_snake_case : str ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ : int = ( min(image.size[0] - (tile_size + original_image_slice) ,x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) ,y * tile_size ), min(image.size[0] ,(x + 1) * tile_size ), min(image.size[1] ,(y + 1) * tile_size ), ) lowercase__ : Union[str, Any] = add_overlap_rect(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,image.size ) lowercase__ : Union[str, Any] = image.crop(__SCREAMING_SNAKE_CASE ) lowercase__ : Any = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] lowercase__ : Dict = translated_slice_x - (original_image_slice / 2) lowercase__ : Any = max(0 ,__SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = squeeze_tile(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) lowercase__ : int = to_input.size lowercase__ : Tuple = to_input.resize((tile_size, tile_size) ,Image.BICUBIC ) lowercase__ : Optional[int] = super(__SCREAMING_SNAKE_CASE ,self ).__call__(image=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ).images[0] lowercase__ : List[Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) ,Image.BICUBIC ) lowercase__ : Tuple = unsqueeze_tile(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) ,Image.BICUBIC ) lowercase__ : Optional[int] = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) lowercase__ : Optional[int] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) ,tile_border * 4 ,remove_borders=__SCREAMING_SNAKE_CASE ) ,mode='''L''' ,) final_image.paste( __SCREAMING_SNAKE_CASE ,(crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) ,__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : List[str] ,_snake_case : Union[str, List[str]] ,_snake_case : Union[PIL.Image.Image, List[PIL.Image.Image]] ,_snake_case : int = 75 ,_snake_case : float = 9.0 ,_snake_case : int = 50 ,_snake_case : Optional[Union[str, List[str]]] = None ,_snake_case : Optional[int] = 1 ,_snake_case : float = 0.0 ,_snake_case : Optional[torch.Generator] = None ,_snake_case : Optional[torch.FloatTensor] = None ,_snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,_snake_case : int = 1 ,_snake_case : int = 128 ,_snake_case : int = 32 ,_snake_case : int = 32 ,) -> str: """simple docstring""" lowercase__ : Dict = Image.new('''RGB''' ,(image.size[0] * 4, image.size[1] * 4) ) lowercase__ : Any = math.ceil(image.size[0] / tile_size ) lowercase__ : str = math.ceil(image.size[1] / tile_size ) lowercase__ : Tuple = tcx * tcy lowercase__ : List[Any] = 0 for y in range(__SCREAMING_SNAKE_CASE ): for x in range(__SCREAMING_SNAKE_CASE ): self._process_tile( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,prompt=__SCREAMING_SNAKE_CASE ,num_inference_steps=__SCREAMING_SNAKE_CASE ,guidance_scale=__SCREAMING_SNAKE_CASE ,noise_level=__SCREAMING_SNAKE_CASE ,negative_prompt=__SCREAMING_SNAKE_CASE ,num_images_per_prompt=__SCREAMING_SNAKE_CASE ,eta=__SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,latents=__SCREAMING_SNAKE_CASE ,) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def __UpperCAmelCase ( ) -> Optional[Any]: lowercase__ : Union[str, Any] = '''stabilityai/stable-diffusion-x4-upscaler''' lowercase__ : Union[str, Any] = StableDiffusionTiledUpscalePipeline.from_pretrained(a__ , revision='''fp16''' , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to('''cuda''' ) lowercase__ : List[str] = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(__lowerCamelCase ): print(f"""progress: {obj["progress"]:.4f}""" ) obj["image"].save('''diffusers_library_progress.jpg''' ) lowercase__ : Dict = pipe(image=a__ , prompt='''Black font, white background, vector''' , noise_level=40 , callback=a__ ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
16
'''simple docstring''' class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = n __SCREAMING_SNAKE_CASE = [None] * self.n __SCREAMING_SNAKE_CASE = 0 # index of the first element __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 def __len__( self : Tuple ) -> int: """simple docstring""" return self.size def UpperCAmelCase__ ( self : Optional[Any] ) -> bool: """simple docstring""" return self.size == 0 def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" return False if self.is_empty() else self.array[self.front] def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: """simple docstring""" if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) __SCREAMING_SNAKE_CASE = data __SCREAMING_SNAKE_CASE = (self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" if self.size == 0: raise Exception("""UNDERFLOW""" ) __SCREAMING_SNAKE_CASE = self.array[self.front] __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = (self.front + 1) % self.n self.size -= 1 return temp
267
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCamelCase : @staticmethod def UpperCAmelCase(*_A : Tuple , **_A : Any ) -> int: pass def lowercase_ ( A__ ) -> str: """simple docstring""" snake_case = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowercase_ ( A__ ) -> Dict: """simple docstring""" snake_case = np.array(A__ ) snake_case = npimg.shape return {"hash": hashimage(A__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCamelCase ( unittest.TestCase ): UpperCAmelCase__ : int = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) UpperCAmelCase__ : Optional[int] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase(self : Tuple , _A : List[str] , _A : List[str] , _A : List[Any] ) -> Optional[int]: snake_case = MaskGenerationPipeline(model=_A , image_processor=_A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase(self : List[str] , _A : str , _A : Tuple ) -> str: pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def UpperCAmelCase(self : List[str] ) -> int: pass @slow @require_torch def UpperCAmelCase(self : Optional[int] ) -> Optional[int]: snake_case = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) snake_case = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_5_6 ) # Shortening by hashing snake_case = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0_21}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.00_53}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.99_67}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_93}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.99_09}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.98_79}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.98_34}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.97_16}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.96_12}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.95_99}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.95_52}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.95_32}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.95_16}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.94_99}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.94_83}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.94_64}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_43}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.9_43}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.94_08}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.93_35}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.93_26}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.92_62}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.89_99}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.89_86}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.89_84}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.88_73}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.88_71} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase(self : int ) -> List[Any]: snake_case = "facebook/sam-vit-huge" snake_case = pipeline("mask-generation" , model=_A ) snake_case = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_5_6 ) # Shortening by hashing snake_case = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.04_44}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.02_10}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.01_67}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.01_32}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.00_53}, ] , )
137
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
137
1
from __future__ import annotations from collections.abc import Iterator class a__ : def __init__( self : int,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = value SCREAMING_SNAKE_CASE_ : Node | None = None SCREAMING_SNAKE_CASE_ : Node | None = None class a__ : def __init__( self : Optional[int],_A : Node ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tree def __UpperCamelCase ( self : Any,_A : Node | None ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
18
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__)
100
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCamelCase_ : str = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[int] = """vision-encoder-decoder""" __UpperCamelCase : List[Any] = True def __init__( self : Tuple , **snake_case_ : Dict ): super().__init__(**snake_case_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) UpperCamelCase_: Dict = kwargs.pop("""encoder""" ) UpperCamelCase_: Optional[int] = encoder_config.pop("""model_type""" ) UpperCamelCase_: Dict = kwargs.pop("""decoder""" ) UpperCamelCase_: int = decoder_config.pop("""model_type""" ) UpperCamelCase_: List[str] = AutoConfig.for_model(snake_case_ , **snake_case_ ) UpperCamelCase_: str = AutoConfig.for_model(snake_case_ , **snake_case_ ) UpperCamelCase_: Tuple = True @classmethod def lowerCAmelCase__ ( cls : int , snake_case_ : PretrainedConfig , snake_case_ : PretrainedConfig , **snake_case_ : List[Any] ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) UpperCamelCase_: str = True UpperCamelCase_: Dict = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[str] = copy.deepcopy(self.__dict__ ) UpperCamelCase_: Dict = self.encoder.to_dict() UpperCamelCase_: Dict = self.decoder.to_dict() UpperCamelCase_: Optional[int] = self.__class__.model_type return output class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Any = version.parse("""1.11""" ) @property def lowerCAmelCase__ ( self : List[Any] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self : Dict ): return 1e-4 @property def lowerCAmelCase__ ( self : List[str] ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _UpperCamelCase ( _A ): '''simple docstring''' @property def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: List[Any] = OrderedDict() UpperCamelCase_: Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} UpperCamelCase_: List[str] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} UpperCamelCase_: Optional[Any] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase__ ( self : Any , snake_case_ : "PreTrainedTokenizerBase" , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional["TensorType"] = None , ): import torch UpperCamelCase_: List[Any] = OrderedDict() UpperCamelCase_: Tuple = super().generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) UpperCamelCase_: int = dummy_input["""input_ids"""].shape UpperCamelCase_: List[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_: List[Any] = dummy_input.pop("""input_ids""" ) UpperCamelCase_: Any = dummy_input.pop("""attention_mask""" ) UpperCamelCase_: Tuple = torch.zeros(snake_case_ ) return common_inputs class _UpperCamelCase ( _A ): '''simple docstring''' @property def lowerCAmelCase__ ( self : Optional[Any] ): pass def lowerCAmelCase__ ( self : List[str] , snake_case_ : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(snake_case_ ) def lowerCAmelCase__ ( self : Any , snake_case_ : PretrainedConfig , snake_case_ : PretrainedConfig , snake_case_ : str = "default" ): UpperCamelCase_: Union[str, Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(snake_case_ , snake_case_ )
363
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase_ : Dict = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys lowerCamelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
223
0
from random import randint from tempfile import TemporaryFile import numpy as np def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Dict: """simple docstring""" _lowercase =0 if start < end: _lowercase =randint(__snake_case , __snake_case ) _lowercase =a[end] _lowercase =a[pivot] _lowercase =temp _lowercase , _lowercase =_in_place_partition(__snake_case , __snake_case , __snake_case ) count += _in_place_quick_sort(__snake_case , __snake_case , p - 1 ) count += _in_place_quick_sort(__snake_case , p + 1 , __snake_case ) return count def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" _lowercase =0 _lowercase =randint(__snake_case , __snake_case ) _lowercase =a[end] _lowercase =a[pivot] _lowercase =temp _lowercase =start - 1 for index in range(__snake_case , __snake_case ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _lowercase =new_pivot_index + 1 _lowercase =a[new_pivot_index] _lowercase =a[index] _lowercase =temp _lowercase =a[new_pivot_index + 1] _lowercase =a[end] _lowercase =temp return new_pivot_index + 1, count UpperCAmelCase__ = TemporaryFile() UpperCAmelCase__ = 100 # 1000 elements are to be sorted UpperCAmelCase__ ,UpperCAmelCase__ = 0, 1 # mean and standard deviation UpperCAmelCase__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array UpperCAmelCase__ = np.load(outfile) UpperCAmelCase__ = len(M) - 1 UpperCAmelCase__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
5
from functools import lru_cache @lru_cache def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
101
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _snake_case ( __lowerCamelCase ): snake_case__ = 'yolos' def __init__( self : Dict , UpperCAmelCase : List[Any]=768 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : int=12 , UpperCAmelCase : int=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Union[str, Any]=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Optional[int]=0.0_2 , UpperCAmelCase : Dict=1E-12 , UpperCAmelCase : List[Any]=[512, 864] , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : Any=3 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=100 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=False , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Any=5 , UpperCAmelCase : Any=2 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : str=2 , UpperCAmelCase : Any=0.1 , **UpperCAmelCase : Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : str = intermediate_size __lowerCamelCase : Tuple = hidden_act __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : int = initializer_range __lowerCamelCase : Dict = layer_norm_eps __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Optional[Any] = qkv_bias __lowerCamelCase : int = num_detection_tokens __lowerCamelCase : Optional[int] = use_mid_position_embeddings __lowerCamelCase : Optional[Any] = auxiliary_loss # Hungarian matcher __lowerCamelCase : Union[str, Any] = class_cost __lowerCamelCase : Dict = bbox_cost __lowerCamelCase : Union[str, Any] = giou_cost # Loss coefficients __lowerCamelCase : Optional[Any] = bbox_loss_coefficient __lowerCamelCase : Union[str, Any] = giou_loss_coefficient __lowerCamelCase : Any = eos_coefficient class _snake_case ( __lowerCamelCase ): snake_case__ = version.parse("1.11" ) @property def lowerCamelCase__ ( self : Any ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCamelCase__ ( self : Dict ): return 1E-4 @property def lowerCamelCase__ ( self : Dict ): return 12
357
"""simple docstring""" from typing import Any import numpy as np def lowercase_ ( _lowerCamelCase: np.ndarray ) -> bool: '''simple docstring''' return np.array_equal(_lowerCamelCase , matrix.conjugate().T ) def lowercase_ ( _lowerCamelCase: np.ndarray , _lowerCamelCase: np.ndarray ) -> Any: '''simple docstring''' __lowerCamelCase : Union[str, Any] = v.conjugate().T __lowerCamelCase : Any = v_star.dot(_lowerCamelCase ) assert isinstance(_lowerCamelCase , np.ndarray ) return (v_star_dot.dot(_lowerCamelCase )) / (v_star.dot(_lowerCamelCase )) def lowercase_ ( ) -> None: '''simple docstring''' __lowerCamelCase : List[str] = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowerCamelCase : int = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCamelCase ), F"""{a} is not hermitian.""" print(rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) ) __lowerCamelCase : Dict = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCamelCase ), F"""{a} is not hermitian.""" assert rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
64
0
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def a_ ( __lowercase : Sequence[float] , __lowercase : int , __lowercase : int ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] _snake_case = (low + high) // 2 _snake_case , _snake_case , _snake_case = max_subarray(__lowercase , __lowercase , __lowercase ) _snake_case , _snake_case , _snake_case = max_subarray(__lowercase , mid + 1 , __lowercase ) _snake_case , _snake_case , _snake_case = max_cross_sum(__lowercase , __lowercase , __lowercase , __lowercase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def a_ ( __lowercase : Sequence[float] , __lowercase : int , __lowercase : int , __lowercase : int ) -> tuple[int, int, float]: _snake_case , _snake_case = float('-inf' ), -1 _snake_case , _snake_case = float('-inf' ), -1 _snake_case = 0 for i in range(__lowercase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _snake_case = summ _snake_case = i _snake_case = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _snake_case = summ _snake_case = i return max_left, max_right, (left_sum + right_sum) def a_ ( __lowercase : int ) -> float: _snake_case = [randint(1 , __lowercase ) for _ in range(__lowercase )] _snake_case = time.time() max_subarray(__lowercase , 0 , input_size - 1 ) _snake_case = time.time() return end - start def a_ ( ) -> None: _snake_case = [10, 100, 1_000, 10_000, 50_000, 100_000, 200_000, 300_000, 400_000, 500_000] _snake_case = [time_max_subarray(__lowercase ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(__lowercase , __lowercase ): print(__lowercase , '\t\t' , __lowercase ) plt.plot(__lowercase , __lowercase ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
282
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a_ ( __lowercase : Dict ) -> List[Any]: _snake_case = args.pruning_method _snake_case = args.threshold _snake_case = args.model_name_or_path.rstrip('/' ) _snake_case = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _snake_case = torch.load(os.path.join(__lowercase , 'pytorch_model.bin' ) ) _snake_case = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _snake_case = MagnitudeBinarizer.apply(inputs=__lowercase , threshold=__lowercase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case = TopKBinarizer.apply(__lowercase , __lowercase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case = ThresholdBinarizer.apply(__lowercase , __lowercase , __lowercase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case , _snake_case = -0.1, 1.1 _snake_case = torch.sigmoid(__lowercase ) _snake_case = s * (r - l) + l _snake_case = s_bar.clamp(min=0.0 , max=1.0 ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _snake_case = os.path.join( os.path.dirname(__lowercase ) , f'''bertarized_{os.path.basename(__lowercase )}''' ) if not os.path.isdir(__lowercase ): shutil.copytree(__lowercase , __lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(__lowercase , os.path.join(__lowercase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _lowerCamelCase : int = parser.parse_args() main(args)
282
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class snake_case_ : def __init__( self : Dict , _snake_case : Tuple , _snake_case : Tuple=13 , _snake_case : List[str]=2 , _snake_case : int=24 , _snake_case : str=16 , _snake_case : Dict=True , _snake_case : str=True , _snake_case : str=32 , _snake_case : List[str]=5 , _snake_case : int=4 , _snake_case : Union[str, Any]=37 , _snake_case : Any="gelu" , _snake_case : Any=0.1 , _snake_case : Optional[int]=0.1 , _snake_case : Union[str, Any]=10 , _snake_case : Optional[Any]=0.02 , _snake_case : List[Any]=None , _snake_case : Optional[int]=2 , _snake_case : int=2 , )->Any: '''simple docstring''' __lowerCAmelCase : Tuple = parent __lowerCAmelCase : Optional[int] = batch_size __lowerCAmelCase : List[Any] = patch_size __lowerCAmelCase : Tuple = max_length __lowerCAmelCase : Optional[Any] = num_mel_bins __lowerCAmelCase : Union[str, Any] = is_training __lowerCAmelCase : str = use_labels __lowerCAmelCase : Dict = hidden_size __lowerCAmelCase : str = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : Optional[int] = intermediate_size __lowerCAmelCase : Optional[int] = hidden_act __lowerCAmelCase : List[Any] = hidden_dropout_prob __lowerCAmelCase : Dict = attention_probs_dropout_prob __lowerCAmelCase : List[str] = type_sequence_label_size __lowerCAmelCase : Optional[int] = initializer_range __lowerCAmelCase : List[Any] = scope __lowerCAmelCase : int = frequency_stride __lowerCAmelCase : Optional[int] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowerCAmelCase : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __lowerCAmelCase : Union[str, Any] = (self.max_length - self.patch_size) // self.time_stride + 1 __lowerCAmelCase : Any = frequency_out_dimension * time_out_dimension __lowerCAmelCase : Optional[Any] = num_patches + 2 def UpperCAmelCase__ ( self : List[str] )->str: '''simple docstring''' __lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __lowerCAmelCase : List[Any] = None if self.use_labels: __lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase : Tuple = self.get_config() return config, input_values, labels def UpperCAmelCase__ ( self : int )->List[str]: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase__ ( self : Optional[int] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : List[Any] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Any = ASTModel(config=_snake_case ) model.to(_snake_case ) model.eval() __lowerCAmelCase : List[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Dict )->Dict: '''simple docstring''' __lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( __lowerCAmelCase ) : int = config_and_inputs __lowerCAmelCase : Optional[Any] = {'input_values': input_values} return config, inputs_dict @require_torch class snake_case_ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): A_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) A_ = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False def UpperCAmelCase__ ( self : int , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Any , _snake_case : Dict , _snake_case : Union[str, Any] )->Optional[Any]: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase__ ( self : Tuple )->int: '''simple docstring''' __lowerCAmelCase : Any = ASTModelTester(self ) __lowerCAmelCase : Dict = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def UpperCAmelCase__ ( self : str )->str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Optional[int] )->Dict: '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple )->List[Any]: '''simple docstring''' __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[Any] = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def UpperCAmelCase__ ( self : List[str] )->str: '''simple docstring''' __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : int = model_class(_snake_case ) __lowerCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : List[Any] = [*signature.parameters.keys()] __lowerCAmelCase : int = ['input_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def UpperCAmelCase__ ( self : Optional[Any] )->int: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) @slow def UpperCAmelCase__ ( self : List[Any] )->Dict: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : List[Any] = ASTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowerCAmelCase : str = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) __lowerCAmelCase : Any = torchaudio.load(_UpperCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class snake_case_ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[str] )->Union[str, Any]: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase__ ( self : List[str] )->Optional[int]: '''simple docstring''' __lowerCAmelCase : Tuple = self.default_feature_extractor __lowerCAmelCase : List[Any] = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_snake_case ) __lowerCAmelCase : Dict = self.default_feature_extractor __lowerCAmelCase : Optional[int] = prepare_audio() __lowerCAmelCase : Any = audio.squeeze().numpy() __lowerCAmelCase : int = feature_extractor(_snake_case , sampling_rate=_snake_case , return_tensors="""pt""" ).to(_snake_case ) # forward pass with torch.no_grad(): __lowerCAmelCase : List[str] = model(**_snake_case ) # verify the logits __lowerCAmelCase : int = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _snake_case ) __lowerCAmelCase : int = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) )
351
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} _UpperCAmelCase = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } _UpperCAmelCase = { 'abeja/gpt-neox-japanese-2.7b': 2048, } def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[int] ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase : int = json.loads(f.read() ) __lowerCAmelCase : Dict = collections.OrderedDict() __lowerCAmelCase : str = collections.OrderedDict() __lowerCAmelCase : Union[str, Any] = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: __lowerCAmelCase : Tuple = f.readlines() __lowerCAmelCase : Tuple = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = b __lowerCAmelCase : Dict = idx for wd in b: __lowerCAmelCase : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : str , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Any="<|endoftext|>" , _snake_case : str="<|endoftext|>" , _snake_case : str="<|startoftext|>" , _snake_case : List[Any]="<|endoftext|>" , _snake_case : str=False , **_snake_case : List[Any] , )->Union[str, Any]: '''simple docstring''' super().__init__( unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , ) if not os.path.isfile(_snake_case ): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(_snake_case ): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) __lowerCAmelCase : Any = do_clean_text __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = load_vocab_and_emoji(_snake_case , _snake_case ) __lowerCAmelCase : int = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCAmelCase__ ( self : int )->str: '''simple docstring''' return len(self.raw_vocab ) def UpperCAmelCase__ ( self : Tuple )->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : Any , _snake_case : str )->Optional[int]: '''simple docstring''' return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Optional[Any] )->Any: '''simple docstring''' return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : int , _snake_case : Any )->int: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(_snake_case ) def UpperCAmelCase__ ( self : Optional[int] , _snake_case : int )->List[Any]: '''simple docstring''' __lowerCAmelCase : str = """""".join(_snake_case ).strip() return out_string def UpperCAmelCase__ ( self : List[str] , _snake_case : "Conversation" )->List[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] ) if len(_snake_case ) > self.model_max_length: __lowerCAmelCase : List[str] = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = 0 if os.path.isdir(_snake_case ): __lowerCAmelCase : Dict = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : List[Any] = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: __lowerCAmelCase : Union[str, Any] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase : Dict = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(_snake_case , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __lowerCAmelCase : List[str] = token_index writer.write(""",""".join(_snake_case ) + """\n""" ) index += 1 with open(_snake_case , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , _snake_case ) return vocab_file, emoji_file class snake_case_ ( __lowercase ): def __init__( self : Optional[Any] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Optional[int] )->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = vocab # same as swe __lowerCAmelCase : str = ids_to_tokens # same as bpe __lowerCAmelCase : Dict = emoji __lowerCAmelCase : int = np.max([len(_snake_case ) for w in self.vocab.keys()] ) __lowerCAmelCase : str = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) __lowerCAmelCase : Optional[Any] = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) __lowerCAmelCase : Tuple = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) __lowerCAmelCase : Optional[Any] = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __lowerCAmelCase : Union[str, Any] = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __lowerCAmelCase : str = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) __lowerCAmelCase : List[Any] = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" __lowerCAmelCase : Union[str, Any] = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" __lowerCAmelCase : str = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self : int )->int: '''simple docstring''' return len(self.ids_to_tokens ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Any )->str: '''simple docstring''' __lowerCAmelCase : List[str] = self.content_repattera.sub("""<URL>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<EMAIL>""" , _snake_case ) __lowerCAmelCase : Optional[Any] = self.content_repattera.sub("""<TEL>""" , _snake_case ) __lowerCAmelCase : str = self.content_repattera.sub("""<DATE>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<DATE>""" , _snake_case ) __lowerCAmelCase : Tuple = self.content_repattera.sub("""<PRICE>""" , _snake_case ) __lowerCAmelCase : List[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __lowerCAmelCase : str = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def UpperCAmelCase__ ( self : str , _snake_case : List[Any] , _snake_case : Optional[int]=False )->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = text.replace(""" """ , """<SP>""" ) __lowerCAmelCase : Optional[int] = text.replace(""" """ , """<SP>""" ) __lowerCAmelCase : Union[str, Any] = text.replace("""\r\n""" , """<BR>""" ) __lowerCAmelCase : Tuple = text.replace("""\n""" , """<BR>""" ) __lowerCAmelCase : List[str] = text.replace("""\r""" , """<BR>""" ) __lowerCAmelCase : Dict = text.replace("""\t""" , """<TAB>""" ) __lowerCAmelCase : Dict = text.replace("""—""" , """ー""" ) __lowerCAmelCase : Tuple = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: __lowerCAmelCase : Optional[Any] = text.replace(_snake_case , _snake_case ) if clean: __lowerCAmelCase : List[Any] = self.clean_text(_snake_case ) def check_simbol(_snake_case : List[str] ): __lowerCAmelCase : Optional[int] = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 2: __lowerCAmelCase : Optional[Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(_snake_case : Union[str, Any] ): __lowerCAmelCase : Dict = x.encode() if len(_snake_case ) == 1 and len(_snake_case ) == 3: __lowerCAmelCase : List[str] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_8080 and c <= 0xe2_b07f: return True return False __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Dict = [] while pos < len(_snake_case ): __lowerCAmelCase : str = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 __lowerCAmelCase : Tuple = [] # (token_id, token, pos) for e in range(_snake_case , _snake_case , -1 ): __lowerCAmelCase : Optional[int] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_snake_case ) > 2: __lowerCAmelCase : Tuple = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_snake_case ) > 0: # the smallest token_id is adopted __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = sorted(_snake_case , key=lambda _snake_case : x[0] )[0] result.append(_snake_case ) __lowerCAmelCase : int = e else: __lowerCAmelCase : Dict = pos + 1 __lowerCAmelCase : Dict = text[pos:end] if check_simbol(_snake_case ): result.append("""<KIGOU>""" ) elif checkuae(_snake_case ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) __lowerCAmelCase : int = end return result def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[int] , _snake_case : List[Any]="\n" )->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = [] __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Optional[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode("""utf-8""" , errors="""replace""" ) ) __lowerCAmelCase : Optional[Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(_snake_case ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(_snake_case ) if len(_snake_case ) > 0: words.append(bytearray(_snake_case ).decode("""utf-8""" , errors="""replace""" ) ) __lowerCAmelCase : Dict = """""".join(_snake_case ) return text
232
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : Any = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class _snake_case ( A__ ): _lowercase : Dict = '''wav2vec2''' def __init__( self , a=32 , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.1 , a=0.1 , a=0.1 , a=0.0 , a=0.0 , a=0.1 , a=0.1 , a=0.02 , a=1E-5 , a="group" , a="gelu" , a=(512, 512, 512, 512, 512, 512, 512) , a=(5, 2, 2, 2, 2, 2, 2) , a=(10, 3, 3, 3, 3, 2, 2) , a=False , a=128 , a=16 , a=False , a=True , a=0.05 , a=10 , a=2 , a=0.0 , a=10 , a=0 , a=320 , a=2 , a=0.1 , a=100 , a=256 , a=256 , a=0.1 , a="sum" , a=False , a=False , a=256 , a=(512, 512, 512, 512, 1500) , a=(5, 3, 3, 1, 1) , a=(1, 2, 3, 1, 1) , a=512 , a=0 , a=1 , a=2 , a=False , a=3 , a=2 , a=3 , a=None , a=None , **a , ) -> Optional[Any]: super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = feat_extract_norm SCREAMING_SNAKE_CASE = feat_extract_activation SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = conv_bias SCREAMING_SNAKE_CASE = num_conv_pos_embeddings SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE = len(self.conv_dim) SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = feat_proj_dropout SCREAMING_SNAKE_CASE = final_dropout SCREAMING_SNAKE_CASE = layerdrop SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = do_stable_layer_norm SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE = apply_spec_augment SCREAMING_SNAKE_CASE = mask_time_prob SCREAMING_SNAKE_CASE = mask_time_length SCREAMING_SNAKE_CASE = mask_time_min_masks SCREAMING_SNAKE_CASE = mask_feature_prob SCREAMING_SNAKE_CASE = mask_feature_length SCREAMING_SNAKE_CASE = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE = num_codevectors_per_group SCREAMING_SNAKE_CASE = num_codevector_groups SCREAMING_SNAKE_CASE = contrastive_logits_temperature SCREAMING_SNAKE_CASE = feat_quantizer_dropout SCREAMING_SNAKE_CASE = num_negatives SCREAMING_SNAKE_CASE = codevector_dim SCREAMING_SNAKE_CASE = proj_codevector_dim SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE = ctc_loss_reduction SCREAMING_SNAKE_CASE = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE = add_adapter SCREAMING_SNAKE_CASE = adapter_kernel_size SCREAMING_SNAKE_CASE = adapter_stride SCREAMING_SNAKE_CASE = num_adapter_layers SCREAMING_SNAKE_CASE = output_hidden_size or hidden_size SCREAMING_SNAKE_CASE = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = list(a) SCREAMING_SNAKE_CASE = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1)
137
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType a_ : List[Any] = logging.get_logger(__name__) a_ : str = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class _snake_case ( A__ ): _lowercase : Any = '''deberta-v2''' def __init__( self , a=12_8100 , a=1536 , a=24 , a=24 , a=6144 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=0 , a=0.02 , a=1E-7 , a=False , a=-1 , a=0 , a=True , a=None , a=0 , a="gelu" , **a , ) -> List[Any]: super().__init__(**a) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = relative_attention SCREAMING_SNAKE_CASE = max_relative_positions SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = position_biased_input # Backwards compatibility if type(a) == str: SCREAMING_SNAKE_CASE = [x.strip() for x in pos_att_type.lower().split('|')] SCREAMING_SNAKE_CASE = pos_att_type SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = kwargs.get('pooler_hidden_size' , a) SCREAMING_SNAKE_CASE = pooler_dropout SCREAMING_SNAKE_CASE = pooler_hidden_act class _snake_case ( A__ ): @property def SCREAMING_SNAKE_CASE__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)]) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)]) @property def SCREAMING_SNAKE_CASE__ ( self) -> int: return 12 def SCREAMING_SNAKE_CASE__ ( self , a , a = -1 , a = -1 , a = -1 , a = False , a = None , a = 3 , a = 40 , a = 40 , a = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(preprocessor=a , framework=a) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
137
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: Dict ): __lowerCamelCase : List[Any] = 0 def _snake_case ( self: str ): __lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(a , a ) def _snake_case ( self: Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : str = Path(a ) / 'preprocessor_config.json' __lowerCamelCase : Optional[int] = Path(a ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) __lowerCamelCase : str = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def _snake_case ( self: Tuple ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : Tuple = Path(a ) / 'preprocessor_config.json' __lowerCamelCase : Any = Path(a ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) __lowerCamelCase : Any = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def _snake_case ( self: Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowerCamelCase : Optional[Any] = Path(a ) / 'preprocessor_config.json' __lowerCamelCase : Union[str, Any] = Path(a ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained(a ).to_dict() config_dict.pop('image_processor_type' ) __lowerCamelCase : int = CLIPImageProcessor(**a ) # save in new folder model_config.save_pretrained(a ) config.save_pretrained(a ) __lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained(a ) # make sure private variable is not incorrectly saved __lowerCamelCase : Tuple = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(a , a ) def _snake_case ( self: List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : List[Any] = Path(a ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) __lowerCamelCase : str = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) def _snake_case ( self: str ): with self.assertRaisesRegex( a , 'clip-base is not a local folder and is not a valid model identifier' ): __lowerCamelCase : Dict = AutoImageProcessor.from_pretrained('clip-base' ) def _snake_case ( self: int ): with self.assertRaisesRegex( a , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowerCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained(a , revision='aaaaaa' ) def _snake_case ( self: Any ): with self.assertRaisesRegex( a , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def _snake_case ( self: str ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a ): __lowerCamelCase : Union[str, Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(a ): __lowerCamelCase : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) __lowerCamelCase : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a ) __lowerCamelCase : Any = AutoImageProcessor.from_pretrained(a , trust_remote_code=a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def _snake_case ( self: Any ): try: AutoConfig.register('custom' , a ) AutoImageProcessor.register(a , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): AutoImageProcessor.register(a , a ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase : Tuple = Path(a ) / 'preprocessor_config.json' __lowerCamelCase : Any = Path(a ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(a , 'w' ) , ) json.dump({'model_type': 'clip'} , open(a , 'w' ) ) __lowerCamelCase : int = CustomImageProcessor.from_pretrained(a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a ) __lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self: List[Any] ): class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = True try: AutoConfig.register('custom' , a ) AutoImageProcessor.register(a , a ) # If remote code is not set, the default is to use local __lowerCamelCase : List[str] = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase : str = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase : List[Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=a ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(a , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
357
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): __lowerCamelCase : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): __lowerCamelCase : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __lowerCamelCase : Optional[int] = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) __lowerCamelCase : str = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 255.0 __lowerCamelCase : List[str] = image.transpose(0 , 3 , 1 , 2 ) __lowerCamelCase : Union[str, Any] = 2.0 * image - 1.0 __lowerCamelCase : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): __lowerCamelCase : str = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.9_995 ): if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): __lowerCamelCase : List[str] = True __lowerCamelCase : str = va.device __lowerCamelCase : int = va.cpu().numpy() __lowerCamelCase : List[str] = va.cpu().numpy() __lowerCamelCase : str = np.sum(va * va / (np.linalg.norm(SCREAMING_SNAKE_CASE__ ) * np.linalg.norm(SCREAMING_SNAKE_CASE__ )) ) if np.abs(SCREAMING_SNAKE_CASE__ ) > DOT_THRESHOLD: __lowerCamelCase : Union[str, Any] = (1 - t) * va + t * va else: __lowerCamelCase : List[Any] = np.arccos(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Dict = np.sin(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = theta_a * t __lowerCamelCase : List[Any] = np.sin(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = np.sin(theta_a - theta_t ) / sin_theta_a __lowerCamelCase : List[Any] = sin_theta_t / sin_theta_a __lowerCamelCase : Union[str, Any] = sa * va + sa * va if inputs_are_torch: __lowerCamelCase : str = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return va def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) __lowerCamelCase : Union[str, Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for param in model.parameters(): __lowerCamelCase : Any = value class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: Any , a: AutoencoderKL , a: CLIPTextModel , a: CLIPModel , a: CLIPTokenizer , a: UNetaDConditionModel , a: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , a: CLIPFeatureExtractor , a: Union[str, Any]=None , a: Union[str, Any]=None , a: Union[str, Any]=None , ): super().__init__() self.register_modules( vae=a , text_encoder=a , clip_model=a , tokenizer=a , unet=a , scheduler=a , feature_extractor=a , coca_model=a , coca_tokenizer=a , coca_transform=a , ) __lowerCamelCase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size , a ) else feature_extractor.size['shortest_edge'] ) __lowerCamelCase : List[Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , a ) set_requires_grad(self.clip_model , a ) def _snake_case ( self: Optional[Any] , a: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCamelCase : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def _snake_case ( self: Dict ): self.enable_attention_slicing(a ) def _snake_case ( self: Optional[Any] ): set_requires_grad(self.vae , a ) def _snake_case ( self: List[Any] ): set_requires_grad(self.vae , a ) def _snake_case ( self: int ): set_requires_grad(self.unet , a ) def _snake_case ( self: int ): set_requires_grad(self.unet , a ) def _snake_case ( self: Optional[Any] , a: Union[str, Any] , a: List[str] , a: List[Any] ): # get the original timestep using init_timestep __lowerCamelCase : List[Any] = min(int(num_inference_steps * strength ) , a ) __lowerCamelCase : str = max(num_inference_steps - init_timestep , 0 ) __lowerCamelCase : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self: Union[str, Any] , a: Optional[Any] , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , a: List[str]=None ): if not isinstance(a , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(a )}' ) __lowerCamelCase : Union[str, Any] = image.to(device=a , dtype=a ) if isinstance(a , a ): __lowerCamelCase : str = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] __lowerCamelCase : Tuple = torch.cat(a , dim=0 ) else: __lowerCamelCase : List[Any] = self.vae.encode(a ).latent_dist.sample(a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : List[str] = 0.1_8_2_1_5 * init_latents __lowerCamelCase : Union[str, Any] = init_latents.repeat_interleave(a , dim=0 ) __lowerCamelCase : Optional[int] = randn_tensor(init_latents.shape , generator=a , device=a , dtype=a ) # get latents __lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(a , a , a ) __lowerCamelCase : int = init_latents return latents def _snake_case ( self: Optional[int] , a: Any ): __lowerCamelCase : List[Any] = self.coca_transform(a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowerCamelCase : Any = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __lowerCamelCase : str = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def _snake_case ( self: Any , a: Tuple , a: Tuple ): __lowerCamelCase : Dict = self.feature_extractor.preprocess(a ) __lowerCamelCase : Dict = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() __lowerCamelCase : List[str] = self.clip_model.get_image_features(a ) __lowerCamelCase : Optional[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) __lowerCamelCase : Tuple = image_embeddings_clip.repeat_interleave(a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _snake_case ( self: str , a: str , a: int , a: List[Any] , a: str , a: List[Any] , a: Dict , a: int , ): __lowerCamelCase : Optional[Any] = latents.detach().requires_grad_() __lowerCamelCase : str = self.scheduler.scale_model_input(a , a ) # predict the noise residual __lowerCamelCase : Optional[int] = self.unet(a , a , encoder_hidden_states=a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowerCamelCase : str = self.scheduler.alphas_cumprod[timestep] __lowerCamelCase : Dict = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase : Optional[int] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowerCamelCase : Optional[int] = torch.sqrt(a ) __lowerCamelCase : int = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , a ): __lowerCamelCase : str = self.scheduler.sigmas[index] __lowerCamelCase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : Optional[int] = 1 / 0.1_8_2_1_5 * sample __lowerCamelCase : Optional[Any] = self.vae.decode(a ).sample __lowerCamelCase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Any = transforms.Resize(self.feature_extractor_size )(a ) __lowerCamelCase : Union[str, Any] = self.normalize(a ).to(latents.dtype ) __lowerCamelCase : Tuple = self.clip_model.get_image_features(a ) __lowerCamelCase : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) __lowerCamelCase : List[str] = spherical_dist_loss(a , a ).mean() * clip_guidance_scale __lowerCamelCase : Tuple = -torch.autograd.grad(a , a )[0] if isinstance(self.scheduler , a ): __lowerCamelCase : Optional[int] = latents.detach() + grads * (sigma**2) __lowerCamelCase : List[Any] = noise_pred_original else: __lowerCamelCase : str = noise_pred_original - torch.sqrt(a ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Any , a: Union[torch.FloatTensor, PIL.Image.Image] , a: Union[torch.FloatTensor, PIL.Image.Image] , a: Optional[str] = None , a: Optional[str] = None , a: Optional[int] = 512 , a: Optional[int] = 512 , a: float = 0.6 , a: Optional[int] = 50 , a: Optional[float] = 7.5 , a: Optional[int] = 1 , a: float = 0.0 , a: Optional[float] = 100 , a: Optional[torch.Generator] = None , a: Optional[str] = "pil" , a: bool = True , a: float = 0.8 , a: float = 0.1 , a: float = 0.1 , ): if isinstance(a , a ) and len(a ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(a )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(a , torch.Generator ) and batch_size > 1: __lowerCamelCase : List[Any] = [generator] + [None] * (batch_size - 1) __lowerCamelCase : Dict = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] __lowerCamelCase : Any = [x[0] for x in coca_is_none if x[1]] __lowerCamelCase : str = ', '.join(a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(a ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __lowerCamelCase : Any = self.get_image_description(a ) if style_prompt is None: if len(a ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __lowerCamelCase : Tuple = self.get_image_description(a ) # get prompt text embeddings for content and style __lowerCamelCase : int = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) __lowerCamelCase : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowerCamelCase : Union[str, Any] = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) __lowerCamelCase : Any = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowerCamelCase : List[Any] = slerp(a , a , a ) # duplicate text embeddings for each generation per prompt __lowerCamelCase : Any = text_embeddings.repeat_interleave(a , dim=0 ) # set timesteps __lowerCamelCase : List[Any] = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowerCamelCase : Union[str, Any] = {} if accepts_offset: __lowerCamelCase : Dict = 1 self.scheduler.set_timesteps(a , **a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowerCamelCase , __lowerCamelCase : Dict = self.get_timesteps(a , a , self.device ) __lowerCamelCase : Tuple = timesteps[:1].repeat(a ) # Preprocess image __lowerCamelCase : Any = preprocess(a , a , a ) __lowerCamelCase : str = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) __lowerCamelCase : Dict = preprocess(a , a , a ) __lowerCamelCase : Optional[int] = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) __lowerCamelCase : int = slerp(a , a , a ) if clip_guidance_scale > 0: __lowerCamelCase : List[str] = self.get_clip_image_embeddings(a , a ) __lowerCamelCase : Union[str, Any] = self.get_clip_image_embeddings(a , a ) __lowerCamelCase : Union[str, Any] = slerp( a , a , a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowerCamelCase : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowerCamelCase : Optional[int] = content_text_input.input_ids.shape[-1] __lowerCamelCase : int = self.tokenizer([''] , padding='max_length' , max_length=a , return_tensors='pt' ) __lowerCamelCase : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowerCamelCase : List[Any] = uncond_embeddings.repeat_interleave(a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase : int = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowerCamelCase : str = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowerCamelCase : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowerCamelCase : Tuple = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: __lowerCamelCase : List[Any] = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __lowerCamelCase : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase : int = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase : Dict = {} if accepts_eta: __lowerCamelCase : List[str] = eta # check if the scheduler accepts generator __lowerCamelCase : Optional[int] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowerCamelCase : Optional[Any] = generator with self.progress_bar(total=a ): for i, t in enumerate(a ): # expand the latents if we are doing classifier free guidance __lowerCamelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase : Union[str, Any] = self.scheduler.scale_model_input(a , a ) # predict the noise residual __lowerCamelCase : Tuple = self.unet(a , a , encoder_hidden_states=a ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase : str = noise_pred.chunk(2 ) __lowerCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowerCamelCase : str = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowerCamelCase , __lowerCamelCase : int = self.cond_fn( a , a , a , a , a , a , a , ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : Tuple = self.scheduler.step(a , a , a , **a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase : List[Any] = 1 / 0.1_8_2_1_5 * latents __lowerCamelCase : Union[str, Any] = self.vae.decode(a ).sample __lowerCamelCase : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase : Union[str, Any] = self.numpy_to_pil(a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
194
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __lowercase = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowercase ( A_ )-> List[Any]: '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowercase ( A_ , A_ , A_ )-> str: '''simple docstring''' return max(metric_fn(__lowerCamelCase , __lowerCamelCase ) for gt in ground_truths ) def lowercase ( A_ , A_ , A_ )-> Dict: '''simple docstring''' a : int = [line.strip() for line in open(__lowerCamelCase , "r" ).readlines()] a : Optional[int] = [] if args.gold_data_mode == "qa": a : List[Any] = pd.read_csv(__lowerCamelCase , sep="\t" , header=__lowerCamelCase ) for answer_list in data[1]: a : Dict = ast.literal_eval(__lowerCamelCase ) answers.append(__lowerCamelCase ) else: a : Tuple = [line.strip() for line in open(__lowerCamelCase , "r" ).readlines()] a : Any = [[reference] for reference in references] a : Dict = 0 for prediction, ground_truths in zip(__lowerCamelCase , __lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) fa += metric_max_over_ground_truths(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) a : str = 1_0_0.0 * em / total a : List[str] = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def lowercase ( A_ , A_ , A_ )-> Union[str, Any]: '''simple docstring''' a : Tuple = args.k a : Optional[Any] = [line.strip() for line in open(__lowerCamelCase , "r" ).readlines()] a : Optional[int] = [line.strip() for line in open(__lowerCamelCase , "r" ).readlines()] a : Dict = 0 for hypo, reference in zip(__lowerCamelCase , __lowerCamelCase ): a : List[Any] = set(hypo.split("\t" )[:k] ) a : int = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a : Tuple = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def lowercase ( A_ , A_ , A_ )-> Tuple: '''simple docstring''' def strip_title(A_ ): if title.startswith("\"" ): a : List[str] = title[1:] if title.endswith("\"" ): a : Optional[Any] = title[:-1] return title a : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase , return_tensors="pt" , padding=__lowerCamelCase , truncation=__lowerCamelCase , )["input_ids"].to(args.device ) a : Dict = rag_model.rag.question_encoder(__lowerCamelCase ) a : Optional[Any] = question_enc_outputs[0] a : List[str] = rag_model.retriever( __lowerCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a : str = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a : List[str] = [] for docs in all_docs: a : Any = [strip_title(__lowerCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(__lowerCamelCase ) ) return provenance_strings def lowercase ( A_ , A_ , A_ )-> str: '''simple docstring''' with torch.no_grad(): a : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase , return_tensors="pt" , padding=__lowerCamelCase , truncation=__lowerCamelCase ) a : str = inputs_dict.input_ids.to(args.device ) a : Optional[Any] = inputs_dict.attention_mask.to(args.device ) a : int = rag_model.generate( # rag_model overwrites generate __lowerCamelCase , attention_mask=__lowerCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__lowerCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a : int = rag_model.retriever.generator_tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) if args.print_predictions: for q, a in zip(__lowerCamelCase , __lowerCamelCase ): logger.info("Q: {} - A: {}".format(__lowerCamelCase , __lowerCamelCase ) ) return answers def lowercase ( )-> Optional[int]: '''simple docstring''' a : Dict = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=__lowerCamelCase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=__lowerCamelCase , choices=["exact", "compressed", "legacy"] , type=__lowerCamelCase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=__lowerCamelCase , type=__lowerCamelCase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=__lowerCamelCase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=__lowerCamelCase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=__lowerCamelCase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=__lowerCamelCase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=__lowerCamelCase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=__lowerCamelCase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=__lowerCamelCase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=__lowerCamelCase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=__lowerCamelCase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a : Optional[Any] = parser.parse_args() a : int = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def lowercase ( A_ )-> Optional[Any]: '''simple docstring''' a : Optional[int] = {} if args.model_type is None: a : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a : Tuple = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a : int = args.n_docs if args.index_name is not None: a : str = args.index_name if args.index_path is not None: a : List[Any] = args.index_path else: a : int = BartForConditionalGeneration a : int = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , __lowerCamelCase ) a : Dict = get_scores if args.eval_mode == "e2e" else get_precision_at_k a : Tuple = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__lowerCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__lowerCamelCase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a : List[Any] = RagRetriever.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) a : Tuple = model_class.from_pretrained(__lowerCamelCase , retriever=__lowerCamelCase , **__lowerCamelCase ) model.retriever.init_retrieval() else: a : Tuple = model_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a : Tuple = [] for line in tqdm(__lowerCamelCase ): questions.append(line.strip() ) if len(__lowerCamelCase ) == args.eval_batch_size: a : Any = evaluate_batch_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) + "\n" ) preds_file.flush() a : List[Any] = [] if len(__lowerCamelCase ) > 0: a : int = evaluate_batch_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) ) preds_file.flush() score_fn(__lowerCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __lowercase = get_args() main(args)
40
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : int =logging.get_logger(__name__) lowerCAmelCase : List[str] ='''▁''' lowerCAmelCase : List[str] ={ '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase : Optional[Any] ={ '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } lowerCAmelCase : int ={ '''facebook/m2m100_418M''': 1_024, } # fmt: off lowerCAmelCase : str ={ '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class a_ ( _lowerCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = PRETRAINED_VOCAB_FILES_MAP __A = ["input_ids", "attention_mask"] __A = [] __A = [] def __init__( self : Any , lowercase : Any , lowercase : List[Any] , lowercase : int=None , lowercase : Optional[Any]=None , lowercase : Union[str, Any]="<s>" , lowercase : Any="</s>" , lowercase : Optional[int]="</s>" , lowercase : List[Any]="<pad>" , lowercase : Optional[int]="<unk>" , lowercase : Optional[int]="m2m100" , lowercase : Optional[Dict[str, Any]] = None , lowercase : Any=8 , **lowercase : int , ): """simple docstring""" lowercase_ :Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ :Optional[Any] = language_codes lowercase_ :Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] lowercase_ :List[Any] = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} lowercase_ :Union[str, Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase , tgt_lang=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , unk_token=lowercase , pad_token=lowercase , language_codes=lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowercase , **lowercase , ) lowercase_ :Optional[int] = vocab_file lowercase_ :Any = load_json(lowercase ) lowercase_ :Optional[Any] = {v: k for k, v in self.encoder.items()} lowercase_ :List[str] = spm_file lowercase_ :List[str] = load_spm(lowercase , self.sp_model_kwargs ) lowercase_ :Optional[int] = len(self.encoder ) lowercase_ :int = { self.get_lang_token(lowercase ): self.encoder_size + i for i, lang_code in enumerate(lowercase ) } lowercase_ :List[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowercase )} lowercase_ :List[Any] = {v: k for k, v in self.lang_token_to_id.items()} lowercase_ :int = src_lang if src_lang is not None else "en" lowercase_ :Union[str, Any] = tgt_lang lowercase_ :List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowercase_ :int = num_madeup_words @property def lowercase__ ( self : List[str] ): """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowercase__ ( self : Any ): """simple docstring""" return self._src_lang @src_lang.setter def lowercase__ ( self : Optional[int] , lowercase : str ): """simple docstring""" lowercase_ :str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase__ ( self : Dict , lowercase : str ): """simple docstring""" return self.sp_model.encode(lowercase , out_type=lowercase ) def lowercase__ ( self : Tuple , lowercase : Dict ): """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowercase , self.encoder[self.unk_token] ) def lowercase__ ( self : Any , lowercase : int ): """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowercase , self.unk_token ) def lowercase__ ( self : int , lowercase : int ): """simple docstring""" lowercase_ :Optional[Any] = [] lowercase_ :Any = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase ) + token lowercase_ :str = [] else: current_sub_tokens.append(lowercase ) out_string += self.sp_model.decode(lowercase ) return out_string.strip() def lowercase__ ( self : Any , lowercase : List[int] , lowercase : Optional[List[int]] = None , lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) lowercase_ :List[Any] = [1] * len(self.prefix_tokens ) lowercase_ :List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase )) + suffix_ones return prefix_ones + ([0] * len(lowercase )) + ([0] * len(lowercase )) + suffix_ones def lowercase__ ( self : Union[str, Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :str = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): """simple docstring""" lowercase_ :Any = self.__dict__.copy() lowercase_ :str = None return state def __setstate__( self : Tuple , lowercase : Dict ): """simple docstring""" lowercase_ :int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase_ :List[str] = {} lowercase_ :List[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase__ ( self : str , lowercase : str , lowercase : Optional[str] = None ): """simple docstring""" lowercase_ :Dict = Path(lowercase ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) lowercase_ :Dict = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) lowercase_ :Dict = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase ) elif not os.path.isfile(self.spm_file ): with open(lowercase , "wb" ) as fi: lowercase_ :List[str] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (str(lowercase ), str(lowercase )) def lowercase__ ( self : List[str] , lowercase : List[str] , lowercase : str = "en" , lowercase : Optional[List[str]] = None , lowercase : str = "ro" , **lowercase : Optional[int] , ): """simple docstring""" lowercase_ :int = src_lang lowercase_ :Optional[int] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowercase , lowercase , **lowercase ) def lowercase__ ( self : List[Any] , lowercase : Any , lowercase : Optional[str] , lowercase : Optional[str] , **lowercase : Union[str, Any] ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowercase_ :List[str] = src_lang lowercase_ :Union[str, Any] = self(lowercase , add_special_tokens=lowercase , **lowercase ) lowercase_ :str = self.get_lang_id(lowercase ) lowercase_ :Union[str, Any] = tgt_lang_id return inputs def lowercase__ ( self : str ): """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def lowercase__ ( self : Tuple ): """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase__ ( self : str , lowercase : str ): """simple docstring""" lowercase_ :List[str] = self.get_lang_token(lowercase ) lowercase_ :List[str] = self.lang_token_to_id[lang_token] lowercase_ :List[Any] = [self.cur_lang_id] lowercase_ :str = [self.eos_token_id] def lowercase__ ( self : str , lowercase : str ): """simple docstring""" lowercase_ :Optional[int] = self.get_lang_token(lowercase ) lowercase_ :Tuple = self.lang_token_to_id[lang_token] lowercase_ :Dict = [self.cur_lang_id] lowercase_ :List[Any] = [self.eos_token_id] def lowercase__ ( self : Union[str, Any] , lowercase : str ): """simple docstring""" return self.lang_code_to_token[lang] def lowercase__ ( self : Dict , lowercase : str ): """simple docstring""" lowercase_ :Union[str, Any] = self.get_lang_token(lowercase ) return self.lang_token_to_id[lang_token] def UpperCAmelCase_ ( __lowerCamelCase : str ,__lowerCamelCase : Dict[str, Any] ): lowercase_ :List[str] = sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def UpperCAmelCase_ ( __lowerCamelCase : str ): with open(__lowerCamelCase ,"r" ) as f: return json.load(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : str ): with open(__lowerCamelCase ,"w" ) as f: json.dump(__lowerCamelCase ,__lowerCamelCase ,indent=2 )
223
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : Union[str, Any] , __A : List[Any] ) -> int: """simple docstring""" a_ : str = os.path.abspath(__A ) logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model a_ : Dict = tf.train.list_variables(__A ) a_ : List[str] = [] a_ : Union[str, Any] = [] a_ : Any = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") a_ : Optional[int] = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(F"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' a_ : Optional[Any] = name[1:] # figure out how many levels deep the name is a_ : List[Any] = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(__A ) # read data a_ : int = tf.train.load_variable(__A , __A ) names.append('/'.join(__A ) ) arrays.append(__A ) logger.info(F"""Read a total of {len(__A ):,} layers""" ) # Sanity check if len(set(__A ) ) != 1: raise ValueError(F"""Found layer names with different depths (layer depth {list(set(__A ) )})""" ) a_ : Union[str, Any] = list(set(__A ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(__A , __A ): a_ : Union[str, Any] = full_name.split('/' ) a_ : Dict = model a_ : List[str] = [] for i, m_name in enumerate(__A ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): a_ : Optional[int] = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) a_ : str = getattr(__A , 'embeddings' ) a_ : List[str] = getattr(__A , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) a_ : Optional[Any] = getattr(__A , 'encoder' ) a_ : List[str] = getattr(__A , 'layer' ) a_ : Optional[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) a_ : int = getattr(__A , 'pooler' ) a_ : Dict = getattr(__A , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) a_ : Optional[Any] = getattr(__A , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) a_ : List[Any] = getattr(__A , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) a_ : int = getattr(__A , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) a_ : Dict = getattr(__A , 'token_type_embeddings' ) else: raise ValueError(F"""Unknown embedding layer with name {full_name}""" ) trace.append('weight' ) a_ : Optional[Any] = getattr(__A , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) a_ : str = getattr(__A , 'attention' ) a_ : int = getattr(__A , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) a_ : int = getattr(__A , 'attention' ) a_ : Tuple = getattr(__A , 'output' ) a_ : Union[str, Any] = getattr(__A , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) a_ : Optional[int] = getattr(__A , 'attention' ) a_ : str = getattr(__A , 'output' ) a_ : Any = getattr(__A , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) a_ : int = getattr(__A , 'output' ) a_ : List[Any] = getattr(__A , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) a_ : Any = getattr(__A , 'output' ) a_ : int = getattr(__A , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) a_ : List[Any] = getattr(__A , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) a_ : Dict = getattr(__A , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) a_ : Union[str, Any] = getattr(__A , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) a_ : Union[str, Any] = getattr(__A , 'intermediate' ) a_ : List[str] = getattr(__A , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) a_ : List[Any] = getattr(__A , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) a_ : Tuple = getattr(__A , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) a_ : Dict = getattr(__A , 'weight' ) else: logger.warning(F"""Ignored {m_name}""" ) # for certain layers reshape is necessary a_ : Optional[Any] = '.'.join(__A ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , __A ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , __A ): a_ : Optional[int] = array.reshape(pointer.data.shape ) if "kernel" in full_name: a_ : Optional[int] = array.transpose() if pointer.shape == array.shape: a_ : str = torch.from_numpy(__A ) else: raise ValueError( F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" F""" {array.shape}""" ) logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : Optional[Any] , __A : Optional[Any] ) -> Optional[Any]: """simple docstring""" logger.info(F"""Loading model based on config from {config_path}...""" ) a_ : Optional[Any] = BertConfig.from_json_file(__A ) a_ : List[str] = BertModel(__A ) # Load weights from checkpoint logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__A , __A , __A ) # Save pytorch-model logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) UpperCAmelCase_ : Dict = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
120
def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int ) -> int: """simple docstring""" while b: a_ , a_ : int = b, a % b return a def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int ) -> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(__A , a % b ) def SCREAMING_SNAKE_CASE_ ( ) -> str: """simple docstring""" print(F"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(F"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(F"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(F"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(F"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(F"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(F"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(F"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(F"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
120
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __UpperCamelCase : def __init__( self , __a , __a=14 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ): '''simple docstring''' __a : Union[str, Any] = parent __a : str = batch_size __a : Optional[int] = seq_length __a : Any = is_training __a : Tuple = use_token_type_ids __a : Optional[int] = use_input_mask __a : Optional[int] = use_labels __a : Dict = use_mc_token_ids __a : Union[str, Any] = vocab_size __a : Optional[Any] = hidden_size __a : Optional[int] = num_hidden_layers __a : List[str] = num_attention_heads __a : List[Any] = intermediate_size __a : int = hidden_act __a : List[str] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : Any = max_position_embeddings __a : Union[str, Any] = type_vocab_size __a : int = type_sequence_label_size __a : Union[str, Any] = initializer_range __a : Optional[Any] = num_labels __a : List[str] = num_choices __a : Any = scope __a : List[Any] = self.vocab_size - 1 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_input_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Tuple = None if self.use_token_type_ids: __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Optional[int] = None if self.use_mc_token_ids: __a : Optional[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __a : List[Any] = None __a : Dict = None __a : Tuple = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Any = ids_tensor([self.batch_size] , self.num_choices ) __a : Optional[int] = self.get_config() __a : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __UpperCAmelCase ( self ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Optional[int] = CTRLModel(config=__a ) model.to(__a ) model.eval() model(__a , token_type_ids=__a , head_mask=__a ) model(__a , token_type_ids=__a ) __a : Any = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Dict = CTRLLMHeadModel(__a ) model.to(__a ) model.eval() __a : List[str] = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Any = config_and_inputs __a : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def __UpperCAmelCase ( self , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Any = self.num_labels __a : Union[str, Any] = CTRLForSequenceClassification(__a ) model.to(__a ) model.eval() __a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : str = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () A_ = (CTRLLMHeadModel,) if is_torch_available() else () A_ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) A_ = True A_ = False A_ = False def __UpperCAmelCase ( self , __a , __a , __a , __a , __a ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = CTRLModelTester(self ) __a : str = ConfigTester(self , config_class=__a , n_embd=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = CTRLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__a ) __a : Union[str, Any] = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__a ) # Legal the president is __a : List[Any] = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __a : List[str] = model.generate(__a , do_sample=__a ) self.assertListEqual(output_ids[0].tolist() , __a )
27
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[float] ): """simple docstring""" _snake_case : int = 0.00 _snake_case : int = 0 for resistor in resistors: if resistor <= 0: _snake_case : Dict = F"Resistor at index {index} has a negative or zero value!" raise ValueError(snake_case__ ) first_sum += 1 / float(snake_case__ ) index += 1 return 1 / first_sum def UpperCAmelCase__ (snake_case__ : list[float] ): """simple docstring""" _snake_case : Union[str, Any] = 0.00 _snake_case : Any = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _snake_case : Any = F"Resistor at index {index} has a negative value!" raise ValueError(snake_case__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
64
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase = "\\n Text data.\n Second line of data." _lowerCAmelCase = "file" @pytest.fixture(scope='''session''' ) def UpperCamelCase ( a ) -> Dict: '''simple docstring''' __magic_name__ = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __magic_name__ = bytes(a , '''utf-8''' ) with zstd.open(a , '''wb''' ) as f: f.write(a ) return path @pytest.fixture def UpperCamelCase ( a ) -> Optional[Any]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , a ) , '''w''' ) as f: f.write(a ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def UpperCamelCase ( a , a , a , a , a , a ) -> Optional[int]: '''simple docstring''' __magic_name__ = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __magic_name__ = input_paths[compression_format] __magic_name__ = tmp_path / '''cache''' __magic_name__ = DownloadConfig(cache_dir=a , extract_compressed_file=a ) __magic_name__ = cached_path(a , download_config=a ) with open(a ) as f: __magic_name__ = f.read() with open(a ) as f: __magic_name__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def UpperCamelCase ( a , a , a , a , a ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = '''custom_cache''' __magic_name__ = '''custom_extracted_dir''' __magic_name__ = tmp_path / '''custom_extracted_path''' if default_extracted: __magic_name__ = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , a ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(a ) ) __magic_name__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __magic_name__ = xz_file __magic_name__ = ( DownloadConfig(extract_compressed_file=a ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a ) ) __magic_name__ = cached_path(a , download_config=a ) assert Path(a ).parent.parts[-2:] == expected def UpperCamelCase ( a ) -> List[Any]: '''simple docstring''' # absolute path __magic_name__ = str(Path(a ).resolve() ) assert cached_path(a ) == text_file # relative path __magic_name__ = str(Path(a ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(a ) == text_file def UpperCamelCase ( a ) -> Union[str, Any]: '''simple docstring''' # absolute path __magic_name__ = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(a ): cached_path(a ) # relative path __magic_name__ = '''./__missing_file__.txt''' with pytest.raises(a ): cached_path(a ) def UpperCamelCase ( a ) -> Optional[Any]: '''simple docstring''' __magic_name__ = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(a ) as f: __magic_name__ = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , a ) def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' with pytest.raises(a ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , a ) def UpperCamelCase ( a ) -> List[str]: '''simple docstring''' __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(a ): http_get('''https://huggingface.co''' , temp_file=a ) with pytest.raises(a ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , a ) def UpperCamelCase ( a ) -> List[str]: '''simple docstring''' __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(a ): ftp_get('''ftp://huggingface.co''' , temp_file=a ) with pytest.raises(a ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , a ) def UpperCamelCase ( a ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(a ): fsspec_get('''s3://huggingface.co''' , temp_file=a ) with pytest.raises(a ): fsspec_head('''s3://huggingface.co''' )
98
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["GLPNFeatureExtractor"] _lowerCAmelCase = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
98
1
import copy import re class __lowerCamelCase : """simple docstring""" UpperCamelCase__ = "hp" UpperCamelCase__ = {} UpperCamelCase__ = None @classmethod def UpperCamelCase ( cls , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = prefix _UpperCAmelCase = defaults cls.build_naming_info() @staticmethod def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" if len(UpperCAmelCase ) == 0: return "" _UpperCAmelCase = None if any(char.isdigit() for char in word ): raise Exception(F"""Parameters should not contain numbers: '{word}' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(UpperCAmelCase ) + 1 ): _UpperCAmelCase = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _UpperCAmelCase = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(UpperCAmelCase ): _UpperCAmelCase = '' while integer != 0: _UpperCAmelCase = chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s _UpperCAmelCase = 0 while True: _UpperCAmelCase = word + '#' + int_to_alphabetic(UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: _UpperCAmelCase = sword break _UpperCAmelCase = short_word _UpperCAmelCase = word return short_word @staticmethod def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = param_name.split('_' ) _UpperCAmelCase = [TrialShortNamer.shortname_for_word(UpperCAmelCase , UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _UpperCAmelCase = ['', '_'] for separator in separators: _UpperCAmelCase = separator.join(UpperCAmelCase ) if shortname not in info["reverse_short_param"]: _UpperCAmelCase = shortname _UpperCAmelCase = param_name return shortname return param_name @staticmethod def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TrialShortNamer.shortname_for_key(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = short_name _UpperCAmelCase = param_name @classmethod def UpperCamelCase ( cls ): """simple docstring""" if cls.NAMING_INFO is not None: return _UpperCAmelCase = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } _UpperCAmelCase = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = info @classmethod def UpperCamelCase ( cls , UpperCAmelCase ): """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None _UpperCAmelCase = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _UpperCAmelCase = cls.NAMING_INFO['short_param'][k] if isinstance(UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = 1 if v else 0 _UpperCAmelCase = '' if isinstance(UpperCAmelCase , (int, float) ) else '-' _UpperCAmelCase = F"""{key}{sep}{v}""" name.append(UpperCAmelCase ) return "_".join(UpperCAmelCase ) @classmethod def UpperCamelCase ( cls , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = repr[len(cls.PREFIX ) + 1 :] if repr == "": _UpperCAmelCase = [] else: _UpperCAmelCase = repr.split('_' ) _UpperCAmelCase = {} for value in values: if "-" in value: _UpperCAmelCase , _UpperCAmelCase = value.split('-' ) else: _UpperCAmelCase = re.sub('[0-9.]' , '' , UpperCAmelCase ) _UpperCAmelCase = float(re.sub('[^0-9.]' , '' , UpperCAmelCase ) ) _UpperCAmelCase = cls.NAMING_INFO['reverse_short_param'][p_k] _UpperCAmelCase = p_v for k in cls.DEFAULTS: if k not in parameters: _UpperCAmelCase = cls.DEFAULTS[k] return parameters
39
class lowerCamelCase__ : '''simple docstring''' def __init__( self :int ) -> Dict: __UpperCamelCase : Union[str, Any] = {} def _lowerCamelCase ( self :str ) -> None: print(self.vertex ) for i in self.vertex: print(a , " -> " , " -> ".join([str(a ) for j in self.vertex[i]] ) ) def _lowerCamelCase ( self :List[Any] , a :int , a :int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(a ) else: # else make a new vertex __UpperCamelCase : Optional[Any] = [to_vertex] def _lowerCamelCase ( self :Tuple ) -> None: # visited array for storing already visited nodes __UpperCamelCase : Dict = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(a , a ) def _lowerCamelCase ( self :Any , a :int , a :list ) -> None: # mark start vertex as visited __UpperCamelCase : int = True print(a , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(a , a ) if __name__ == "__main__": lowercase : Dict = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
232
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
260
from math import ceil def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Union[str, Any] )-> str: _snake_case : Union[str, Any] = list(range(0 , lowerCAmelCase ) ) _snake_case : int = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _snake_case : Any = [] for i in device_map_blocks: if device_map_blocks.count(lowerCAmelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCAmelCase ) # Missing blocks _snake_case : Dict = [i for i in blocks if i not in device_map_blocks] _snake_case : Tuple = [i for i in device_map_blocks if i not in blocks] if len(lowerCAmelCase ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCAmelCase ) ) if len(lowerCAmelCase ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCAmelCase ) ) if len(lowerCAmelCase ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCAmelCase ) ) def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: List[Any] )-> Optional[Any]: _snake_case : int = list(range(lowerCAmelCase ) ) _snake_case : Union[str, Any] = int(ceil(n_layers / len(lowerCAmelCase ) ) ) _snake_case : Optional[Any] = [layers[i : i + n_blocks] for i in range(0 , lowerCAmelCase , lowerCAmelCase )] return dict(zip(lowerCAmelCase , lowerCAmelCase ) )
260
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Dict = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __UpperCAmelCase ( lowerCamelCase__ ): UpperCamelCase = """swin2sr""" UpperCamelCase = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Tuple, __A : List[Any]=6_4, __A : List[Any]=1, __A : List[Any]=3, __A : Optional[int]=1_8_0, __A : Optional[int]=[6, 6, 6, 6, 6, 6], __A : List[Any]=[6, 6, 6, 6, 6, 6], __A : Any=8, __A : List[str]=2.0, __A : int=True, __A : Optional[int]=0.0, __A : Optional[int]=0.0, __A : List[Any]=0.1, __A : Optional[Any]="gelu", __A : Optional[int]=False, __A : str=0.0_2, __A : Optional[Any]=1E-5, __A : Optional[int]=2, __A : Any=1.0, __A : str="1conv", __A : str="pixelshuffle", **__A : Dict, ): super().__init__(**__a ) UpperCAmelCase : Tuple = image_size UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : Dict = num_channels UpperCAmelCase : List[Any] = embed_dim UpperCAmelCase : Dict = depths UpperCAmelCase : Tuple = len(__a ) UpperCAmelCase : str = num_heads UpperCAmelCase : int = window_size UpperCAmelCase : Union[str, Any] = mlp_ratio UpperCAmelCase : List[Any] = qkv_bias UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = drop_path_rate UpperCAmelCase : Dict = hidden_act UpperCAmelCase : List[str] = use_absolute_embeddings UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : List[Any] = upscale UpperCAmelCase : Any = img_range UpperCAmelCase : Optional[int] = resi_connection UpperCAmelCase : List[str] = upsampler
336
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" return (-y * np.log(__snake_case ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = np.dot(__snake_case, __snake_case ) return np.sum(y * scores - np.log(1 + np.exp(__snake_case ) ) ) def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case=7_00_00 ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__snake_case ): _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = np.dot(x.T, h - y ) / y.size _UpperCamelCase = theta - alpha * gradient # updating the weights _UpperCamelCase = np.dot(__snake_case, __snake_case ) _UpperCamelCase = sigmoid_function(__snake_case ) _UpperCamelCase = cost_function(__snake_case, __snake_case ) if iterations % 1_00 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _a = datasets.load_iris() _a = iris.data[:, :2] _a = (iris.target != 0) * 1 _a = 0.1 _a = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return sigmoid_function( np.dot(__snake_case, __snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((_a) , (_a)) = (x[:, 0].min(), x[:, 0].max()) ((_a) , (_a)) = (x[:, 1].min(), x[:, 1].max()) ((_a) , (_a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _a = np.c_[xxa.ravel(), xxa.ravel()] _a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
194
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class __magic_name__ ( __lowerCAmelCase): A: Optional[Any] = "falcon" A: Tuple = ["past_key_values"] def __init__( self : List[Any] , lowerCamelCase__ : List[Any]=65024 , lowerCamelCase__ : str=4544 , lowerCamelCase__ : Any=32 , lowerCamelCase__ : Any=71 , lowerCamelCase__ : Union[str, Any]=1E-5 , lowerCamelCase__ : Dict=0.02 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : str=0.0 , lowerCamelCase__ : Tuple=0.0 , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : str=False , lowerCamelCase__ : Any=False , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : List[Any]=11 , lowerCamelCase__ : int=11 , **lowerCamelCase__ : Tuple , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase__ : Optional[Any] = kwargs.pop('''n_embed''' , lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = hidden_size if n_embed is None else n_embed UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : Any = num_attention_heads UpperCamelCase__ : Union[str, Any] = layer_norm_epsilon UpperCamelCase__ : Optional[int] = initializer_range UpperCamelCase__ : Optional[Any] = use_cache UpperCamelCase__ : Optional[int] = hidden_dropout UpperCamelCase__ : Dict = attention_dropout UpperCamelCase__ : Optional[int] = bos_token_id UpperCamelCase__ : List[Any] = eos_token_id UpperCamelCase__ : List[str] = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCamelCase__ : List[Any] = alibi UpperCamelCase__ : Tuple = new_decoder_architecture UpperCamelCase__ : Optional[int] = multi_query # Ignored when new_decoder_architecture is True UpperCamelCase__ : Union[str, Any] = parallel_attn UpperCamelCase__ : List[str] = bias super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) @property def UpperCAmelCase__ ( self : str ) -> List[Any]: '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return not self.alibi
353
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __magic_name__ ( TensorFormatter[Mapping, "torch.Tensor", Mapping]): def __init__( self : Optional[int] , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : int ) -> List[str]: '''simple docstring''' super().__init__(features=lowerCamelCase__ ) UpperCamelCase__ : Any = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' import torch if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and column: if all( isinstance(lowerCamelCase__ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCamelCase__ ) return column def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] ) -> int: '''simple docstring''' import torch if isinstance(lowerCamelCase__ , (str, bytes, type(lowerCamelCase__ )) ): return value elif isinstance(lowerCamelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase__ : Tuple = {} if isinstance(lowerCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCamelCase__ : int = {'''dtype''': torch.intaa} elif isinstance(lowerCamelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase__ : Any = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCamelCase__ , PIL.Image.Image ): UpperCamelCase__ : Optional[int] = np.asarray(lowerCamelCase__ ) return torch.tensor(lowerCamelCase__ , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : Any ) -> Dict: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(lowerCamelCase__ , '''__array__''' ) and not isinstance(lowerCamelCase__ , torch.Tensor ): UpperCamelCase__ : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCamelCase__ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCamelCase__ ) for substruct in data_struct] ) elif isinstance(lowerCamelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCamelCase__ ) for substruct in data_struct] ) return self._tensorize(lowerCamelCase__ ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : dict ) -> Optional[int]: '''simple docstring''' return map_nested(self._recursive_tensorize , lowerCamelCase__ , map_list=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : pa.Table ) -> Mapping: '''simple docstring''' UpperCamelCase__ : int = self.numpy_arrow_extractor().extract_row(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = self.python_features_decoder.decode_row(lowerCamelCase__ ) return self.recursive_tensorize(lowerCamelCase__ ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : pa.Table ) -> "torch.Tensor": '''simple docstring''' UpperCamelCase__ : List[Any] = self.numpy_arrow_extractor().extract_column(lowerCamelCase__ ) UpperCamelCase__ : str = self.python_features_decoder.decode_column(lowerCamelCase__ , pa_table.column_names[0] ) UpperCamelCase__ : int = self.recursive_tensorize(lowerCamelCase__ ) UpperCamelCase__ : Tuple = self._consolidate(lowerCamelCase__ ) return column def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : pa.Table ) -> Mapping: '''simple docstring''' UpperCamelCase__ : Dict = self.numpy_arrow_extractor().extract_batch(lowerCamelCase__ ) UpperCamelCase__ : Any = self.python_features_decoder.decode_batch(lowerCamelCase__ ) UpperCamelCase__ : Tuple = self.recursive_tensorize(lowerCamelCase__ ) for column_name in batch: UpperCamelCase__ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
51
0
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __snake_case ( unittest.TestCase): """simple docstring""" @parameterized.expand([(None,), ("""foo.json""",)] ) def __lowercase ( self : Optional[int] , lowerCamelCase : List[str] ) -> Dict: lowerCAmelCase_ : List[Any] = GenerationConfig( do_sample=lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase , config_name=lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = GenerationConfig.from_pretrained(lowerCamelCase , config_name=lowerCamelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowerCamelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowerCamelCase ) def __lowercase ( self : Any ) -> str: lowerCAmelCase_ : str = AutoConfig.from_pretrained("""gpt2""" ) lowerCAmelCase_ : Dict = GenerationConfig.from_model_config(lowerCamelCase ) lowerCAmelCase_ : int = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowerCamelCase , lowerCamelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __lowercase ( self : Union[str, Any] ) -> Any: lowerCAmelCase_ : Dict = GenerationConfig() lowerCAmelCase_ : List[Any] = { """max_new_tokens""": 10_24, """foo""": """bar""", } lowerCAmelCase_ : Optional[Any] = copy.deepcopy(lowerCamelCase ) lowerCAmelCase_ : Tuple = generation_config.update(**lowerCamelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(lowerCamelCase , lowerCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowerCamelCase , {"""foo""": """bar"""} ) def __lowercase ( self : List[Any] ) -> List[Any]: lowerCAmelCase_ : Union[str, Any] = GenerationConfig() lowerCAmelCase_ : Optional[Any] = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowerCamelCase ) lowerCAmelCase_ : List[Any] = GenerationConfig.from_pretrained(lowerCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowerCAmelCase_ : Optional[Any] = GenerationConfig.from_model_config(lowerCamelCase ) assert not hasattr(lowerCamelCase , """foo""" ) # no new kwargs should be initialized if from config def __lowercase ( self : Tuple ) -> str: lowerCAmelCase_ : Tuple = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowerCamelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase_ : List[Any] = GenerationConfig( do_sample=lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowerCamelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = GenerationConfig.from_pretrained(lowerCamelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowerCamelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __snake_case ( unittest.TestCase): """simple docstring""" @classmethod def __lowercase ( cls : Optional[int] ) -> Optional[Any]: lowerCAmelCase_ : Tuple = TOKEN HfFolder.save_token(lowerCamelCase ) @classmethod def __lowercase ( cls : Optional[Any] ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def __lowercase ( self : Optional[int] ) -> int: lowerCAmelCase_ : Tuple = GenerationConfig( do_sample=lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowerCAmelCase_ : List[Any] = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase , repo_id="""test-generation-config""" , push_to_hub=lowerCamelCase , use_auth_token=self._token ) lowerCAmelCase_ : str = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) def __lowercase ( self : Optional[Any] ) -> Optional[Any]: lowerCAmelCase_ : Dict = GenerationConfig( do_sample=lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowerCAmelCase_ : Dict = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowerCamelCase , use_auth_token=self._token ) lowerCAmelCase_ : Union[str, Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) )
120
'''simple docstring''' from statistics import mean, stdev def UpperCamelCase_ ( A__ : list , A__ : int = 3 ): '''simple docstring''' lowerCAmelCase_ : List[str] = min(A__ ) lowerCAmelCase_ : Optional[int] = max(A__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , A__ ) for x in data] def UpperCamelCase_ ( A__ : list , A__ : int = 3 ): '''simple docstring''' lowerCAmelCase_ : str = mean(A__ ) lowerCAmelCase_ : List[Any] = stdev(A__ ) # standardize data return [round((x - mu) / (sigma) , A__ ) for x in data]
120
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __lowerCAmelCase (__lowerCAmelCase ): return (data["data"], data["target"]) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase : List[str] = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def __lowerCAmelCase (): _UpperCAmelCase : Optional[Any] = load_iris() _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = data_handling(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.2_5 ) _UpperCAmelCase : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data _UpperCAmelCase : List[Any] = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
322
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Optional[Any]=7 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Any=True , lowerCamelCase__ : int=99 , lowerCamelCase__ : int=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Optional[Any]=4 , lowerCamelCase__ : Optional[int]=37 , lowerCamelCase__ : Tuple="gelu" , lowerCamelCase__ : Any=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=5_12 , lowerCamelCase__ : Optional[int]=16 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Union[str, Any]=0.0_2 , lowerCamelCase__ : Tuple=4 , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : Dict = use_attention_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : Dict = num_choices def lowerCAmelCase__ ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_attention_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[Any] = config_and_inputs _UpperCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCAmelCase : Optional[int] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase__ ( self : Any ) ->List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] = model_class_name.from_pretrained("albert-base-v2" ) _UpperCAmelCase : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = FlaxAlbertModel.from_pretrained("albert-base-v2" ) _UpperCAmelCase : List[Any] = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0] _UpperCAmelCase : List[Any] = (1, 11, 7_68) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1E-4 ) )
322
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case ( metaclass=__UpperCAmelCase ): """simple docstring""" snake_case__ = ["note_seq"] def __init__( self : Optional[Any] ,*lowerCamelCase__ : int ,**lowerCamelCase__ : List[Any] ): requires_backends(self ,['note_seq'] ) @classmethod def __lowerCAmelCase ( cls : int ,*lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Tuple ): requires_backends(cls ,['note_seq'] ) @classmethod def __lowerCAmelCase ( cls : int ,*lowerCamelCase__ : int ,**lowerCamelCase__ : Optional[Any] ): requires_backends(cls ,['note_seq'] )
98
"""simple docstring""" import requests from bsa import BeautifulSoup def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = BeautifulSoup(requests.get(lowerCamelCase , params=lowerCamelCase ).content , 'html.parser' ) UpperCAmelCase__ = soup.find('div' , attrs={'class': 'gs_ri'} ) UpperCAmelCase__ = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
98
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCAmelCase__ = imread(r"digital_image_processing/image_data/lena_small.jpg") UpperCAmelCase__ = cvtColor(img, COLOR_BGR2GRAY) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = cn.convert_to_negative(_UpperCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def A ( ) -> Union[str, Any]: '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCAmelCase , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def A ( ) -> Any: '''simple docstring''' _UpperCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() _UpperCAmelCase = canny.canny(_UpperCAmelCase ) # assert canny array for at least one True assert canny_array.any() def A ( ) -> Dict: '''simple docstring''' assert gg.gaussian_filter(_UpperCAmelCase , 5 , sigma=0.9 ).all() def A ( ) -> Dict: '''simple docstring''' # laplace diagonals _UpperCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _UpperCAmelCase = conv.img_convolve(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) assert res.any() def A ( ) -> Union[str, Any]: '''simple docstring''' assert med.median_filter(_UpperCAmelCase , 3 ).any() def A ( ) -> int: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = sob.sobel_filter(_UpperCAmelCase ) assert grad.any() and theta.any() def A ( ) -> str: '''simple docstring''' _UpperCAmelCase = sp.make_sepia(_UpperCAmelCase , 20 ) assert sepia.all() def A ( _UpperCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" ) -> str: '''simple docstring''' _UpperCAmelCase = bs.Burkes(imread(_UpperCAmelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def A ( _UpperCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> List[str]: '''simple docstring''' _UpperCAmelCase = rs.NearestNeighbour(imread(_UpperCAmelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def A ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. _UpperCAmelCase = imread(_UpperCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = image[x_coordinate][y_coordinate] _UpperCAmelCase = lbp.get_neighbors_pixel( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _UpperCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _UpperCAmelCase = lbp.local_binary_value(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert lbp_image.any()
290
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __lowerCAmelCase : def __init__( self : str , A : str , A : Dict=13 , A : int=7 , A : Tuple=True , A : Union[str, Any]=True , A : Any=True , A : Dict=True , A : Dict=99 , A : Tuple=32 , A : Any=2 , A : Any=4 , A : Any=37 , A : Optional[Any]="gelu" , A : List[Any]=0.1 , A : Tuple=0.1 , A : Optional[Any]=5_12 , A : Tuple=16 , A : int=2 , A : List[str]=0.0_2 , A : int=False , A : List[Any]=True , A : Optional[Any]="None" , A : Union[str, Any]=3 , A : List[str]=4 , A : List[Any]=None , ) -> int: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = relative_attention _UpperCAmelCase = position_biased_input _UpperCAmelCase = pos_att_type _UpperCAmelCase = scope def _lowerCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int] , A : Tuple , A : int , A : Any , A : List[str] , A : List[str] , A : int) -> Tuple: """simple docstring""" _UpperCAmelCase = TFDebertaVaModel(config=A) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : str , A : Tuple , A : Tuple , A : Optional[int] , A : List[str] , A : Any , A : List[str] , A : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFDebertaVaForMaskedLM(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : List[Any] , A : Tuple , A : Tuple , A : Optional[int] , A : Optional[int] , A : List[Any] , A : Any , A : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFDebertaVaForSequenceClassification(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : Union[str, Any] , A : List[Any] , A : List[Any] , A : List[str] , A : Optional[Any] , A : int , A : Any , A : int) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFDebertaVaForTokenClassification(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : List[Any] , A : List[Any] , A : List[str] , A : Dict , A : Dict , A : Any , A : Tuple , A : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = TFDebertaVaForQuestionAnswering(config=A) _UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFDebertaVaModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A , hidden_size=37) def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A) def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A) def _lowerCamelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A) @slow def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge') self.assertIsNotNone(A) @require_tf class __lowerCAmelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet') def _lowerCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" pass @slow def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge') _UpperCAmelCase = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]]) _UpperCAmelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) _UpperCAmelCase = model(A , attention_mask=A)[0] _UpperCAmelCase = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]]) tf.debugging.assert_near(output[:, 1:4, 1:4] , A , atol=1E-4)
290
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : str = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """mvp""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : int , __UpperCamelCase : str=5_0_2_6_7 , __UpperCamelCase : int=1_0_2_4 , __UpperCamelCase : Tuple=1_2 , __UpperCamelCase : str=4_0_9_6 , __UpperCamelCase : List[str]=1_6 , __UpperCamelCase : Union[str, Any]=1_2 , __UpperCamelCase : List[str]=4_0_9_6 , __UpperCamelCase : Tuple=1_6 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Optional[int]=0.0 , __UpperCamelCase : Optional[int]="gelu" , __UpperCamelCase : List[str]=1_0_2_4 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Optional[int]=0.0 , __UpperCamelCase : Tuple=0.0_2 , __UpperCamelCase : int=0.0 , __UpperCamelCase : Tuple=False , __UpperCamelCase : Any=True , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : Optional[int]=0 , __UpperCamelCase : str=2 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : Dict=False , __UpperCamelCase : Optional[int]=1_0_0 , __UpperCamelCase : int=8_0_0 , **__UpperCamelCase : int , )->Optional[int]: _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = classifier_dropout _UpperCAmelCase = use_cache _UpperCAmelCase = encoder_layers _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = use_prompt _UpperCAmelCase = prompt_length _UpperCAmelCase = prompt_mid_dim super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , forced_eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCamelCase ): _UpperCAmelCase = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' )
260
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = args.pruning_method _UpperCAmelCase = args.threshold _UpperCAmelCase = args.model_name_or_path.rstrip('''/''' ) _UpperCAmelCase = args.target_model_path print(f'Load fine-pruned model from {model_name_or_path}' ) _UpperCAmelCase = torch.load(os.path.join(_SCREAMING_SNAKE_CASE , '''pytorch_model.bin''' ) ) _UpperCAmelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _UpperCAmelCase = tensor print(f'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: _UpperCAmelCase = tensor print(f'Copied layer {name}' ) elif "bias" in name: _UpperCAmelCase = tensor print(f'Copied layer {name}' ) else: if pruning_method == "magnitude": _UpperCAmelCase = MagnitudeBinarizer.apply(inputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue _UpperCAmelCase = name[:-6] _UpperCAmelCase = model[f'{prefix_}mask_scores'] _UpperCAmelCase = TopKBinarizer.apply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _UpperCAmelCase = name[:-6] _UpperCAmelCase = model[f'{prefix_}mask_scores'] _UpperCAmelCase = ThresholdBinarizer.apply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue _UpperCAmelCase = name[:-6] _UpperCAmelCase = model[f'{prefix_}mask_scores'] _UpperCAmelCase , _UpperCAmelCase = -0.1, 1.1 _UpperCAmelCase = torch.sigmoid(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = s * (r - l) + l _UpperCAmelCase = s_bar.clamp(min=0.0 , max=1.0 ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: _UpperCAmelCase = os.path.join( os.path.dirname(_SCREAMING_SNAKE_CASE ) , f'bertarized_{os.path.basename(_SCREAMING_SNAKE_CASE )}' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): shutil.copytree(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f'\nCreated folder {target_model_path}' ) torch.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) __A : Optional[int] = parser.parse_args() main(args)
260
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Optional[int]=1.0 , lowercase__ : int=None , lowercase__ : Tuple=None ) -> Tuple: '''simple docstring''' if rng is None: lowerCAmelCase_ : int = global_rng lowerCAmelCase_ : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __a ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Optional[Any]=4_00 , UpperCAmelCase : Union[str, Any]=20_00 , UpperCAmelCase : str=1 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[str]=1_60_00 , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[str]=True , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : List[str] = min_seq_length lowerCAmelCase_ : int = max_seq_length lowerCAmelCase_ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase_ : Optional[int] = feature_size lowerCAmelCase_ : Optional[int] = padding_value lowerCAmelCase_ : List[Any] = sampling_rate lowerCAmelCase_ : Tuple = return_attention_mask lowerCAmelCase_ : List[Any] = do_normalize def A ( self : Optional[Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : str , UpperCAmelCase : List[Any]=False , UpperCAmelCase : List[Any]=False ): def _flatten(UpperCAmelCase : int ): return list(itertools.chain(*UpperCAmelCase ) ) if equal_length: lowerCAmelCase_ : str = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase_ : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase_ : Optional[int] = [np.asarray(UpperCAmelCase ) for x in speech_inputs] return speech_inputs class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = WavaVecaFeatureExtractor def A ( self : Dict ): lowerCAmelCase_ : str = WavaVecaFeatureExtractionTester(self ) def A ( self : str , UpperCAmelCase : Dict ): self.assertTrue(np.all(np.mean(UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def A ( self : Dict ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : List[Any] = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase_ : List[str] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values lowerCAmelCase_ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test batched lowerCAmelCase_ : str = feat_extract(UpperCAmelCase , return_tensors="""np""" ).input_values lowerCAmelCase_ : Any = feat_extract(UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase_ : Any = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase_ : Union[str, Any] = np.asarray(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = feat_extract(UpperCAmelCase , return_tensors="""np""" ).input_values lowerCAmelCase_ : List[Any] = feat_extract(UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A ( self : Any ): lowerCAmelCase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : List[str] = ["""longest""", """max_length""", """do_not_pad"""] lowerCAmelCase_ : Optional[Any] = [None, 16_00, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : Any = feat_extract(UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors="""np""" ) lowerCAmelCase_ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def A ( self : int ): lowerCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : Dict = range(8_00 , 14_00 , 2_00 ) lowerCAmelCase_ : Union[str, Any] = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase_ : Optional[int] = ["""longest""", """max_length""", """do_not_pad"""] lowerCAmelCase_ : Tuple = [None, 16_00, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : int = feat_extract(UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase ) lowerCAmelCase_ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def A ( self : Any ): lowerCAmelCase_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : List[str] = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=10_00 , padding="""max_length""" , return_tensors="""np""" ) lowerCAmelCase_ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def A ( self : Dict ): lowerCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : List[str] = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=10_00 , padding="""longest""" , return_tensors="""np""" ) lowerCAmelCase_ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) lowerCAmelCase_ : str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : Any = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=20_00 , padding="""longest""" , return_tensors="""np""" ) lowerCAmelCase_ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def A ( self : str ): import torch lowerCAmelCase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : Optional[Any] = np.random.rand(1_00 ).astype(np.floataa ) lowerCAmelCase_ : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase_ : Optional[int] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase_ : str = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def A ( self : Tuple ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCAmelCase_ : Union[str, Any] = WavaVecaConfig.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def snake_case_ ( _lowerCAmelCase : List[str] ) -> Tuple: def wrapper(*_lowerCAmelCase : Any , **_lowerCAmelCase : Union[str, Any] ): UpperCAmelCase : Any = timeit.default_timer() UpperCAmelCase : int = func(*__A , **__A ) UpperCAmelCase : Union[str, Any] = timeit.default_timer() - starttime return delta UpperCAmelCase : Optional[Any] = func.__name__ return wrapper def snake_case_ ( _lowerCAmelCase : dict , _lowerCAmelCase : str=100 , _lowerCAmelCase : Dict=None ) -> str: UpperCAmelCase : List[Any] = [] UpperCAmelCase : Tuple = seq_shapes or {} for i in range(__A ): UpperCAmelCase : List[Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__A , _ArrayXD ): UpperCAmelCase : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__A , datasets.Value ): if v.dtype == "string": UpperCAmelCase : List[Any] = '''The small grey turtle was surprisingly fast when challenged.''' else: UpperCAmelCase : Optional[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__A , datasets.Sequence ): while isinstance(__A , datasets.Sequence ): UpperCAmelCase : Optional[Any] = v.feature UpperCAmelCase : Optional[int] = seq_shapes[k] UpperCAmelCase : Union[str, Any] = np.random.rand(*__A ).astype(v.dtype ) UpperCAmelCase : List[str] = data dummy_data.append((i, example) ) return dummy_data def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=100 , _lowerCAmelCase : str=None ) -> Optional[Any]: UpperCAmelCase : List[Any] = generate_examples(__A , num_examples=__A , seq_shapes=__A ) with ArrowWriter(features=__A , path=__A ) as writer: for key, record in dummy_data: UpperCAmelCase : Union[str, Any] = features.encode_example(__A ) writer.write(__A ) UpperCAmelCase , UpperCAmelCase : str = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) UpperCAmelCase : Dict = datasets.Dataset.from_file(filename=__A , info=datasets.DatasetInfo(features=__A ) ) return dataset
23
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Dict = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
0
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowercase__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase : Any = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , _UpperCAmelCase ).groups()[0] class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : str, lowerCAmelCase : Dict, lowerCAmelCase : List[Any]=None, lowerCAmelCase : Optional[Any]=None ) -> Any: lowercase : Dict = file_names lowercase : str = image_transform lowercase : Union[str, Any] = label_to_id def __len__( self : Tuple ) -> str: return len(self.file_names ) def __getitem__( self : str, lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: lowercase : Any = self.file_names[idx] lowercase : int = PIL.Image.open(lowerCAmelCase ) lowercase : int = raw_image.convert('RGB' ) if self.image_transform is not None: lowercase : Union[str, Any] = self.image_transform(lowerCAmelCase ) lowercase : List[Any] = extract_label(lowerCAmelCase ) if self.label_to_id is not None: lowercase : Optional[Any] = self.label_to_id[label] return {"image": image, "label": label} def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' if args.with_tracking: lowercase : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowercase : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : Tuple = config['lr'] lowercase : int = int(config['num_epochs'] ) lowercase : Union[str, Any] = int(config['seed'] ) lowercase : Optional[int] = int(config['batch_size'] ) lowercase : Dict = config['image_size'] if not isinstance(_UpperCAmelCase , (list, tuple) ): lowercase : Optional[int] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": lowercase : Optional[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowercase : List[Any] = int(args.checkpointing_steps ) else: raise ValueError( f'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: lowercase : Union[str, Any] = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowercase : Dict = os.path.split(_UpperCAmelCase )[-1].split('.' )[0] accelerator.init_trackers(_UpperCAmelCase , _UpperCAmelCase ) # Grab all the image filenames lowercase : str = [os.path.join(args.data_dir , _UpperCAmelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences lowercase : Optional[int] = [extract_label(_UpperCAmelCase ) for fname in file_names] lowercase : Dict = list(set(_UpperCAmelCase ) ) id_to_label.sort() lowercase : Tuple = {lbl: i for i, lbl in enumerate(_UpperCAmelCase )} # Set the seed before splitting the data. np.random.seed(_UpperCAmelCase ) torch.manual_seed(_UpperCAmelCase ) torch.cuda.manual_seed_all(_UpperCAmelCase ) # Split our filenames between train and validation lowercase : Optional[Any] = np.random.permutation(len(_UpperCAmelCase ) ) lowercase : int = int(0.8 * len(_UpperCAmelCase ) ) lowercase : str = random_perm[:cut] lowercase : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop lowercase : List[Any] = Compose([RandomResizedCrop(_UpperCAmelCase , scale=(0.5, 1.0) ), ToTensor()] ) lowercase : Any = PetsDataset( [file_names[i] for i in train_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase ) # For evaluation, we use a deterministic Resize lowercase : Any = Compose([Resize(_UpperCAmelCase ), ToTensor()] ) lowercase : Union[str, Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase ) # Instantiate dataloaders. lowercase : List[Any] = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) lowercase : Optional[int] = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : Any = create_model('resnet50d' , pretrained=_UpperCAmelCase , num_classes=len(_UpperCAmelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : Dict = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowercase : Dict = False for param in model.get_classifier().parameters(): lowercase : Union[str, Any] = True # We normalize the batches of images to be a bit faster. lowercase : List[str] = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) lowercase : Tuple = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowercase : Dict = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler lowercase : Any = OneCycleLR(optimizer=_UpperCAmelCase , max_lr=_UpperCAmelCase , epochs=_UpperCAmelCase , steps_per_epoch=len(_UpperCAmelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase : Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase : Optional[Any] = 0 # We also need to keep track of the starting epoch so files are named properly lowercase : int = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) lowercase : Optional[int] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowercase : Tuple = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowercase : Dict = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowercase : Optional[Any] = os.path.splitext(_UpperCAmelCase )[0] if "epoch" in training_difference: lowercase : Optional[int] = int(training_difference.replace('epoch_' , '' ) ) + 1 lowercase : Tuple = None else: lowercase : str = int(training_difference.replace('step_' , '' ) ) lowercase : Optional[int] = resume_step // len(_UpperCAmelCase ) resume_step -= starting_epoch * len(_UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase , _UpperCAmelCase ): model.train() if args.with_tracking: lowercase : List[str] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowercase : Union[str, Any] = accelerator.skip_first_batches(_UpperCAmelCase , _UpperCAmelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowercase : Tuple = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase : Dict = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase : int = (batch['image'] - mean) / std lowercase : str = model(_UpperCAmelCase ) lowercase : Dict = torch.nn.functional.cross_entropy(_UpperCAmelCase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : List[str] = f'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowercase : Union[str, Any] = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) model.eval() lowercase : Union[str, Any] = 0 lowercase : List[str] = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase : Dict = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase : Dict = (batch['image'] - mean) / std with torch.no_grad(): lowercase : int = model(_UpperCAmelCase ) lowercase : List[Any] = outputs.argmax(dim=-1 ) lowercase , lowercase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['label']) ) lowercase : List[str] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowercase : Optional[int] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}: {1_00 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 1_00 * eval_metric, 'train_loss': total_loss.item() / len(_UpperCAmelCase ), 'epoch': epoch, } , step=_UpperCAmelCase , ) if checkpointing_steps == "epoch": lowercase : int = f'''epoch_{epoch}''' if args.output_dir is not None: lowercase : Dict = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) if args.with_tracking: accelerator.end_training() def lowercase__ ( ) -> Dict: '''simple docstring''' lowercase : Any = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=_UpperCAmelCase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=_UpperCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_UpperCAmelCase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowercase : Optional[Any] = parser.parse_args() lowercase : Tuple = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 2_24} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
53
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _UpperCamelCase: Any = logging.get_logger(__name__) class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = ['pixel_values'] def __init__( self : Tuple, lowerCAmelCase : bool = True, lowerCAmelCase : Union[int, float] = 1 / 255, lowerCAmelCase : bool = True, lowerCAmelCase : int = 8, **lowerCAmelCase : Optional[int], ) -> None: super().__init__(**lowerCAmelCase ) lowercase : Dict = do_rescale lowercase : Tuple = rescale_factor lowercase : List[str] = do_pad lowercase : int = pad_size def lowercase ( self : List[Any], lowerCAmelCase : np.ndarray, lowerCAmelCase : float, lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None, **lowerCAmelCase : int ) -> np.ndarray: return rescale(lowerCAmelCase, scale=lowerCAmelCase, data_format=lowerCAmelCase, **lowerCAmelCase ) def lowercase ( self : Union[str, Any], lowerCAmelCase : np.ndarray, lowerCAmelCase : int, lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None ) -> List[Any]: lowercase , lowercase : Tuple = get_image_size(lowerCAmelCase ) lowercase : Optional[Any] = (old_height // size + 1) * size - old_height lowercase : Dict = (old_width // size + 1) * size - old_width return pad(lowerCAmelCase, ((0, pad_height), (0, pad_width)), mode='symmetric', data_format=lowerCAmelCase ) def lowercase ( self : Any, lowerCAmelCase : ImageInput, lowerCAmelCase : Optional[bool] = None, lowerCAmelCase : Optional[float] = None, lowerCAmelCase : Optional[bool] = None, lowerCAmelCase : Optional[int] = None, lowerCAmelCase : Optional[Union[str, TensorType]] = None, lowerCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST, **lowerCAmelCase : Any, ) -> List[Any]: lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Any = do_pad if do_pad is not None else self.do_pad lowercase : int = pad_size if pad_size is not None else self.pad_size lowercase : Tuple = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. lowercase : Dict = [to_numpy_array(lowerCAmelCase ) for image in images] if do_rescale: lowercase : Optional[int] = [self.rescale(image=lowerCAmelCase, scale=lowerCAmelCase ) for image in images] if do_pad: lowercase : List[str] = [self.pad(lowerCAmelCase, size=lowerCAmelCase ) for image in images] lowercase : Optional[int] = [to_channel_dimension_format(lowerCAmelCase, lowerCAmelCase ) for image in images] lowercase : Tuple = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase, tensor_type=lowerCAmelCase )
53
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _a ( SCREAMING_SNAKE_CASE : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def _a ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> XGBClassifier: """simple docstring""" __lowerCAmelCase: int = XGBClassifier() classifier.fit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return classifier def _a ( ) -> None: """simple docstring""" __lowerCAmelCase: Any = load_iris() __lowerCAmelCase , __lowerCAmelCase: Tuple = data_handling(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: int = train_test_split( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , test_size=0.2_5 ) __lowerCAmelCase: Optional[Any] = iris['target_names'] # Create an XGBoost Classifier from the training data __lowerCAmelCase: List[str] = xgboost(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , display_labels=SCREAMING_SNAKE_CASE , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
322
def _a ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = sum(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowerCAmelCase: Tuple = True for i in range(1 , s + 1 ): __lowerCAmelCase: Any = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowerCAmelCase: Optional[int] = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase: Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowerCAmelCase: Tuple = s - 2 * j break return diff
322
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __a :Optional[int] = TypeVar('T') def __snake_case ( __UpperCamelCase : int ): """simple docstring""" return (position - 1) // 2 def __snake_case ( __UpperCamelCase : int ): """simple docstring""" return (2 * position) + 1 def __snake_case ( __UpperCamelCase : int ): """simple docstring""" return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self : int ): A_ = [] A_ = {} A_ = 0 def __len__( self : Tuple ): return self.elements def __repr__( self : Union[str, Any] ): return str(self.heap ) def __A ( self : List[str] ): # Check if the priority queue is empty return self.elements == 0 def __A ( self : int , UpperCAmelCase : T , UpperCAmelCase : int ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) A_ = self.elements self.elements += 1 self._bubble_up(UpperCAmelCase ) def __A ( self : str ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) A_ , A_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: A_ , A_ = self.heap[0] self._bubble_down(UpperCAmelCase ) return elem def __A ( self : Tuple , UpperCAmelCase : T , UpperCAmelCase : int ): # Update the weight of the given key A_ = self.position_map[elem] A_ = (elem, weight) if position > 0: A_ = get_parent_position(UpperCAmelCase ) A_ , A_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCAmelCase ) else: self._bubble_down(UpperCAmelCase ) else: self._bubble_down(UpperCAmelCase ) def __A ( self : Optional[int] , UpperCAmelCase : T ): # Place a node at the proper position (upward movement) [to be used internally # only] A_ = self.position_map[elem] if curr_pos == 0: return None A_ = get_parent_position(UpperCAmelCase ) A_ , A_ = self.heap[curr_pos] A_ , A_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_up(UpperCAmelCase ) return None def __A ( self : str , UpperCAmelCase : T ): # Place a node at the proper position (downward movement) [to be used # internally only] A_ = self.position_map[elem] A_ , A_ = self.heap[curr_pos] A_ = get_child_left_position(UpperCAmelCase ) A_ = get_child_right_position(UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: A_ , A_ = self.heap[child_left_position] A_ , A_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) if child_left_position < self.elements: A_ , A_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) else: return None if child_right_position < self.elements: A_ , A_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) return None def __A ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int ): # Swap the nodes at the given positions A_ = self.heap[nodea_pos][0] A_ = self.heap[nodea_pos][0] A_ , A_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) A_ = nodea_pos A_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self : Dict ): A_ = {} A_ = 0 def __repr__( self : Tuple ): return str(self.connections ) def __len__( self : List[str] ): return self.nodes def __A ( self : Optional[int] , UpperCAmelCase : T ): # Add a node in the graph if it is not in the graph if node not in self.connections: A_ = {} self.nodes += 1 def __A ( self : Any , UpperCAmelCase : T , UpperCAmelCase : T , UpperCAmelCase : int ): # Add an edge between 2 nodes in the graph self.add_node(UpperCAmelCase ) self.add_node(UpperCAmelCase ) A_ = weight A_ = weight def __snake_case ( __UpperCamelCase : GraphUndirectedWeighted[T] ,): """simple docstring""" A_ = {node: maxsize for node in graph.connections} A_ = {node: None for node in graph.connections} A_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__UpperCamelCase ,__UpperCamelCase ) if priority_queue.is_empty(): return dist, parent # initialization A_ = priority_queue.extract_min() A_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: A_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCamelCase ,dist[neighbour] ) A_ = node # running prim's algorithm while not priority_queue.is_empty(): A_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: A_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCamelCase ,dist[neighbour] ) A_ = node return dist, parent
329
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
1
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) lowercase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } lowercase__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Tuple: for attribute in key.split('.' ): a__: List[str] = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: a__: Tuple = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: a__: Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": a__: Dict = value elif weight_type == "weight_g": a__: Union[str, Any] = value elif weight_type == "weight_v": a__: Union[str, Any] = value elif weight_type == "bias": a__: Optional[Any] = value else: a__: Any = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: int = [] a__: Optional[Any] = fairseq_model.state_dict() a__: str = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a__: str = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) a__: int = True else: for key, mapped_key in MAPPING.items(): a__: int = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue a__: Dict = True if "*" in mapped_key: a__: Union[str, Any] = name.split(_SCREAMING_SNAKE_CASE )[0].split('.' )[-2] a__: Optional[int] = mapped_key.replace('*' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: a__: List[str] = 'weight_g' elif "weight_v" in name: a__: List[Any] = 'weight_v' elif "bias" in name: a__: Any = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj a__: List[Any] = 'weight' else: a__: List[Any] = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F'Unused weights: {unused_weights}' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: a__: int = full_name.split('conv_layers.' )[-1] a__: List[str] = name.split('.' ) a__: List[Any] = int(items[0] ) a__: Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a__: List[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a__: Any = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) a__: Union[str, Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) a__: List[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True ) ->Optional[int]: if config_path is not None: a__: int = UniSpeechSatConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: a__: Dict = UniSpeechSatConfig() a__: Any = '' if is_finetuned: a__: str = UniSpeechSatForCTC(_SCREAMING_SNAKE_CASE ) else: a__: Union[str, Any] = UniSpeechSatForPreTraining(_SCREAMING_SNAKE_CASE ) a__ , a__ , a__: List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) a__: int = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowercase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
290
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: while a != 0: a__ , a__: List[str] = b % a, a return b def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: if gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) != 1: a__: Dict = F'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(_SCREAMING_SNAKE_CASE ) a__ , a__ , a__: Union[str, Any] = 1, 0, a a__ , a__ , a__: Any = 0, 1, m while va != 0: a__: int = ua // va a__ , a__ , a__ , a__ , a__ , a__: Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
290
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class A_ ( _a ): lowerCAmelCase__ = 'megatron-bert' def __init__( self: Any ,__lowerCAmelCase: List[Any]=29_056 ,__lowerCAmelCase: Optional[Any]=1_024 ,__lowerCAmelCase: int=24 ,__lowerCAmelCase: Union[str, Any]=16 ,__lowerCAmelCase: Optional[int]=4_096 ,__lowerCAmelCase: str="gelu" ,__lowerCAmelCase: int=0.1 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: List[Any]=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: str=0.02 ,__lowerCAmelCase: List[str]=1e-12 ,__lowerCAmelCase: List[str]=0 ,__lowerCAmelCase: str="absolute" ,__lowerCAmelCase: Union[str, Any]=True ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = position_embedding_type _lowerCamelCase : Tuple = use_cache
340
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False ) -> List[str]: '''simple docstring''' _lowerCamelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _lowerCamelCase : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): _lowerCamelCase : Any = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowerCamelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _lowerCamelCase : int = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_lowerCamelCase )-1}""" ) if "norm" in key: _lowerCamelCase : Optional[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowerCamelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _lowerCamelCase : Tuple = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_lowerCamelCase )-1}""" ) if "layer_norm1" in key: _lowerCamelCase : Union[str, Any] = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _lowerCamelCase : int = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _lowerCamelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _lowerCamelCase : Optional[Any] = key.replace(F"""block{idx}""" , F"""block.{int(_lowerCamelCase )-1}""" ) if "attn.q" in key: _lowerCamelCase : Optional[int] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _lowerCamelCase : List[str] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _lowerCamelCase : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: _lowerCamelCase : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: _lowerCamelCase : Dict = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _lowerCamelCase : int = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _lowerCamelCase : str = key.replace("linear_fuse.conv" , "linear_fuse" ) _lowerCamelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowerCamelCase : Union[str, Any] = key[key.find("linear_c" ) + len("linear_c" )] _lowerCamelCase : Optional[int] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_lowerCamelCase )-1}""" ) if key.startswith("head" ): _lowerCamelCase : List[str] = key.replace("head" , "classifier" ) _lowerCamelCase : Union[str, Any] = value return new_state_dict def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _lowerCamelCase : Optional[Any] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _lowerCamelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _lowerCamelCase : int = kv_bias[: config.hidden_sizes[i]] _lowerCamelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _lowerCamelCase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase_( ) -> Dict: '''simple docstring''' _lowerCamelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Any = SegformerConfig() _lowerCamelCase : int = False # set attributes based on model_name _lowerCamelCase : Any = "huggingface/label-files" if "segformer" in model_name: _lowerCamelCase : str = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _lowerCamelCase : str = 150 _lowerCamelCase : Dict = "ade20k-id2label.json" _lowerCamelCase : Dict = (1, 150, 128, 128) elif "city" in model_name: _lowerCamelCase : List[str] = 19 _lowerCamelCase : Tuple = "cityscapes-id2label.json" _lowerCamelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = model_name[4:6] _lowerCamelCase : Tuple = 1000 _lowerCamelCase : List[Any] = "imagenet-1k-id2label.json" _lowerCamelCase : List[Any] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : int = 256 elif size == "b2": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : List[Any] = 768 _lowerCamelCase : Any = [3, 4, 6, 3] elif size == "b3": _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 768 _lowerCamelCase : Optional[Any] = [3, 4, 18, 3] elif size == "b4": _lowerCamelCase : str = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 768 _lowerCamelCase : Dict = [3, 8, 27, 3] elif size == "b5": _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Tuple = 768 _lowerCamelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) _lowerCamelCase : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowerCamelCase , align=_lowerCamelCase , do_random_crop=_lowerCamelCase ) # prepare image _lowerCamelCase : List[str] = prepare_img() _lowerCamelCase : Dict = image_processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _lowerCamelCase : Tuple = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) else: _lowerCamelCase : int = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _lowerCamelCase : str = rename_keys(_lowerCamelCase , encoder_only=_lowerCamelCase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowerCamelCase , _lowerCamelCase ) # create HuggingFace model and load state dict if encoder_only: _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = SegformerForImageClassification(_lowerCamelCase ) else: _lowerCamelCase : List[str] = SegformerForSemanticSegmentation(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() # forward pass _lowerCamelCase : Any = model(_lowerCamelCase ) _lowerCamelCase : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _lowerCamelCase : str = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _lowerCamelCase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _lowerCamelCase : Optional[Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _lowerCamelCase : Any = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _lowerCamelCase : Dict = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _lowerCamelCase : Optional[int] = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [ [-1.13_72e01, -1.27_87e01, -1.34_77e01], [-1.25_36e01, -1.41_94e01, -1.44_09e01], [-1.32_17e01, -1.48_88e01, -1.53_27e01], ], [ [-1.47_91e01, -1.71_22e01, -1.82_77e01], [-1.71_63e01, -1.91_92e01, -1.95_33e01], [-1.78_97e01, -1.99_91e01, -2.03_15e01], ], [ [7.67_23e-01, 4.19_21e-01, -7.78_78e-02], [4.77_72e-01, 9.55_57e-03, -2.80_82e-01], [3.60_32e-01, -2.48_26e-01, -5.11_68e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _lowerCamelCase : Union[str, Any] = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _lowerCamelCase : List[Any] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _lowerCamelCase : Tuple = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _lowerCamelCase : Any = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _lowerCamelCase : List[str] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _lowerCamelCase : str = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: _lowerCamelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) _lowerCAmelCase : str = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
340
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
315
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowerCamelCase ( A__ , A__ , A__=1e-1_2 ) -> Dict: """simple docstring""" UpperCamelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A__ , axis=1 ) , a_min=A__ ) ).T UpperCamelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A__ , axis=1 ) , a_min=A__ ) ).T return jnp.matmul(A__ , norm_emb_a.T ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = jnp.floataa def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = FlaxCLIPVisionModule(self.config.vision_config ) UpperCamelCase = nn.Dense(self.config.projection_dim , use_bias=UpperCamelCase__ , dtype=self.dtype ) UpperCamelCase = self.param('concept_embeds' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) UpperCamelCase = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCamelCase = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (1_7,) ) UpperCamelCase = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self : str , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.vision_model(UpperCamelCase__ )[1] UpperCamelCase = self.visual_projection(UpperCamelCase__ ) UpperCamelCase = jax_cosine_distance(UpperCamelCase__ , self.special_care_embeds ) UpperCamelCase = jax_cosine_distance(UpperCamelCase__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCamelCase = 0.0 UpperCamelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCamelCase = jnp.round(UpperCamelCase__ , 3 ) UpperCamelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCamelCase__ ) # Use a lower threshold if an image has any special care concept UpperCamelCase = is_special_care * 0.0_1 UpperCamelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCamelCase = jnp.round(UpperCamelCase__ , 3 ) UpperCamelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = CLIPConfig _SCREAMING_SNAKE_CASE = """clip_input""" _SCREAMING_SNAKE_CASE = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] , UpperCamelCase__ : CLIPConfig , UpperCamelCase__ : Optional[Tuple] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : jnp.dtype = jnp.floataa , UpperCamelCase__ : bool = True , **UpperCamelCase__ : List[str] , ): """simple docstring""" if input_shape is None: UpperCamelCase = (1, 2_2_4, 2_2_4, 3) UpperCamelCase = self.module_class(config=UpperCamelCase__ , dtype=UpperCamelCase__ , **UpperCamelCase__ ) super().__init__(UpperCamelCase__ , UpperCamelCase__ , input_shape=UpperCamelCase__ , seed=UpperCamelCase__ , dtype=UpperCamelCase__ , _do_init=_do_init ) def A ( self : int , UpperCamelCase__ : jax.random.KeyArray , UpperCamelCase__ : Tuple , UpperCamelCase__ : FrozenDict = None ): """simple docstring""" UpperCamelCase = jax.random.normal(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = jax.random.split(UpperCamelCase__ ) UpperCamelCase = {'params': params_rng, 'dropout': dropout_rng} UpperCamelCase = self.module.init(UpperCamelCase__ , UpperCamelCase__ )['params'] return random_params def __call__( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : dict = None , ): """simple docstring""" UpperCamelCase = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(UpperCamelCase__ , dtype=jnp.floataa ) , rngs={} , )
28
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
from __future__ import annotations from math import ceil, floor, sqrt def __lowercase ( _UpperCamelCase = 2000000 ) ->int: """simple docstring""" lowercase : list[int] = [0] lowercase : int for idx in range(1, ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target lowercase : int = 0 # an estimate of b, using the quadratic formula lowercase : float # the largest integer less than b_estimate lowercase : int # the largest integer less than b_estimate lowercase : int # the triangle number corresponding to b_floor lowercase : int # the triangle number corresponding to b_ceil lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:], 1 ): lowercase : List[str] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowercase : str = floor(_UpperCamelCase ) lowercase : int = ceil(_UpperCamelCase ) lowercase : str = triangle_numbers[b_floor] lowercase : str = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowercase : Optional[int] = triangle_b_first_guess * triangle_a lowercase : Tuple = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowercase : Dict = triangle_b_second_guess * triangle_a lowercase : Any = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
173
0
'''simple docstring''' a__ : str =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' a__ : Tuple =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] a__ : Dict ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
53
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( __lowercase : Optional[int] , __lowercase : Tuple , __lowercase : Tuple ) -> Tuple: """simple docstring""" return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def lowercase__ ( __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[str] , __lowercase : List[str]="attention" ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) __UpperCamelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) __UpperCamelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) __UpperCamelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __UpperCamelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) __UpperCamelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase__ ( __lowercase : Tuple , __lowercase : Dict , __lowercase : int , __lowercase : List[Any]=False ) -> Optional[Any]: """simple docstring""" if split_mlp_wi: __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] __UpperCamelCase = (wi_a, wi_a) else: __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] __UpperCamelCase = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : Optional[Any] , __lowercase : List[str] , __lowercase : Optional[int] ) -> str: """simple docstring""" return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def lowercase__ ( __lowercase : dict , *, __lowercase : int , __lowercase : bool , __lowercase : bool = False ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = traverse_util.flatten_dict(variables['target'] ) __UpperCamelCase = {'/'.join(__lowercase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCamelCase = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , __lowercase ) __UpperCamelCase = collections.OrderedDict() # Shared embeddings. __UpperCamelCase = old['token_embedder/embedding'] # Encoder. for i in range(__lowercase ): # Block i, layer 0 (Self Attention). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'encoder' , 'pre_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = tax_attention_lookup(__lowercase , __lowercase , 'encoder' , 'attention' ) __UpperCamelCase = layer_norm __UpperCamelCase = k.T __UpperCamelCase = o.T __UpperCamelCase = q.T __UpperCamelCase = v.T # Block i, layer 1 (MLP). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'encoder' , 'pre_mlp_layer_norm' ) __UpperCamelCase , __UpperCamelCase = tax_mlp_lookup(__lowercase , __lowercase , 'encoder' , __lowercase ) __UpperCamelCase = layer_norm if split_mlp_wi: __UpperCamelCase = wi[0].T __UpperCamelCase = wi[1].T else: __UpperCamelCase = wi.T __UpperCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCamelCase = tax_relpos_bias_lookup( __lowercase , __lowercase , 'encoder' ).T __UpperCamelCase = old['encoder/encoder_norm/scale'] if not scalable_attention: __UpperCamelCase = tax_relpos_bias_lookup( __lowercase , 0 , 'encoder' ).T __UpperCamelCase = tax_relpos_bias_lookup( __lowercase , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(__lowercase ): # Block i, layer 0 (Self Attention). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'decoder' , 'pre_self_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = tax_attention_lookup(__lowercase , __lowercase , 'decoder' , 'self_attention' ) __UpperCamelCase = layer_norm __UpperCamelCase = k.T __UpperCamelCase = o.T __UpperCamelCase = q.T __UpperCamelCase = v.T # Block i, layer 1 (Cross Attention). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'decoder' , 'pre_cross_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = tax_attention_lookup(__lowercase , __lowercase , 'decoder' , 'encoder_decoder_attention' ) __UpperCamelCase = layer_norm __UpperCamelCase = k.T __UpperCamelCase = o.T __UpperCamelCase = q.T __UpperCamelCase = v.T # Block i, layer 2 (MLP). __UpperCamelCase = tax_layer_norm_lookup(__lowercase , __lowercase , 'decoder' , 'pre_mlp_layer_norm' ) __UpperCamelCase , __UpperCamelCase = tax_mlp_lookup(__lowercase , __lowercase , 'decoder' , __lowercase ) __UpperCamelCase = layer_norm if split_mlp_wi: __UpperCamelCase = wi[0].T __UpperCamelCase = wi[1].T else: __UpperCamelCase = wi.T __UpperCamelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCamelCase = tax_relpos_bias_lookup(__lowercase , __lowercase , 'decoder' ).T __UpperCamelCase = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCamelCase = old['decoder/logits_dense/kernel'].T return new def lowercase__ ( __lowercase : Optional[Any] , __lowercase : bool ) -> int: """simple docstring""" __UpperCamelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCamelCase = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCamelCase = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) __UpperCamelCase = state_dict['shared.weight'] return state_dict def lowercase__ ( __lowercase : List[str] , __lowercase : Dict , __lowercase : str , __lowercase : int , __lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = checkpoints.load_tax_checkpoint(__lowercase ) __UpperCamelCase = convert_tax_to_pytorch( __lowercase , num_layers=config.num_layers , is_encoder_only=__lowercase , scalable_attention=__lowercase ) __UpperCamelCase = make_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase , strict=__lowercase ) def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : Dict , __lowercase : List[str] , __lowercase : bool = False , __lowercase : bool = False , ) -> Optional[int]: """simple docstring""" __UpperCamelCase = MTaConfig.from_json_file(__lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCamelCase = UMTaEncoderModel(__lowercase ) else: __UpperCamelCase = UMTaForConditionalGeneration(__lowercase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowercase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowercase ) print('Done' ) if __name__ == "__main__": a__ : List[Any] =argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ : List[str] =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
53
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = int(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Tuple = t // 3_600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=300 ): '''simple docstring''' return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __UpperCamelCase :List[Any] = f"""{elt:.6f}""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowerCamelCase_ : '''simple docstring''' a__ : Union[str, Any] = 5 a__ : int = 0.2 def __init__( self , __lowercase , __lowercase = None , __lowercase = True , __lowercase = None , __lowercase = 300 , ) -> Any: __UpperCamelCase :Optional[int] = total __UpperCamelCase :List[Any] = '''''' if prefix is None else prefix __UpperCamelCase :Optional[Any] = leave __UpperCamelCase :List[Any] = parent __UpperCamelCase :List[Any] = width __UpperCamelCase :int = None __UpperCamelCase :Tuple = None __UpperCamelCase :Union[str, Any] = None def UpperCamelCase__ ( self , __lowercase , __lowercase = False , __lowercase = None) -> Tuple: __UpperCamelCase :Union[str, Any] = value if comment is not None: __UpperCamelCase :Any = comment if self.last_value is None: __UpperCamelCase :Optional[int] = time.time() __UpperCamelCase :Dict = value __UpperCamelCase :Tuple = None __UpperCamelCase :int = self.warmup __UpperCamelCase :Optional[Any] = 1 self.update_bar(__lowercase) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 __UpperCamelCase :Any = time.time() __UpperCamelCase :Dict = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __UpperCamelCase :Union[str, Any] = self.elapsed_time / (value - self.start_value) else: __UpperCamelCase :Union[str, Any] = None if value >= self.total: __UpperCamelCase :Dict = self.total __UpperCamelCase :int = None if not self.leave: self.close() elif self.average_time_per_item is not None: __UpperCamelCase :Dict = self.average_time_per_item * (self.total - value) self.update_bar(__lowercase) __UpperCamelCase :Optional[int] = value __UpperCamelCase :Tuple = current_time if self.average_time_per_item is None: __UpperCamelCase :Dict = 1 else: __UpperCamelCase :Optional[Any] = max(int(self.update_every / self.average_time_per_item) , 1) def UpperCamelCase__ ( self , __lowercase , __lowercase=None) -> Optional[int]: __UpperCamelCase :Optional[int] = ''' ''' * (len(str(self.total)) - len(str(__lowercase))) + str(__lowercase) if self.elapsed_time is None: __UpperCamelCase :Optional[int] = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: __UpperCamelCase :Any = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time)}""" else: __UpperCamelCase :Tuple = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <""" f""" {format_time(self.predicted_remaining)}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment) == 0 else f""", {self.comment}]""" self.display() def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Union[str, Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __UpperCamelCase :Union[str, Any] = disp.display(disp.HTML(self.html_code) , display_id=__lowercase) else: self.output.update(disp.HTML(self.html_code)) def UpperCamelCase__ ( self) -> Any: if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''')) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase=None) -> List[Any]: super().__init__(__lowercase) __UpperCamelCase :Dict = None if column_names is None else [column_names] __UpperCamelCase :Union[str, Any] = None def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __UpperCamelCase :Dict = disp.display(disp.HTML(self.html_code) , display_id=__lowercase) else: self.output.update(disp.HTML(self.html_code)) def UpperCamelCase__ ( self , __lowercase) -> Optional[int]: if self.inner_table is None: __UpperCamelCase :Optional[int] = [list(values.keys()), list(values.values())] else: __UpperCamelCase :Optional[int] = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__lowercase) __UpperCamelCase :Tuple = columns self.inner_table.append([values[c] for c in columns]) def UpperCamelCase__ ( self , __lowercase , __lowercase=None , __lowercase=300) -> str: __UpperCamelCase :List[str] = NotebookProgressBar(__lowercase , prefix=__lowercase , parent=self , width=__lowercase) return self.child_bar def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :str = None self.display() class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self) -> Union[str, Any]: __UpperCamelCase :int = None __UpperCamelCase :List[Any] = None __UpperCamelCase :Optional[Any] = False def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , **__lowercase) -> Union[str, Any]: __UpperCamelCase :Any = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' __UpperCamelCase :Any = 0 __UpperCamelCase :Optional[int] = 0 __UpperCamelCase :Optional[Any] = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''') __UpperCamelCase :Dict = NotebookTrainingTracker(state.max_steps , __lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , **__lowercase) -> Dict: __UpperCamelCase :Optional[int] = int(state.epoch) if int(state.epoch) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) __UpperCamelCase :Any = False def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase=None , **__lowercase) -> Any: if not has_length(__lowercase): return if self.prediction_bar is None: if self.training_tracker is not None: __UpperCamelCase :Dict = self.training_tracker.add_child(len(__lowercase)) else: __UpperCamelCase :Tuple = NotebookProgressBar(len(__lowercase)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , **__lowercase) -> List[Any]: if self.prediction_bar is not None: self.prediction_bar.close() __UpperCamelCase :List[Any] = None def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase=None , **__lowercase) -> str: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __UpperCamelCase :List[Any] = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy __UpperCamelCase :Tuple = state.global_step self.training_tracker.write_line(__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase=None , **__lowercase) -> List[Any]: if self.training_tracker is not None: __UpperCamelCase :int = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history): if "loss" in log: __UpperCamelCase :Any = log['''loss'''] break if self.first_column == "Epoch": __UpperCamelCase :Tuple = int(state.epoch) else: __UpperCamelCase :Optional[int] = state.global_step __UpperCamelCase :List[Any] = '''eval''' for k in metrics: if k.endswith('''_loss'''): __UpperCamelCase :Union[str, Any] = re.sub(r'''\_loss$''' , '''''' , __lowercase) __UpperCamelCase :List[str] = metrics.pop('''total_flos''' , __lowercase) __UpperCamelCase :Any = metrics.pop('''epoch''' , __lowercase) __UpperCamelCase :List[Any] = metrics.pop(f"""{metric_key_prefix}_runtime""" , __lowercase) __UpperCamelCase :Optional[int] = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , __lowercase) __UpperCamelCase :Any = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , __lowercase) __UpperCamelCase :Union[str, Any] = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , __lowercase) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": __UpperCamelCase :Tuple = v else: __UpperCamelCase :List[Any] = k.split('''_''') __UpperCamelCase :Optional[Any] = ''' '''.join([part.capitalize() for part in splits[1:]]) __UpperCamelCase :str = v self.training_tracker.write_line(__lowercase) self.training_tracker.remove_child() __UpperCamelCase :str = None # Evaluation takes a long time so we should force the next update. __UpperCamelCase :Optional[Any] = True def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , **__lowercase) -> int: self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch)}/{state.num_train_epochs}""" , force_update=__lowercase) __UpperCamelCase :Dict = None
105
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :int = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=SCREAMING_SNAKE_CASE , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=SCREAMING_SNAKE_CASE ) return parser.parse_args() def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Tuple = parse_args() # Import training_script as a module. __UpperCamelCase :Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __UpperCamelCase :Any = script_fpath.stem __UpperCamelCase :Union[str, Any] = importlib.import_module(SCREAMING_SNAKE_CASE ) # Patch sys.argv __UpperCamelCase :Dict = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
105
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCAmelCase__ :Union[str, Any] = TypeVar('''T''') def lowerCAmelCase__ ( a__: int ) -> int: '''simple docstring''' return (position - 1) // 2 def lowerCAmelCase__ ( a__: int ) -> int: '''simple docstring''' return (2 * position) + 1 def lowerCAmelCase__ ( a__: int ) -> int: '''simple docstring''' return (2 * position) + 2 class __a ( Generic[T] ): def __init__( self ) -> None: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = 0 def __len__( self ) -> int: """simple docstring""" return self.elements def __repr__( self ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase__ ( self ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" self.heap.append((elem, weight) ) _UpperCAmelCase = self.elements self.elements += 1 self._bubble_up(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _UpperCAmelCase , _UpperCAmelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _UpperCAmelCase , _UpperCAmelCase = self.heap[0] self._bubble_down(_SCREAMING_SNAKE_CASE ) return elem def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" _UpperCAmelCase = self.position_map[elem] _UpperCAmelCase = (elem, weight) if position > 0: _UpperCAmelCase = get_parent_position(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_SCREAMING_SNAKE_CASE ) else: self._bubble_down(_SCREAMING_SNAKE_CASE ) else: self._bubble_down(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" _UpperCAmelCase = self.position_map[elem] if curr_pos == 0: return None _UpperCAmelCase = get_parent_position(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = self.heap[curr_pos] _UpperCAmelCase , _UpperCAmelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._bubble_up(_SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" _UpperCAmelCase = self.position_map[elem] _UpperCAmelCase , _UpperCAmelCase = self.heap[curr_pos] _UpperCAmelCase = get_child_left_position(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = get_child_right_position(_SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: _UpperCAmelCase , _UpperCAmelCase = self.heap[child_left_position] _UpperCAmelCase , _UpperCAmelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._bubble_down(_SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: _UpperCAmelCase , _UpperCAmelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._bubble_down(_SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: _UpperCAmelCase , _UpperCAmelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._bubble_down(_SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" _UpperCAmelCase = self.heap[nodea_pos][0] _UpperCAmelCase = self.heap[nodea_pos][0] _UpperCAmelCase , _UpperCAmelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _UpperCAmelCase = nodea_pos _UpperCAmelCase = nodea_pos class __a ( Generic[T] ): def __init__( self ) -> None: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = 0 def __repr__( self ) -> str: """simple docstring""" return str(self.connections ) def __len__( self ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if node not in self.connections: _UpperCAmelCase = {} self.nodes += 1 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" self.add_node(_SCREAMING_SNAKE_CASE ) self.add_node(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = weight _UpperCAmelCase = weight def lowerCAmelCase__ ( a__: GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' _UpperCAmelCase = {node: maxsize for node in graph.connections} _UpperCAmelCase = {node: None for node in graph.connections} _UpperCAmelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization _UpperCAmelCase = priority_queue.extract_min() _UpperCAmelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _UpperCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) _UpperCAmelCase = node # running prim's algorithm while not priority_queue.is_empty(): _UpperCAmelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _UpperCAmelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) _UpperCAmelCase = node return dist, parent
329
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase__ :Optional[int] = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any: '''simple docstring''' require_version(deps[pkg] , a__ )
329
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCamelCase, __lowerCamelCase ) def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = emb.weight.shape SCREAMING_SNAKE_CASE_ = nn.Linear(__lowerCamelCase, __lowerCamelCase, bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = emb.weight.data return lin_layer def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = torch.load(__lowerCamelCase, map_location='''cpu''' ) SCREAMING_SNAKE_CASE_ = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] SCREAMING_SNAKE_CASE_ = mam_aaa['''model'''] remove_ignore_keys_(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = state_dict['''encoder.embed_tokens.weight'''].shape[0] SCREAMING_SNAKE_CASE_ = MaMaaaConfig( vocab_size=__lowerCamelCase, max_position_embeddings=10_24, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', ) SCREAMING_SNAKE_CASE_ = state_dict['''decoder.embed_tokens.weight'''] SCREAMING_SNAKE_CASE_ = MaMaaaForConditionalGeneration(__lowerCamelCase ) model.model.load_state_dict(__lowerCamelCase, strict=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
257
def A__ ( __lowerCamelCase ): return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") __UpperCAmelCase = int(input("Enter number: ").strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
257
1